JP4548343B2 - Battery control device, electric vehicle, and charging / discharging power determination method - Google Patents

Battery control device, electric vehicle, and charging / discharging power determination method Download PDF

Info

Publication number
JP4548343B2
JP4548343B2 JP2006002730A JP2006002730A JP4548343B2 JP 4548343 B2 JP4548343 B2 JP 4548343B2 JP 2006002730 A JP2006002730 A JP 2006002730A JP 2006002730 A JP2006002730 A JP 2006002730A JP 4548343 B2 JP4548343 B2 JP 4548343B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
charge
maximum
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006002730A
Other languages
Japanese (ja)
Other versions
JP2007185074A (en
Inventor
隆彦 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006002730A priority Critical patent/JP4548343B2/en
Publication of JP2007185074A publication Critical patent/JP2007185074A/en
Application granted granted Critical
Publication of JP4548343B2 publication Critical patent/JP4548343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池を電源とするモータを駆動源として備える車両に関する。   The present invention relates to a vehicle including a motor that uses a secondary battery as a power source as a drive source.

車両の駆動源になるモータの電源の役割をするバッテリーは、一般に二次電池が用いられる。二次電池としては、例えば、ニッケル水素電池が用いられる。このような二次電池は、充放電時の主として負極の膨張により電池内圧が上昇するので、充放電サイクルごとに内圧が徐々に高くなることが知られている。   In general, a secondary battery is used as a battery that serves as a power source of a motor serving as a driving source of the vehicle. For example, a nickel metal hydride battery is used as the secondary battery. In such secondary batteries, it is known that the internal pressure gradually increases with each charge / discharge cycle because the internal pressure of the battery rises mainly due to expansion of the negative electrode during charge / discharge.

特許文献1には、二次電池の内圧を調整するための開閉弁を二次電池の筐体に設け、その開閉弁を電池内圧が所定圧力を超えると開き、所定圧力以下の圧力で閉じるように制御することで、繰り返し充放電による電池内圧上昇を抑え、電池寿命を増大させることが開示されている。   In Patent Document 1, an open / close valve for adjusting the internal pressure of the secondary battery is provided in the casing of the secondary battery, and the open / close valve is opened when the internal pressure of the battery exceeds a predetermined pressure and closed at a pressure equal to or lower than the predetermined pressure. It is disclosed that control of the internal pressure suppresses an increase in the internal pressure of the battery due to repeated charge and discharge and increases the battery life.

ところで、大気圧が低い高地を車両が走行する場合、大気圧が低いために、二次電池に設けられた開閉弁が開く際の電池内圧が、予め想定した所定圧力より低くなることがあり、無用に開閉弁の開閉が行われるおそれがある。   By the way, when the vehicle travels in a high altitude with low atmospheric pressure, the atmospheric pressure is low, so the battery internal pressure when the on-off valve provided in the secondary battery opens may be lower than the predetermined pressure assumed in advance. There is a risk that the on-off valve may be opened and closed unnecessarily.

特許文献2では、二次電池の充電状態(以下、SOC(State Of Charge)とも称す)の判定値を、大気圧に応じて設定することが開示されている。   Patent Document 2 discloses that a determination value of a state of charge of a secondary battery (hereinafter also referred to as SOC (State Of Charge)) is set according to atmospheric pressure.

しかし、特許文献2では、大気圧の変化が二次電池の開閉弁の開閉に影響を与えることは考慮されていない。   However, Patent Document 2 does not consider that the change in atmospheric pressure affects the opening / closing of the opening / closing valve of the secondary battery.

特開2004−39337号公報JP 2004-39337 A 特開平8−61193号公報JP-A-8-61193

本発明は、大気圧の変化によって、二次電池に設けられた開閉弁が開く際の電池内圧が、予め想定した所定圧力より低くなることで、無用に開閉弁の開閉が行われることを防止する。   The present invention prevents the on-off valve from being opened and closed unnecessarily because the internal pressure of the battery when the on-off valve provided in the secondary battery opens due to a change in atmospheric pressure is lower than a predetermined pressure assumed in advance. To do.

本発明に係る電池制御装置は、電気自動車の駆動用モータの電源として利用される二次電池の充電状態を検知する充電状態検知部と、前記二次電池の電池温度を検知する電池温度検知部と、前記二次電池近傍の大気圧を検知する大気圧検知部と、前記充電状態と前記電池温度と前記大気圧とに基づいて、前記二次電池が許容する最大充電電力もしくは最大放電電力を決定する充放電電力決定部と、を備えることを特徴とする。   A battery control device according to the present invention includes a charge state detection unit that detects a charge state of a secondary battery that is used as a power source for a drive motor of an electric vehicle, and a battery temperature detection unit that detects a battery temperature of the secondary battery. And an atmospheric pressure detector for detecting an atmospheric pressure in the vicinity of the secondary battery, and a maximum charging power or a maximum discharging power allowed by the secondary battery based on the charging state, the battery temperature, and the atmospheric pressure. And a charge / discharge power determining unit for determining.

本発明の1つの態様によれば、前記充放電電力決定部は、充電状態と電池温度と大気圧との関係が示される参照マップを参照して、前記二次電池が許容する最大充電電力もしくは最大放電電力を決定することを特徴とする。   According to one aspect of the present invention, the charging / discharging power determination unit refers to a reference map showing a relationship between a charging state, a battery temperature, and atmospheric pressure, or the maximum charging power allowed by the secondary battery or The maximum discharge power is determined.

本発明の1つの態様によれば、前記充放電電力決定部は、前記大気圧が低くなるにつれて二次電池の内圧上昇が抑制されるように最大充電電力もしくは最大放電電力を決定することを特徴とする。   According to one aspect of the present invention, the charge / discharge power determination unit determines the maximum charge power or the maximum discharge power so that an increase in internal pressure of the secondary battery is suppressed as the atmospheric pressure decreases. And

また、本発明に係る電気自動車は、少なくとも駆動源として駆動用モータと、前記駆動用モータの電源として利用される二次電池の充電状態を検知する充電状態検知部と、前記二次電池の電池温度を検知する電池温度検知部と、前記二次電池近傍の大気圧を検知する大気圧検知部と、前記充電状態と前記電池温度と前記大気圧とに基づいて、前記二次電池が許容する最大充電電力もしくは最大放電電力を決定する充放電電力決定部と、を備えることを特徴とする。   The electric vehicle according to the present invention includes at least a driving motor as a driving source, a charging state detection unit that detects a charging state of a secondary battery used as a power source of the driving motor, and a battery of the secondary battery. The secondary battery permits based on the battery temperature detection unit for detecting the temperature, the atmospheric pressure detection unit for detecting the atmospheric pressure in the vicinity of the secondary battery, and the state of charge, the battery temperature, and the atmospheric pressure. A charge / discharge power determining unit that determines maximum charge power or maximum discharge power.

さらに、本発明に係る充放電電力決定方法は、電気自動車の駆動用モータの電源として利用される二次電池が許容する最大充電電力もしくは最大放電電力を決定する充放電電力決定方法において、前記二次電池の充電状態を検知し、前記二次電池の電池温度を検知し、前記二次電池近傍の大気圧を検知し、前記充電状態と前記電池温度と前記大気圧とに基づいて、前記二次電池が許容する最大充電電力もしくは最大放電電力を決定することを特徴とする。   Furthermore, the charge / discharge power determination method according to the present invention is a charge / discharge power determination method for determining a maximum charge power or a maximum discharge power allowed by a secondary battery used as a power source for a drive motor of an electric vehicle. Detecting a charging state of the secondary battery, detecting a battery temperature of the secondary battery, detecting an atmospheric pressure in the vicinity of the secondary battery, and based on the charging state, the battery temperature, and the atmospheric pressure, The maximum charging power or the maximum discharging power allowed by the secondary battery is determined.

本発明によれば、大気圧が比較的低い場所では、二次電池の充放電が制限され、二次電池の内圧上昇が抑制され、二次電池に設けられた開閉弁の開閉が抑制される。   According to the present invention, in a place where the atmospheric pressure is relatively low, charging / discharging of the secondary battery is restricted, increase in the internal pressure of the secondary battery is suppressed, and opening / closing of the on-off valve provided in the secondary battery is suppressed. .

本発明を実施するための最良の形態(以下、実施形態と称す)について、ハイブリッド式電気自動車(以下、ハイブリッド車と称す)を例に、図面を参照して説明する。なお、本実施形態では、電気自動車の1つであるハイブリッド車を例に説明するが、駆動源としてモータを備える燃料電池自動車など他の電気自動車にも本実施形態は適用可能である。   A best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings, taking a hybrid electric vehicle (hereinafter referred to as a hybrid vehicle) as an example. In the present embodiment, a hybrid vehicle that is one of electric vehicles will be described as an example. However, the present embodiment can also be applied to other electric vehicles such as a fuel cell vehicle including a motor as a drive source.

図1は、本実施形態に係るハイブリッド車の概略構成を示す図である。図1において、車両ECU10は、インバータ50およびエンジン電子制御ユニット(以下、エンジンECUと称す)40を制御する。エンジンECU40は、エンジン42を制御する。また、電池電子制御ユニット(以下、電池ECU)20は、二次電池30から、電池電圧、充放電電流、電池温度、大気圧等の情報を受けて、二次電池のSOCを推定し、二次電池30が現在のSOCにおいて許容できる最大放電電力Woutおよび最大充電電力Winを決定し、決定した最大放電電力Woutや最大充電電力Win、さらに二次電池30のSOCや電池温度などの二次電池情報を車両ECU10に送信する。   FIG. 1 is a diagram illustrating a schematic configuration of a hybrid vehicle according to the present embodiment. In FIG. 1, a vehicle ECU 10 controls an inverter 50 and an engine electronic control unit (hereinafter referred to as an engine ECU) 40. The engine ECU 40 controls the engine 42. Further, the battery electronic control unit (hereinafter referred to as battery ECU) 20 receives information such as battery voltage, charging / discharging current, battery temperature, atmospheric pressure, etc. from the secondary battery 30, and estimates the SOC of the secondary battery. The secondary battery 30 determines the maximum discharge power Wout and the maximum charge power Win allowable in the current SOC, and the secondary battery such as the determined maximum discharge power Wout and the maximum charge power Win, and the SOC and battery temperature of the secondary battery 30. Information is transmitted to vehicle ECU10.

二次電池30は、複数の単電池または複数の単電池を直列接続した電池モジュールを複数積層して形成される電池スタックであり、例えば、ニッケル水素電池である。また、二次電池30には、車両ECU10に送信する二次電池情報を取得するために、電池温度を測定する温度センサ32と、二次電池30の電池電圧を測定する電圧センサ34と、二次電池30の充放電電流を測定する電流センサ36と、二次電池30の近傍の大気圧を測定する気圧センサ38とが設けられている。さらに、二次電池30は、充放電時の主として負極の膨張により電池内圧が上昇するので、充放電サイクルごとに電池内圧が徐々に高くなる。そこで、その内圧を降下させるために、二次電池30には、電池内圧を降下させるために開閉弁が設けられている。開閉弁は、所定の圧力を超えると開き、該所定の圧力以下の圧力で閉じる公知のバネ式逆止弁により構成される。   The secondary battery 30 is a battery stack formed by stacking a plurality of unit cells or a plurality of battery modules in which a plurality of unit cells are connected in series, for example, a nickel hydrogen battery. Further, the secondary battery 30 includes a temperature sensor 32 that measures the battery temperature, a voltage sensor 34 that measures the battery voltage of the secondary battery 30, and a secondary battery information in order to acquire secondary battery information to be transmitted to the vehicle ECU 10. A current sensor 36 that measures the charge / discharge current of the secondary battery 30 and an atmospheric pressure sensor 38 that measures the atmospheric pressure in the vicinity of the secondary battery 30 are provided. Furthermore, since the internal pressure of the secondary battery 30 increases mainly due to the expansion of the negative electrode during charge / discharge, the internal pressure of the battery gradually increases with each charge / discharge cycle. Therefore, in order to lower the internal pressure, the secondary battery 30 is provided with an on-off valve for lowering the battery internal pressure. The on-off valve is configured by a known spring type check valve that opens when a predetermined pressure is exceeded and closes at a pressure equal to or lower than the predetermined pressure.

インバータ50は、二次電池30の放電時に、二次電池30から供給される直流電流を三相の交流電流に変換し、三相の巻線を有するモータ52に三相交流電流を供給する。また、インバータ50は、二次電池30の充電時に、モータ52から供給される三相交流電流を直流電流に変換し、二次電池30に直流電流を供給する。トランスミッション60は、エンジン42やモータ52の出力を駆動輪に伝達する。   When the secondary battery 30 is discharged, the inverter 50 converts the direct current supplied from the secondary battery 30 into a three-phase alternating current, and supplies the three-phase alternating current to the motor 52 having a three-phase winding. Further, the inverter 50 converts the three-phase alternating current supplied from the motor 52 into a direct current when the secondary battery 30 is charged, and supplies the direct current to the secondary battery 30. The transmission 60 transmits the output of the engine 42 and the motor 52 to the drive wheels.

車両ECU10は、エンジンECU40からのエンジン42の運転状態の情報、アクセルペダルの操作量、ブレーキペダルの操作量、シフトレバーで設定されるシフトレンジ、電池ECU20からのSOCや最大放電電力Woutおよび最大充電電力Winなどに基づいて、エンジンECU40やインバータ50に制御命令を出力し、エンジン42やモータ52を駆動させる。   The vehicle ECU 10 receives information on the operating state of the engine 42 from the engine ECU 40, the operation amount of the accelerator pedal, the operation amount of the brake pedal, the shift range set by the shift lever, the SOC, the maximum discharge power Wout and the maximum charge from the battery ECU 20. Based on the electric power Win or the like, a control command is output to the engine ECU 40 or the inverter 50 to drive the engine 42 or the motor 52.

このように構成されたハイブリッド車が、高地などの大気圧が比較的低い場所を走行する場合、二次電池30に設けられた開閉弁が無用に開閉することがある。これにより、二次電池30の性能劣化などが早まるなどの不具合が発生するおそれがある。   When the hybrid vehicle configured in this manner travels in a place where the atmospheric pressure is relatively low, such as a high altitude, the on-off valve provided in the secondary battery 30 may open and close unnecessarily. As a result, there is a risk that problems such as deterioration in performance of the secondary battery 30 may occur.

そこで、本実施形態では、ハイブリッド車が走行する場所の大気圧が低くなるにつれて、電池内圧の上昇幅が小さくなるように、電池ECU20が二次電池30の最大放電電力Woutおよび最大充電電力Winを決定する。車両ECU10は、上記の通り電池ECU20から送信される最大放電電力Woutや最大充電電力Winに基づいて、インバータ50を制御する。つまり、車両ECU10は、最大放電電力Woutや最大充電電力Winの値が小さければ、二次電池30の充放電を抑制するようにインバータ50を制御する。よって、本実施形態によれば、大気圧が比較的低い場所では、二次電池30の充放電が制限され、二次電池30の内圧上昇が抑制され、二次電池30に設けられた開閉弁の開閉が抑制される。これにより、二次電池30の性能劣化などが早まるなどの不具合の発生を防止することができる。特に、電池内圧の上昇は主として充電時に発生するため、大気圧の低下に伴い、最大充電電力Winを抑制することで、二次電池30に設けられた開閉弁の開閉が抑制される。   Therefore, in the present embodiment, the battery ECU 20 sets the maximum discharge power Wout and the maximum charge power Win of the secondary battery 30 so that the increase range of the battery internal pressure becomes smaller as the atmospheric pressure at the place where the hybrid vehicle travels becomes lower. decide. The vehicle ECU 10 controls the inverter 50 based on the maximum discharge power Wout and the maximum charge power Win transmitted from the battery ECU 20 as described above. That is, the vehicle ECU 10 controls the inverter 50 so as to suppress charging / discharging of the secondary battery 30 when the maximum discharge power Wout and the maximum charge power Win are small. Therefore, according to the present embodiment, in a place where the atmospheric pressure is relatively low, charging / discharging of the secondary battery 30 is restricted, the increase in the internal pressure of the secondary battery 30 is suppressed, and the on-off valve provided in the secondary battery 30 Is prevented from opening and closing. As a result, it is possible to prevent the occurrence of problems such as the early deterioration of performance of the secondary battery 30. In particular, since the increase in battery internal pressure occurs mainly during charging, the opening and closing of the on-off valve provided in the secondary battery 30 is suppressed by suppressing the maximum charging power Win as the atmospheric pressure decreases.

続いて、電池ECU20の最大放電電力Woutおよび最大充電電力Winの決定方法について説明する。   Next, a method for determining the maximum discharge power Wout and the maximum charge power Win of the battery ECU 20 will be described.

電池ECU20は、順次、二次電池30に設けられた各センサから送信される、電池電圧、充放電電流、電池温度、大気圧の情報を検知する。そして、電池ECU20は、電池電圧、充放電電流、電池温度に基づいて、二次電池30のSOCを決定する。さらに、電池ECU20は、SOCと電池温度と大気圧とに基づいて、最大放電電力Woutや最大充電電力Winを決定する。より具体的には、電池ECU20は、大気圧の大きさごとに、SOCと電池温度とをパラメータとして最大放電電力Woutや最大充電電力Winを決定することができる参照マップを保持し、検知した大気圧に対応する参照マップを参照して、最大放電電力Woutや最大充電電力Winを決定する。図2Aは、大気圧が1.0気圧の場合の参照マップを示す。電池ECU20は、大気圧が1.0気圧の場合、図2Aに示すような参照マップを参照することで、SOCと電池温度とをパラメータとして最大放電電力Woutや最大充電電力Winを決定することができる。   The battery ECU 20 sequentially detects information on battery voltage, charge / discharge current, battery temperature, and atmospheric pressure transmitted from each sensor provided in the secondary battery 30. Then, the battery ECU 20 determines the SOC of the secondary battery 30 based on the battery voltage, the charge / discharge current, and the battery temperature. Further, the battery ECU 20 determines the maximum discharge power Wout and the maximum charge power Win based on the SOC, the battery temperature, and the atmospheric pressure. More specifically, the battery ECU 20 maintains a reference map that can determine the maximum discharge power Wout and the maximum charge power Win using the SOC and the battery temperature as parameters for each magnitude of the atmospheric pressure, and detects the detected large The maximum discharge power Wout and the maximum charge power Win are determined with reference to the reference map corresponding to the atmospheric pressure. FIG. 2A shows a reference map when the atmospheric pressure is 1.0 atmosphere. When the atmospheric pressure is 1.0 atm, the battery ECU 20 can determine the maximum discharge power Wout and the maximum charge power Win using the SOC and the battery temperature as parameters by referring to a reference map as shown in FIG. 2A. it can.

図2Bは、大気圧が0.8気圧の場合の参照マップ、図2Cは、大気圧が0.6気圧の場合における参照マップの一例を示す。本実施形態では、図2A〜図2Cに示すように、SOCと電池温度とが同じ値でも大気圧が低くなるについて、最大放電電力Woutや最大充電電力Winが小さくなる。よって、大気圧が比較的低い場所では、二次電池30の充放電が制限され、二次電池30の内圧上昇が抑制され、二次電池30に設けられた開閉弁の開閉が抑制される。これにより、二次電池30の性能劣化などが早まるなどの不具合の発生を防止することができる。   FIG. 2B shows an example of a reference map when the atmospheric pressure is 0.8 atmosphere, and FIG. 2C shows an example of a reference map when the atmospheric pressure is 0.6 atmosphere. In the present embodiment, as shown in FIGS. 2A to 2C, the maximum discharge power Wout and the maximum charge power Win decrease as the atmospheric pressure decreases even when the SOC and the battery temperature are the same. Therefore, in a place where the atmospheric pressure is relatively low, charging / discharging of the secondary battery 30 is restricted, an increase in the internal pressure of the secondary battery 30 is suppressed, and opening / closing of the on-off valve provided in the secondary battery 30 is suppressed. As a result, it is possible to prevent the occurrence of problems such as the early deterioration of performance of the secondary battery 30.

なお、上記では、SOCと電池温度とをパラメータとして最大放電電力Woutや最大充電電力Winを決定することができる参照マップを大気圧の大きさごとに電池ECU20が保持する例について説明した。しかし、電池ECU20は、例えば、図3に示すように、SOCと大気圧とをパラメータとして最大放電電力Woutや最大充電電力Winを決定することができる参照マップを電池温度の大きさごとに保持してもよい。このような参照マップを保持する場合でも、電池ECU20は、SOCと電池温度とが同じ値でも大気圧が低くなるについて、二次電池30の充放電が抑制されるように、最大放電電力Woutや最大充電電力Winを決定することができる。これにより、大気圧が低くなるにつれて、二次電池30に設けられた開閉弁の開閉が抑制され、二次電池30の早期の性能劣化などの不具合の発生を防止することができる。   In the above description, the example in which the battery ECU 20 holds the reference map that can determine the maximum discharge power Wout and the maximum charge power Win using the SOC and the battery temperature as parameters for each magnitude of the atmospheric pressure has been described. However, for example, as shown in FIG. 3, the battery ECU 20 holds a reference map that can determine the maximum discharge power Wout and the maximum charge power Win using the SOC and the atmospheric pressure as parameters for each size of the battery temperature. May be. Even in the case where such a reference map is held, the battery ECU 20 keeps the maximum discharge power Wout and the discharge power Wout so that charging / discharging of the secondary battery 30 is suppressed even when the SOC and the battery temperature are the same. The maximum charging power Win can be determined. Thereby, as the atmospheric pressure becomes lower, the opening / closing of the on-off valve provided in the secondary battery 30 is suppressed, and the occurrence of problems such as early performance deterioration of the secondary battery 30 can be prevented.

また、上記では、電池ECU20は、大気圧が低くなるにつれて、最大放電電力Woutおよび最大充電電力Winを小さい値になるように決定する例について説明した。しかし、電池内圧の上昇は主として充電時に発生するため、電池ECU20は、大気圧が低くなるにつれて、電池内圧が抑制されるように最大充電電力Winのみを抑制してもよい。   In the above description, the battery ECU 20 has described an example in which the maximum discharge power Wout and the maximum charge power Win are determined to become smaller values as the atmospheric pressure becomes lower. However, since the battery internal pressure rises mainly during charging, the battery ECU 20 may suppress only the maximum charging power Win so that the battery internal pressure is suppressed as the atmospheric pressure decreases.

本実施形態におけるハイブリッド車の概略構成を示す図である。It is a figure showing a schematic structure of a hybrid car in this embodiment. 電池ECUが最大放電電力Woutや最大充電電力Winを決定する際に参照する参照マップの一例である。It is an example of the reference map which battery ECU refers when determining the maximum discharge electric power Wout and the maximum charge electric power Win. 電池ECUが最大放電電力Woutや最大充電電力Winを決定する際に参照する参照マップの一例である。It is an example of the reference map which battery ECU refers when determining the maximum discharge electric power Wout and the maximum charge electric power Win. 電池ECUが最大放電電力Woutや最大充電電力Winを決定する際に参照する参照マップの一例である。It is an example of the reference map which battery ECU refers when determining the maximum discharge electric power Wout and the maximum charge electric power Win. 電池ECUが最大放電電力Woutや最大充電電力Winを決定する際に参照する参照マップの一例である。It is an example of the reference map which battery ECU refers when determining the maximum discharge electric power Wout and the maximum charge electric power Win.

符号の説明Explanation of symbols

10 車両ECU、20 電池ECU、30 二次電池、32 温度センサ、34 電圧センサ、36 電流センサ、38 気圧センサ、40 エンジンECU、42 エンジン、50 インバータ、52 モータ、60 トランスミッション。   DESCRIPTION OF SYMBOLS 10 Vehicle ECU, 20 Battery ECU, 30 Secondary battery, 32 Temperature sensor, 34 Voltage sensor, 36 Current sensor, 38 Atmospheric pressure sensor, 40 Engine ECU, 42 Engine, 50 Inverter, 52 Motor, 60 Transmission.

Claims (5)

電気自動車の駆動用モータの電源として利用される二次電池の充電状態を検知する充電状態検知部と、
前記二次電池の電池温度を検知する電池温度検知部と、
前記二次電池近傍の大気圧を検知する大気圧検知部と、
前記充電状態と前記電池温度と前記大気圧とに基づいて、前記二次電池が許容する最大充電電力もしくは最大放電電力を決定する充放電電力決定部と、
を備えることを特徴とする電池制御装置。
A charge state detection unit for detecting a charge state of a secondary battery used as a power source for a drive motor of an electric vehicle;
A battery temperature detector for detecting a battery temperature of the secondary battery;
An atmospheric pressure detector for detecting atmospheric pressure in the vicinity of the secondary battery;
A charge / discharge power determination unit that determines the maximum charge power or maximum discharge power allowed by the secondary battery based on the charge state, the battery temperature, and the atmospheric pressure;
A battery control device comprising:
請求項1に記載の電池制御装置において、
前記充放電電力決定部は、充電状態と電池温度と大気圧との関係が示される参照マップを参照して、前記二次電池が許容する最大充電電力もしくは最大放電電力を決定することを特徴とする電池制御装置。
The battery control device according to claim 1,
The charging / discharging power determining unit determines a maximum charging power or a maximum discharging power allowed by the secondary battery with reference to a reference map showing a relationship between a charging state, a battery temperature, and an atmospheric pressure. Battery control device.
請求項1または2に記載の電池制御装置において、
前記充放電電力決定部は、前記大気圧が低くなるにつれて二次電池の内圧上昇が抑制されるように最大充電電力もしくは最大放電電力を決定することを特徴とする電池制御装置。
The battery control device according to claim 1 or 2,
The battery control device, wherein the charge / discharge power determination unit determines maximum charge power or maximum discharge power so that an increase in internal pressure of the secondary battery is suppressed as the atmospheric pressure decreases.
少なくとも駆動源として駆動用モータと、
前記駆動用モータの電源として利用される二次電池の充電状態を検知する充電状態検知部と、
前記二次電池の電池温度を検知する電池温度検知部と、
前記二次電池近傍の大気圧を検知する大気圧検知部と、
前記充電状態と前記電池温度と前記大気圧とに基づいて、前記二次電池が許容する最大充電電力もしくは最大放電電力を決定する充放電電力決定部と、
を備えることを特徴とする電気自動車。
At least a drive motor as a drive source;
A charge state detection unit for detecting a charge state of a secondary battery used as a power source of the drive motor;
A battery temperature detector for detecting a battery temperature of the secondary battery;
An atmospheric pressure detector for detecting atmospheric pressure in the vicinity of the secondary battery;
A charge / discharge power determination unit that determines the maximum charge power or maximum discharge power allowed by the secondary battery based on the charge state, the battery temperature, and the atmospheric pressure;
An electric vehicle comprising:
電気自動車の駆動用モータの電源として利用される二次電池が許容する最大充電電力もしくは最大放電電力を決定する充放電電力決定方法において、
前記二次電池の充電状態を検知し、
前記二次電池の電池温度を検知し、
前記二次電池近傍の大気圧を検知し、
前記充電状態と前記電池温度と前記大気圧とに基づいて、前記二次電池が許容する最大充電電力もしくは最大放電電力を決定する、
ことを特徴とする充放電電力決定方法。
In a charge / discharge power determination method for determining the maximum charge power or maximum discharge power allowed by a secondary battery used as a power source for a drive motor of an electric vehicle,
Detecting the state of charge of the secondary battery,
Detecting the battery temperature of the secondary battery,
Detecting atmospheric pressure in the vicinity of the secondary battery,
Based on the state of charge, the battery temperature and the atmospheric pressure, the maximum charge power or maximum discharge power allowed by the secondary battery is determined.
The charge / discharge power determination method characterized by the above-mentioned.
JP2006002730A 2006-01-10 2006-01-10 Battery control device, electric vehicle, and charging / discharging power determination method Expired - Fee Related JP4548343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002730A JP4548343B2 (en) 2006-01-10 2006-01-10 Battery control device, electric vehicle, and charging / discharging power determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002730A JP4548343B2 (en) 2006-01-10 2006-01-10 Battery control device, electric vehicle, and charging / discharging power determination method

Publications (2)

Publication Number Publication Date
JP2007185074A JP2007185074A (en) 2007-07-19
JP4548343B2 true JP4548343B2 (en) 2010-09-22

Family

ID=38340688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002730A Expired - Fee Related JP4548343B2 (en) 2006-01-10 2006-01-10 Battery control device, electric vehicle, and charging / discharging power determination method

Country Status (1)

Country Link
JP (1) JP4548343B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947552B2 (en) * 2007-08-06 2012-06-06 本田技研工業株式会社 Vehicle power supply
JP4513882B2 (en) 2008-03-21 2010-07-28 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
CN102150318B (en) 2008-09-30 2013-11-06 日本碍子株式会社 Secondary battery power control method
JP7044028B2 (en) * 2018-10-17 2022-03-30 トヨタ自動車株式会社 Battery information processing device
KR20220062950A (en) * 2020-11-09 2022-05-17 주식회사 엘지에너지솔루션 Battery diagnosis system and method according to altitude using atmospheric pressure sensor
CN115871579B (en) * 2023-01-03 2024-05-24 重庆长安汽车股份有限公司 Vehicle electricity consumption monitoring method, system, electronic equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150701A (en) * 1996-09-17 1998-06-02 Toyota Motor Corp Power output device
JP2002352833A (en) * 2001-05-23 2002-12-06 Honda Motor Co Ltd Control device of fuel cell and control device of fuel cell vehicle
JP2005253270A (en) * 2004-03-08 2005-09-15 Nissan Motor Co Ltd Control device for fuel cell vehicle
JP2006278132A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Battery charging and discharging control device
JP2006288153A (en) * 2005-04-04 2006-10-19 Toyota Motor Corp Controller for mobile object
JP2007141462A (en) * 2005-11-14 2007-06-07 Nissan Motor Co Ltd Fuel cell system and charging control method of fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150701A (en) * 1996-09-17 1998-06-02 Toyota Motor Corp Power output device
JP2002352833A (en) * 2001-05-23 2002-12-06 Honda Motor Co Ltd Control device of fuel cell and control device of fuel cell vehicle
JP2005253270A (en) * 2004-03-08 2005-09-15 Nissan Motor Co Ltd Control device for fuel cell vehicle
JP2006278132A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Battery charging and discharging control device
JP2006288153A (en) * 2005-04-04 2006-10-19 Toyota Motor Corp Controller for mobile object
JP2007141462A (en) * 2005-11-14 2007-06-07 Nissan Motor Co Ltd Fuel cell system and charging control method of fuel cell system

Also Published As

Publication number Publication date
JP2007185074A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP4494453B2 (en) Secondary battery control device and control method
JP4906780B2 (en) Secondary battery charge / discharge controller
US8674664B2 (en) Charge controller
JP6011541B2 (en) Charge control device and charge control method
US8674659B2 (en) Charge control device and vehicle equipped with the same
US20110198920A1 (en) Vehicle power supply apparatus
JP5040065B2 (en) Battery charge / discharge control device
JP5733112B2 (en) Vehicle and vehicle control method
JPWO2009013891A1 (en) Vehicle power supply
JP4548343B2 (en) Battery control device, electric vehicle, and charging / discharging power determination method
JP2008273518A (en) Battery control device and method for hybrid automobile, and hybrid automobile
JP2015131573A (en) Hybrid electric vehicle
JP5024558B2 (en) Charge control device
JP2005218250A (en) Torque controller
JP5391831B2 (en) Driving device, automobile equipped with the same, and abnormality determination method
JP2005218251A (en) Torque controller
JP2016002877A (en) vehicle
JP5092903B2 (en) Vehicle battery charge / discharge control device
JP5692014B2 (en) Battery charge / discharge management apparatus and method
JP2020103006A (en) Vehicular charging control system
JP2004328961A (en) Charging and discharging control device for vehicle
JP2019161922A (en) Vehicle comprising power generator and method for control of power generation of on-vehicle power generator
JP2006331775A (en) Fuel cell system, its control method, and vehicle equipped therewith
JP5339128B2 (en) Stress control system
US11383615B2 (en) Electric power supply system, method of controlling electric power supply system, and control system for hybrid electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees