JP2010010172A - 波長掃引光源 - Google Patents
波長掃引光源 Download PDFInfo
- Publication number
- JP2010010172A JP2010010172A JP2008164170A JP2008164170A JP2010010172A JP 2010010172 A JP2010010172 A JP 2010010172A JP 2008164170 A JP2008164170 A JP 2008164170A JP 2008164170 A JP2008164170 A JP 2008164170A JP 2010010172 A JP2010010172 A JP 2010010172A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- light source
- optical amplifier
- semiconductor optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Lasers (AREA)
- Semiconductor Lasers (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】狭いスペクトル線幅の光を掃引可能で、かつ安価に形成可能な波長掃引光源を得る。
【解決手段】半導体光増幅器10と、この半導体光増幅器10の一端面から発せられた光を他端面から該素子に帰還させるリング状光帰還系11と、このリング状光帰還系11内を進行する光を波長選択して透過させ、かつ、その選択波長を連続的に変化させるファイバファブリペロエタロン14と、前記リング状光帰還系11内を進行する光の一部を外部に取り出す手段15とを備えてなる波長掃引光源において、ファイバファブリペロエタロン14を、リング状光帰還系11の全長の中央位置以外に配設する。その上で、少なくともファイバファブリペロエタロン14で反射した光が半導体光増幅器10に戻る期間は、この半導体光増幅器10への印加電流を発振閾値未満に設定し、それ以外の期間では印加電流を発振閾値以上に設定する電流変調手段17、18を設ける。
【選択図】図1
【解決手段】半導体光増幅器10と、この半導体光増幅器10の一端面から発せられた光を他端面から該素子に帰還させるリング状光帰還系11と、このリング状光帰還系11内を進行する光を波長選択して透過させ、かつ、その選択波長を連続的に変化させるファイバファブリペロエタロン14と、前記リング状光帰還系11内を進行する光の一部を外部に取り出す手段15とを備えてなる波長掃引光源において、ファイバファブリペロエタロン14を、リング状光帰還系11の全長の中央位置以外に配設する。その上で、少なくともファイバファブリペロエタロン14で反射した光が半導体光増幅器10に戻る期間は、この半導体光増幅器10への印加電流を発振閾値未満に設定し、それ以外の期間では印加電流を発振閾値以上に設定する電流変調手段17、18を設ける。
【選択図】図1
Description
本発明は波長掃引光源、より詳しくは、ファイバファブリペロエタロンを利用して光波長を掃引する波長掃引光源に関するものである。
例えばOCT(Optical Coherence Tomography:光トモグラフィー計測)のような光計測技術においては、狭いスペクトル線幅の光を、数100nm程度の広い波長掃引幅に亘って連続に掃引できる光源が必要とされている。
従来、そのような波長掃引光源の一つとして、例えば特許文献1に示される光ファイバファブリペロリングレーザが知られている。この特許文献1に示されたレーザは、レーザダイオードの光をカプラでリング状光帰還系に導入し、該帰還系内に配置された光ファイバ増幅器で増幅し、ファイバファブリペロエタロンで狭線幅化した光をカプラで取り出す基本構成を備えたものである。そして、ファイバファブリペロエタロンのエアギャップ間隔を変えることで、エタロンのFSR(Free Spectral Range)を変え、そこを透過する光の波長を可変としている。この特許文献1には、上記構成により、60nmの帯域に亘って波長を連続的に変えられる旨の記載がある。このような構成のレーザによれば、例えば透過波長幅(FWHM:半値全幅)が0.26nmの光ファイバファブリロエタロンを用いたとき、0.1nm以下の狭スペクトル線幅のレーザ光を得ることもできる。
なお上記のような光ファイバファブリペロリングレーザにおいて、光ファイバ増幅器に代えて半導体光増幅器を組み込むことも考えられる。そのように構成した場合も、半導体光増幅器から発せられた光のエタロンにおける透過波長を変化させ、その光を半導体光増幅器に帰還させることにより、波長掃引されたレーザ光を得ることが可能となる。
ここで図10に、上述のように半導体光増幅器を用いる波長掃引光源の代表的なものを示す。同図において10は半導体光増幅器、11はこの半導体光増幅器10の一端と他端面とを連絡するリング状のファイバ光帰還系、12、13はこのファイバ光帰還系11内において半導体光増幅器10の前方側、後方側に介設されたアイソレータ、14はファイバファブリペロエタロン、15はファイバ光帰還系11から外部にレーザ光を取り出すカプラ、16は半導体光増幅器10に印加電流を印加する直流電源である。
特開平5−175577号公報
図10に示したような従来の波長掃引光源においては、ファイバ光帰還系11内を一方向(本例では時計回り方向)のみに光を進行させるために、半導体光増幅器10の前方端面から出射してファイバファブリペロエタロン14やその他の要素において反射した光が半導体光増幅器10に戻るのを防止するためのアイソレータ12や、半導体光増幅器10の後方端面から出射した光をカットするためのアイソレータ13が設置される。しかしこの種のアイソレータは現状かなり高価であるため、この従来の波長掃引光源はコストが高くつくという問題を有している。
本発明は上記の事情に鑑み、狭いスペクトル線幅の光を掃引可能で、しかも安価に形成できる波長掃引光源を提供することを目的とする。
本発明による第1の波長掃引光源は、
半導体光増幅器等の半導体光増幅器と、
この半導体光増幅器の一端面から発せられた光を他端面から該素子に帰還させてレーザ発振させるリング状光帰還系と、
このリング状光帰還系内を進行する光を波長選択して透過させ、かつ、その選択波長を連続的に変化させるファイバファブリペロエタロンと、
前記リング状光帰還系内を進行する光の一部を外部に取り出す手段とを備えてなる波長掃引光源において、
前記ファイバファブリペロエタロンが、前記リング状光帰還系の全長の中央位置以外に配設されるとともに、
少なくとも前記ファイバファブリペロエタロンで反射した光が前記半導体光増幅器に戻る期間は、半導体光増幅器への印加電流を発振閾値未満に設定し、それ以外の期間では前記印加電流を発振閾値以上に設定する電流変調手段が設けられたことを特徴とするものである。
半導体光増幅器等の半導体光増幅器と、
この半導体光増幅器の一端面から発せられた光を他端面から該素子に帰還させてレーザ発振させるリング状光帰還系と、
このリング状光帰還系内を進行する光を波長選択して透過させ、かつ、その選択波長を連続的に変化させるファイバファブリペロエタロンと、
前記リング状光帰還系内を進行する光の一部を外部に取り出す手段とを備えてなる波長掃引光源において、
前記ファイバファブリペロエタロンが、前記リング状光帰還系の全長の中央位置以外に配設されるとともに、
少なくとも前記ファイバファブリペロエタロンで反射した光が前記半導体光増幅器に戻る期間は、半導体光増幅器への印加電流を発振閾値未満に設定し、それ以外の期間では前記印加電流を発振閾値以上に設定する電流変調手段が設けられたことを特徴とするものである。
なお上記ファイバファブリペロエタロンは、リング状光帰還系の全長の1/4の長さだけ半導体光増幅器から離れた位置に配設されることが特に望ましい。
また、本発明による第2の波長掃引光源は、
同じく半導体光増幅器等の半導体光増幅器と、
この半導体光増幅器の一端面から発せられた光を反射させて、この一端面から該素子に帰還させてレーザ発振させる往復光帰還系と、
この往復光帰還系内を進行する光を波長選択して透過させ、かつ、その選択波長を連続的に変化させるファイバファブリペロエタロンと、
前記往復光帰還系内を進行する光の一部を外部に取り出す手段とを備えてなる波長掃引光源において、
少なくとも前記ファイバファブリペロエタロンで反射した光が前記半導体光増幅器に戻る期間は、半導体光増幅器への印加電流を発振閾値未満に設定し、それ以外の期間では前記印加電流を発振閾値以上に設定する電流変調手段が設けられたことを特徴とするものである。
同じく半導体光増幅器等の半導体光増幅器と、
この半導体光増幅器の一端面から発せられた光を反射させて、この一端面から該素子に帰還させてレーザ発振させる往復光帰還系と、
この往復光帰還系内を進行する光を波長選択して透過させ、かつ、その選択波長を連続的に変化させるファイバファブリペロエタロンと、
前記往復光帰還系内を進行する光の一部を外部に取り出す手段とを備えてなる波長掃引光源において、
少なくとも前記ファイバファブリペロエタロンで反射した光が前記半導体光増幅器に戻る期間は、半導体光増幅器への印加電流を発振閾値未満に設定し、それ以外の期間では前記印加電流を発振閾値以上に設定する電流変調手段が設けられたことを特徴とするものである。
この第2の波長掃引光源においても、ファイバファブリペロエタロンが、往復光帰還系の全長の1/4の長さだけ半導体光増幅器から離れた位置に配設されていることが望ましい。
なお本発明による各波長掃引光源において、前記電流変調手段としては、半導体光増幅器への印加電流を矩形波形にして変調するものが適用されることが望ましい。
また本発明の波長掃引光源においては、半導体光増幅器として、1.2μm以下の波長の光を発するものが用いられることが望ましい。
他方、上記リング状光帰還系や往復光帰還系は、光の偏波方向を保持するライトガイドから構成されることが望ましい。
また本発明による波長掃引光源は、前述したOCT装置の計測光源として特に好適に用いられるものである。
上記構成を有する本発明の第1の波長掃引光源においては、ファイバファブリペロエタロンによる波長掃引周期内に、そこを透過する光の波長は連続的に変化する。このとき、該エタロンを透過できない波長の光はそこで反射して、半導体光増幅器側に戻ることになる。こうして、エタロン透過波長以外のブロードな波長の光が半導体光増幅器にそのまま戻ると、その光と、ファイバファブリペロエタロンを透過して帰還した光とが半導体光増幅器内部で混在し、結果として、半導体光増幅器の最も利得の高い波長の光が発振するのみで、波長掃引は不可能となる。
しかし本発明による第1の波長掃引光源においては、前述したように、少なくともファイバファブリペロエタロンで反射した光が半導体光増幅器に戻る期間は、半導体光増幅器への印加電流を発振閾値未満に設定し、それ以外の期間では前記印加電流を発振閾値以上に設定する電流変調手段が設けられているので、エタロンで反射した透過波長以外のブロードな波長の光は、半導体光増幅器に発振閾値以上の電流が印加される期間とはずれたタイミングで(これは、ファイバファブリペロエタロンが、リング状光帰還系の全長の中央位置以外に配設されているためである)半導体光増幅器に戻ることになる。なお、ファイバファブリペロエタロンが、リング状光帰還系の全長の1/4の長さだけ半導体光増幅器から離れた位置に配設されている場合は、エタロン透過光と、エタロンで反射した透過波長以外のブロードな波長の光とが互いに完全に別れたタイミングで半導体光増幅器に帰還するようになる。
半導体光増幅器に発振閾値以上の電流が印加される期間にそこに帰還したエタロン透過光は増幅を受け、その一方、この電流印加期間から外れて戻ったエタロン反射光は半導体光増幅器で損失するので、波長掃引光源からは、波長掃引された狭帯域の光がパルス状に発せられることになる。なお、リング状光帰還系におけるファイバファブリペロエタロンの配設位置次第では、エタロンで反射した光の一部が電流印加期間に半導体光増幅器に帰還することも有り得るが、そのような場合、反射光が帰還している期間は発振閾値以上に変調される。
以上のようにして、エタロンで反射したブロードな波長の光が半導体光増幅器において有効に増幅されないようにしておけば、従来装置において半導体光増幅器の前後に配置されていた高価なアイソレータを少なくとも1個は省くことができる。それにより、本発明の波長掃引光源は、従来装置と比べて安価に形成可能となる。
また、こうしてアイソレータを省くことができれば、アイソレータにおける損失が抑えられるので、出力光の高出力化も実現される。
なお、波長掃引光源のコスト低減の上では、上記アイソレータを2個とも省くことが好ましいが、ファイバファブリペロエタロン以外の所で反射した光の悪影響を防ぐ等の観点から、半導体光増幅器の前方側にアイソレータを1個だけ設けておいてもよい。
以上説明したように、エタロンで反射したブロードな波長の光が半導体光増幅器で増幅されない状態は、往復光帰還系を採用した本発明の第2の波長掃引光源においても同様に得られるものである。この場合も、ファイバファブリペロエタロンが、往復光帰還系の全長(往復の長さを全長とする)の1/4の長さだけ半導体光増幅器から離れた位置に配設されていれば、エタロン透過光と、エタロンで反射したブロードな波長の光とを互いに完全に別れたタイミングで半導体光増幅器に帰還させることができる。
なお本発明による各波長掃引光源において、電流変調手段として、半導体光増幅器への印加電流を矩形波形にして変調するものが適用された場合は、光出力波形も矩形に近くなるので、平均出力を最大化することできる。
また本発明の波長掃引光源において、半導体光増幅器として、特に1.2μm以下の波長の光を発するものが用いられている場合は、光源を安価に形成できる効果が特に高くなる。すなわち、1.2μmを超える波長(多くは1.3μm程度)の光を対象とするアイソレータは、通信分野等のために多くのものが市販されているためさほど高価ではないのに対し、1.2μm以下の波長の光を対象とするアイソレータは利用分野が狭いことから高価となっているので、そのような高価なアイソレータを不要にできることは光源のコストを低減する上で特に効果的と言える。
さらに、現状提供されているアイソレータのうち、波長が1.3μm程度の光を対象とするものは損失が1.0dB以下であるのに対し、波長が1.2μm以下の光を対象とするものは損失が1.5dB程度と大きいので、このように損失が大きいアイソレータを不要にできることは、利用光の高出力化の点でも有利となる。
また、本発明による波長掃引光源が特にOCT装置の計測光源として用いられた場合は、分解能向上に寄与するものとなる。
以下、図面を参照して本発明の実施形態を詳細に説明する。
《第1の実施形態》
図1は、本発明の第1の実施形態による波長掃引光源の基本構成を概略的に示すものである。この波長掃引光源は、例えば基本的にSLD(Super Luminescent Diode)の構成を備えた半導体光増幅器10と、この半導体光増幅器10の一端面と他端面とを連絡するリング状のファイバ光帰還系11と、このファイバ光帰還系11内において半導体光増幅器10の前方側に介設されたアイソレータ12と、ファイバファブリペロエタロン14と、発振したレーザ光をファイバ光帰還系11から外部に取り出す3dBカプラ15と、半導体光増幅器10に印加電流を印加する直流電源16とを備えている。そして半導体光増幅器10と直流電源16との間には、印加電流に変調波形を重畳するためのバイアス−T回路17が介設され、このバイアス−T回路17には変調器18が接続されている。
図1は、本発明の第1の実施形態による波長掃引光源の基本構成を概略的に示すものである。この波長掃引光源は、例えば基本的にSLD(Super Luminescent Diode)の構成を備えた半導体光増幅器10と、この半導体光増幅器10の一端面と他端面とを連絡するリング状のファイバ光帰還系11と、このファイバ光帰還系11内において半導体光増幅器10の前方側に介設されたアイソレータ12と、ファイバファブリペロエタロン14と、発振したレーザ光をファイバ光帰還系11から外部に取り出す3dBカプラ15と、半導体光増幅器10に印加電流を印加する直流電源16とを備えている。そして半導体光増幅器10と直流電源16との間には、印加電流に変調波形を重畳するためのバイアス−T回路17が介設され、このバイアス−T回路17には変調器18が接続されている。
半導体光増幅器10は、波長1.06μm(1060nm)近辺の広帯域の自然放出光を出力するように、へき開面に対して斜めに導波路が形成され、へき開面であるその両端にAR(無反射)コートが施されたチップ状のものである。この半導体光増幅器10は図示外のヒートシンクにマウントされ、ペルチェ素子により25℃に温調される。
この半導体光増幅器10の一端面(図中の右側の端面)から出力された光は、両面にARコートが施された図示外のコリメータレンズで平行光化され、同様に両面ARコートされた集光レンズで集光されて、ファイバ光帰還系11を構成する光ファイバに結合される。この光ファイバの端面は斜めカットされており、そこで反射した光が半導体光増幅器10に戻らないように考慮されている。なお上記光ファイバとしては、すべて偏波保持光ファイバが用いられている。
こうして半導体光増幅器10から光ファイバに結合した光は、ファイバ光帰還系11を時計回り方向に進行し、アイソレータ12を経てファイバファブリペロエタロン14に導かれる。波長選択手段としてのファイバファブリペロエタロン14は、例えばピエゾ素子の駆動によりエアギャップ間隔を変えることで、そこを透過する光の波長を連続的に可変とするものであり、ここでは、波長1060nmに対してFSR(Free Spectral Range)=100nm、F(フィネス)=384のものが用いられている。なおフィネスFは、ファイバファブリペロエタロン14における透過波長幅(半値全幅)をFWHMとすると、F=FSR/FWHMである。
ファイバファブリペロエタロン14を透過した光は、カプラ15において2系統に分けられ、一方は出力光とされ、他方は半導体光増幅器10に帰還される。このようにして光帰還が繰り返されることにより、レーザ発振が引き起こされる。ここで、上記カプラ15から出力される出力光は、発振した後のレーザ光である。なお、半導体光増幅器10の一端面から出力された後、ファイバファブリペロエタロン14やその他の何らかの要素において反射した光はアイソレータ12によってカットされる。なお本装置においては、図10に示した従来装置と異なって、半導体光増幅器10の他端面側にアイソレータは配置されていないので、この他端面から出射した光もファイバ光帰還系11を図中反時計回り方向に進行し得るが、この点に関しては後に詳述する。
ファイバファブリペロエタロン14において、その透過波長幅内の波長の光はそこを透過するが、この透過波長幅から外れたブロードな波長の光は該エタロン14で反射して、半導体光増幅器10側に戻る。こうして戻ったブロードな波長の光と、ファイバファブリペロエタロン14を透過した狭帯域の光とが半導体光増幅器10の内部に混在すると、先に述べた通り波長掃引が不可能になる。以下、そのような不具合発生を防止する点について説明する。
本実施形態においてファイバファブリペロエタロン14は、半導体光増幅器10の前記一端面から、ファイバ光帰還系11の全長の1/4だけ離れた位置に配設されている。また共振器長となるファイバ光帰還系11の全長は、一例として約9.8mとされている。そのため、ファイバ光帰還系11における光の周回周期(これは半導体光増幅器10に対する光帰還周期でもある)Λは、用いたファイバの屈折率が1.46であることも考慮に入れると、1.46×9.8/(3×108)=47.6ns(ナノ・秒)となる。
一方光変調器18は、例えばSin波からなる変調信号をバイアス−T回路17に入力して、直流電源16が出力する最大200mWの印加電流をパルス状に変調する。この変調は、変調周期を上記光の周回周期Λと等しい47.6nsとし、該周期Λの前半部約24nsの間を点灯状態、後半部約24nsの間を非点灯状態とするものである。すなわち、nを自然数として、変調開始から(n−1)Λ/2 〜nΛ/2[s(秒)]の期間は半導体光増幅器10に発振閾値以上の電流が印加され、nΛ/2〜(n+1)Λ/2[s]の期間は、半導体光増幅器10に発振閾値未満の電流(本例では特にゼロ値)が印加される状態となる。
ファイバファブリペロエタロン14を透過した光は、ファイバ光帰還系11の全長を進んで半導体光増幅器10に戻る。それに対して、ファイバファブリペロエタロン14の透過波長域以外の波長の光は該エタロン14で反射するので、ファイバ光帰還系11の全長の4分の2(半導体光増幅器10の一端面から出射した光の場合)、あるいは4分の6(半導体光増幅器10の他端面から出射した光の場合)の距離を進んで、半導体光増幅器10に帰還する。以上よりエタロン透過光は、電流印加期間である(n−1)Λ/2 〜nΛ/2[s]の間に半導体光増幅器10に帰還し、それ以外の波長の光は電流非印加期間であるnΛ/2〜(n+1)Λ/2[s]の間に半導体光増幅器10に帰還することになる。この状態を図2に示す。また、印加電流の実際の変調波形の一例を、図3に示してある。
以上の状態になっていると、半導体光増幅器10に帰還したエタロン透過光は増幅を受け、それに対して、それ以外の波長の光(エタロン14で反射した光)は半導体光増幅器10で損失するので、波長掃引が正常になされ、カプラ15から、波長掃引された狭帯域の光がパルス状に発せられるようになる。
以上説明の通り本実施形態では、従来装置において必ず設けられていたアイソレータ13(図10参照)が省かれており、それにより本波長掃引光源は、従来装置と比べて安価に形成可能となる。
また、こうしてアイソレータを省くことができれば、そのアイソレータでは発生していた光の損失が抑えられるので、出力光の高出力化も実現される。
図4A、4Bおよび4Cに、波長掃引時の出力光の代表スペクトルを示す。これらの図から、狭スペクトル線幅の光が、パルス駆動で掃引されていることが分かる。
また図5Aおよび図5Bにそれぞれ、本実施形態の波長掃引光源、従来の波長掃引光源から出力された波長掃引光の出力波形を示す。なおこの従来の波長掃引光源は、アイソレータが2個設けられ、そして印加電流の変調がなされないもので、その他は基本的に本実施形態の装置と同様に形成されたものである。またこれらの図において、横軸は時間、縦軸は出力光を検出した光検出器の出力電圧である。
これらの図5Aと図5Bとを比較して分かるように、本実施形態の装置は従来装置と比較して、出力、帯域とも向上している。帯域の向上は、アイソレータ2個分の挿入損失約3dBが無くなったために内部損失が減少し、アイソレータが2個有る場合には損失が大き過ぎて発振できなかった波長の光の一部が発振したためと考えられる。また出力の向上も、内部損失の低下によるものであると考えられる。
なお、以上の実施形態では半導体光増幅器10の印加電流をSin波に変調しているが、この印加電流を矩形波形に変調すれば、光出力波形も矩形に近くなるので、平均出力を最大化できる。
また本実施形態では、1.06μmの波長域の光を発する半導体光増幅器10が用いられているが、1.0〜1.1μmの波長域の光を発する半導体光増幅器を用いた場合には、一般に同様の結果が得られる。
また本実施形態では、ファイバ光帰還系11を構成する光ファイバとして偏波保持光ファイバが用いられているが、それによって得られる効果について説明する。半導体光増幅器10には、例えばTE偏光比が顕著に高いものが存在する。この種の半導体光増幅器10が用いられる場合、偏波保持光ファイバが用いられていると、半導体光増幅器10には出射光と同じ偏光状態で光が帰還されるので、効率良く光が増幅されるとともに、高出力化が可能になる。
なお、ファイバ光帰還系11を構成する光ファイバとしてシングルモード光ファイバが用いられるような場合でも、パドル式偏波コントローラや広帯域用の波長板(λ/4板、λ/2)を用いることによって、半導体光増幅器10に帰還される光の偏光状態を出射光のそれと同じに設定すれば、上記と同様の効果を得ることができる。
また本実施形態においてファイバファブリペロエタロン14は、半導体光増幅器10の前記一端面から、ファイバ光帰還系11の全長の1/4だけ離れた位置に配設されているが、ファイバファブリペロエタロン14で反射した光と、該エタロン14を透過した光とが半導体光増幅器10の内部で若干混在することを許容できる場合は、上記以外の位置にファイバファブリペロエタロン14を配設しても構わない。ただし、ファイバファブリペロエタロン14がリング状光帰還系11の全長の中央位置に配設されていると、ファイバファブリペロエタロン14で反射した光と、該エタロン14を透過した光とが半導体光増幅器10の内部で完全に混在するので、その配置だけは避けなければならない。
なお図11Aに、本実施形態の波長掃引光源の光出力を十分低速度で測定して、該光源の発振帯域を確認した結果を示す。また図11Bには、本発明に基づく駆動電流変調は行わずに半導体光増幅器10の駆動電流は一定とするとともに、従来装置と同様にアイソレータを2個用い、それ以外は本実施形態と同様に構成した比較例の波長掃引光源について同様の測定を行った結果を示す。両図を比較すると明らかなように、比較例の波長掃引光源の発振帯域Δλは75.0nmであるのに対し、本実施形態の波長掃引光源の発振帯域Δλは81.6nmであり、従来装置と比べて発振帯域も改善されることが確認された。これは、アイソレータが省かれたことで内部損失が低減し、それにより発振帯域が拡大したもと考えられる。
《第2の実施形態》
図6は、本発明の第2の実施形態による波長掃引光源を示すものである。本実施形態の波長掃引光源は、図1に示した第1の実施形態の波長掃引光源と比べると、アイソレータ12が除かれた点のみが異なるものである。なおこの図6において、図1中の要素と同等の要素には同番号を付し、それらについての説明は特に必要のない限り省略する(以下、同様)。
図6は、本発明の第2の実施形態による波長掃引光源を示すものである。本実施形態の波長掃引光源は、図1に示した第1の実施形態の波長掃引光源と比べると、アイソレータ12が除かれた点のみが異なるものである。なおこの図6において、図1中の要素と同等の要素には同番号を付し、それらについての説明は特に必要のない限り省略する(以下、同様)。
このようにアイソレータを全く用いない構成としても、第1の実施形態と同様に、良好に波長掃引された出力光を得ることができる。また、アイソレータ挿入損失がさらに低減されたことから、より顕著な広帯域化、高出力化が実現される。
《第3の実施形態》
図7は、本発明の第3の実施形態による波長掃引光源を示すものである。本実施形態の波長掃引光源は、図6に示した第2の実施形態の波長掃引光源と比べると、カプラ15にファイバリフレクタ19が接続された点のみが異なるものである。
図7は、本発明の第3の実施形態による波長掃引光源を示すものである。本実施形態の波長掃引光源は、図6に示した第2の実施形態の波長掃引光源と比べると、カプラ15にファイバリフレクタ19が接続された点のみが異なるものである。
この図7や図6に示すような構成においては、ファイバ光帰還系11を両方向に光が進行することになる。しかし、2つのファイバの間での光の乗り移りを利用するカプラ15においては、ファイバ光帰還系11を一方向に周回する光しか取り出すことができない。そこで本実施形態においては、図中反時計回り方向に進行する光をファイバリフレクタ19で反射させて周回方向を逆向きにし、カプラ15から有効に取り出せるようにしている。
そしてこの場合、半導体光増幅器10からファイバリフレクタ19までの距離は、ファイバ光帰還系11の全長の1/2とされている。そのようにしておけば、本来順方向(この場合は時計回り方向)に周回する光に、ファイバリフレクタ19で反射した光を合わせて、順方向に進行する光の出力を増大させ、ひいては波長掃引光源からの光出力を増大させることが可能になる。
《第4の実施形態》
図8は、本発明の第4の実施形態による波長掃引光源を示すものである。本実施形態の波長掃引光源は、レーザ発振を引き起こす光帰還系として、ファブリペロ型共振器を構成する往復光帰還系が適用されたものである。
図8は、本発明の第4の実施形態による波長掃引光源を示すものである。本実施形態の波長掃引光源は、レーザ発振を引き起こす光帰還系として、ファブリペロ型共振器を構成する往復光帰還系が適用されたものである。
この波長掃引光源は、半導体光増幅器50と、そこから発せられたブロードな波長の光51を集光する集光レンズ52と、51の集光位置に一端面が来るように配置された光ファイバからなるファイバ光帰還系53とを有している。ファイバ光帰還系53には、先に説明したものと同様のファイバファブリペロエタロン14が介設されている。さらに、前述と同様の直流電源16、バイアス−T回路17および変調器18が設けられている。
ファイバ光帰還系53を構成する上記光ファイバの他端面(図中右側の端面)53aには、半導体光増幅器50から発せられた後にファイバ光帰還系53の共振作用によって発振したレーザ光を一部透過させるLR(低反射)ミラーがコートされている。また半導体光増幅器50の後端面には、HR(高反射)コートが施されている。こうして、上記LRミラーとHRコートを2つの共振器面とするファブリペロ型共振器が構成されている。
ファイバファブリペロエタロン14は上記LRミラーとHRコートとの間の距離L1の1/2だけ半導体光増幅器50から(より詳しくはそのHRコートから)離れた位置に配設されている。上記距離L1は共振器長であるが、ファイバ光帰還系53の全長はその2倍である。つまり本実施形態でもファイバファブリペロエタロン14は、上記HRコートから、ファイバ光帰還系53の全長の1/4だけ離れた位置に配設されている。
このような構成においても、第1の実施形態におけるのと同様に、ファイバファブリペロエタロン14を透過した光は、電流印加期間である(n−1)Λ/2 〜nΛ/2[s]の間に半導体光増幅器10に帰還し、それ以外の波長の光は電流非印加期間であるnΛ/2〜(n+1)Λ/2[s]の間に半導体光増幅器10に帰還することになる。それにより本実施形態においても、第1の実施形態におけるのと同様の効果が得られる。
次に、本発明による波長掃引光源が好適に使用される装置の例について、図9を参照して説明する。この図9に示す画像取得装置1は、測定対象の断層画像をSS-OCT(Swept source−OCT)によって取得するものであって、例えば1.3μmを中心波長とした100nmの波長範囲において波長掃引された測定光L1を用いて、断層画像を取得するように構成されている。
すなわち本装置では光源ユニット310に、例えば図6に示した基本構成を有する波長掃引光源が適用されている。なおこの図9において、図6中に示した要素と同等の要素には同番号を付してあり、それらについての説明は特に必要のない限り省略する。この波長掃引光源のカプラ15からは、前述のようにして波長掃引されたパルス状のレーザ光Laが光ファイバFB1へ射出される。
光ファイバFB1を伝搬するレーザ光Laは、光分割手段2を経て光分割手段3に導かれる。この光分割手段3は、例えば2×2の光ファイバカプラから構成されており、光ファイバFB1を導波した光Laを測定光L1と参照光L2とに分割する。この光分割手段3は、2本の光ファイバFB2、FB3にそれぞれ光学的に接続されており、測定光L1は光ファイバFB2を導波し、参照光L2は光ファイバFB3を導波する。なお、本例におけるこの光分割手段3は、合波手段4としても機能するものである。
光ファイバFB2には光プローブ210が光学的に接続されており、測定光L1はこの光プローブ210に導かれる。光プローブ210は、その長軸に対して直角な方向に測定光L1を射出し、そしてその射出部分が長軸周りに回転駆動されて、測定光L1により照射対象Sを走査するものである。この光プローブ210は、光学コネクタ231により光ファイバFB2に対して着脱可能に取り付けられ、例えば鉗子口から鉗子チャンネルを介して体腔内に挿入される。
一方、光ファイバFB3の参照光L2の射出側には光路長調整手段220が配置されている。光路長調整手段220は、断層画像の取得を開始する位置を調整するために、参照光L2の光路長を変更するものであって、光ファイバFB3から射出された参照光L2を反射させる反射ミラー222と、反射ミラー222および光ファイバFB3との間に配置された第1光学レンズ221aと、第1光学レンズ221aと反射ミラー222との間に配置された第2光学レンズ221bとを有している。
上記第1光学レンズ221aは、光ファイバFB3のコアから射出された参照光L2を平行光化するとともに、反射ミラー222により反射された参照光L2を光ファイバFB3のコアに集光する機能を有している。また、第2光学レンズ221bは、第1光学レンズ221aにより平行光とされた参照光L2を反射ミラー222上に集光するとともに、反射ミラー222により反射された参照光L2を平行光にする機能を有している。つまり、第1光学レンズ221aと第2光学レンズ221bとにより共焦点光学系が形成されている。
さらに光路長調整手段220は、第2光学レンズ221bと反射ミラー222とを固定した基台223と、該基台223を第1光学レンズ221aの光軸方向に移動させるミラー駆動手段224とを有している。こうして基台223が矢印A方向に移動することにより、参照光L2の光路長が変えられるようになっている。
また合波手段4は、前述の通り2×2の光ファイバカプラからなり、光路長調整手段220により周波数シフトおよび光路長の変更が施された参照光L2と、照射対象Sからの反射光L3とを合波し、光ファイバFB4を介して干渉光検出手段240側に射出するように構成されている。
干渉光検出手段240は、合波手段4により合波された反射光L3と参照光L2との干渉光L4を検出する。また画像取得手段250は、干渉光検出手段240により検出された干渉光L4をフーリエ変換することにより、照射対象Sの各深さ位置における反射光L3の強度を検出し、照射対象Sの断層画像を取得する。そして、この取得された断層画像が表示装置260に表示される。なお本例の装置は、干渉光L4を合波手段4で二分した光をそれぞれ光検出器40aと40bに導き、演算手段241においてバランス検波を行う機構を有している。以上の通り本例では、光検出器40a、40bおよび演算手段241により干渉光検出手段240が構成されている。
ここで、干渉光検出手段240および画像取得手段250による干渉光L4の検出および画像生成について簡単に説明する。なお、この点の詳細については文献“武田 光夫、「光周波数走査スペクトル干渉顕微鏡」、光技術コンタクト、2003、Vol.41、No.7、pp426−432”に詳しい記載がなされている。
測定光L1が照射対象Sに照射されたとき、照射対象Sの各深さからの反射光L3と参照光L2とがいろいろな光路長差をもって干渉しあう際の、各光路長差lに対する干渉縞の光強度をS(l)とすると、干渉光検出手段240において検出される光強度I(k)は、
I(k)=∫0 ∞S(l)[1+cos(kl)]dl
で表される。ここで、kは波数、lは光路長差である。上式は波数k=ω/cを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。そこで、画像取得手段250において、干渉光検出手段240が検出したスペクトル干渉縞をフーリエ変換し、干渉光L4の光強度S(l)を決定することにより、照射対象Sの測定開始位置からの距離情報と反射強度情報とを取得し、それらに基づいて断層画像を生成することができる。
I(k)=∫0 ∞S(l)[1+cos(kl)]dl
で表される。ここで、kは波数、lは光路長差である。上式は波数k=ω/cを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。そこで、画像取得手段250において、干渉光検出手段240が検出したスペクトル干渉縞をフーリエ変換し、干渉光L4の光強度S(l)を決定することにより、照射対象Sの測定開始位置からの距離情報と反射強度情報とを取得し、それらに基づいて断層画像を生成することができる。
1 画像取得装置
10、50 半導体光増幅器
11、53 ファイバ光帰還系
12、13 アイソレータ
14 ファイバファブリペロエタロン
15 カプラ
16 直流電源
17 バイアス−T回路
18 変調器
19 ファイバリフレクタ
10、50 半導体光増幅器
11、53 ファイバ光帰還系
12、13 アイソレータ
14 ファイバファブリペロエタロン
15 カプラ
16 直流電源
17 バイアス−T回路
18 変調器
19 ファイバリフレクタ
Claims (9)
- 半導体光増幅器と、
この半導体光増幅器の一端面から発せられた光を他端面から該素子に帰還させてレーザ発振させるリング状光帰還系と、
このリング状光帰還系内を進行する光を波長選択して透過させ、かつ、その選択波長を連続的に変化させるファイバファブリペロエタロンと、
前記リング状光帰還系内を進行する光の一部を外部に取り出す手段とを備えてなる波長掃引光源において、
前記ファイバファブリペロエタロンが、前記リング状光帰還系の全長の中央位置以外に配設されるとともに、
少なくとも前記ファイバファブリペロエタロンで反射した光が前記半導体光増幅器に戻る期間は、半導体光増幅器への印加電流を発振閾値未満に設定し、それ以外の期間では前記印加電流を発振閾値以上に設定する電流変調手段が設けられたことを特徴とする波長掃引光源。 - 前記ファイバファブリペロエタロンが、前記リング状光帰還系の全長の1/4の長さだけ前記半導体光増幅器から離れた位置に配設されていることを特徴とする請求項1記載の波長掃引光源。
- 半導体光増幅器と、
この半導体光増幅器の一端面から発せられた光を反射させて、この一端面から該素子に帰還させてレーザ発振させる往復光帰還系と、
この往復光帰還系内を進行する光を波長選択して透過させ、かつ、その選択波長を連続的に変化させるファイバファブリペロエタロンと、
前記往復光帰還系内を進行する光の一部を外部に取り出す手段とを備えてなる波長掃引光源において、
少なくとも前記ファイバファブリペロエタロンで反射した光が前記半導体光増幅器に戻る期間は、半導体光増幅器への印加電流を発振閾値未満に設定し、それ以外の期間では前記印加電流を発振閾値以上に設定する電流変調手段が設けられたことを特徴とする波長掃引光源。 - 前記ファイバファブリペロエタロンが、前記往復光帰還系の全長の1/4の長さだけ前記半導体光増幅器から離れた位置に配設されていることを特徴とする請求項3記載の波長掃引光源。
- 前記電流変調手段が、前記印加電流を矩形波形にして変調するものであることを特徴とする請求項1から4いずれか1項記載の波長掃引光源。
- 前記半導体光増幅器が、1.2μm以下の波長の光を発するものであることを特徴とする請求項1から5いずれか1項記載の波長掃引光源。
- 前記光帰還系が、光の偏波方向を保持するライトガイドから構成されていることを特徴とする請求項1から6いずれか1項記載の波長掃引光源。
- OCT(Optical Coherence Tomography:光トモグラフィー計測)装置の計測光を発する光源として用いられていることを特徴とする請求項1から7いずれか1項記載の波長掃引光源。
- 前記電流変調手段の印加電流変調周波数が、前記OCT装置において計測光を検出する手段の帯域よりも高く設定されていることを特徴とする請求項8記載の波長掃引光源。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008164170A JP2010010172A (ja) | 2008-06-24 | 2008-06-24 | 波長掃引光源 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008164170A JP2010010172A (ja) | 2008-06-24 | 2008-06-24 | 波長掃引光源 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010010172A true JP2010010172A (ja) | 2010-01-14 |
Family
ID=41590359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008164170A Withdrawn JP2010010172A (ja) | 2008-06-24 | 2008-06-24 | 波長掃引光源 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010010172A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011164578A (ja) * | 2010-02-11 | 2011-08-25 | Korea Electronics Telecommun | テラヘルツ波装置 |
JP2012182311A (ja) * | 2011-03-01 | 2012-09-20 | Canon Inc | 光源装置及びこれを用いた撮像装置 |
JP2014501393A (ja) * | 2010-12-27 | 2014-01-20 | アクサン・テクノロジーズ・インコーポレーテッド | Oct医用画像化のための制御されたモード同期を有するレーザ掃引光源 |
KR101453472B1 (ko) * | 2010-02-11 | 2014-10-21 | 한국전자통신연구원 | 테라헤르츠파 장치 |
JP2016507892A (ja) * | 2012-12-21 | 2016-03-10 | デイビッド ウェルフォード, | 光の波長放出を狭幅化するためのシステムおよび方法 |
US9441944B2 (en) | 2012-05-16 | 2016-09-13 | Axsun Technologies Llc | Regenerative mode locked laser swept source for OCT medical imaging |
US10371499B2 (en) | 2010-12-27 | 2019-08-06 | Axsun Technologies, Inc. | Laser swept source with controlled mode locking for OCT medical imaging |
-
2008
- 2008-06-24 JP JP2008164170A patent/JP2010010172A/ja not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011164578A (ja) * | 2010-02-11 | 2011-08-25 | Korea Electronics Telecommun | テラヘルツ波装置 |
US8476592B2 (en) | 2010-02-11 | 2013-07-02 | Electronics And Telecommunications Research Institute | Terahertz wave apparatus |
KR101453472B1 (ko) * | 2010-02-11 | 2014-10-21 | 한국전자통신연구원 | 테라헤르츠파 장치 |
JP2014501393A (ja) * | 2010-12-27 | 2014-01-20 | アクサン・テクノロジーズ・インコーポレーテッド | Oct医用画像化のための制御されたモード同期を有するレーザ掃引光源 |
US10371499B2 (en) | 2010-12-27 | 2019-08-06 | Axsun Technologies, Inc. | Laser swept source with controlled mode locking for OCT medical imaging |
JP2012182311A (ja) * | 2011-03-01 | 2012-09-20 | Canon Inc | 光源装置及びこれを用いた撮像装置 |
US9441944B2 (en) | 2012-05-16 | 2016-09-13 | Axsun Technologies Llc | Regenerative mode locked laser swept source for OCT medical imaging |
JP2016507892A (ja) * | 2012-12-21 | 2016-03-10 | デイビッド ウェルフォード, | 光の波長放出を狭幅化するためのシステムおよび方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7570364B2 (en) | Optical tomographic imaging apparatus | |
US8810901B2 (en) | Wavelength-tunable light source | |
JP5704841B2 (ja) | 光源装置及びこれを用いた撮像装置 | |
US7382809B2 (en) | Tunable fiber laser light source | |
US8908189B2 (en) | Systems and methods for swept-source optical coherence tomography | |
US7352783B2 (en) | Tunable fiber laser light source | |
US7391520B2 (en) | Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver | |
US9337619B2 (en) | Swept frequency laser for FD OCT with intracavity element and method of operation | |
US8922784B2 (en) | Light source apparatus and image pickup apparatus using the same | |
US7538884B2 (en) | Optical tomographic imaging apparatus | |
JP5541831B2 (ja) | 光断層画像化装置およびその作動方法 | |
US7701585B2 (en) | Optical tomograph which obtains tomographic images irrespective of polarization direction of light beams | |
US8488125B2 (en) | Optical tomography apparatus with timing detection element including optical resonator having variable resonator length | |
JP2010010172A (ja) | 波長掃引光源 | |
WO2008093448A9 (ja) | 波長走査型光源及び光コヒーレンストモグラフィー装置 | |
JP2007101262A (ja) | 光断層画像化装置 | |
US20120127464A1 (en) | Light source apparatus | |
JP2009031238A (ja) | 光コヒーレンストモグラフィー装置 | |
JP2010005266A (ja) | 光断層画像化装置 | |
JP2019114720A (ja) | 波長掃引光源 | |
JP2010016270A (ja) | 波長掃引光源 | |
JP2010034173A (ja) | 波長掃引光源 | |
JP2009244082A (ja) | 光源および光断層画像化装置 | |
JP2001284707A (ja) | 半導体レーザ光源装置及び光周波数領域反射測定装置 | |
JP2008032590A (ja) | 光半導体素子、波長可変光源、および光断層画像化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110906 |