JPH1197073A - Method for charging sealed lead-acid battery - Google Patents

Method for charging sealed lead-acid battery

Info

Publication number
JPH1197073A
JPH1197073A JP9250810A JP25081097A JPH1197073A JP H1197073 A JPH1197073 A JP H1197073A JP 9250810 A JP9250810 A JP 9250810A JP 25081097 A JP25081097 A JP 25081097A JP H1197073 A JPH1197073 A JP H1197073A
Authority
JP
Japan
Prior art keywords
charging
battery
oxygen concentration
sealed lead
battery group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9250810A
Other languages
Japanese (ja)
Inventor
Toshiyuki Matsumura
敏之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9250810A priority Critical patent/JPH1197073A/en
Publication of JPH1197073A publication Critical patent/JPH1197073A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve charge and discharge cycle life characteristics of a battery group by measuring the oxygen concentration around the outside of a charging storage battery, controlling of the decrease of charging current or the drop of charging voltage, or stopping charging, and suitably charging the battery group with a simple method in which many storage batteries are connected in series,. SOLUTION: A battery group in which twenty four battery modules each of which has parallel connected six storage batteries and has electric capacity of 60 Ah (standardized capacity) are connected in series is put in a housing container and covered with a hood. A hole is provided on a part of the hood, and an oxygen concentration meter is attached to the part. Therefore, charging is started at the constant current of 20 A while the oxygen concentration is measured for each minute, and charging current is decreased to one third when, the oxygen concentration reaches 25%. The oxygen concentration is once decreased and then increased. When the oxygen concentration again reaches 25%, the charging current is again decreased to one third. The operation is repeated, and charging is finished at the time when about eight hours pass from the start of charging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉式鉛蓄電池の
充電法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a sealed lead-acid battery.

【0002】[0002]

【従来の技術】密閉式鉛蓄電池は、充電時に陽極におい
て電解液の電気分解で発生した酸素ガスを陰極で反応吸
収させることで、酸素ガスを水に戻して電解液の減少を
防ぐ構成となっている。しかし、満充電状態後に大きい
電流で充電すると、陽極での酸素ガス発生速度が陰極で
の酸素ガス吸収反応速度を上回り、電池内圧が上昇して
しまう。密閉式鉛蓄電池の電槽材料は通常プラスチック
であるため、電池内圧が高まると電池の破裂のおそれが
あり、それを回避するために密閉式鉛蓄電池にはガス放
出弁が取り付けられている。ガス放出弁が作動すると、
当然のことながら電解液が減少していき、密閉式鉛蓄電
池が早期に寿命に至る。従ってできるだけガス放出弁を
作動させないように充電を制御することは重要な課題で
ある。特に密閉式鉛蓄電池が電動車の駆動電源である場
合、必要とする電圧が非常に高いため、電池を直列に複
数個接続して使用する。例えば144V仕様の場合で7
2個の電池の直列接続、288V仕様の場合で144個
の電池の直列接続が必要である。従来このように多数個
の直列接続された電池群を充電する際には、代表の電池
(パイロット電池)あるいは代表の電池モジュールの電
池電圧を監視している。この理由は全ての個々の電池の
状態を監視することはコスト的に困難であるためであ
る。充電中にパイロット電池の電圧が所定値になると、
充電電流の供給を停止あるいは充電電流値を低下させる
ように制御している。
2. Description of the Related Art A sealed lead-acid battery has a configuration in which oxygen gas generated by electrolysis of an electrolytic solution at a positive electrode is charged and reacted at a negative electrode during charging, thereby returning the oxygen gas to water and preventing a decrease in the electrolytic solution. ing. However, if the battery is charged with a large current after the full charge state, the oxygen gas generation rate at the anode exceeds the oxygen gas absorption reaction rate at the cathode, and the internal pressure of the battery increases. Since the battery case material of the sealed lead-acid battery is usually made of plastic, the battery may be ruptured when the internal pressure of the battery increases, and a gas release valve is attached to the sealed lead-acid battery to avoid this. When the gas release valve is activated,
As a matter of course, the electrolyte decreases, and the sealed lead-acid battery reaches its end of life early. Therefore, it is an important subject to control charging so that the gas release valve is not operated as much as possible. In particular, when the sealed lead-acid battery is the driving power source of the electric vehicle, the required voltage is very high, and thus a plurality of batteries are connected in series and used. For example, in case of 144V specification, 7
A series connection of two batteries requires a series connection of 144 batteries for the 288V specification. Conventionally, when charging a group of a large number of serially connected batteries, the battery voltage of a representative battery (pilot battery) or a representative battery module is monitored. The reason for this is that it is difficult to monitor the state of all individual batteries in terms of cost. When the voltage of the pilot battery reaches a predetermined value during charging,
Control is performed such that the supply of the charging current is stopped or the charging current value is reduced.

【0003】[0003]

【発明が解決しようとする課題】しかしパイロット電池
はあくまでも多数個の電池の代表であり、その状態を監
視することが直列接続した電池群全体の状態を正確に監
視していることにはならない。当然直列接続される電池
数が多くなるに従い個々の電池の状態のバラツキは大き
くなる傾向にある。従って充電時、パイロット電池の電
圧が上記所定値に達していなくても、他の電池の電圧は
既に該所定値を越え、電池内圧が上昇して酸素ガスが電
池外に放出され続けていることもあり得る。この現象は
電池を定電流充電、定電圧充電した場合の双方に起き得
る。酸素ガスが電池外に放出され、電解液が減少し、早
期に寿命に至る電池が一つでも直列接続した電池群中に
あると、電池群全体がそれ以上使用不可能になってしま
う。つまりまだ使用可能な電池を無駄にしてしまうこと
になる。本発明が解決しようとする課題は、ひとつの密
閉式鉛蓄電池に限らず、多数個の密閉式鉛蓄電池を直列
接続した電池群も簡単な手法で適正に充電し、電池群の
充放電サイクル寿命特性を向上させることである。
However, the pilot battery is merely a representative of a large number of batteries, and monitoring its state does not necessarily accurately monitor the state of the entire series-connected battery group. Naturally, as the number of batteries connected in series increases, variations in the state of individual batteries tend to increase. Therefore, at the time of charging, even if the voltage of the pilot battery has not reached the predetermined value, the voltages of the other batteries have already exceeded the predetermined value, the internal pressure of the battery has increased, and oxygen gas has been continuously discharged out of the battery. It is possible. This phenomenon can occur both when the battery is charged at a constant current and at a constant voltage. Oxygen gas is released out of the battery, the electrolyte decreases, and if even one battery that reaches the end of its life early is in a battery group connected in series, the entire battery group becomes unusable. In other words, batteries that can still be used are wasted. The problem to be solved by the present invention is not limited to a single sealed lead-acid battery, and a battery group in which a large number of sealed lead-acid batteries are connected in series is appropriately charged by a simple method, and the charge / discharge cycle life of the battery group is reduced. The purpose is to improve the characteristics.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明の密閉式鉛蓄電池の充電法は、充電池中の密
閉式鉛蓄電池の外側周辺の酸素濃度を測定し、当該酸素
濃度が所定値に達したときに、充電電流の減少と充電電
圧の低下の少なくともひとつの制御をするか、充電を停
止することを特徴とする。酸素センサ等で測定した密閉
式鉛蓄電池外側周辺の酸素濃度を充電制御の指標とする
ことにより、過度な充電により酸素ガス発生している電
池があることを簡単に検出できる。従って前記酸素ガス
が発生している電池に大きなダメージを与える前に、充
電を停止させる又は充電電流を減少させる等の対処が可
能になる。そのことにより電池群の充放電サイクル寿命
特性を向上することができる。
Means for Solving the Problems To solve the above-mentioned problems, a method for charging a sealed lead-acid battery according to the present invention measures the oxygen concentration around the outside of the sealed lead-acid battery in a rechargeable battery, and determines the oxygen concentration. When the predetermined value is reached, at least one of the control of the reduction of the charging current and the reduction of the charging voltage is performed, or the charging is stopped. By using the oxygen concentration around the outside of the sealed lead-acid battery measured by an oxygen sensor or the like as an index for charge control, it is possible to easily detect that there is a battery generating oxygen gas due to excessive charging. Therefore, it is possible to take measures such as stopping charging or reducing the charging current before the battery in which the oxygen gas is generated is seriously damaged. Thereby, the charge / discharge cycle life characteristics of the battery group can be improved.

【0005】本発明の充電制御法は、密閉式鉛蓄電池が
複数個直列に接続された電池群にのみ適用可能な技術で
は必ずしもない。1個の密閉式鉛蓄電池の充電にも当然
適用可能である。
[0005] The charge control method of the present invention is not necessarily a technique applicable only to a battery group in which a plurality of sealed lead-acid batteries are connected in series. Naturally, the present invention can be applied to charging a single sealed lead-acid battery.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態の一例を以下
に示す。密閉式鉛蓄電池を6個並列に接続した電気容量
60Ah(規格容量)の電池モジュールを24個直列に
接続した電池群を作製する。この電池群をポリプロピレ
ンからなる収納容器に収納し、ポリエチレン製のシート
(フード)で覆う。収納容器及びフードの材質は、耐酸
性であることが望ましい。密閉式鉛蓄電池から電解液
(硫酸水溶液)が放出されるおそれは殆どないが、上記
のように本例では万が一のことを考慮した。上記フード
の一箇所に酸素濃度測定用の穴を設け、この部分に酸素
濃度計を取り付ける。用いた酸素濃度計は、理研計器製
の酸素濃度計(型番CM−25ANL)である。充電制
御について詳述する。まず酸素濃度を1分間隔で測定し
ながら20Aの定電流で充電を開始する。酸素濃度が2
5vol%に達したことを確認した後、充電電流を1/
3に低下させて充電を継続する。酸素濃度は一旦低下し
た後で、また上昇していく。再度酸素濃度が25vol
%に達したことを確認した後、充電電流を更に1/3
(つまり当初の1/9)に低下させて充電を継続する。
この操作を繰り返し、充電開始から8時間経過した時点
で充電を終了とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One example of an embodiment of the present invention will be described below. A battery group in which 24 battery modules each having an electric capacity of 60 Ah (standard capacity) in which six sealed lead storage batteries are connected in parallel is produced. The battery group is stored in a storage container made of polypropylene, and is covered with a sheet (hood) made of polyethylene. It is desirable that the materials of the storage container and the hood are acid-resistant. Although there is almost no possibility that the electrolytic solution (sulfuric acid aqueous solution) is released from the sealed lead-acid battery, as described above, in this example, the emergency was taken into consideration. A hole for measuring oxygen concentration is provided in one place of the hood, and an oxygen concentration meter is attached to this hole. The oximeter used was an oximeter (model number CM-25ANL) manufactured by Riken Keiki. The charging control will be described in detail. First, charging is started at a constant current of 20 A while measuring the oxygen concentration at one minute intervals. Oxygen concentration is 2
After confirming that the volume reached 5 vol%, the charging current was reduced to 1 /
3 and continue charging. The oxygen concentration once decreases and then increases. Oxygen concentration is 25vol again
% After confirming that the charging current has reached
(That is, 1/9 of the initial value), and charging is continued.
This operation is repeated, and charging ends when eight hours have elapsed from the start of charging.

【0007】上記本例の充電制御は、ソフトウェア等で
自動化させても良いし手動で実施しても良い。また本発
明の主旨を外れない範囲で各充電制御条件は変更でき
る。本例では定電流充電を採用したが、例えば定電圧充
電を採用しても良い。また本例では酸素濃度が所定値に
達した時に充電電流を低減させたが、充電を停止する手
法も取ることが可能である。
[0007] The charge control of the present embodiment may be automated by software or the like, or may be performed manually. Each charge control condition can be changed without departing from the spirit of the present invention. In this example, the constant current charging is adopted, but for example, a constant voltage charging may be adopted. Further, in this example, the charging current is reduced when the oxygen concentration reaches a predetermined value. However, a method of stopping charging may be employed.

【0008】[0008]

【実施例】上記発明の実施の形態に記載した電池群を二
つ用意した。一つの電池群に対しては、上記詳述した、
本発明の充電法を適用した。もう一つの電池群に対して
は、適宜の1個の密閉式鉛蓄電池をパイロット電池とし
て制御しながら充電した。詳述すると、電池群に対し2
0Aの定電流で充電を開始し、パイロット電池の電池電
圧が2.5Vに達したことを確認した後、充電電流を1
/3に低下させて充電を継続する。電池電圧は一旦低下
した後で上昇していく。再度電池電圧が2.5Vに達し
たことを確認した後、充電電流を更に1/3(つまり当
初の1/9)に低下させて充電を継続する。この操作を
繰り返し、充電開始から8時間経過した時点で充電を終
了とする。上記2.5Vという値は決して高すぎる値で
はない。2.5Vの設定値が密閉式鉛蓄電池の寿命特性
に大きなダメージを与えていないことを別実験にて確認
した。
EXAMPLES Two battery groups described in the embodiment of the present invention were prepared. For one battery group, as detailed above,
The charging method of the present invention was applied. The other battery group was charged while controlling an appropriate sealed lead-acid battery as a pilot battery. More specifically, 2
The charging was started at a constant current of 0 A, and after confirming that the battery voltage of the pilot battery reached 2.5 V, the charging current was increased to 1
/ 3 and continue charging. The battery voltage once decreases and then increases. After confirming again that the battery voltage has reached 2.5 V, the charging current is further reduced to 1/3 (that is, 1/9 of the initial value) to continue charging. This operation is repeated, and charging ends when eight hours have elapsed from the start of charging. The value of 2.5V is not too high. It was confirmed by another experiment that the set value of 2.5 V did not significantly damage the life characteristics of the sealed lead storage battery.

【0009】上記2つの電池群をそれぞれ前述した充電
法により充電した後、20Aの定電流で電池群の端子電
圧が40.8V(平均1.7V/セル)に達するまで放
電した。2つの電池群に対し、上述したような充放電条
件により充放電サイクル寿命試験を実施した。この試験
では、放電容量が初期の60%に達した時を寿命と判断
する。その結果、従来のパイロット電池による制御の充
電法を適用した電池群は約500回の充放電で寿命に達
したのに対し、本発明の充電法を適用した電池群は80
0回以上の充放電でも寿命に達しなかった。
After each of the two battery groups was charged by the above-described charging method, the battery group was discharged at a constant current of 20 A until the terminal voltage of the battery group reached 40.8 V (average 1.7 V / cell). A charge / discharge cycle life test was performed on the two battery groups under the above charge / discharge conditions. In this test, the life is determined when the discharge capacity reaches 60% of the initial value. As a result, the battery group to which the conventional charging method controlled by the pilot battery was applied reached its life after about 500 charging / discharging operations, whereas the battery group to which the charging method of the present invention was applied was 80 cells.
The service life was not reached even if the charge and discharge were performed 0 times or more.

【0010】[0010]

【発明の効果】本発明により、多数個の密閉式鉛蓄電池
を直列接続した電池群に対しても簡単な手法で適正に充
電し、電池群の充放電サイクル寿命特性を向上させるこ
とができた。
According to the present invention, a battery group in which a number of sealed lead-acid batteries are connected in series can be properly charged by a simple method, and the charge / discharge cycle life characteristics of the battery group can be improved. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】充電池中の密閉式鉛蓄電池の外側周辺の酸
素濃度を測定し、当該酸素濃度が所定値に達したとき
に、充電電流の減少と充電電圧の低下の少なくともひと
つの制御をするか、充電を停止することを特徴とする密
閉式鉛蓄電池の充電法。
An oxygen concentration around the outside of a sealed lead-acid battery in a rechargeable battery is measured, and when the oxygen concentration reaches a predetermined value, at least one control of a reduction in charging current and a reduction in charging voltage is performed. Or charging is stopped, wherein the charging is stopped.
【請求項2】密閉式鉛蓄電池が、複数個直列接続された
ものである請求項1記載の密閉式鉛蓄電池の充電法。
2. The method for charging a sealed lead-acid battery according to claim 1, wherein a plurality of sealed lead-acid batteries are connected in series.
JP9250810A 1997-09-16 1997-09-16 Method for charging sealed lead-acid battery Pending JPH1197073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9250810A JPH1197073A (en) 1997-09-16 1997-09-16 Method for charging sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9250810A JPH1197073A (en) 1997-09-16 1997-09-16 Method for charging sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH1197073A true JPH1197073A (en) 1999-04-09

Family

ID=17213395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9250810A Pending JPH1197073A (en) 1997-09-16 1997-09-16 Method for charging sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH1197073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011619A (en) * 2008-06-26 2010-01-14 Panasonic Corp Charging control method and charge controller of battery
CN112462275A (en) * 2019-09-09 2021-03-09 河南森源重工有限公司 Battery pack cycle life testing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011619A (en) * 2008-06-26 2010-01-14 Panasonic Corp Charging control method and charge controller of battery
CN112462275A (en) * 2019-09-09 2021-03-09 河南森源重工有限公司 Battery pack cycle life testing method
CN112462275B (en) * 2019-09-09 2024-05-31 河南森源重工有限公司 Method for testing cycle life of battery pack

Similar Documents

Publication Publication Date Title
JPH0793152B2 (en) Controlling charging of pressurized gas / metal storage batteries
EP1551074A4 (en) Method for operating redox flow battery and redox flow battery cell stack
US20190170830A1 (en) Lead acid battery device, control device for lead acid battery, and control method for lead acid battery
EP1138554B1 (en) Power system and state of charge estimating method
CN110400986B (en) Method for charging accumulator 11 in a single stage manner
US20150180092A1 (en) Method and device for adjusting battery module
JPH1197073A (en) Method for charging sealed lead-acid battery
CN113258637A (en) Control system of high-performance pulse type charger
CN108128186B (en) Lead-acid power battery management system and control method thereof
JP4331473B2 (en) Charge / discharge control device and charge / discharge control method for lead-acid battery
CN110492189A (en) A kind of valve controlling type accumulator restorative procedure
CN221485591U (en) Energy-saving secondary battery testing device
JPH05236662A (en) Charging system for lead storage battery
JP2006156022A (en) Charging method of control valve type lead acid storage battery
CN108494055A (en) Control method, lithium battery protection board and the storage medium of lithium battery protection board
JP3033153B2 (en) Battery charging control method
CN214625153U (en) Lead-acid battery activation device
JP2003111291A (en) Control method for charging secondary battery used in fuel battery power generating system
JPH0850925A (en) Charging method for lead-acid battery
JP4774713B2 (en) Storage battery overcharge prevention device
JPH0246662A (en) Sealed lead-acid battery
JP2003100289A (en) Sealed lead acid battery and method of using the same
JPH0610991B2 (en) Sealed lead acid battery
Kadiran Charging and discharging methods of lead acid battery
JPH11176482A (en) Lead-acid battery charging method