JP2010011619A - Charging control method and charge controller of battery - Google Patents

Charging control method and charge controller of battery Download PDF

Info

Publication number
JP2010011619A
JP2010011619A JP2008167213A JP2008167213A JP2010011619A JP 2010011619 A JP2010011619 A JP 2010011619A JP 2008167213 A JP2008167213 A JP 2008167213A JP 2008167213 A JP2008167213 A JP 2008167213A JP 2010011619 A JP2010011619 A JP 2010011619A
Authority
JP
Japan
Prior art keywords
battery
internal pressure
charging
control method
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008167213A
Other languages
Japanese (ja)
Inventor
Kyoko Nakatsuji
恭子 仲辻
Hideaki Oyama
秀明 大山
Yoshitaka Dansui
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008167213A priority Critical patent/JP2010011619A/en
Publication of JP2010011619A publication Critical patent/JP2010011619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging control method of a battery for hybrid vehicle which can maintain the battery performance for a long term while bringing out the characteristics of the battery fully at run time by avoiding elevation of internal pressure resulting from generation of gas. <P>SOLUTION: When a section 14a for determining elevation of internal pressure determines that the internal pressure of at least one of a plurality of cells 110 included in a battery 11 for hybrid vehicle exceeded a predetermined value, the charging voltage or charging current of the battery 11 is reduced based on control by a battery control section 15 and an EV control section 23. Furthermore, a receiving section 31 actuates a buzzer 32 to notify the fact to the operator, or the like, with sound. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハイブリッド自動車用電池の充電制御方法および充電制御装置に関し、より詳しくは、電池に含まれる複数のセル(蓄電池)の内圧上昇の影響を、簡易かつ効率的に低減させる充電制御方法に関する。   The present invention relates to a charge control method and a charge control device for a hybrid vehicle battery, and more particularly, to a charge control method for easily and efficiently reducing the influence of an increase in internal pressure of a plurality of cells (storage batteries) included in the battery. .

ニッケル水素蓄電池をはじめとするアルカリ蓄電池は、ハイブリッド自動車(以下、「HEV」と記す)や非常用電源などの産業用途を中心に需要が拡大しつつある。特にHEVにおいてメイン電源として用いられるアルカリ蓄電池は、モータの駆動(放電)と発電機からの回生電力の貯蓄(充電)の双方を行うため、電池の充電状態(SOC)により、充放電が監視・制御される。   Demand for alkaline storage batteries such as nickel metal hydride storage batteries is expanding mainly in industrial applications such as hybrid vehicles (hereinafter referred to as “HEV”) and emergency power supplies. In particular, an alkaline storage battery used as a main power source in HEV performs both driving (discharging) of the motor and storage (charging) of regenerative power from the generator, so charging / discharging is monitored / charged according to the state of charge (SOC) of the battery. Be controlled.

一方、アルカリ蓄電池は、電解液から発生するガスの量が充電の終期に急増する、いわゆる“ガス発生”による内圧上昇が生じて蓄電池の性能が劣化する。この内圧上昇による蓄電池への影響を低減させるために、いくつかの方法が提案されている。   On the other hand, in the alkaline storage battery, the amount of gas generated from the electrolyte rapidly increases at the end of charging, so that the internal pressure rises due to so-called “gas generation”, and the performance of the storage battery deteriorates. In order to reduce the influence on the storage battery due to the increase in internal pressure, several methods have been proposed.

一つの方法として、アルカリ蓄電池の端子間電圧が予め定めるガス発生電圧を超えた場合にガス発生による内圧上昇が生じたと推定し、発電を5秒間停止させ、その後発電を再開する方法がある。しかし、この方法ではいわゆるハンチング現象が生じ、HEVの搭乗者に不快感を与える問題があった。   As one method, there is a method in which it is estimated that an increase in internal pressure due to gas generation occurs when the voltage between terminals of the alkaline storage battery exceeds a predetermined gas generation voltage, power generation is stopped for 5 seconds, and then power generation is restarted. However, in this method, a so-called hunting phenomenon occurs, and there is a problem that an unpleasant feeling is given to the HEV passenger.

他の方法として、特許文献1に記載されたような、蓄電池の端子間電圧からガス発生電圧を推定し、またはガスセンサによりガス圧を直接検出して、SOCを制御する方法がある。具体的には、内圧上昇によって蓄電池に設けた弁が作動したときに充電を止める制御方法である。
特開平10−201009号公報
As another method, there is a method for controlling the SOC by estimating the gas generation voltage from the voltage between the terminals of the storage battery or directly detecting the gas pressure with a gas sensor as described in Patent Document 1. Specifically, this is a control method for stopping charging when a valve provided in the storage battery is activated due to an increase in internal pressure.
JP-A-10-201209

上記特許文献1に記載の方法は、内圧の上昇に伴う蓄電池の性能劣化をある程度回避できる。しかし、蓄電池がHEVに搭載された状態では、内圧の上昇が繰り返し発生して蓄電池の劣化が促進される可能性が高く、電池の性能を長期に維持する観点からは、検討すべき余地がある。   The method described in Patent Document 1 can avoid performance degradation of the storage battery due to an increase in internal pressure to some extent. However, in the state where the storage battery is mounted on the HEV, there is a high possibility that the internal pressure will repeatedly increase and the deterioration of the storage battery will be promoted. .

本発明は上記問題点に鑑みてなされたもので、ガス発生による内圧の上昇を回避し、走行時に電池の性能を十分に引き出しながら、電池の性能を長期に維持できるHEV用電池の充電制御方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and avoids an increase in internal pressure due to gas generation, and a battery charge control method for a battery for HEV that can maintain the battery performance for a long time while sufficiently extracting the battery performance during traveling. The purpose is to provide.

上記目的を達成するために、本発明にかかる電池の充電制御方法は
車両を駆動するモータと、エンジンにより駆動され発電を行う発電機と、前記モータにインバータを介して電力を供給し、かつ前記発電機からの電力を、前記インバータを介して充電電流として受け入れる電池とを有するハイブリッド自動車における電池の充電制御方法であって、
前記電池に含まれる複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定されたときに、前記電池の充電電圧または充電電流を低減するステップと、
前記複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定されたことを、音声で知らせるステップとを含むものである。
In order to achieve the above object, a battery charge control method according to the present invention comprises: a motor that drives a vehicle; a generator that generates power by being driven by an engine; and supplies power to the motor via an inverter; A battery charge control method in a hybrid vehicle having a battery that accepts electric power from a generator as a charging current through the inverter,
Reducing the charging voltage or charging current of the battery when it is determined that the internal pressure of at least one of the cells included in the battery exceeds a predetermined value;
A step of notifying by voice that the internal pressure of at least one of the plurality of cells has exceeded a predetermined value.

ここで、前記インバータの出力電圧を低減することにより前記電池の充電電圧を低減するか、前記インバータから出力される直流電流の一部を逃がすことにより前記電池の充電電流を低減することが好ましい。   Here, it is preferable that the charging voltage of the battery is reduced by reducing the output voltage of the inverter, or the charging current of the battery is reduced by releasing a part of the direct current output from the inverter.

また、前記電池の端子間電圧が所定の値を超えたときに、前記複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定することが好ましい。   Further, it is preferable that when the voltage between the terminals of the battery exceeds a predetermined value, it is determined that the internal pressure of at least one of the plurality of cells exceeds a predetermined value.

ただし、前記複数のセルのそれぞれに設けられた弁のうちいずれか一つが作動したときに、前記複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定してもよい。もしくは、前記複数のセルを格納する容器の変形の程度が所定の値を超えたときに、前記複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定してもよい。   However, when any one of the valves provided in each of the plurality of cells operates, it may be determined that the internal pressure of at least one of the plurality of cells has exceeded a predetermined value. Alternatively, when the degree of deformation of the container storing the plurality of cells exceeds a predetermined value, it may be determined that the internal pressure of at least one of the plurality of cells exceeds a predetermined value.

本発明にかかる電池の充電制御方法は、前記複数のセルのうち特性の劣化したセルを前記電池から取り外すステップをさらに含むことが好ましい。   The battery charge control method according to the present invention preferably further includes a step of removing, from the battery, a cell having deteriorated characteristics among the plurality of cells.

また本発明にかかる電池の充電制御装置は、
車両を駆動するモータと、エンジンにより駆動され発電を行う発電機と、前記モータにインバータを介して電力を供給し、かつ前記発電機からの電力を前記インバータを介して充電電流として受け入れる電池とを有するハイブリッド自動車において使用される電池の充電制御装置であって、
前記電池に含まれる複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたか否かを判定する内圧上昇判定部と、
前記内圧上昇判定部の出力信号に基づいて前記電池の充電電圧または充電電流を制御する制御部と、
前記内圧上昇判定部の出力信号に基づいて音声を発生する音声発生部を備えるものである。
Further, the battery charge control device according to the present invention includes:
A motor that drives a vehicle; a generator that is driven by an engine to generate electric power; and a battery that supplies electric power to the motor via an inverter and receives electric power from the generator as a charging current via the inverter. A charge control device for a battery used in a hybrid vehicle having:
An internal pressure increase determination unit that determines whether or not the internal pressure of at least one of the cells included in the battery exceeds a predetermined value;
A control unit for controlling a charging voltage or a charging current of the battery based on an output signal of the internal pressure increase determination unit;
A sound generation unit that generates sound based on an output signal of the internal pressure increase determination unit is provided.

本発明にかかる電池の充電制御装置は、ナビゲーションシステム内に設けられ、前記内圧上昇判定部の出力信号を受信すると共に前記制御部に転送する受信部をさらに備えることが好ましい。   The battery charge control device according to the present invention is preferably provided in the navigation system, and further includes a receiving unit that receives an output signal of the internal pressure increase determination unit and transfers the output signal to the control unit.

本発明によれば、HEV用の電池において、ガス発生による内圧上昇を防止して、走行中に電池の性能を十分に引き出すことができ、しかも電池の耐久性の要求をも満足する充電制御方法を提供できる。   According to the present invention, in a battery for HEV, a charge control method that can prevent a rise in internal pressure due to gas generation, sufficiently bring out the performance of the battery during traveling, and satisfy the requirements for battery durability. Can provide.

以下、本発明の実施の形態にかかるHEV用電池の充電制御方法について、図面を参照しながら説明する。図1に、本発明にかかる充電制御方法を採用したHEVの構成を示す。   Hereinafter, a method for controlling charging of an HEV battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of an HEV that employs the charge control method according to the present invention.

HEVは、基本的に電源システム1と車両駆動システム2とで構成されている。電源システム1は、電池11、インバータ12、バイパス回路13、内圧上昇判定部14a、電池制御部15、受信部31およびブザー32を含む。一方、車両駆動システム2は、モータジェネレータ21、エンジン22およびEV制御部23を含む。なお電源システム1の電池制御部15と車両駆動システム2のEV制御部23は、連携してHEVの制御を行う。   The HEV basically includes a power supply system 1 and a vehicle drive system 2. The power supply system 1 includes a battery 11, an inverter 12, a bypass circuit 13, an internal pressure increase determination unit 14a, a battery control unit 15, a reception unit 31, and a buzzer 32. On the other hand, the vehicle drive system 2 includes a motor generator 21, an engine 22, and an EV control unit 23. The battery control unit 15 of the power supply system 1 and the EV control unit 23 of the vehicle drive system 2 control HEV in cooperation.

最初に、車両駆動システム2を中心に、HEVの動作について簡単に説明する。モータジェネレータ21はモータと発電機の両方の機能を備えている。車両の駆動はモータジェネレータ21により行われ、エンジン22はモータジェネレータ21の発電機を発電させる。   First, the HEV operation will be briefly described with a focus on the vehicle drive system 2. The motor generator 21 has functions of both a motor and a generator. The vehicle is driven by the motor generator 21, and the engine 22 generates power from the generator of the motor generator 21.

EV制御部23はHEVのアクセル開度、ブレーキ踏み込み量、車速などの情報に基づいてトルク指令を決定し、モータジェネレータ21の出力がトルク指令に合致するように制御する。すなわちEV制御部23は、インバータ12におけるスイッチングを制御すると共に、エンジン22の出力を制御する。これによって、モータジェネレータ21への入力が決定され、モータジェネレータ21の出力がトルク指令に合致したものに制御される。   The EV control unit 23 determines a torque command based on information such as the accelerator opening of the HEV, the brake depression amount, and the vehicle speed, and performs control so that the output of the motor generator 21 matches the torque command. That is, the EV control unit 23 controls switching in the inverter 12 and controls the output of the engine 22. Thereby, the input to the motor generator 21 is determined, and the output of the motor generator 21 is controlled to match the torque command.

エンジン22の出力がモータジェネレータ21の出力よりも大きい場合には、インバータ12から電力が電池11に向けて出力され、電池11が充電される。一方、エンジン22の出力がモータジェネレータ21の出力より小さい場合には、インバータ12からモータジェネレータ21に電力が供給され、電池11が放電される。   When the output of the engine 22 is larger than the output of the motor generator 21, electric power is output from the inverter 12 toward the battery 11, and the battery 11 is charged. On the other hand, when the output of engine 22 is smaller than the output of motor generator 21, electric power is supplied from inverter 12 to motor generator 21, and battery 11 is discharged.

次に、電源システム1の各構成要素について、それぞれの機能を具体的に説明する。主電源である電池11は、アルカリ蓄電池あるいはリチウム二次電池からなる多数のセル110が並列および/または直列に接続されて構成されている。電池11の端子間電圧の値Vb1は電圧センサ16で検出され、内圧上昇判定部14aに供給される。   Next, the function of each component of the power supply system 1 will be specifically described. The battery 11 as the main power source is configured by connecting a large number of cells 110 made of an alkaline storage battery or a lithium secondary battery in parallel and / or in series. The voltage Vb1 between the terminals of the battery 11 is detected by the voltage sensor 16 and supplied to the internal pressure increase determination unit 14a.

図2(A)に内圧上昇判定部14aの構成を示す。内圧上昇判定部14aに入力された電圧値Vb1は電圧比較手段141で予め設定された基準電圧Vs1と比較される。電圧比較手段141は、電圧値Vb1が基準電圧Vs1を超えたときに、セル110の内圧が所定の値を超えたと判定し、判定信号Cpを出力する。出力された判定信号Cpは、受信部31に送信される。   FIG. 2A shows the configuration of the internal pressure increase determination unit 14a. The voltage value Vb1 input to the internal pressure increase determination unit 14a is compared with a preset reference voltage Vs1 by the voltage comparison unit 141. When the voltage value Vb1 exceeds the reference voltage Vs1, the voltage comparison unit 141 determines that the internal pressure of the cell 110 has exceeded a predetermined value, and outputs a determination signal Cp. The output determination signal Cp is transmitted to the receiving unit 31.

また電池11には直列に電流センサ17が接続され、電流センサ17で検出された電流値Ibは電池制御部15に供給される。電池制御部15は、電流値Ibに基づいて電池11のSOCを算出する。   A current sensor 17 is connected in series to the battery 11, and the current value Ib detected by the current sensor 17 is supplied to the battery control unit 15. The battery control unit 15 calculates the SOC of the battery 11 based on the current value Ib.

電池制御部15は、受信部31を介して内圧上昇判定部14aから送信された判定信号Cpに基づき、EV制御部23を介して間接的にインバータ12の動作を制御する。電池制御部15には記憶部18が接続され、記憶部18には電池11を充電する際の条件が記憶されている。   The battery control unit 15 indirectly controls the operation of the inverter 12 through the EV control unit 23 based on the determination signal Cp transmitted from the internal pressure increase determination unit 14 a through the reception unit 31. A storage unit 18 is connected to the battery control unit 15, and conditions for charging the battery 11 are stored in the storage unit 18.

インバータ12は、EV制御部23の制御信号Ciに従い、モータジェネレータ21で発生した交流の電流を電池11充電用の直流の電流に変換する。同様にインバータ12は、電池11から出力された電流をモータジェネレータ21の回転数に対応した周波数の交流に変換する。   The inverter 12 converts an alternating current generated by the motor generator 21 into a direct current for charging the battery 11 in accordance with the control signal Ci of the EV control unit 23. Similarly, the inverter 12 converts the current output from the battery 11 into alternating current having a frequency corresponding to the rotational speed of the motor generator 21.

バイパス回路13は、電池制御部15の制御信号Cbに従い、電池11への充電電流の一部を逃がして電池11の充電条件を変更する。バイパス回路13によって電池の充電条件を変更する方法は、特許文献1に記載されたモータの回転数を変える方法に比べて制御が容易である。また逃がした電流を図示しないキャパシタや蓄電池に供給することにより、効率的なエネルギー利用が図られる。   The bypass circuit 13 changes the charging condition of the battery 11 by releasing a part of the charging current to the battery 11 according to the control signal Cb of the battery control unit 15. The method of changing the battery charging condition by the bypass circuit 13 is easier to control than the method of changing the rotational speed of the motor described in Patent Document 1. In addition, efficient energy utilization is achieved by supplying the escaped current to a capacitor or storage battery (not shown).

受信部31は内圧上昇判定部14aの判定信号Cpを受信し、電池制御部15に転送する。また受信部31には音声発生部として機能するブザー32が接続されている。ブザー32は圧電素子を含み、受信部31が判定信号Cpを受信したときに音声を出力し、HEVの運転者や同乗者に、セル110の内圧が所定の値を超えたことを知らせる。   The receiving unit 31 receives the determination signal Cp from the internal pressure increase determination unit 14 a and transfers it to the battery control unit 15. In addition, a buzzer 32 that functions as a sound generator is connected to the receiver 31. The buzzer 32 includes a piezoelectric element, and outputs a sound when the receiving unit 31 receives the determination signal Cp to notify the HEV driver or passenger that the internal pressure of the cell 110 has exceeded a predetermined value.

受信部31およびブザー32は、HEV内に搭載されたナビゲーションシステム3内に設けられている。通常、HEVの運転中はナビゲーションシステム3の電源が入った状態であるため、受信部31およびブザー32は正常に動作し、本発明にかかる充電制御が行われる。従って、HEVの運転中に、運転者や同乗者が音声によって、セル110の内圧が上昇したことに気付き、運転終了後の電池の点検を促す効果があるため、HEVのメンテナンス上、非常に有効である。   The receiving unit 31 and the buzzer 32 are provided in the navigation system 3 mounted in the HEV. Normally, since the navigation system 3 is powered on during HEV operation, the receiving unit 31 and the buzzer 32 operate normally, and the charging control according to the present invention is performed. Therefore, during the HEV operation, the driver or passenger notices that the internal pressure of the cell 110 has increased by voice, and has the effect of prompting the inspection of the battery after the operation is completed, so it is very effective for HEV maintenance. It is.

なお、本実施の形態において、インバータ12、バイパス回路13、内圧上昇判定部14a、電池制御部15、EV制御部23、受信部31およびブザー32は、本発明の充電制御装置を構成する。またインバータ12、バイパス回路、電池制御部15およびEV制御部23は、本発明の制御部を構成する。   In the present embodiment, inverter 12, bypass circuit 13, internal pressure increase determination unit 14a, battery control unit 15, EV control unit 23, reception unit 31, and buzzer 32 constitute a charge control device of the present invention. Further, the inverter 12, the bypass circuit, the battery control unit 15 and the EV control unit 23 constitute a control unit of the present invention.

次に、図1を参照して、本発明にかかる充電制御方法について具体的に説明する。電池制御部15は、電流センサ17で検出した電流値Ibを積算することによりSOCの値を求め、この値と記憶部18に記憶された充電条件とを比較しながら、充電制御を行う。当初設定した条件であれば、ガス発生による内圧上昇は生じないはずであるが、実際には、セル110のバラツキにより、ガス発生による内圧上昇が生じる場合がある。   Next, the charge control method according to the present invention will be described in detail with reference to FIG. The battery control unit 15 obtains the SOC value by integrating the current value Ib detected by the current sensor 17, and performs charging control while comparing this value with the charging condition stored in the storage unit 18. Under the initially set conditions, an increase in internal pressure due to gas generation should not occur, but in reality, an increase in internal pressure due to gas generation may occur due to variations in the cells 110.

前述した従来の制御方法では、電池11のセル110のそれぞれにガスセンサを内蔵させ、ガス圧を直接検出していた。これに対し本実施の形態では、電圧センサ16で検出した電池11の端子間電圧Vb1が基準値Vs1(図2(A)参照)を超えた時に、内圧上昇判定部14aでガス発生による内圧上昇が生じたと判定し、判定信号Cpを、受信部31を介して電池制御部15に送信する。   In the conventional control method described above, a gas sensor is built in each cell 110 of the battery 11 to directly detect the gas pressure. On the other hand, in the present embodiment, when the inter-terminal voltage Vb1 of the battery 11 detected by the voltage sensor 16 exceeds the reference value Vs1 (see FIG. 2A), the internal pressure increase due to gas generation in the internal pressure increase determination unit 14a. The determination signal Cp is transmitted to the battery control unit 15 via the reception unit 31.

判定信号Cpを受信した電池制御部15は、充電制御の方法を変更する。具体的には、設定電圧を変更するか充電の電流値を変更する。設定電圧は、インバータ12を用いて随時変更できる。また、充電電流値は、バイパス回路13によって所定の電流量をキャパシタ等に逃がすことにより、変更できる。   The battery control unit 15 that has received the determination signal Cp changes the method of charge control. Specifically, the set voltage is changed or the charging current value is changed. The set voltage can be changed at any time using the inverter 12. Further, the charging current value can be changed by allowing a predetermined current amount to escape to the capacitor or the like by the bypass circuit 13.

さらに、判定信号Cpを受信した受信部31は、ブザー32を動作させてセル110の内圧が上昇したことを運転者や同乗者に知らせる。運転者等は、ブザー32により内圧上昇があったことが分かるため、整備工場等に電池11の点検を依頼することができる。点検の結果、性能が劣化して放電容量が極端に少なくなったセル110(例えば2Ah未満)があれば、適正な放電容量を有するセルと取り替える。   Further, the receiving unit 31 that has received the determination signal Cp operates the buzzer 32 to notify the driver and passengers that the internal pressure of the cell 110 has increased. The driver or the like can request that the battery 11 be inspected by a maintenance shop or the like because the buzzer 32 indicates that the internal pressure has increased. As a result of the inspection, if there is a cell 110 (for example, less than 2 Ah) whose performance is deteriorated and the discharge capacity is extremely reduced, it is replaced with a cell having an appropriate discharge capacity.

以上説明したように、ガス発生による内圧上昇を早期に検知し、その結果に基づいて充電制御の方法を変え、さらに整備工場等に電池の点検を依頼し、必要な場合にはセルを交換することにより、電池全体の性能を長期に維持することができる。本発明によれば、ガス発生による内圧上昇による劣化を抑制する電源システムを簡易的な構造で具現化でき、HEVの安全性および信頼性が向上する。   As explained above, the internal pressure rise due to gas generation is detected at an early stage, the charging control method is changed based on the result, and a battery inspection is requested to a maintenance shop etc., and the cell is replaced when necessary. As a result, the performance of the entire battery can be maintained for a long time. ADVANTAGE OF THE INVENTION According to this invention, the power supply system which suppresses degradation by the internal pressure rise by gas generation can be embodied with a simple structure, and the safety | security and reliability of HEV improve.

なお本実施の形態においては、電池11の端子間の電圧値Vbを検出することによりセル110の内圧の上昇を判定したが、内圧上昇の判定方法はこれに限定されない。図2(B)、(C)に内圧上昇判定部の他の構成例を示す。   In the present embodiment, the increase in the internal pressure of the cell 110 is determined by detecting the voltage value Vb between the terminals of the battery 11, but the determination method for the increase in the internal pressure is not limited to this. 2B and 2C show other configuration examples of the internal pressure increase determination unit.

図2(B)は、セル110に設けられた弁からの信号Sbを受けて内圧の上昇を判定する内圧上昇判定部14bの構成を示す。セル110のそれぞれに弁が設けられており、内圧が上昇してセル110の弁が開いた時に、弁から信号Sbが出力され、その信号Sbを弁作動検知手段142で受信する。弁作動検知手段142は、いずれかのセル110から信号Sbを受信したときに、セル110の内圧が上昇したと判定して、信号Cpを出力する。   FIG. 2B shows a configuration of an internal pressure increase determination unit 14b that receives a signal Sb from a valve provided in the cell 110 and determines an increase in internal pressure. Each cell 110 is provided with a valve. When the internal pressure rises and the valve of the cell 110 is opened, a signal Sb is output from the valve, and the signal Sb is received by the valve operation detecting means 142. When receiving the signal Sb from any of the cells 110, the valve operation detection unit 142 determines that the internal pressure of the cell 110 has increased, and outputs the signal Cp.

図2(C)は、内圧によりセル110の金属ケースが膨張したときに、膨張に伴うセルの変形を検出して内圧の上昇を判定する内圧上昇判定部14cの構成を示す。具体的には、複数のセル110を格納する容器に歪センサを貼り付け(図示せず)、歪センサから出力される信号Vb2を電圧比較手段143で基準値Vs2と比較する。内圧上昇によってセル110の金属ケースが膨張し、容器が変形して歪センサの出力Vb2が基準値Vs2を超えると、電圧比較手段143は、セル110の内圧が上昇したと判定して、信号Cpを出力する。   FIG. 2C shows a configuration of an internal pressure increase determination unit 14c that detects the increase in internal pressure by detecting the deformation of the cell accompanying expansion when the metal case of the cell 110 is expanded by the internal pressure. Specifically, a strain sensor is attached to a container that stores a plurality of cells 110 (not shown), and a signal Vb2 output from the strain sensor is compared with a reference value Vs2 by a voltage comparison unit 143. When the metal case of the cell 110 expands due to the increase in internal pressure, the container deforms and the output Vb2 of the strain sensor exceeds the reference value Vs2, the voltage comparison means 143 determines that the internal pressure of the cell 110 has increased, and the signal Cp Is output.

従来の電源システムで内圧の検出に用いていたガスセンサは高価であるため、電源システムのコストアップの原因となっていた。これに対し、本実施の形態で用いる電圧センサや弁、さらに歪センサは安価であるため、電源システムのコストを抑えることができる。   Since the gas sensor used for detecting the internal pressure in the conventional power supply system is expensive, the cost of the power supply system is increased. On the other hand, since the voltage sensor, valve, and strain sensor used in this embodiment are inexpensive, the cost of the power supply system can be suppressed.

また本実施の形態では、セル110の内圧の上昇を、圧電素子を用いたブザー32でHEVの運転者等に知らせていたが、これに限定されるものではない。HEVの運転中に、セル110の内圧が上昇したことを音声で運転者等に通知できるものであれば、様々な音声発生手段を用いることができる。   In the present embodiment, the increase in the internal pressure of the cell 110 is notified to the HEV driver or the like by the buzzer 32 using a piezoelectric element, but the present invention is not limited to this. Various voice generating means can be used as long as it can notify the driver or the like by voice that the internal pressure of the cell 110 has increased during the HEV operation.

以下、本発明の実施例および比較例について説明する。なお本発明がこの実施例に限定されないことは云うまでもない。本実施例では、主電源を構成する電池11として、ニッケル水素蓄電池を用いた。   Examples of the present invention and comparative examples will be described below. Needless to say, the present invention is not limited to this embodiment. In this example, a nickel metal hydride storage battery was used as the battery 11 constituting the main power source.

(実施例1)
最初に電池11の製造方法について説明する。水酸化ニッケルを活物質とする長尺状の正極と、水素吸蔵合金を活物質とする長尺状の負極との間に、スルホン化処理したポリプロピレン不織布からなるセパレータを挟んだ状態で捲回し、電極群を構成した。この電極群を内径30mm、長さ60mmの円筒型電槽缶に挿入し、水酸化カリウムを主体とする電解液を注入した後、電槽缶の開口部を封口して、公称容量6Ahのニッケル水素蓄電池を得た。このニッケル水素蓄電池を12セル直列に接続して主電源(電池11)とした。
Example 1
First, a method for manufacturing the battery 11 will be described. Winding in a state of sandwiching a separator made of a woven polypropylene nonwoven fabric between a long positive electrode using nickel hydroxide as an active material and a long negative electrode using a hydrogen storage alloy as an active material, An electrode group was constructed. This electrode group is inserted into a cylindrical battery case having an inner diameter of 30 mm and a length of 60 mm, and an electrolyte mainly composed of potassium hydroxide is injected, then the opening of the battery case is sealed, and nickel having a nominal capacity of 6 Ah A hydrogen storage battery was obtained. This nickel metal hydride storage battery was connected in series in 12 cells to form a main power source (battery 11).

上述した電池11を用い、図1に示すように、EV制御部23からの制御信号Ciによってインバータ12を制御することにより、電池11に対し電流値30AとしてSOC20%の電圧に達するまで放電させた後、SOC80%の電圧に達するまで充電した。   Using the battery 11 described above, as shown in FIG. 1, the inverter 12 is controlled by the control signal Ci from the EV control unit 23, so that the battery 11 is discharged as a current value 30A until reaching a voltage of SOC 20%. Thereafter, the battery was charged until a voltage of SOC 80% was reached.

ここで言うSOC20%の電圧およびSOC80%の電圧は初期の値であり、直列に接続された12個のセル110のそれぞれの端子間電圧の合計値である。電池11の端子間電圧が所定の値を超えてセル110の内圧が上昇したと判定された場合、ナビゲーションシステム内に設置された受信部31が内圧上昇判定部14aからの判定信号Cpを受け、ナビゲーションシステムの表示パネルに内圧上昇を表示する。さらに、受信部を介して判定信号Cpを受信した電池制御部15は、EV制御部23を介してインバータ12を制御し電池11の充電電圧を変更した。この電源システム1について、45℃の雰囲気下で10000サイクルの充放電を実施した。   The voltage of SOC 20% and the voltage of SOC 80% here are initial values, and are the total values of the voltages across the terminals of the 12 cells 110 connected in series. When it is determined that the inter-terminal voltage of the battery 11 exceeds a predetermined value and the internal pressure of the cell 110 has increased, the receiving unit 31 installed in the navigation system receives the determination signal Cp from the internal pressure increase determination unit 14a, The internal pressure rise is displayed on the display panel of the navigation system. Furthermore, the battery control unit 15 that has received the determination signal Cp via the reception unit controls the inverter 12 via the EV control unit 23 to change the charging voltage of the battery 11. The power supply system 1 was charged and discharged for 10,000 cycles in an atmosphere at 45 ° C.

(比較例1)
受信部31をナビゲーションシステム3に設置せず、充放電サイクルを10000サイクル実施した。それ以外は実施例1と同様に構成した。
(Comparative Example 1)
The receiver 31 was not installed in the navigation system 3 and 10,000 charge / discharge cycles were performed. Otherwise, the configuration was the same as in Example 1.

(実施例2)
圧電素子によるブザー32をナビゲーションシステム3に設置し、受信部31の動作と連動させた。すなわち内圧上昇判定部14aで、電池11の端子間電圧Vb1が所定の値(基準値Vs1)を超えたことを検出して判定信号Cpを出力し、その信号Cpを受信部31で受信したときにブザー32を鳴らした。ブザー32が鳴った時点で電池11を点検すること以外は、実施例1と同様に構成した。
(Example 2)
A buzzer 32 using a piezoelectric element was installed in the navigation system 3 and linked to the operation of the receiver 31. That is, when the internal pressure increase determination unit 14a detects that the inter-terminal voltage Vb1 of the battery 11 exceeds a predetermined value (reference value Vs1) and outputs the determination signal Cp, and the reception unit 31 receives the signal Cp. The buzzer 32 sounded. The configuration was the same as in Example 1 except that the battery 11 was checked when the buzzer 32 sounded.

(比較例2)
圧電素子によるブザー32をナビゲーションシステム3に設置せず、電池11を点検しないこと以外は、実施例2と同様に構成した。
(Comparative Example 2)
The configuration was the same as in Example 2 except that the buzzer 32 using a piezoelectric element was not installed in the navigation system 3 and the battery 11 was not inspected.

(実施例3)
内圧上昇の判定手段として、図2(B)に記載の内圧上昇判定部14bを用いた。また圧電素子によるブザー32をナビゲーションシステム3に設置し、受信部31が、セル110の内圧が上昇したことを知らせる信号Cpを受信したときにブザー32を鳴らし、その時点で電池11を点検した。それ以外は、実施例1と同様に構成した。
(Example 3)
As an internal pressure increase determination unit, the internal pressure increase determination unit 14b illustrated in FIG. 2B was used. In addition, a buzzer 32 using a piezoelectric element was installed in the navigation system 3, and the buzzer 32 was sounded when the receiving unit 31 received a signal Cp notifying that the internal pressure of the cell 110 had increased, and the battery 11 was inspected at that time. Otherwise, the configuration was the same as in Example 1.

(比較例3)
圧電素子によるブザー32をナビゲーションシステム3に設置せず、電池11を点検しないこと以外は、実施例3と同様に構成した。
(Comparative Example 3)
The configuration was the same as that of Example 3 except that the buzzer 32 by the piezoelectric element was not installed in the navigation system 3 and the battery 11 was not inspected.

(実施例4)
内圧上昇の推定手段として、図2(C)に記載の内圧上昇判定部14cを用いた。また圧電素子によるブザー32をナビゲーションシステム3に設置し、受信部31が、セル110の内圧が上昇したことを知らせる信号Cpを受信したときにブザー32を鳴らした。ブザー32が鳴った時点で電池を点検する以外は、実施例1と同様に構成した。
Example 4
As the means for estimating the internal pressure increase, the internal pressure increase determination unit 14c shown in FIG. 2C was used. Further, a buzzer 32 using a piezoelectric element was installed in the navigation system 3, and the buzzer 32 was sounded when the receiving unit 31 received a signal Cp notifying that the internal pressure of the cell 110 had increased. The configuration was the same as in Example 1 except that the battery was checked when the buzzer 32 sounded.

(比較例4)
圧電素子によるブザー32をナビゲーションシステム3に設置せず、電池を点検しないこと以外は、実施例4と同様に構成した。
(Comparative Example 4)
The configuration was the same as in Example 4 except that the buzzer 32 made of piezoelectric elements was not installed in the navigation system 3 and the battery was not inspected.

<内圧上昇>
上記各実施例および比較例について、以下の要領でガス発生による内圧上昇の評価を行った。すなわち、ガス発生による内圧上昇を抑制する効果を見極めるために、10000サイクルの電池評価を実施した。内圧上昇は、個々のセルの電池特性のアンバランスにより誘発され、さらにガス発生電位が変化し、結果として容量が低下して電池が劣化する。
<Internal pressure rise>
About each said Example and comparative example, the internal pressure rise by gas generation | occurrence | production was evaluated in the following ways. That is, in order to determine the effect of suppressing the increase in internal pressure due to gas generation, a battery evaluation of 10,000 cycles was performed. The increase in internal pressure is induced by an imbalance in the battery characteristics of individual cells, and the gas generation potential changes. As a result, the capacity decreases and the battery deteriorates.

試験モジュール(電池11)を同時に100個試験し、10000サイクルまで、2000サイクルごとの終了時の充電時における上限終止電圧から放電時における下限終止電圧に到達するまでの放電容量を評価した。試験モジュールの放電容量が2Ah未満のものをガス発生による内圧上昇による劣化が「顕著」、2.0〜3.0Ah未満のものをガス発生による内圧上昇による劣化が「有り」、3.0〜3.5Ah未満のものをガス発生による内圧上昇による劣化が「少し有り」、3.5Ah以上のものをガス発生による内圧上昇による劣化が「無し」とし、表1に記した。ここで、試験モジュールにはバラツキがあるが、100個(全体)のうち60個以上で最も多いモジュールの容量値で判定した。   100 test modules (batteries 11) were simultaneously tested, and the discharge capacity from the upper limit voltage at the end of charging every 2000 cycles to the lower limit voltage at the time of discharging was evaluated up to 10,000 cycles. When the discharge capacity of the test module is less than 2 Ah, deterioration due to an increase in internal pressure due to gas generation is “significant”, and when the discharge capacity is less than 2.0 to 3.0 Ah, deterioration due to an increase in internal pressure due to gas generation is “present”, 3.0 to Table 1 shows that deterioration of the internal pressure due to gas generation was “slightly” for those of less than 3.5 Ah, and deterioration due to increase of internal pressure due to gas generation was “no” for those of 3.5 Ah or more. Here, although there are variations in the test modules, the capacity value of the module having the largest number of 60 or more out of 100 (whole) was determined.

Figure 2010011619
Figure 2010011619

表1から明らかなように、実施例1〜4の試験モジュールについては、いずれもガス発生による内圧上昇を早期に検知し、電池を点検、交換することにより、組電池全体の性能を長期に維持できることがわかった。これに対し比較例1〜4の試験モジュールでは、充放電サイクル数が8000サイクルを超えると、内圧の上昇による放電容量の低下が顕著であった。   As is clear from Table 1, all the test modules of Examples 1 to 4 maintain the performance of the entire assembled battery for a long time by detecting the internal pressure increase due to gas generation at an early stage, and checking and replacing the battery. I knew it was possible. On the other hand, in the test modules of Comparative Examples 1 to 4, when the number of charge / discharge cycles exceeded 8000 cycles, the discharge capacity was significantly reduced due to the increase in internal pressure.

本発明によれば、簡易な構造でガス発生による内圧上昇による劣化を抑制する電源システムが具現化でき、結果として、HEVの安全性と信頼性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the power supply system which suppresses degradation by the internal pressure rise by gas generation with a simple structure can be actualized, As a result, the safety | security and reliability of HEV can be improved.

本発明にかかるHEV用電池の充電制御方法は、アルカリ蓄電池の利点であるタフユース(HEV、家庭用コージェネ、産業用)用途での利用において、その効果が大きい。   The method for controlling charging of a battery for HEV according to the present invention has a great effect in use in tough use (HEV, household cogeneration, industrial) which is an advantage of an alkaline storage battery.

本発明の実施の形態にかかる電池の充電制御方法を採用したHEVの構成を示す図である。It is a figure which shows the structure of HEV which employ | adopted the charge control method of the battery concerning embodiment of this invention. 内圧上昇判定部の構成例を示す図である。It is a figure which shows the structural example of an internal pressure rise determination part.

符号の説明Explanation of symbols

1 電源システム
2 車両駆動システム
3 ナビゲーションシステム
11 電池
12 インバータ
13 バイパス回路
14a〜14c 内圧上昇判定部
15 電池制御部
16 電圧センサ
17 電流センサ
18 記憶部
21 モータジェネレータ
22 エンジン
23 EV制御部
24 駆動輪
31 受信部
32 ブザー
110 セル
DESCRIPTION OF SYMBOLS 1 Power supply system 2 Vehicle drive system 3 Navigation system 11 Battery 12 Inverter 13 Bypass circuit 14a-14c Internal pressure rise determination part 15 Battery control part 16 Voltage sensor 17 Current sensor 18 Memory | storage part 21 Motor generator 22 Engine 23 EV control part 24 Drive wheel 31 Receiver 32 Buzzer 110 cells

Claims (12)

車両を駆動するモータと、エンジンにより駆動され発電を行う発電機と、前記モータにインバータを介して電力を供給し、かつ前記発電機からの電力を、前記インバータを介して充電電流として受け入れる電池とを有するハイブリッド自動車における電池の充電制御方法であって、
前記電池に含まれる複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定されたときに、前記電池の充電電圧または充電電流を低減するステップと、
前記複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定されたことを、音声で知らせるステップと
を含む電池の充電制御方法。
A motor that drives the vehicle; a generator that is driven by an engine to generate electric power; and a battery that supplies electric power to the motor via an inverter and receives electric power from the generator as a charging current via the inverter. A charge control method for a battery in a hybrid vehicle having
Reducing the charging voltage or charging current of the battery when it is determined that the internal pressure of at least one of the cells included in the battery exceeds a predetermined value;
A battery charge control method comprising: notifying by voice that the internal pressure of at least one of the plurality of cells has exceeded a predetermined value.
前記インバータの出力電圧を低減することにより前記電池の充電電圧を低減する、請求項1に記載の電池の充電制御方法。   The battery charging control method according to claim 1, wherein a charging voltage of the battery is reduced by reducing an output voltage of the inverter. 前記インバータから出力される直流電流の一部を逃がすことにより前記電池の充電電流を低減する、請求項1に記載の電池の充電制御方法。   The battery charging control method according to claim 1, wherein a charging current of the battery is reduced by releasing a part of a direct current output from the inverter. 前記電池の端子間電圧が所定の値を超えたときに、前記複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定する、請求項1に記載の電池の充電制御方法。   The battery charge control method according to claim 1, wherein when a voltage between the terminals of the battery exceeds a predetermined value, it is determined that an internal pressure of at least one of the plurality of cells exceeds a predetermined value. 前記複数のセルのそれぞれに設けられた弁のうちいずれか1つが作動したときに、前記複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定する、請求項1に記載の電池の充電制御方法。   The internal pressure of at least one cell among the plurality of cells is determined to have exceeded a predetermined value when any one of the valves provided in each of the plurality of cells is activated. Battery charge control method. 前記複数のセルを格納する容器の変形の程度が所定の値を超えたときに、前記複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたと判定する、請求項1に記載の電池の充電制御方法。   The determination according to claim 1, wherein when the degree of deformation of the container for storing the plurality of cells exceeds a predetermined value, it is determined that an internal pressure of at least one of the plurality of cells exceeds a predetermined value. Battery charge control method. 前記音声はブザー音である、請求項1に記載の電池の充電制御方法。   The battery charging control method according to claim 1, wherein the sound is a buzzer sound. 前記複数のセルのうち特性の劣化したセルを前記電池から取り外すステップをさらに含む、請求項1ないし7のいずれかに記載の電池の充電制御方法。   The battery charge control method according to claim 1, further comprising a step of removing a cell having deteriorated characteristics from the battery among the plurality of cells. 車両を駆動するモータと、エンジンにより駆動され発電を行う発電機と、前記モータにインバータを介して電力を供給し、かつ前記発電機からの電力を、前記インバータを介して充電電流として受け入れる電池とを有するハイブリッド自動車において使用される電池の充電制御装置であって、
前記電池に含まれる複数のセルのうち少なくとも1つのセルの内圧が所定の値を超えたか否かを判定する内圧上昇判定部と、
前記内圧上昇判定部の出力信号に基づいて前記電池の充電電圧または充電電流を制御する制御部と、
前記内圧上昇判定部の出力信号に基づいて音声を発生する音声発生部と
を備える電池の充電制御装置。
A motor that drives the vehicle; a generator that is driven by an engine to generate electric power; and a battery that supplies electric power to the motor via an inverter and receives electric power from the generator as a charging current via the inverter. A battery charge control device used in a hybrid vehicle having
An internal pressure increase determination unit that determines whether or not the internal pressure of at least one of the cells included in the battery exceeds a predetermined value;
A control unit for controlling a charging voltage or a charging current of the battery based on an output signal of the internal pressure increase determination unit;
A battery charge control device comprising: a sound generation unit that generates sound based on an output signal of the internal pressure increase determination unit.
前記制御部は、前記インバータの出力電圧を制御することにより前記電池の充電電圧を制御する、請求項9に記載の電池の充電制御装置。   The battery charging control device according to claim 9, wherein the control unit controls a charging voltage of the battery by controlling an output voltage of the inverter. 前記制御部は、前記インバータから出力される直流電流の一部を逃がすことにより前記電池の充電電流を制御する、請求項9に記載の電池の充電制御装置。   The battery charging control device according to claim 9, wherein the control unit controls a charging current of the battery by releasing a part of a direct current output from the inverter. ナビゲーションシステム内に設けられ、前記内圧上昇判定部の出力信号を受信すると共に前記制御部に転送する受信部をさらに備える、請求項9に記載の電池の充電制御装置。   The battery charging control device according to claim 9, further comprising a receiving unit that is provided in the navigation system and receives an output signal of the internal pressure increase determination unit and transfers the output signal to the control unit.
JP2008167213A 2008-06-26 2008-06-26 Charging control method and charge controller of battery Pending JP2010011619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167213A JP2010011619A (en) 2008-06-26 2008-06-26 Charging control method and charge controller of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167213A JP2010011619A (en) 2008-06-26 2008-06-26 Charging control method and charge controller of battery

Publications (1)

Publication Number Publication Date
JP2010011619A true JP2010011619A (en) 2010-01-14

Family

ID=41591418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167213A Pending JP2010011619A (en) 2008-06-26 2008-06-26 Charging control method and charge controller of battery

Country Status (1)

Country Link
JP (1) JP2010011619A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201449A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Power transmission device
WO2011093616A3 (en) * 2010-01-28 2011-11-10 주식회사 엘지화학 Battery pack system for improving operating performance using internal resistance of battery
JP2012231609A (en) * 2011-04-26 2012-11-22 Toyota Motor Corp Charge controller
JP2013106500A (en) * 2011-11-16 2013-05-30 Toyota Motor Corp Battery charge and discharge management device and method for the same
KR20150100521A (en) * 2014-02-25 2015-09-02 도요타지도샤가부시키가이샤 Method for manufacturing non-aqueous electrolyte secondary battery
JP2018147742A (en) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 Battery control device
DE112016006872T5 (en) 2016-05-17 2019-02-14 Mitsubishi Electric Corporation Protective device for a rechargeable battery and power storage system
WO2020026079A1 (en) * 2018-08-03 2020-02-06 株式会社半導体エネルギー研究所 Abnormality sensing system for secondary cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212974A (en) * 1984-04-06 1985-10-25 Toyo Sakusesu Kk Quick charge control method of sealed battery
JPS63268445A (en) * 1987-04-24 1988-11-07 Nec Home Electronics Ltd Quick charging method of nickel-cadmium secondary battery
JPH08186906A (en) * 1994-12-29 1996-07-16 Nissan Motor Co Ltd Assembled battery charge controller
JPH08331769A (en) * 1995-05-31 1996-12-13 Honda Motor Co Ltd Method and apparatus for controlling charging of secondary battery
JPH1197073A (en) * 1997-09-16 1999-04-09 Shin Kobe Electric Mach Co Ltd Method for charging sealed lead-acid battery
JP2005322471A (en) * 2004-05-07 2005-11-17 Toyota Motor Corp Detection device for detecting defect state of battery safety valve, and battery and assembled battery having detection device
JP2006136101A (en) * 2004-11-04 2006-05-25 Panasonic Ev Energy Co Ltd Power controller, electric vehicle and battery control unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212974A (en) * 1984-04-06 1985-10-25 Toyo Sakusesu Kk Quick charge control method of sealed battery
JPS63268445A (en) * 1987-04-24 1988-11-07 Nec Home Electronics Ltd Quick charging method of nickel-cadmium secondary battery
JPH08186906A (en) * 1994-12-29 1996-07-16 Nissan Motor Co Ltd Assembled battery charge controller
JPH08331769A (en) * 1995-05-31 1996-12-13 Honda Motor Co Ltd Method and apparatus for controlling charging of secondary battery
JPH1197073A (en) * 1997-09-16 1999-04-09 Shin Kobe Electric Mach Co Ltd Method for charging sealed lead-acid battery
JP2005322471A (en) * 2004-05-07 2005-11-17 Toyota Motor Corp Detection device for detecting defect state of battery safety valve, and battery and assembled battery having detection device
JP2006136101A (en) * 2004-11-04 2006-05-25 Panasonic Ev Energy Co Ltd Power controller, electric vehicle and battery control unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231425B2 (en) 2010-01-28 2016-01-05 Lg Chem, Ltd. Battery pack system of improving operating performance using internal resistance of cell
WO2011093616A3 (en) * 2010-01-28 2011-11-10 주식회사 엘지화학 Battery pack system for improving operating performance using internal resistance of battery
KR101230353B1 (en) * 2010-01-28 2013-02-06 주식회사 엘지화학 Battery Pack System of Improving Low Temperature Performance Using Internal Resistance of Cell
JP2011201449A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Power transmission device
JP2012231609A (en) * 2011-04-26 2012-11-22 Toyota Motor Corp Charge controller
JP2013106500A (en) * 2011-11-16 2013-05-30 Toyota Motor Corp Battery charge and discharge management device and method for the same
KR20150100521A (en) * 2014-02-25 2015-09-02 도요타지도샤가부시키가이샤 Method for manufacturing non-aqueous electrolyte secondary battery
KR101674289B1 (en) 2014-02-25 2016-11-08 도요타지도샤가부시키가이샤 Method for manufacturing non-aqueous electrolyte secondary battery
DE112016006872T5 (en) 2016-05-17 2019-02-14 Mitsubishi Electric Corporation Protective device for a rechargeable battery and power storage system
US10763554B2 (en) 2016-05-17 2020-09-01 Mitsubishi Electric Corporation Rechargeable battery protecting apparatus and power storage system
JP2018147742A (en) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 Battery control device
WO2020026079A1 (en) * 2018-08-03 2020-02-06 株式会社半導体エネルギー研究所 Abnormality sensing system for secondary cell
JPWO2020026079A1 (en) * 2018-08-03 2020-02-06
US11867503B2 (en) 2018-08-03 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Anomaly detection system for secondary battery

Similar Documents

Publication Publication Date Title
JP2010011619A (en) Charging control method and charge controller of battery
US20110198920A1 (en) Vehicle power supply apparatus
EP2362482B1 (en) Secondary battery system
JP5159498B2 (en) Charge / discharge control method for battery in power supply device of hybrid car
US8674659B2 (en) Charge control device and vehicle equipped with the same
JP5591835B2 (en) Apparatus and method for relay control of electrically driven vehicle
JP6958316B2 (en) Battery system and lithium-ion secondary battery capacity recovery method
JP2010060408A (en) Method for determining degradation of lithium-ion battery, method for controlling the same, apparatus for determining degradation of the same, apparatus for controlling the same, and vehicle
US10388995B2 (en) Monitoring apparatus for energy storage device, energy storage apparatus, and a method of monitoring energy storage device
US9531312B2 (en) Vehicle and method of controlling vehicle
US9350186B2 (en) Battery pack
EP2662948A1 (en) Method for controlling charge/discharge of alkali storage cell, and power system
JP2008312282A (en) Method of controlling power unit for vehicle
JP4548343B2 (en) Battery control device, electric vehicle, and charging / discharging power determination method
JP2015231763A (en) Hybrid electric vehicle
JPH0974610A (en) Overcharge preventing device of battery for electric vehicle
KR101744710B1 (en) Apparatus and method for discharging battery
JP5668672B2 (en) Battery system and overdischarge detection method for battery system
JP6662219B2 (en) Battery system
JP2011017546A (en) Device and method for diagnosing deterioration of lead battery for vehicle
JP2009290984A (en) Charge/discharge controller for vehicle battery
JP2017221076A (en) Cell system
JP5454433B2 (en) Secondary battery diagnostic device and diagnostic method
JP4033024B2 (en) Charge / discharge control device for battery pack
KR101638143B1 (en) Apparatus and method for discharging battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140313