JP2010006940A - Solid polymer electrolyte composition - Google Patents

Solid polymer electrolyte composition Download PDF

Info

Publication number
JP2010006940A
JP2010006940A JP2008167338A JP2008167338A JP2010006940A JP 2010006940 A JP2010006940 A JP 2010006940A JP 2008167338 A JP2008167338 A JP 2008167338A JP 2008167338 A JP2008167338 A JP 2008167338A JP 2010006940 A JP2010006940 A JP 2010006940A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
acid
electrolyte composition
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008167338A
Other languages
Japanese (ja)
Inventor
Masayuki Jokai
真之 畳開
Hiroaki Kuwabara
広明 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008167338A priority Critical patent/JP2010006940A/en
Publication of JP2010006940A publication Critical patent/JP2010006940A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte composition having excellent ionic conductivity and oxidation resistance. <P>SOLUTION: The solid polymer electrolyte composition includes: a solid polymer electrolyte comprising 100 pts.mass aromatic polyimide having at least one repeating unit selected from the group consisting of repeating units represented by formula (I) and formula (II) and 0.1 to 100 pts.mass at least one acid selected from phosphoric acid, polyphosphoric acid, sulfuric acid and methane sulfonic acid; and a polymer having ionic conductivity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、芳香族ポリイミドからなる固体高分子電解質組成物、およびそれを用いた燃料電池に関する。   The present invention relates to a solid polymer electrolyte composition comprising an aromatic polyimide and a fuel cell using the same.

固体高分子電解質は高分子鎖中に電解質基を有する固体高分子材料であり、特定のイオンと強固に結合して、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等、各種の用途に利用されている。   A solid polymer electrolyte is a solid polymer material having an electrolyte group in a polymer chain, and has a property of selectively permeating a cation or an anion by firmly binding to a specific ion. It is formed into particles, fibers, or membranes, and is used for various applications such as electrodialysis, diffusion dialysis, and battery membranes.

燃料電池はイオン伝導性の固体高分子電解質膜の両面に一対の電極を設け、水素ガスやメタノールなどを燃料として一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤として他方の電極(空気極)へ供給し、起電力を得るものである。また、水電解は、固体高分子電解質膜を用いて水を電気分解することにより水素と酸素を製造するものである。   A fuel cell is provided with a pair of electrodes on both sides of an ion-conducting solid polymer electrolyte membrane, supplying hydrogen gas, methanol, or the like as fuel to one electrode (fuel electrode), and oxygen gas or air as an oxidant. It supplies to an electrode (air electrode) and obtains an electromotive force. In water electrolysis, hydrogen and oxygen are produced by electrolyzing water using a solid polymer electrolyte membrane.

ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)の商品名で知られる高いイオン伝導性を有するパーフルオロスルホン酸膜に代表されるフッ素系電解質膜は化学的安定性に優れていることから燃料電池や水電解等の固体高分子電解質膜として、広く使用されている。   To the perfluorosulfonic acid membrane having high ion conductivity known as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) Representative fluorine-based electrolyte membranes are widely used as solid polymer electrolyte membranes for fuel cells and water electrolysis because of their excellent chemical stability.

また、食塩電解は固体高分子電解質膜を用いて塩化ナトリウム水溶液を電気分解することにより、水酸化ナトリウム、塩素と水素を製造するものである。この場合、固体高分子電解質膜は塩素と高温、高濃度の水酸化ナトリウム水溶液にさらされるので、これらに対する耐性の乏しい炭化水素系電解質膜を使用することができない。そのため、食塩電解用の固体高分子電解質膜には、一般に、塩素及び高温、高濃度の水酸化ナトリウム水溶液に対して耐性があり、さらに、発生するイオンの逆拡散を防ぐために表面に部分的にカルボン酸基を導入したパーフルオロスルホン酸膜が用いられている。   Moreover, salt electrolysis produces sodium hydroxide, chlorine, and hydrogen by electrolyzing a sodium chloride aqueous solution using a solid polymer electrolyte membrane. In this case, since the solid polymer electrolyte membrane is exposed to chlorine, high temperature, and high concentration sodium hydroxide aqueous solution, it is not possible to use a hydrocarbon electrolyte membrane having poor resistance to these. For this reason, solid polymer electrolyte membranes for salt electrolysis are generally resistant to chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and in addition, partly on the surface to prevent back diffusion of generated ions. A perfluorosulfonic acid film into which a carboxylic acid group is introduced is used.

ところで、パーフルオロスルホン酸膜に代表されるフッ素系電解質は、C−F結合を有しているために化学的安定性が非常に大きく、上述した燃料電池用、水電解用、あるいは食塩電解用の固体高分子電解質膜の他、ハロゲン化水素酸電解用の固体高分子電解質膜としても用いられ、さらにはイオン伝導性を利用して、湿度センサー、ガスセンサー、酸素濃縮器等にも広く応用されている。   By the way, a fluorine-based electrolyte typified by a perfluorosulfonic acid membrane has a C—F bond and thus has a very high chemical stability. For the fuel cell, water electrolysis, or salt electrolysis described above. In addition to these solid polymer electrolyte membranes, they are also used as solid polymer electrolyte membranes for hydrohalic acid electrolysis, and also widely applied to humidity sensors, gas sensors, oxygen concentrators, etc. using ionic conductivity Has been.

しかしながら、フッ素系電解質は製造が困難で、非常に高価であるという欠点がある。そのため、フッ素系電解質膜は、宇宙用あるいは軍用の固体高分子型燃料電池等、限られた用途に用いられ、自動車用の低公害動力源としての固体高分子型燃料電池等、民生用への応用を困難なものとしていた。   However, the fluorine-based electrolyte has a drawback that it is difficult to manufacture and is very expensive. Therefore, fluorine-based electrolyte membranes are used in limited applications such as space or military polymer electrolyte fuel cells, and are used for consumer applications such as polymer electrolyte fuel cells as low-pollution power sources for automobiles. Application was difficult.

そこで、安価な固体高分子電解質膜として、エンジニアリングプラスチックに代表される芳香族炭化水素系高分子をスルホン酸化した電解質膜が提案された。(例えば、特許文献1、2、3、4、5参照)。これらエンジニアリングプラスチックをスルホン酸化した芳香族炭化水素系電解質膜をナフィオンに代表されるフッ素系電解質膜と比較すると、製造が容易で低コストという利点がある。しかし、耐酸化性という面で非常に弱いという欠点も有している。   Therefore, an electrolyte membrane obtained by sulfonating an aromatic hydrocarbon polymer represented by engineering plastics has been proposed as an inexpensive solid polymer electrolyte membrane. (For example, see Patent Documents 1, 2, 3, 4, and 5). An aromatic hydrocarbon electrolyte membrane obtained by sulfonating these engineering plastics has an advantage of easy production and low cost when compared with a fluorine electrolyte membrane represented by Nafion. However, it has a drawback that it is very weak in terms of oxidation resistance.

非特許文献1によると、例えばスルホン酸化ポリエーテルエーテルケトンやポリエーテルスルホンはスルホン酸に隣接したエーテル部位から劣化すると報告している。このことから、スルホン酸の近傍に電子供与性基が存在すると、そこから酸化劣化が開始すると考えられる。そこで耐酸化性の向上を目的として、主鎖が電子吸引性基と芳香族環のみからなるスルホン酸化ポリフェニレンスルホンが提案され(特許文献6)、スルホン基の隣接部位にスルホン酸を導入したスルホン酸化ポリスルホンが提案された(非特許文献2)。   According to Non-Patent Document 1, it is reported that, for example, sulfonated polyether ether ketone and polyether sulfone deteriorate from an ether portion adjacent to sulfonic acid. From this, it is considered that when an electron donating group is present in the vicinity of the sulfonic acid, the oxidative degradation starts therefrom. Therefore, for the purpose of improving oxidation resistance, a sulfonated polyphenylenesulfone whose main chain is composed of only an electron-withdrawing group and an aromatic ring has been proposed (Patent Document 6), and sulfonated by introducing a sulfonic acid into a site adjacent to the sulfonate group. Polysulfone has been proposed (Non-Patent Document 2).

だが、特許文献7によると、芳香族炭化水素系電解質膜の劣化は酸化劣化以外にも、芳香族環に直接結合しているイオン伝導性置換基であるスルホン酸基が、強酸、高温下において脱離してイオン伝導率が低下することも一因として考えられ、特許文献6や非特許文献2にあるようなスルホン酸化ポリフェニレンスルホンやスルホン酸化ポリスルホンではスルホン酸の脱離による劣化が避けられない。従って、イオン伝導性置換基がスルホン酸であることは望ましくなく、特許文献7ではスルホン酸の代わりにアルキルスルホン酸を用いることを提案している。こちらはスルホン酸の脱離によるイオン伝導率の低下の改善には有効だが、使用する芳香族高分子の主鎖に電子供与性基が含まれ、耐酸化性に劣っている。   However, according to Patent Document 7, the aromatic hydrocarbon electrolyte membrane is deteriorated not only by oxidative deterioration but also by a sulfonic acid group, which is an ion conductive substituent directly bonded to the aromatic ring, under strong acid and high temperature. It is considered that the ionic conductivity is decreased due to desorption, and sulfonated polyphenylenesulfone and sulfonated polysulfone as described in Patent Document 6 and Non-Patent Document 2 cannot avoid deterioration due to sulfonic acid desorption. Therefore, it is not desirable that the ion conductive substituent is a sulfonic acid, and Patent Document 7 proposes to use an alkylsulfonic acid instead of the sulfonic acid. This is effective in improving the decrease in ionic conductivity due to elimination of sulfonic acid, but the main chain of the aromatic polymer used contains an electron-donating group, which is inferior in oxidation resistance.

一方、アゾール系ポリマーは耐熱性、耐薬品性に優れたポリマーとして燃料電池用固体電解質膜として期待される。
イオン伝導性を有するアゾール系ポリマーとして例えばスルホン化されたアゾール系ポリマーが報告されている(特許文献8)。しかしながら、上述のとおりポリマーを原料として芳香環上に導入されたスルホン酸基は酸または熱により脱スルホン酸反応が起こりやすく、燃料電池用電解質膜として使用するには耐久性が十分であるとは言えない。
On the other hand, azole polymers are expected as solid electrolyte membranes for fuel cells as polymers having excellent heat resistance and chemical resistance.
For example, a sulfonated azole polymer has been reported as an azole polymer having ion conductivity (Patent Document 8). However, as described above, a sulfonic acid group introduced on an aromatic ring using a polymer as a raw material is likely to undergo a desulfonic acid reaction due to acid or heat, and is sufficiently durable to be used as an electrolyte membrane for a fuel cell. I can not say.

水酸基を有するアゾール系ポリマー及びその製造方法としては例えば非特許文献3に報告されている。また水酸基を有するアゾールポリマーフィルムのイオンインプランテーション品の伝導度測定についての報告例がある(非特許文献4)。
しかしながら、これらのいずれにおいても水酸基をイオン伝導させる官能基として着目しているものはなく、いずれも燃料電池と使用する条件において十分耐久性を例示するものではなかった。
また高分子固体電解質膜の補強材料、すなわちイオン交換膜の支持膜としてポリベンザゾール系ポリマーを挙げている例としては特許文献9がある。
Non-patent document 3, for example, reports an azole polymer having a hydroxyl group and a method for producing the azole polymer. Moreover, there is a report example about the conductivity measurement of the ion implantation product of the azole polymer film having a hydroxyl group (Non-patent Document 4).
However, none of these has been focused on as a functional group for ion-conducting a hydroxyl group, and none of them has sufficiently exemplified durability under the conditions for use with a fuel cell.
Further, Patent Document 9 is an example in which a polybenzazole-based polymer is cited as a reinforcing material for a solid polymer electrolyte membrane, that is, a support membrane for an ion exchange membrane.

特開平6−93114号公報JP-A-6-93114 特開平9−245818号公報JP-A-9-245818 特開平11−116679号公報Japanese Patent Laid-Open No. 11-116679 特表平11−510198号公報Japanese National Patent Publication No. 11-510198 特表平11−515040号公報Japanese National Patent Publication No. 11-515040 特開2000−80166号公報JP 2000-80166 A 特開2002−110174号公報JP 2002-110174 A 特開2002−146018号公報JP 2002-146018 A 特開2005−68396号公報JP 2005-68396 A 高分子論文集 Vol.59、No.8、p.460〜473Polymer Papers Vol. 59, no. 8, p. 460-473 Journal of Polymer Science : Part A : Polymer Chemistry、1996、Vol.34、p.241−243Journal of Polymer Science: Part A: Polymer Chemistry, 1996, Vol. 34, p. 241-243 Polymer、1994、Vol.35、p.3091Polymer, 1994, Vol. 35, p. 3091 Polymeric Materials Science and Engineering、1991、Vol.64、p.171−172Polymeric Materials Science and Engineering, 1991, Vol. 64, p.171-172

芳香族ポリイミドからなる固体高分子電解質と、イオン伝導性を有する高分子とからなるイオン伝導性および耐酸化性に優れた固体高分子電解質組成物を提供する。   Provided is a solid polymer electrolyte composition excellent in ion conductivity and oxidation resistance, comprising a solid polymer electrolyte comprising an aromatic polyimide and a polymer having ion conductivity.

本発明は特定の共重合体である芳香族ポリイミドより得られる固体高分子電解質と、イオン伝導性を有する高分子とからなるイオン伝導性および耐酸化性に優れた固体高分子電解質組成物に関する。すなわち、本発明は以下の構成を要旨とするものである。   The present invention relates to a solid polymer electrolyte composition excellent in ion conductivity and oxidation resistance, comprising a solid polymer electrolyte obtained from an aromatic polyimide as a specific copolymer and a polymer having ion conductivity. That is, the gist of the present invention is as follows.

1.下記式(I)および(II)

Figure 2010006940
Figure 2010006940
で表される繰り返し単位よりなる群から選ばれる少なくとも1種の繰り返し単位からなる芳香族ポリイミド100質量部と、リン酸、ポリリン酸、硫酸、メタンスルホン酸から選ばれる少なくとも1種の酸0.1〜100質量部とからなる固体高分子電解質と、イオン伝導性を有する高分子とからなる固体高分子電解質組成物。
2.固体高分子電解質が厚さ10〜200μmmのフィルム形状である上記1項に記載の固体高分子電解質組成物。
3.イオン伝導性を有する高分子がパーフルオロカーボンスルホン酸樹脂である上記1項または2項に記載の固体高分子電解質組成物。
4.固体高分子電解質とイオン伝導性を有する高分子とがそれぞれフィルム状であり、それらの積層体となっている上記1〜3項のいずれかに記載の固体高分子電解質組成物。 1. Formulas (I) and (II) below
Figure 2010006940
Figure 2010006940
100 parts by mass of an aromatic polyimide composed of at least one repeating unit selected from the group consisting of repeating units represented by: at least one acid selected from phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid 0.1 A solid polymer electrolyte composition comprising a solid polymer electrolyte comprising ˜100 parts by mass and a polymer having ion conductivity.
2. 2. The solid polymer electrolyte composition according to 1 above, wherein the solid polymer electrolyte is in the form of a film having a thickness of 10 to 200 μm.
3. 3. The solid polymer electrolyte composition according to 1 or 2 above, wherein the polymer having ion conductivity is a perfluorocarbon sulfonic acid resin.
4). 4. The solid polymer electrolyte composition according to any one of the above items 1 to 3, wherein the solid polymer electrolyte and the polymer having ion conductivity are each in the form of a film and are a laminate thereof.

本発明により燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いられる電解質膜等に好適な耐酸化性等に優れた低コスト高耐久性固体高分子電解質組成物を得ることができる。そして該固体高分子組成物は燃料電池材料として好適である。   Low cost, high durability solid excellent in oxidation resistance and the like suitable for electrolyte membranes used in fuel cells, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors, etc. A polymer electrolyte composition can be obtained. The solid polymer composition is suitable as a fuel cell material.

本発明は芳香族ポリイミドからなる固体高分子電解質と、イオン伝導性を有する高分子とからなるイオン伝導性および耐酸化性に優れた固体高分子電解質組成物である。より好ましくは、該固体高分子電解質が厚さ10〜200μmmのフィルム形状である固体高分子電解質組成物である。さらに好ましくは、固体高分子電解質とイオン伝導性を有する高分子とがそれぞれフィルム状であり、それらの積層体となっている固体高分子電解質組成物である。   The present invention is a solid polymer electrolyte composition excellent in ion conductivity and oxidation resistance, comprising a solid polymer electrolyte comprising an aromatic polyimide and a polymer having ion conductivity. More preferably, it is a solid polymer electrolyte composition in which the solid polymer electrolyte is in the form of a film having a thickness of 10 to 200 μm. More preferably, it is a solid polymer electrolyte composition in which the solid polymer electrolyte and the polymer having ion conductivity are each in the form of a film and are a laminate thereof.

<固体高分子電解質>
本発明において用いられる固体高分子電解質は、下記式(I)および(II)

Figure 2010006940
Figure 2010006940
で表される繰り返し単位よりなる群から選ばれる少なくとも1種の繰り返し単位からなる芳香族ポリイミド100質量部と、リン酸、ポリリン酸、硫酸、メタンスルホン酸から選ばれる少なくとも1種の酸0.1〜100質量部からなる固体高分子電解質である。 <Solid polymer electrolyte>
The solid polymer electrolyte used in the present invention has the following formulas (I) and (II):
Figure 2010006940
Figure 2010006940
100 parts by mass of an aromatic polyimide composed of at least one repeating unit selected from the group consisting of repeating units represented by: at least one acid selected from phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid 0.1 It is a solid polymer electrolyte consisting of ˜100 parts by mass.

(芳香族ポリイミド(前駆体)の製造方法)
前記式(I)および(II)で表される繰り返し単位よりなる群から選ばれる少なくとも1種の繰り返し単位からなる芳香族ポリイミドの前駆体であるポリアミド酸(ポリアミック酸とも言う)は、下記式(A−1)、(A−2)、および(A−3)

Figure 2010006940
Figure 2010006940
(上記式中、XはF、Cl、Br、Iから選らばれる1種類以上のハロゲン、Rは炭素数1〜10の炭化水素基を表す)
Figure 2010006940
(上記式中、XはF、Cl、Br、Iから選らばれる1種類以上のハロゲン、Rは炭素数1〜10の炭化水素基を表す)
で表される芳香族テトラカルボン酸誘導体のいずれか1種以上と、下記式(B)および(C)
Figure 2010006940
Figure 2010006940
で表される芳香族ジアミンおよびその塩酸塩、硫酸塩、リン酸塩からなる群から選ばれる少なくとも1種とを反応させて得られる(以下、前記式(A−1)、(A−2)、(A−3)、(B)、および(C)を総称して原料モノマーということがある)。 (Method for producing aromatic polyimide (precursor))
Polyamic acid (also referred to as polyamic acid), which is a precursor of an aromatic polyimide composed of at least one repeating unit selected from the group consisting of repeating units represented by the formulas (I) and (II), has the following formula ( A-1), (A-2), and (A-3)
Figure 2010006940
Figure 2010006940
(In the above formula, X represents one or more halogens selected from F, Cl, Br, and I, and R 1 represents a hydrocarbon group having 1 to 10 carbon atoms)
Figure 2010006940
(In the above formula, X represents one or more halogens selected from F, Cl, Br, and I, and R 2 represents a hydrocarbon group having 1 to 10 carbon atoms)
Any one or more of the aromatic tetracarboxylic acid derivatives represented by the following formulas (B) and (C)
Figure 2010006940
Figure 2010006940
It is obtained by reacting at least one selected from the group consisting of an aromatic diamine represented by the following formula and its hydrochloride, sulfate, and phosphate (hereinafter, the formulas (A-1) and (A-2)): , (A-3), (B), and (C) may be collectively referred to as raw material monomers).

芳香族テトラカルボン酸ニ無水物としては、得られるポリマーの性質を改良する目的で各種のテトラカルボン酸無水物を共重合することが出来る。そのような芳香族テトラカルボン酸無水物の具体例としては3,3’,4,4’−ビフェニルテトラカルボン酸無水物、4,4’−オキシジフタル酸無水物などが挙げられる。   As the aromatic tetracarboxylic dianhydride, various tetracarboxylic anhydrides can be copolymerized for the purpose of improving the properties of the resulting polymer. Specific examples of such aromatic tetracarboxylic acid anhydrides include 3,3 ', 4,4'-biphenyltetracarboxylic acid anhydride, 4,4'-oxydiphthalic acid anhydride, and the like.

芳香族ジアミンとしては、得られるポリマーの性質を改良する目的で各種のジアミンを共重合することもできる。そのようなジアミンの具体例としてはp−フェニレンジアミン、m−フェニレンジアミン、1,4−ジアミノナフタレン、1,5−ジアミノナフタレン、1,8−ジアミノナフタレン、2,6−ジアミノナフタレン、2,7−ジアミノナフタレン、2,5−ジアミノピリジン、2,6−ジアミノピリジン、3,5−ジアミノピリジン、3,3’−ジアミノビフェニル、3,3’−ジクロロベンジジン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル等が挙げられる。   As the aromatic diamine, various diamines can be copolymerized for the purpose of improving the properties of the obtained polymer. Specific examples of such diamines include p-phenylenediamine, m-phenylenediamine, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7 -Diaminonaphthalene, 2,5-diaminopyridine, 2,6-diaminopyridine, 3,5-diaminopyridine, 3,3'-diaminobiphenyl, 3,3'-dichlorobenzidine, 3,3'-diaminodiphenyl ether, 3 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, and the like.

重合を行うのに用いる溶媒については、特に限定はされないが前記の如き原料を溶解し、かつそれらと実質的に非反応性であり、好ましくは特有粘度が少なくとも1.0以上、より好ましくは1.2以上のポリマーを得ることが可能なものであれば如何なる溶媒も使用できる。例えば、N,N,N’,N’−テトラメチル尿素(TMU)、N,N−ジメチルアセトアミド(DMAC)、N,N−ジエチルアセトアミド(DEAC)、N,N−ジメチルプロピオンアミド(DMPR)、N,N−ジメチルブチルアミド(NMBA)、N,N−ジメチルイソブチルアミド(NMIB)、N−メチル−2−ピロリジノン(NMP)、N−シクロヘキシル−2−ピロリジノン(NCP)、N−エチルピロリドン−2(NEP)、N−メチルカプロラクタム(NMC)、N,N−ジメチルメトキシアセトアミド、N−アセチルピロリジン(NARP)、N−アセチルピペリジン、N−メチルピペリドン−2(NMPD)、N,N’−ジメチルエチレン尿素、N,N’−ジメチルプロピレン尿素、N,N,N’,N’−テトラメチルマロンアミド、N−アセチルピロリドン等のアミド系溶媒、p−クロルフェノール、フェノール、m−クレゾール、p−クレゾール、2,4−ジクロルフェノール等のフェノール系溶媒もしくはこれらの混合物をあげることができる。   The solvent used for carrying out the polymerization is not particularly limited, but dissolves the raw materials as described above and is substantially non-reactive with them, and preferably has a specific viscosity of at least 1.0, more preferably 1. Any solvent can be used as long as it is possible to obtain two or more polymers. For example, N, N, N ′, N′-tetramethylurea (TMU), N, N-dimethylacetamide (DMAC), N, N-diethylacetamide (DEAC), N, N-dimethylpropionamide (DMPR), N, N-dimethylbutyramide (NMBA), N, N-dimethylisobutyramide (NMIB), N-methyl-2-pyrrolidinone (NMP), N-cyclohexyl-2-pyrrolidinone (NCP), N-ethylpyrrolidone-2 (NEP), N-methylcaprolactam (NMC), N, N-dimethylmethoxyacetamide, N-acetylpyrrolidine (NARP), N-acetylpiperidine, N-methylpiperidone-2 (NMPD), N, N′-dimethylethyleneurea N, N′-dimethylpropyleneurea, N, N, N ′, N′-tetramethylmalonami , It may be mentioned N- amide solvents such as acetyl pyrrolidone, p- chlorophenol, phenol, m- cresol, p- cresol, such as 2,4-di-chlorophenol phenolic solvent or mixtures thereof.

これらの中でも好ましい溶媒はN,N−ジメチルアセトアミド(DMAC)、N−メチル−2−ピロリジノン(NMP)である。
この場合、溶解性を挙げるために重合前、途中、あるいは終了時に公知の無機塩を適当量添加しても差し支えない。このような無機塩として例えば、塩化リチウム、塩化カルシウム等が挙げられる。
Among these, preferred solvents are N, N-dimethylacetamide (DMAC) and N-methyl-2-pyrrolidinone (NMP).
In this case, in order to increase the solubility, an appropriate amount of a known inorganic salt may be added before, during or at the end of polymerization. Examples of such inorganic salts include lithium chloride and calcium chloride.

ポリマーの製造は、前記の原料モノマーを、脱水した上記の溶媒中で、ポリアミドの溶液重合と同様の方法にて製造することができる。この際の反応温度は80℃以下、好ましくは60℃以下とする。また、この時の濃度はモノマー濃度として1〜20質量%程度が好ましい。   The polymer can be produced in the same manner as the solution polymerization of polyamide in the above-mentioned solvent obtained by dehydrating the raw material monomer. The reaction temperature at this time is 80 ° C. or lower, preferably 60 ° C. or lower. The concentration at this time is preferably about 1 to 20% by mass as the monomer concentration.

また、本発明にて用いる芳香族ポリイミドを製造する際、トリアルキルシリルクロライドをポリマー高重合度化の目的で使用することも可能である。
また、前記式(A−2)または(A−3)の原料モノマーを用いた際に生成するハロゲン化水素のごとき酸を捕捉するために脂肪族や芳香族のアミン、第4級アンモニウム化合物を併用できる。
In producing the aromatic polyimide used in the present invention, trialkylsilyl chloride can be used for the purpose of increasing the degree of polymerization of the polymer.
In addition, an aliphatic or aromatic amine or a quaternary ammonium compound is used for capturing an acid such as a hydrogen halide produced when the raw material monomer of the formula (A-2) or (A-3) is used. Can be used together.

この発明において用いる芳香族ポリイミドを得るためには前記の有機溶媒中にて、(B)または(C)で表されるジアミンの使用量が(A)で表される芳香族ジカルボン酸化合物のモル数に対する比として好ましくは0.90〜1.10で、より好ましくは0.95〜1.05で反応させ、全芳香族ポリイミドとすることが好ましい。   In order to obtain the aromatic polyimide used in the present invention, the amount of the diamine represented by (B) or (C) is the mole of the aromatic dicarboxylic acid compound represented by (A) in the organic solvent. The ratio with respect to the number is preferably 0.90 to 1.10, more preferably 0.95 to 1.05, and it is preferable to form a wholly aromatic polyimide.

この全芳香族イミドにおいてポリマーの末端を封止することが好ましく利用できる。末端封止剤を用いて封止する場合、その末端封止剤としてはベンゾイルクロリド、無水フタル酸及びその置換体、ヘキサヒドロ無水フタル酸及びその置換体、無水コハク酸及びその置換体、アミン成分としてはアニリン及びその置換体が挙げられるがこれに限るものではない。   In this wholly aromatic imide, it is preferable to seal the end of the polymer. When sealing with an end-capping agent, the end-capping agent includes benzoyl chloride, phthalic anhydride and its substitute, hexahydrophthalic anhydride and its substitute, succinic anhydride and its substitute, and amine component. Includes, but is not limited to, aniline and substituted products thereof.

(成型方法について)
本発明で用いられる高分子電解質を燃料電池用として使用する際には、膜の状態、つまりフィルム状であることが好ましい。芳香族ポリイミド膜の製造方法に特に制限はないが、溶液状態より製膜する方法(溶液キャスト法)が好ましく利用できる。具体的に溶液キャスト法については、例えば先に述べた方法で得られたポリアミド酸のポリマー溶液をガラス板上に流延塗布し、溶媒を除去し乾燥、熱処理、分子環化反応によりイミド化を進行させ芳香族ポリイミド膜を得る。製膜に用いる溶媒は、高分子を溶解し、その後に除去し得るものであるならば特に制限はなくN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、ヘキサメチルホスホンアミドなど非プロトン極性溶媒や、ポリリン酸、メタンスルホン酸、硫酸、トリフルオロ酢酸などの強酸を用いることができるがこれらに限定されるものではない。
(About molding method)
When the polymer electrolyte used in the present invention is used for a fuel cell, it is preferably in a membrane state, that is, in a film form. Although there is no restriction | limiting in particular in the manufacturing method of an aromatic polyimide membrane, The method (solution casting method) which forms into a film from a solution state can utilize preferably. Specifically, for the solution casting method, for example, the polymer solution of polyamic acid obtained by the above-described method is cast-coated on a glass plate, the solvent is removed, drying, heat treatment, and imidization are performed by molecular cyclization reaction. Proceed to obtain an aromatic polyimide film. The solvent used for film formation is not particularly limited as long as it dissolves the polymer and can be removed thereafter. N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2- Aprotic polar solvents such as pyrrolidone and hexamethylphosphonamide, and strong acids such as polyphosphoric acid, methanesulfonic acid, sulfuric acid, and trifluoroacetic acid can be used, but are not limited thereto.

これらの溶媒は、可能な範囲で複数を混合して使用してもよい。また、溶解性を向上させる手段として、臭化リチウム、塩化リチウム、塩化アルミニウムなどのルイス酸を有機溶媒に添加したものを溶媒としてもよい。溶液中のポリマー濃度は0.1〜30質量%の範囲であることが好ましい。低すぎると成形性が悪化し、高すぎると加工性が悪化する。
また上記記載のポリマーは溶媒中でリオトロピック液晶を形成する事がありこの液晶性を示すポリマードープを成型に使用することも好ましく利用できる。
A plurality of these solvents may be used as a mixture within a possible range. As a means for improving the solubility, a solvent obtained by adding a Lewis acid such as lithium bromide, lithium chloride, or aluminum chloride to an organic solvent may be used. The polymer concentration in the solution is preferably in the range of 0.1 to 30% by mass. If it is too low, the moldability will deteriorate, and if it is too high, the workability will deteriorate.
In addition, the polymers described above may form lyotropic liquid crystals in a solvent, and it is preferable to use a polymer dope exhibiting liquid crystallinity for molding.

芳香族ポリイミド膜の機械特性や配向特性を改善する意味で例えば特開2002−30519号公報に記載の方法でポリアミド酸を流延塗布後縮合剤により部分的にイソイミド化し自己支持性を持たせ、延伸配向させた後溶媒を除去し乾燥、熱処理、分子環化反応によりイミド化を進行させ芳香族ポリイミド膜を得ることも好ましく利用できる。   In the sense of improving the mechanical properties and orientation properties of the aromatic polyimide film, for example, polyamic acid is cast and partially isoimidized with a condensing agent by the method described in JP-A-2002-30519, to give self-supporting property, It can also be preferably used to obtain an aromatic polyimide film by removing the solvent after stretching and orientation and then proceeding to imidization by drying, heat treatment, and molecular cyclization reaction.

成型体に伝導性を向上する上で、リン酸、ポリリン酸、硫酸、メタンスルホン酸から選ばれる少なくとも一つの酸を添加することが肝要である。
添加方法としては、ドープにあらかじめ加えておく、凝固時に添加、乾燥後添加いずれの方法も利用できる。
In order to improve the conductivity, it is important to add at least one acid selected from phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid to the molded body.
As an addition method, any method of adding to the dope in advance, adding at the time of solidification, and adding after drying can be used.

上記のように、固体高分子電解質をフィルム状にする場合の厚さは10〜200μmが好ましく、特に20〜100μmが好ましい。実用に耐える膜の強度を得るには10μmより厚い方が好ましく、膜抵抗の低減つまり発電性能向上のためには200μmより薄い方が好ましい。溶液キャスト法の場合、膜厚は溶液濃度あるいは基板上への塗布厚により制御できる。溶融状態より製膜する場合、膜厚は溶融プレス法あるいは溶融押し出し法等で得た所定厚さのフィルムを所定の倍率に延伸することで膜厚を制御できる。   As described above, the thickness of the solid polymer electrolyte in the form of a film is preferably 10 to 200 μm, particularly preferably 20 to 100 μm. A thickness of more than 10 μm is preferable to obtain a membrane strength that can withstand practical use, and a thickness of less than 200 μm is preferable in order to reduce membrane resistance, that is, improve power generation performance. In the case of the solution casting method, the film thickness can be controlled by the solution concentration or the coating thickness on the substrate. When the film is formed from a molten state, the film thickness can be controlled by stretching a film having a predetermined thickness obtained by a melt press method or a melt extrusion method at a predetermined magnification.

<イオン伝導性を有する高分子>
本発明で用いられるイオン伝導性を有する高分子は、例えば、−SOHのようなイオン交換基を有しているモノマーの単重合体、ブロック共重合体、ランダム共重合体、−SOH基等イオン交換基を後処理にて導入したもののような、イオン伝導性を有するパーフルオロカーボンスルホン酸樹脂、ポリエーテルエーテルケトンスルホン酸樹脂等が挙げられる。なかでもイオン伝導性を有する高分子がパーフルオロカーボンスルホン酸樹脂であることが好ましい。なお、本発明で用いられるイオン伝導性を有する高分子は、膜の状態、つまりフィルム状であることが好ましく、その場合の厚さは10〜200μmが好ましい。
<Polymer having ion conductivity>
The polymer having ion conductivity used in the present invention is, for example, a monomer homopolymer, block copolymer, random copolymer, -SO 3 having an ion exchange group such as —SO 3 H. Examples thereof include perfluorocarbon sulfonic acid resins and polyether ether ketone sulfonic acid resins having ion conductivity, such as those obtained by introducing an ion exchange group such as an H group by post-treatment. In particular, the polymer having ion conductivity is preferably a perfluorocarbon sulfonic acid resin. In addition, it is preferable that the polymer which has ion conductivity used by this invention is a film | membrane state, ie, a film form, and the thickness in that case has preferable 10-200 micrometers.

<積層体、複合膜(固体高分子電解質組成物)>
本発明の固体高分子電解質組成物は、芳香族ポリイミドとイオン伝導性を有する高分子からなる。芳香族ポリイミドとイオン伝導性を有する高分子との組成物からなる固体高分子電解質であっても、芳香族ポリイミドからなる層とイオン伝導性を有する高分子からなる層との積層体であってもよい。組成物の場合は芳香族ポリイミド100質量部に対しイオン伝導性を有する高分子1〜800質量部、好ましくは3〜300質量部、さらには5〜100質量部であることが好ましい。積層体の場合は芳香族ポリイミドからなる層の片側、あるいは両側にイオン伝導性を有する高分子からなる層を設ければ良い。積層方法としては例えば公知のプレス法、ホットプレス法、キャスト法、スピンコーティング法、ラミネート法などが挙げられるがこれに限定されるものではない。
<Laminated body, composite membrane (solid polymer electrolyte composition)>
The solid polymer electrolyte composition of the present invention comprises an aromatic polyimide and a polymer having ion conductivity. Even a solid polyelectrolyte composed of a composition of an aromatic polyimide and an ionic conductive polymer is a laminate of a layer composed of an aromatic polyimide and a layer composed of an ionic conductive polymer. Also good. In the case of the composition, it is preferably 1 to 800 parts by mass, preferably 3 to 300 parts by mass, and more preferably 5 to 100 parts by mass with respect to 100 parts by mass of the aromatic polyimide. In the case of a laminate, a layer made of a polymer having ion conductivity may be provided on one side or both sides of a layer made of aromatic polyimide. Examples of the lamination method include, but are not limited to, a known press method, hot press method, cast method, spin coating method, and laminate method.

以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらによっていささかも限定されるものではない。なお、以下の実施例における各測定値は次の方法により求めた値である。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these. In addition, each measured value in the following examples is a value obtained by the following method.

[特有粘度]
NMPを用いてポリマー濃度0.5g/dlで30℃において測定した相対粘度(ηrel)を基に下記式により求めた値である。
ηinh=(lnηrel)/C
(ηinhは特有粘度[dl/g]、ηrelは相対粘度、Cはポリマー濃度[g/dl]を表す)
[Specific viscosity]
It is a value obtained by the following formula based on the relative viscosity (η rel ) measured at 30 ° C. with a polymer concentration of 0.5 g / dl using NMP.
η inh = (lnη rel ) / C
inh is the specific viscosity [dl / g], η rel is the relative viscosity, and C is the polymer concentration [g / dl])

[イオン伝導度測定]
本発明の固体高分子電解質組成物(膜)を、電気化学インピーダンス測定装置(ソーラトロン製、SI1287)を用いて周波数0.1Hz〜65kHzの領域で膜の厚み方向のインピーダンス測定をし、イオン伝導度を測定した。なお、上記測定で固体高分子電解質組成物(積層体)は90%RH雰囲気下、80℃にて保存された。
[Ion conductivity measurement]
The solid polymer electrolyte composition (membrane) of the present invention was measured for impedance in the thickness direction of the membrane in the frequency range of 0.1 Hz to 65 kHz using an electrochemical impedance measuring device (manufactured by Solartron, SI1287), and ionic conductivity Was measured. In the above measurement, the solid polymer electrolyte composition (laminate) was stored at 80 ° C. in a 90% RH atmosphere.

[耐酸化性試験]
本発明の固体高分子電解質組成物(積層体)を、30%過酸化水素水20mlに硫酸鉄7水和物1.9mgを加えることからなる60℃に加熱したフェントン試薬(鉄40ppmを含む)に浸漬させ、電解質膜がフェントン試薬に溶解するに至る時間を求めた。
[Oxidation resistance test]
A Fenton reagent (containing 40 ppm of iron) heated to 60 ° C. consisting of adding 1.9 mg of iron sulfate heptahydrate to 20 ml of 30% hydrogen peroxide solution, the solid polymer electrolyte composition (laminate) of the present invention. The time until the electrolyte membrane was dissolved in the Fenton reagent was determined.

[リン原子の含有量の測定方法]
試料を還流冷却付き湿式分解容器に採り、濃硫酸を添加後加熱しながら、試料が飛散しないように徐々に硝酸を滴下して有機物を完全に分解した。放冷後、純水を加え白色透明ガラス容器に定容して、ICP発光分析法によりリン原子を定量した。
[Measurement method of phosphorus atom content]
The sample was placed in a wet decomposition vessel with reflux cooling, and after adding concentrated sulfuric acid, while heating after adding concentrated sulfuric acid, nitric acid was gradually added dropwise to prevent the sample from scattering and the organic matter was completely decomposed. After standing to cool, pure water was added and the volume was fixed in a white transparent glass container, and phosphorus atoms were quantified by ICP emission spectrometry.

[参考例1](ポリマーの重合)
窒素気流下、フラスコ内に塩化カルシウム11.1質量部を加え、250℃にて1時間乾燥させ、フラスコ内の温度を室温に戻した後、N−メチル−2−ピロリジノン(NMP)350質量部、および5(6)−アミノ−2−(4−アミノフェニル)ベンズイミダゾール(cas.reg.no.7621−86−5)5質量部を加えた。この溶液を外部冷却により0℃に保ち、1時間の攪拌後、ジエチル2,5−ビス(クロロカルボニル)テレフタレート7.74質量部を添加し、0℃で5時間、室温で40時間反応せしめポリアミド酸のポリマードープを得た。得られたポリマーの特有粘度は1.5[dl/g]であった。
[Reference Example 1] (Polymer polymerization)
Under a nitrogen stream, 11.1 parts by mass of calcium chloride was added to the flask and dried at 250 ° C. for 1 hour. After the temperature in the flask was returned to room temperature, 350 parts by mass of N-methyl-2-pyrrolidinone (NMP) , And 5 parts by weight of 5 (6) -amino-2- (4-aminophenyl) benzimidazole (cas. Reg. No. 7621-86-5). This solution was kept at 0 ° C. by external cooling, and after stirring for 1 hour, 7.74 parts by mass of diethyl 2,5-bis (chlorocarbonyl) terephthalate was added and reacted at 0 ° C. for 5 hours and at room temperature for 40 hours. An acid polymer dope was obtained. The specific viscosity of the obtained polymer was 1.5 [dl / g].

[参考例2](キャストフィルムの作成)
参考例1にて得られたポリマードープをドクターナイフによりガラス上に展開し、NMP:水=30:70溶媒にて1時間浸漬し、自己支持性の膜を得た。得られた膜を80℃で5分、200℃10分、250℃10分、350℃10分、400℃10分で加熱処理を行い、全芳香族ポリイミド膜(厚み25μm)を得た。得られた膜をリン酸50質量%含有メタノール溶液に12時間浸漬し、リン原子の含有量が3.5質量%(リン酸換算で11質量%)の固体電解質膜を得た。
[Reference Example 2] (Cast film production)
The polymer dope obtained in Reference Example 1 was developed on a glass with a doctor knife and immersed in NMP: water = 30: 70 solvent for 1 hour to obtain a self-supporting film. The obtained film was heated at 80 ° C. for 5 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, 350 ° C. for 10 minutes, and 400 ° C. for 10 minutes to obtain a wholly aromatic polyimide film (thickness 25 μm). The obtained membrane was immersed in a methanol solution containing 50% by mass of phosphoric acid for 12 hours to obtain a solid electrolyte membrane having a phosphorus atom content of 3.5% by mass (11% by mass in terms of phosphoric acid).

[実施例1](積層体(固体高分子電解質組成物)の作成)
参考例2にて得られたフィルムを膜厚170μmのDu Pont社製Nafionフィルムにて両面を挟み積層体(固体高分子電解質組成物)を作成し、そのイオン伝導度及び耐酸化性を測定した。測定結果を表1に示す。
[Example 1] (Preparation of laminate (solid polymer electrolyte composition))
A laminate (solid polymer electrolyte composition) was prepared by sandwiching both sides of a film obtained in Reference Example 2 with a Nafion film made by Du Pont having a film thickness of 170 μm, and its ionic conductivity and oxidation resistance were measured. . The measurement results are shown in Table 1.

Figure 2010006940
Figure 2010006940

Claims (4)

下記式(I)および(II)
Figure 2010006940
Figure 2010006940
で表される繰り返し単位よりなる群から選ばれる少なくとも1種の繰り返し単位からなる芳香族ポリイミド100質量部と、リン酸、ポリリン酸、硫酸、メタンスルホン酸から選ばれる少なくとも1種の酸0.1〜100質量部とからなる固体高分子電解質と、イオン伝導性を有する高分子とからなる固体高分子電解質組成物。
Formulas (I) and (II) below
Figure 2010006940
Figure 2010006940
100 parts by mass of an aromatic polyimide composed of at least one repeating unit selected from the group consisting of repeating units represented by: at least one acid selected from phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid 0.1 A solid polymer electrolyte composition comprising a solid polymer electrolyte comprising ˜100 parts by mass and a polymer having ion conductivity.
固体高分子電解質が厚さ10〜200μmmのフィルム形状である請求項1に記載の固体高分子電解質組成物。   The solid polymer electrolyte composition according to claim 1, wherein the solid polymer electrolyte is in the form of a film having a thickness of 10 to 200 μm. イオン伝導性を有する高分子がパーフルオロカーボンスルホン酸樹脂である請求項1または2に記載の固体高分子電解質組成物。   The solid polymer electrolyte composition according to claim 1 or 2, wherein the polymer having ion conductivity is a perfluorocarbon sulfonic acid resin. 固体高分子電解質とイオン伝導性を有する高分子とがそれぞれフィルム状であり、それらの積層体となっている請求項1〜3のいずれかに記載の固体高分子電解質組成物。   The solid polymer electrolyte composition according to any one of claims 1 to 3, wherein the solid polymer electrolyte and the polymer having ion conductivity are each in the form of a film and are a laminate thereof.
JP2008167338A 2008-06-26 2008-06-26 Solid polymer electrolyte composition Pending JP2010006940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167338A JP2010006940A (en) 2008-06-26 2008-06-26 Solid polymer electrolyte composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167338A JP2010006940A (en) 2008-06-26 2008-06-26 Solid polymer electrolyte composition

Publications (1)

Publication Number Publication Date
JP2010006940A true JP2010006940A (en) 2010-01-14

Family

ID=41587787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167338A Pending JP2010006940A (en) 2008-06-26 2008-06-26 Solid polymer electrolyte composition

Country Status (1)

Country Link
JP (1) JP2010006940A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102432878A (en) * 2011-09-05 2012-05-02 东华大学 Humidity-sensitive polyimide, preparation and applications thereof
CN102604090A (en) * 2012-01-09 2012-07-25 东华大学 Preparation method of liquid crystalline polyimide solution
CN107112112A (en) * 2015-01-20 2017-08-29 株式会社村田制作所 Coil component
CN108164698A (en) * 2017-11-23 2018-06-15 长沙新材料产业研究院有限公司 The preparation method and application of polyimide precursor and polyimide nanofiber membrane
WO2018155598A1 (en) * 2017-02-23 2018-08-30 旭化成株式会社 Composition, composite film and membrane electrode assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102432878A (en) * 2011-09-05 2012-05-02 东华大学 Humidity-sensitive polyimide, preparation and applications thereof
CN102604090A (en) * 2012-01-09 2012-07-25 东华大学 Preparation method of liquid crystalline polyimide solution
CN102604090B (en) * 2012-01-09 2013-10-23 东华大学 Preparation method of liquid crystalline polyimide solution
CN107112112A (en) * 2015-01-20 2017-08-29 株式会社村田制作所 Coil component
WO2018155598A1 (en) * 2017-02-23 2018-08-30 旭化成株式会社 Composition, composite film and membrane electrode assembly
CN110366576A (en) * 2017-02-23 2019-10-22 旭化成株式会社 Composition, composite membrane, membrane-electrode assembly
JPWO2018155598A1 (en) * 2017-02-23 2019-12-19 旭化成株式会社 Composition, composite membrane, membrane electrode assembly
JP2020169323A (en) * 2017-02-23 2020-10-15 旭化成株式会社 Composition, composite membrane, and membrane electrode assembly
EP3611224A4 (en) * 2017-02-23 2020-11-04 Asahi Kasei Kabushiki Kaisha Composition, composite film and membrane electrode assembly
CN108164698A (en) * 2017-11-23 2018-06-15 长沙新材料产业研究院有限公司 The preparation method and application of polyimide precursor and polyimide nanofiber membrane

Similar Documents

Publication Publication Date Title
US7361729B2 (en) Ion-conducting sulfonated polymeric materials
EP1327278B1 (en) Ion-conducting sulfonated polymeric materials
WO2008105547A1 (en) Solid polymer electrolyte
JP5499275B2 (en) Polyimide resin and electrolyte membrane
Imran et al. Fabrication and characterization of sulfonated polybenzimidazole/sulfonated imidized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cells
KR101697693B1 (en) Porous support and polymer electrolyte membrane for fuel cell including the same
Li et al. Synthesis and properties of sulfonated polyimide–polybenzimidazole copolymers as proton exchange membranes
JP2010006940A (en) Solid polymer electrolyte composition
JP4283125B2 (en) Polymer electrolyte, proton conducting membrane and membrane-electrode structure
Li et al. Rigid–Flexible Hybrid Proton‐Exchange Membranes with Improved Water‐Retention Properties and High Stability for Fuel Cells
JP3703016B2 (en) POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
WO2010137275A1 (en) Proton conducting polymer electrolyte membrane, membrane-electrode assembly using same, and polymer electrolyte fuel cell
JP2004269658A (en) Branched sulfonated polyimide resin, method for producing the same, sulfonated polyimide electrolytic film, its solution and fuel cell
JP2002367627A (en) Sulfonated polyimide polymer electrolyte film and manufacturing method of the same
JP2004107484A (en) Sulfo-containing polyimide resin composition and sulfo-containing polyimide membrane made therefrom
JP4686719B2 (en) Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane
JP2006152009A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
JP2010009758A (en) Solid polymer electrolyte
JP4959115B2 (en) Proton conducting electrolyte and fuel cell
JP2010044971A (en) Solid polymer electrolyte composition
Zhu et al. Synthesis and properties of novel sulfonated polyimides containing phthalazinone moieties for PEMFC
JP2009301780A (en) Solid polymer electrolyte
JP2006265497A (en) Sulfonated aromatic carbonylpolyimide and electrolyte film composed of the same
JP2006265496A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
JPS5837024A (en) Composite membrane for gas separation