WO2008105547A1 - Solid polymer electrolyte - Google Patents

Solid polymer electrolyte Download PDF

Info

Publication number
WO2008105547A1
WO2008105547A1 PCT/JP2008/053713 JP2008053713W WO2008105547A1 WO 2008105547 A1 WO2008105547 A1 WO 2008105547A1 JP 2008053713 W JP2008053713 W JP 2008053713W WO 2008105547 A1 WO2008105547 A1 WO 2008105547A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
solid polymer
acid
membrane
iii
Prior art date
Application number
PCT/JP2008/053713
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Chokai
Hiroaki Kuwahara
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Publication of WO2008105547A1 publication Critical patent/WO2008105547A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid polymer electrolyte excellent in ion conductivity and oxidation resistance, a solid polymer electrolyte composition comprising the solid polymer electrolyte and a polymer having ion conductivity, and a solid polymer electrolyte comprising any of these.
  • the present invention relates to a molecular electrolyte membrane, a membrane Z electrode assembly using the solid polymer electrolyte membrane, and a fuel cell using the membrane Z electrode assembly.
  • a solid polymer electrolyte is a solid polymer material having an electrolyte group in the polymer chain, and has the property of selectively permeating cations or anions by firmly binding to specific ions. Therefore, it is formed into particles, fibers, or membranes and used in various applications such as electrodialysis, diffusion dialysis, and battery membranes.
  • a fuel cell is provided with a pair of electrodes on both sides of a solid polymer electrolyte membrane of ion-conducting ⁇ fe, supplying hydrogen gas or methanol as fuel to one electrode (fuel electrode), and oxygen gas or air as the oxidant To the other electrode (air electrode) to obtain an electromotive force.
  • hydrogen and oxygen are produced by electrolyzing water using a solid polymer electrolyte membrane.
  • Fluorine-based electrolyte membranes typified by sulfonic acid membranes are widely used as solid polymer electrolyte membranes for fuel cells and water electrolysis because of their excellent chemical stability.
  • Sodium chloride electrolysis produces sodium hydroxide, chlorine and hydrogen by electrolyzing a sodium chloride aqueous solution using a solid polymer electrolyte membrane.
  • the polymer electrolyte membrane is composed of chlorine and high temperature, high concentration sodium hydroxide aqueous solution. It is not possible to use hydrocarbon electrolyte membranes that are poorly resistant to these when exposed to liquids. For this reason, solid polymer electrolyte membranes for salt electrolysis are generally resistant to chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and in addition to prevent reverse diffusion of the generated ions. Perfluorosulfonic acid membranes with partially introduced carboxylic acid groups are used.
  • the fluorine-based electrolyte typified by a perfluorinated rosulfonic acid membrane has a C 1 F bond, and thus has a very large chemical stability.
  • the above-mentioned 'for fuel cell, for water electrolysis', or salt In addition to solid polymer electrolyte membranes for electrolysis, it can also be used as solid polymer electrolyte membranes for hydrohalic acid electrolysis, and also for humidity sensors, gas sensors, oxygen concentrators, etc. using ionic conductivity Widely applied.
  • the disadvantage is that fluorine-based electrolytes are difficult to manufacture and are very expensive.
  • fluorine-based electrolyte membranes are used in limited applications such as space or military polymer electrolyte fuel cells, and are used in consumer applications such as solid polymer fuel cells as a low-pollution power source for automobiles. Application was difficult.
  • an electrolyte membrane obtained by sulfonating an aromatic hydrocarbon polymer represented by engineering plastics has been proposed as an inexpensive solid polymer electrolyte membrane.
  • aromatic hydrocarbon electrolyte membranes obtained by sulfonating these engineering plastics have the advantages of easy production and low cost. However, it has the disadvantage that it is very weak in terms of oxidation resistance.
  • Non-patent document 1 reports that, for example, sulfonated polyetheretherketone and polyethersulfone deteriorate from an ether site adjacent to sulfonic acid. From this, it is considered that when an electron donating group is present in the vicinity of the sulfonic acid, oxidative degradation starts from there. Therefore, for the purpose of improving oxidation resistance, sulfonated polyphenylene sulfone whose main chain is composed only of an electron-withdrawing group and an aromatic ring has been proposed (Patent Document 6), and sulfonic acid is introduced to the adjacent site of the sulfone group. A sulfonated polysulfone was proposed (Non-patent Document 2).
  • the degradation of the aromatic hydrocarbon electrolyte membrane is less than the oxidation degradation.
  • the sulfonic acid group strong acid which is an ion conductive substituent directly bonded to the aromatic ring, may be considered to be due to desorption at high temperatures and decrease in ionic conductivity.
  • sulfonated polyphenylene sulfone as described in Non-Patent Document 2, sulfonated polysulfone cannot avoid deterioration due to elimination of sulfonic acid.
  • Patent Document 7 proposes the use of an alkyl sulfonic acid instead of a sulfonic acid. This is effective in improving the decrease in ionic conductivity due to elimination of sulfonic acid, but the main chain of the aromatic polymer used contains an electron-donating group, which is inferior in oxidation resistance.
  • azole polymers are expected to be solid electrolyte membranes for fuel cells as polymers with excellent heat resistance and chemical resistance.
  • Patent Document 8 a sulfonated azole polymer has been reported as an azole polymer having ion conductivity (Patent Document 8).
  • Patent Documents 9 to 11 report a polybenzimidazole fuel cell electrolyte membrane obtained by obtaining a polybenzimidazole polymer using a polyphosphate.
  • Patent Document 1 JP-A-6-93114
  • Patent Document 2 Japanese Patent Laid-Open No. 9-245818
  • Patent Document 3 Japanese Patent Laid-Open No. 1 1 1 1 16679
  • Patent Literature 4 W ⁇ 97Z05191 pamphlet
  • Patent Document 5 WO 97/1 1099 pamphlet
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-80166
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2002-1 10174
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2002-146018
  • Patent Document 9 WO 2002/081547 Pamphlet
  • Patent Document 10 W 0 2002 088219 pamphlet
  • Patent Document 1 W H 2004Z024796 Pamphlet
  • Non-Patent Document 1 Polymer Papers V o 1. 59, No. 8, 460-473 pages
  • Non-Patent Document 2 Jo rn a l o f P o y y me r S c i en c e: P a r t A: P o 1 yme r Chemi st r y, Vo l. 34, 2421-2438 (1996) Disclosure of the Invention
  • An object of the present invention is to provide a solid polymer electrolyte excellent in ionic conductivity and oxidation resistance, a solid polymer electrolyte composition comprising the solid polymer electrolyte and a polymer having ion conductivity, and any of these It is intended to provide a solid polymer electrolyte membrane, a membrane / electrode assembly using the solid polymer electrolyte membrane, and a fuel cell using the membrane electrode assembly. Means to determine the issue
  • At least one repeating unit selected from the group consisting of repeating units represented by
  • a r 1 is p-phenylene, m 1-phenylene, 2, 6-naphthylene range 4, 4, 4, 1-biphenylene, 4, 4 'One or more groups selected from monosulfonyldiphenylene, wherein Ar 2 in the above formula (III) is p-phenylene, m-phenylene, 3, 4, mono-oxydiphenylene, 4, 4 '—Oxidiphenylene, 4, 4' — Biphenylene, 4, 4 'One or more groups selected from monosulfonyldiphenylene.
  • a solid polymer electrolyte comprising 0.1 to 100 parts by mass of at least one acid selected from the group consisting of polyphosphoric acid, sulfuric acid, and methanesulfonic acid.
  • a solid polymer electrolyte membrane obtained by forming the solid polymer electrolyte according to 1 above into a film form having a thickness of 10 to 200 m.
  • a solid polymer electrolyte composition comprising the solid polymer electrolyte described in 1 above and a polymer having ion conductivity.
  • a membrane / electrode assembly wherein catalyst electrodes are provided on both surfaces of the solid polymer electrolyte membrane according to 2 or 5 above.
  • a fuel cell comprising the above-described 6-Z electrode assembly.
  • a solid polymer electrolyte or a composition thereof can be obtained, and a fuel cell using the polymer electrolyte or a composition thereof can be obtained.
  • the rigid heterocyclic polymer used in the present invention is:
  • At least one repeating unit selected from the group consisting of repeating units represented by
  • a r 1 is p-phenylene, m-phenylene, 2, 6-naphthenyl, 4, 4'-biphenylene, 4, 4 'One or more groups selected from monosulfonyldiphenylene
  • Ar 2 is p-phenylene, m-phenylene, 3, 4, mono-oxydiphenylene, 4, One or more groups selected from 4, oxydiphenylene, 4,4, bibiylene, 4,4′-monosulfonyldiphenylene.
  • the copolymer molar ratio (I I I) ((I) + (I I)) is more preferably 0 or more and 1 or less, and further preferably 0 or more and 0.5 or less.
  • the solid polymer electrolyte of the present invention comprises 100 parts by mass of an upper rigid heterocyclic polymer and at least one acid selected from the group consisting of phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid. It consists of ⁇ 100 parts by mass.
  • the acid is present in the molded body to improve conductivity, and the acid content in the solid polymer electrolyte is preferably 0.5 to 50 mass with respect to 100 mass parts of the rigid heterocyclic polymer. Part, more preferably 1.0 to 30 parts by weight, still more preferably 3.0 to 20 parts by weight.
  • the rigid heterocyclic polymer consisting of at least one repeating unit selected from the group consisting of the repeating units represented by the formulas (I) and (I I) is represented by the following formula (A).
  • Ar 1 in the formula (A) is derived from p-phenylene, m-phenylene, 2, 6-naphthalene, 4, 4'-biphenylene, 4, 4'-sulfonyldiphenylene.
  • One or more selected groups X in formula (A) is OH, halogen atom, or
  • R is a group represented by OR, and R represents a monovalent aromatic group having 6 to 20 carbon atoms.
  • a r 2 is p-phenylene, m-phenylene, 3, 4, 1-oxydiphenylene, 4, 4'-oxydiphenylene, 4 , 4 '— Biphenylene, 4, 4' One or more groups selected from monosulfonyldiphenylene.
  • the aromatic dicarboxylic acid compound represented by the formula (A) has an aromatic ring, that is, Ar 1 force p-phenylene, m-phenylene, 2, 6-naphthylene in the formula (A).
  • Ar 1 force p-phenylene, m-phenylene, 2, 6-naphthylene in the formula (A).
  • various dicarboxylic acids other than the above formula (A) such as adipic acids can be copolymerized for the purpose of improving the properties of the polymer obtained.
  • the aromatic diamine compound represented by the formula (D) has an aromatic ring, that is, Ar 2 force p-phenylene, m-phenylene, 3, 4, monooxydiene diylene in the formula (D). , 4, 4′—oxydiphenylene, 4,4′-piphenylene, and 4,4 ′ monosulfonyldiphenylene, among which p-phenylene Len, m—Phenylene, and 3, 4 '— Oxydiff Enylene is preferred, and p-phenylene is particularly preferred.
  • various diamines other than the above formula (A) such as 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2 , 6-Diaminonaphthalene, 2, 7-Diaminonaphthalene, 2,5-Diaminopyridine, 2,6-Diaminopyridine, 3,5-Diaminopyridine, 3,3'-Diaminobiphenyl, 3,3 ' Ndidine, 3, 3'-diaminodiphenyl ether, etc. can also be copolymerized.
  • 1,4-diaminonaphthalene 1,5-diaminonaphthalene
  • 1,8-diaminonaphthalene 1,8-diaminonaphthalene
  • 2 6-Diaminonaphthalene
  • 2, 7-Diaminonaphthalene 2,5-Diaminopyridine
  • 2,6-Diaminopyridine 3,5-Diaminopyridine
  • a compound having both an amino group and a carboxyl group in the molecule for example, aminobenzoic acid can be copolymerized.
  • the solvent used for the polymerization is not particularly limited, but dissolves the raw material monomers (A), (B), (C), and (D) as described above and is substantially non-reactive with them. Any solvent can be used as long as it can obtain a polymer having a specific viscosity of at least 1.0 or more, more preferably 1.2 or more.
  • N, N, N ', N'-tetramethylurea TMU
  • N, N-dimethylacetamide DMAC
  • N, N-jetylacetamide DEAC
  • N, N-dimethylpropionamide DMPR
  • N, N-dimethylbutyramide NMBA
  • N, N-dimethylisobutyramide N-methyl-2-pyrrolidinone
  • NMP N-cyclohexyl_2monopyrrolidinone
  • NCP N-Ethylpyrrolidone I 2
  • N-Acetylpyrrolidine N-Acetylpyrrolidine (NARP), N_Acetylbiperidine
  • N— Amides such as methylpiperidone 1 (NMPD), N, N'-dimethylethyleneurea, N, N'-dimethylpropyleneurea, N, N, N ', N'
  • the preferred solvent is N, N-dimethylacetamide (DMAC) N-methyl-2-pyrrolidinone (NM P).
  • an appropriate amount of a known organic salt may be added before, during, or at the end of polymerization in order to increase solubility.
  • examples of such inorganic salts include lithium chloride and calcium chloride.
  • the polymer is produced in the same manner as a conventional polyamide solution polymerization method in the above-mentioned solvent in which the monomers (A), (B), (C), and (D) are dehydrated.
  • the reaction temperature is 80 ° or lower, preferably 60 ° or lower.
  • the concentration at this time is preferably about 1 to 2 O wt% as the monomer concentration.
  • trialkylsilyl chloride can be used for the purpose of increasing the degree of polymerization of the polymer.
  • an aliphatic or aromatic ammine or a quaternary ammonium salt can be used in combination to capture an acid such as hydrogen chloride.
  • the total amount of diamines represented by (B), (C) and (D) in the organic solvent is the aromatics represented by (A)
  • the ratio with respect to the number of moles of the dicarboxylic acid compound is preferably 0.90 to 1.10, and more preferably 0.95 to 1.05 to make a wholly aromatic polyamide.
  • the end-capping agents include benzoyl alkyd, phthalic anhydride and its substitution, hexahydrofuranic anhydride and its substitution, succinic anhydride and Examples of the substitution product and amine component include, but are not limited to, aniline and its substitution product.
  • the solid polymer electrolyte of the present invention comprises a rigid heterocyclic polymer and at least one acid selected from the group consisting of phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid.
  • a method for adding the acids to the rigid heterocyclic polymer any method of adding to the dope in advance, adding at the time of solidification, adding after washing with water, or adding after washing with water and drying can be used. (Solid polymer electrolyte membrane and film forming method thereof)
  • the solid polymer electrolyte of the present invention is preferably in the form of a film having a thickness of 10 to 200 m.
  • a film forming method it is preferable to carry out by (i) casting method or (ii) press method.
  • the thickness of the electrolyte membrane is more preferably 30 to 100 / m.
  • a thickness of more than 10 m is preferable to obtain a membrane strength that can withstand practical use, and a thickness of less than 200 m is preferable to reduce membrane resistance, that is, to improve power generation performance.
  • the casting method it can be controlled by the solution concentration or the coating thickness on the substrate.
  • the pressing method it can be controlled by the solution concentration or the pressure of the press.
  • the casting method is a method of forming a film by casting a polymer solution (dope) containing a rigid heterocyclic polymer and a solvent on a substrate such as a glass plate and removing the solvent.
  • the solvent is not particularly limited as long as it can dissolve and remove the rigid heterocyclic polymer, and N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, N— Aprotic polar solvents such as methyl_2-pyrrolidone and hexamethylphosphonamide, and strong acids such as polyphosphoric acid, methanesulfonic acid, sulfuric acid, and trifluoroacetic acid can be used.
  • a plurality of these solvents may be used as a mixture within a possible range.
  • a solvent obtained by adding a Lewis acid such as lithium bromide, lithium chloride, or aluminum chloride to an organic solvent may be used.
  • the concentration of the rigid heterocyclic polymer in the dope is preferably 0.1 to 8% by mass. If it is too low, the formability will deteriorate, and if it is too high, the workability will deteriorate.
  • a film having a low degree of orientation in the in-plane direction can be obtained by setting the concentration of the rigid heterocyclic polymer in the dopant within a predetermined range.
  • drying temperature 0 to 2200, preferably 2O: to 1550, and further 5 to 8: 80 can be used.
  • Rigid heterocyclic polymers have high crystallinity, and ordinary extrusion film formation does not yield an isotropic film in the in-plane direction. Therefore, an isotropic film can be obtained in the in-plane direction by sandwiching a dope containing a rigid heterocyclic polymer and a solvent between the substrates and applying pressure.
  • the solvent is the same as in the casting method.
  • the concentration of the rigid bicyclic polymer in the dope is preferably 0.1 to 30% by mass, more preferably 0.5 to 8% by mass.
  • the pressure is preferably from 0.01 to 100 Mpa, more preferably from 1 to 1 OMPa. It is preferable to heat at the time of film formation.
  • the heating temperature is preferably from 100 to 30 Ot: preferably from 130 to 2550.
  • the solid polymer electrolyte of the present invention can be formed into a pellet in addition to the above-mentioned film shape.
  • Examples of the manufacturing method in the case of pellets include a compression roll method, a pre-ketting method, and a tableting method. More specifically, granulation is preferably performed using a tablet molding machine or a compression molding machine.
  • Polymer with ion conductivity used in the present invention for example, - homopolymers of S_ ⁇ 3 H yo Una monomer having an ion exchange group, a block copolymer, random copolymer, one Examples thereof include perfluorocarbon sulfonic acid resins and polyether ether ketone sulfonic acid resins having ionic conductivity, such as those introduced by subjecting SO 3 H groups and other ion exchange groups to post-treatment.
  • the polymer having ion conductivity is a perfluorocarpone sulfonic acid resin.
  • Solid polymer electrolyte composition comprising a solid polymer electrolyte and a polymer having ion conductivity
  • the solid polymer electrolyte composition of the present invention is a solid containing the rigid heterocyclic polymer. It consists of a polymer electrolyte and a polymer having ionic conductivity. Even if the solid polymer electrolyte is made of a mixture of the solid polymer electrolyte and a polymer having ion conductivity, the layer made of a film of the solid polymer electrolyte and a polymer having ion conductivity. It may be a laminate with a layer made of a film. In the case of a mixture, it is preferably 1 to 800 parts by weight, preferably 3 to 300 parts by weight, and more preferably 5 to 100 parts by weight with respect to 100 parts by weight of the rigid heterocyclic polymer. .
  • a layer made of a polymer having ion conductivity may be provided on one side or both sides of a layer made of a rigid heterocyclic polymer.
  • the lamination method include, but are not limited to, a known press method, hot press method, cast method, spin coating method, and laminate method.
  • the membrane Z electrode assembly of the present invention (Membrane Electrode Assembly, hereinafter abbreviated as ME A) has catalyst electrodes on both surfaces of the electrolyte membrane of the present invention.
  • the catalyst electrode is one in which fine particles of catalyst metal are supported on a conductive material.
  • the catalyst metal may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen. For example, platinum, gold, 'silver, palladium.
  • the particle size of the catalytic metal is usually 10 to 300 angstroms (l to 30 nm).
  • the conductive material may be an electron conductive material.
  • conductive materials include various metals and carbon materials.
  • the carbon material include furnace black, channel black, carbon black such as acetylene black, activated carbon, graphite and the like. These may be used alone or in combination.
  • the supported amount of catalyst metal is preferably 0.01 to: I Omg no cm 2 in the state where the electrode is formed.
  • the catalytic metal is reduced by a reduction method.
  • a method of depositing on the surface of a conductive material a method of suspending a catalyst metal in a solvent and applying this to the surface of the conductive material.
  • the solid polymer electrolyte of the present invention is preferably used for a fuel cell.
  • the fuel cell of the present invention has a single cell in which a grooved current collector for forming a fuel channel or an oxidant channel called a separator channel is arranged on the outside of the membrane electrode assembly. It is configured by laminating a plurality via a cooling plate.
  • a single cell is formed by arranging a fuel flow channel called a separator or a grooved current collector that forms an oxidant flow channel on the outside of the membrane Z electrode assembly. It is configured by laminating a plurality via a cooling plate. It is desirable to operate the fuel cell at a high temperature because the catalytic activity of the electrode increases and the electrode overvoltage decreases. However, the electrolyte membrane does not function without moisture, so it must be operated at a temperature that allows moisture management. . The preferred range of operating temperature of the fuel cell is from room temperature to 100.
  • I a value determined by the following equation based on the measured relative viscosity (re l) at 30 at a polymer concentration 0. 5 GZD 1 using concentrated sulfuric acid.
  • the electrolyte membrane of the present invention was measured for impedance in the thickness direction of the membrane at a frequency of 0.1 Hz to 65 kHz using an electrochemical impedance measuring device (Solartron, SI 1 2 8 7), and the ionic conductivity was measured. In the above measurement, electrolysis The membrane was stored at 75 in a steam atmosphere.
  • the electrolyte membrane of the present invention was soaked in Fenton reagent (containing 40 ppm of iron) heated at 60, consisting of adding 1.9 mg of iron sulfate heptahydrate to 20 ml of 30% hydrogen peroxide solution, The time required for the electrolyte membrane to dissolve in the Fenton reagent was determined.
  • the polymer dope obtained in Reference Example 1 was spread on a glass with a doctor knife, solidified in 85% phosphoric acid for 24 hours, washed with water for 1 hour, and then dried at 120 to form a membrane. A 200 / m thick electrolyte membrane was created. The phosphorus atom content was 5% by mass, and the phosphoric acid content was 15.8% by mass. The resulting cast film was measured for ionic conductivity and oxidation resistance. The results are shown in Table 1.
  • Example 2 (Creation of laminate)
  • Example 2 The film obtained in Example 1 was sandwiched between Nafion (registered trademark) films manufactured by Du Pont, Inc. having a film thickness of 170; am, and the ionic conductivity and oxidation resistance were measured. The results are shown in Table 1.
  • Reference Example 2 Polymer polymerization
  • the polymer dope obtained in Reference Example 2 was spread on a glass with a doctor knife, solidified in 85% phosphoric acid for 24 hours, washed with water for 1 hour, and dried at 120 to form a film.
  • An electrolyte membrane with a thickness of 40; am was prepared.
  • the phosphorus atom content was 6% by mass, and the phosphoric acid content was about 19% by mass.
  • Table 1 shows the measurement results of the physical properties of the obtained cast film.
  • Example 4 (Creation of laminate)
  • Example 5 Preparation of membrane electrode assembly (MEA) Using the cast film (electrolyte membrane) obtained in Example 3, a laminate composed of a catalyst electrode Z electrolyte membrane / catalyst electrode was prepared by a hot press method.
  • MEA membrane electrode assembly
  • Ones catalyst-electrodes are composed of a catalyst layer composed of carbon emissions carrier carrying platinum of 1 mg / cm 2 of basis weight which is an electrode substrate and a supported catalyst comprising a carbon paper Teflon-treated product of the thickness of 400 // m Was used.
  • Hot press conditions were a pressure of 100 kg Kcm 2 (9.8 Pa), a temperature of 150 ° C, and a holding time of 3 minutes.
  • Table 2 shows a list of output characteristics at each temperature. table 1 Table 2

Abstract

Disclosed are: a solid polymer electrolyte comprising 100 parts by mass of a rigid heterocyclic polymer and 0.1 to 100 parts by mass of at least one acid selected from the group consisting of phosphoric acid, polyphosphoric acid, sulfuric acid and methanesulfonic acid, wherein the rigid heterocyclic polymer mainly comprises at least one repeating unit selected from the group consisting of the repeating units represented by the formulae (I) and (II) and a repeating unit represented by the formula (III), and wherein the mole-based copolymerization ratio among the repeating units (I), (II) and (III) (i.e., a (III)/((I)+(II)) ratio) ranges from 0 to 5 (inclusive) and the inherent viscosity is 0.05 to 100 dl/g as measured in a sulfuric acid solution at a concentration of 0.5 g/100 ml at 25˚C; a solid polymer electrolyte composition comprising the solid polymer electrolyte and a polymer having an ionic conductivity; a solid polymer electrolyte membrane comprising the solid polymer electrolyte or the solid polymer electrolyte composition; a membrane/electrode assembly using the solid polymer electrolyte membrane; and a fuel cell using the membrane/electrolyte assembly.

Description

明 細 書 固体高分子電解質 技術分野  Description Solid Polymer Electrolyte Technical Field
本発明は、 イオン伝導性および耐酸化性に優れた固体高分子電解質、 該固体 高分子電解質とイオン伝導性を有する高分子とからなる固体高分子電解質組成 物、 これらのいずれかよりなる固体高分子電解質膜、 該固体高分子電解質膜を 用いた膜 Z電極接合体、 および該膜 Z電極接合体を用いた燃料電池に関する。 背景技術  The present invention relates to a solid polymer electrolyte excellent in ion conductivity and oxidation resistance, a solid polymer electrolyte composition comprising the solid polymer electrolyte and a polymer having ion conductivity, and a solid polymer electrolyte comprising any of these. The present invention relates to a molecular electrolyte membrane, a membrane Z electrode assembly using the solid polymer electrolyte membrane, and a fuel cell using the membrane Z electrode assembly. Background art
固体高分子電解質は高分子鎖中に電解質基を有する固体高分子材料であり、 , 特定のイオンと強固に結合して、 陽イオン又は陰イオンを選択的に透過する性 賀を有していることから、 粒子、 繊維、 あるいは膜状に成形し、 電気透析、 拡 散透析、 電池隔膜等、 各種の用途に利用されている。  A solid polymer electrolyte is a solid polymer material having an electrolyte group in the polymer chain, and has the property of selectively permeating cations or anions by firmly binding to specific ions. Therefore, it is formed into particles, fibers, or membranes and used in various applications such as electrodialysis, diffusion dialysis, and battery membranes.
燃料電池はイオン伝導 ^feの固体高分子電解質膜の両面に一対の電極を設け、 水素ガスやメタノールなどを燃料として一方の電極 (燃料極) へ供給し、 酸素 ガスあるいは空気を酸化剤として他方の電極 (空気極) へ供給し、 起電力を得 るものである。 また、 水電解は、 固体高分子電解質膜を用いて水を電気分解す ることにより水素と酸素を製造するものである。  A fuel cell is provided with a pair of electrodes on both sides of a solid polymer electrolyte membrane of ion-conducting ^ fe, supplying hydrogen gas or methanol as fuel to one electrode (fuel electrode), and oxygen gas or air as the oxidant To the other electrode (air electrode) to obtain an electromotive force. In water electrolysis, hydrogen and oxygen are produced by electrolyzing water using a solid polymer electrolyte membrane.
ナフイオン.(登録商標、 デュポン社製) 、 ァシプレックス (登録商標、 旭化 成株式会社製) 、 フレミオン (登録商標、 旭硝子株式会社製) の商品名で知ら れる高いイオン伝導性を有するパーフルォロスルホン酸膜に代表されるフッ素 系電解質膜は化学的安定性に優れていることから燃料電池や水電解等の固体高 分子電解質膜として、 広く使用されている。  Perfluoro having high ion conductivity known by the trade names of Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.) and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) Fluorine-based electrolyte membranes typified by sulfonic acid membranes are widely used as solid polymer electrolyte membranes for fuel cells and water electrolysis because of their excellent chemical stability.
また、 食塩電解は固体高分子電解質膜を用いて塩化ナトリウム水溶液を電気 分解することにより、 水酸化ナトリウム、 塩素と水素を製造するものである。 'この場合、 固体高分子電解質膜は塩素と高温、 高濃度の水酸化ナトリウム水溶 液にさらされるの 、 これらに対する耐性の乏しい炭化水素系電解質膜を使用 することができない。 そのため、 食塩電解用の固体高分子電解質膜には、 一般 に、 塩素及び高温、 高濃度の水酸化ナトリウム水溶液に対して耐性があり、 更 に、 発生するイオンの逆拡散を防ぐため【こ表面に部分的にカルボン酸基を導入 したパーフルォロスルホン酸膜が用いられている。 Sodium chloride electrolysis produces sodium hydroxide, chlorine and hydrogen by electrolyzing a sodium chloride aqueous solution using a solid polymer electrolyte membrane. 'In this case, the polymer electrolyte membrane is composed of chlorine and high temperature, high concentration sodium hydroxide aqueous solution. It is not possible to use hydrocarbon electrolyte membranes that are poorly resistant to these when exposed to liquids. For this reason, solid polymer electrolyte membranes for salt electrolysis are generally resistant to chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and in addition to prevent reverse diffusion of the generated ions. Perfluorosulfonic acid membranes with partially introduced carboxylic acid groups are used.
ところで、 パーフル才ロスルホン酸膜に代表されるフッ素系電解質は、 C一 F結合を有しているために化学的安定性が非常に大きく、 上述した'燃料電池用 、 水電解用'、 あるいは食塩電解用の固体高分子電解質膜の他、 ハロゲン化水素 酸電解用の固体高分子電解質膜としても用いられ、 更にはイオン伝導性を利用 して、 湿度センサー、 ガスセンサー、 酸素濃縮器等にも広く応用されている。 しかしながら、 フッ素系電解質は製造が困難で、 非常に高価であるという欠 点がある。 そのため、 フッ素系電解質膜は、 宇宙用あるいは軍用の固体高分子 型燃料電池等、 限られた用途に用いられ、 自動車用の低公害動力源としての固 体高分子型燃料電池等、 民生用への応用を困難なものとしていた。  By the way, the fluorine-based electrolyte typified by a perfluorinated rosulfonic acid membrane has a C 1 F bond, and thus has a very large chemical stability. The above-mentioned 'for fuel cell, for water electrolysis', or salt In addition to solid polymer electrolyte membranes for electrolysis, it can also be used as solid polymer electrolyte membranes for hydrohalic acid electrolysis, and also for humidity sensors, gas sensors, oxygen concentrators, etc. using ionic conductivity Widely applied. However, the disadvantage is that fluorine-based electrolytes are difficult to manufacture and are very expensive. For this reason, fluorine-based electrolyte membranes are used in limited applications such as space or military polymer electrolyte fuel cells, and are used in consumer applications such as solid polymer fuel cells as a low-pollution power source for automobiles. Application was difficult.
そこで、 安価な固体高分子電解質膜として、 エンジニアリングプラスチック に代表される芳香族炭化水素系高分子をスルホン酸化した電解質膜が提案され た。 (例えば、 特許文献 1、 2、 3、 4、 5参照) 。 これらエンジニアリング プラスチックをスルホン酸化した芳香族炭化水素系電解質膜をナフイオンに代 表されるフッ素系電解質膜と比較すると、 製造が容易で低コストという利点が ある。 しかし、 耐酸化性という面で非常に弱いという欠点も有している。  Therefore, an electrolyte membrane obtained by sulfonating an aromatic hydrocarbon polymer represented by engineering plastics has been proposed as an inexpensive solid polymer electrolyte membrane. (For example, see Patent Documents 1, 2, 3, 4, and 5). Compared to fluorinated electrolyte membranes represented by naphthions, aromatic hydrocarbon electrolyte membranes obtained by sulfonating these engineering plastics have the advantages of easy production and low cost. However, it has the disadvantage that it is very weak in terms of oxidation resistance.
非特許文献 1によると、 例えばスルホン酸化ポリエーテルエーテルケトンや ポリエーテルスルホンはスルホン酸に隣接したエーテル部位から劣化すると報 告している。 このことから、 スルホン酸の近傍に電子供与性基が存在すると、 そこから酸化劣化が開始すると考えられる。 そこで耐酸化性の向上を目的とし て、 主鎖が電子吸引性基と芳香族環のみからなるスルホン酸化ボリフエ二レン スルホンが提案され (特許文献 6 ) 、 スルホン基の隣接部位にスルホン酸を導 入したスルホン酸化ポリスルホンが提案された (非特許文献 2 ) 。  Non-patent document 1 reports that, for example, sulfonated polyetheretherketone and polyethersulfone deteriorate from an ether site adjacent to sulfonic acid. From this, it is considered that when an electron donating group is present in the vicinity of the sulfonic acid, oxidative degradation starts from there. Therefore, for the purpose of improving oxidation resistance, sulfonated polyphenylene sulfone whose main chain is composed only of an electron-withdrawing group and an aromatic ring has been proposed (Patent Document 6), and sulfonic acid is introduced to the adjacent site of the sulfone group. A sulfonated polysulfone was proposed (Non-patent Document 2).
だが、 特許文献 7によると、 芳香族炭化水素系電解質膜の劣化は酸化劣化以 外にも、 芳香族環に直接結合しているイオン伝導性置換基であるスルホン酸基 力 強酸、 高温下において脱離してイオン伝導率が低下することも一因として 考えられ、 特許文献 6や非特許文献 2にあるようなスルホン酸化ポリフエニレ ンスルホンゃスルホン酸化ポリスルホンではスルホン酸の脱離による劣化が避 けられない。 従って、 イオン伝導性置換基がスルホン酸であることは望ましく なく、 特許文献 7ではスルホン酸の代わりにアルキルスルホン酸を用いること を提案している。 こちらはスルホン酸の脱離によるイオン伝導率の低下の 改善には有効だが、 使用する芳香族高分子の主鎖に電子供与性基が含まれ、 耐 酸化性に劣っている。 一方、 ァゾール系ポリマーは耐熱性、 耐薬品性に優れた ポリマーとして燃料電池用固体電解質膜として期待される。 However, according to Patent Document 7, the degradation of the aromatic hydrocarbon electrolyte membrane is less than the oxidation degradation. In addition, the sulfonic acid group strong acid, which is an ion conductive substituent directly bonded to the aromatic ring, may be considered to be due to desorption at high temperatures and decrease in ionic conductivity. In the case of sulfonated polyphenylene sulfone as described in Non-Patent Document 2, sulfonated polysulfone cannot avoid deterioration due to elimination of sulfonic acid. Therefore, it is not desirable that the ion conductive substituent is a sulfonic acid, and Patent Document 7 proposes the use of an alkyl sulfonic acid instead of a sulfonic acid. This is effective in improving the decrease in ionic conductivity due to elimination of sulfonic acid, but the main chain of the aromatic polymer used contains an electron-donating group, which is inferior in oxidation resistance. On the other hand, azole polymers are expected to be solid electrolyte membranes for fuel cells as polymers with excellent heat resistance and chemical resistance.
イオン伝導性を有するァゾール系ポリマーとして例えばスルホン化されたァ ゾール系ポリマーが報告されている (特許文献 8) 。 しかしながら、 上述のと おりポリマーを原料として芳香環上に導入されたスルホン酸基は酸または熱に より脱スルホン酸反応が起こりやすく、 燃料電池用電解質膜として使用するに は耐久性が十分であるとは言えない。 また、 特許文献 9〜1 1にはポリリン酸 ド一プを用いてポリベンゾィミダゾール系ポリマーを得ることによるポリベン ゾィミダゾールの燃料電池用電解質膜の報告がある。  For example, a sulfonated azole polymer has been reported as an azole polymer having ion conductivity (Patent Document 8). However, as described above, a sulfonic acid group introduced onto an aromatic ring using a polymer as a raw material is prone to desulfonic acid reaction due to acid or heat, and is sufficiently durable for use as an electrolyte membrane for a fuel cell. It can not be said. Further, Patent Documents 9 to 11 report a polybenzimidazole fuel cell electrolyte membrane obtained by obtaining a polybenzimidazole polymer using a polyphosphate.
(特許文献 1) 特開平 6— 931 14号公報  (Patent Document 1) JP-A-6-93114
(特許文献 2) 特開平 9一 245818号公報  (Patent Document 2) Japanese Patent Laid-Open No. 9-245818
(特許文献 3) 特開平 1 1一 1 16679号公報  (Patent Document 3) Japanese Patent Laid-Open No. 1 1 1 1 16679
(特許文献 4) W〇 97Z05191号パンフレット  (Patent Literature 4) W〇 97Z05191 pamphlet
(特許文献 5) WO 97 / 1 1099号パンフレツト  (Patent Document 5) WO 97/1 1099 pamphlet
(特許文献 6) 特開 2000— 80166号公報  (Patent Document 6) Japanese Unexamined Patent Publication No. 2000-80166
(特許文献 7) 特開 2002— 1 10174号公報  (Patent Document 7) Japanese Patent Application Laid-Open No. 2002-1 10174
(特許文献 8) 特開 2002 - 146018号公報  (Patent Document 8) Japanese Unexamined Patent Application Publication No. 2002-146018
(特許文献 9) WO 2002/081547号パンフレツト  (Patent Document 9) WO 2002/081547 Pamphlet
(特許文献 10) W〇 2002 088219号パンフレット  (Patent Document 10) W 0 2002 088219 pamphlet
(特許文献 1 1) Wひ 2004Z024796号パンフレット (非特許文献 1 ) 高分子論文集 V o 1. 59、 No. 8、 460〜473 頁 (Patent Document 1 1) W H 2004Z024796 Pamphlet (Non-Patent Document 1) Polymer Papers V o 1. 59, No. 8, 460-473 pages
(非特許文献 2) J ou r n a l o f Po l yme r S c i en c e : P a r t A : P o 1 yme r Chemi s t r y, Vo l . 34, 2421 - 2438 ( 1996) 発明の開示  (Non-Patent Document 2) Jo rn a l o f P o y y me r S c i en c e: P a r t A: P o 1 yme r Chemi st r y, Vo l. 34, 2421-2438 (1996) Disclosure of the Invention
発明が解決しょうとする課題 Problems to be solved by the invention
本発明の課題は、 イオン伝導性および耐酸化性に優れた固体高分子電解質、 該固体高分子電解質とイオン伝導性を有する高分子とからなる固体高分子電解 質組成物、 これらのいずれかよりなる固体高分子電解質膜、 該固体高分子電解 質膜を用いた膜/電極接合体、 および該膜ノ電極接合体を用いた燃料電池を提 供することにある。 課題を 決するための手段  An object of the present invention is to provide a solid polymer electrolyte excellent in ionic conductivity and oxidation resistance, a solid polymer electrolyte composition comprising the solid polymer electrolyte and a polymer having ion conductivity, and any of these It is intended to provide a solid polymer electrolyte membrane, a membrane / electrode assembly using the solid polymer electrolyte membrane, and a fuel cell using the membrane electrode assembly. Means to determine the issue
本発明者らは、 前記課題を解決すべく鋭意検討を重ねた結果、 特定の構造を 有する剛直系複素環高分子を成分とする固体高分子電解質、 該固体高分子電解 質とイオン伝導性を有する高分子とからなる固体高分子電解質組成物によって 解決されることを旱出して本発明を完成した。 本発明の構成を以下に示す。 1. 下記式 (I ) および (I I )  As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a solid polymer electrolyte containing a rigid heterocyclic polymer having a specific structure as a component, and ionic conductivity with the solid polymer electrolyte. The present invention has been completed by discovering that it can be solved by a solid polymer electrolyte composition comprising a polymer having a polymer. The configuration of the present invention is shown below. 1. The following formulas (I) and (I I)
で表される繰り返し単位よりなる群から選ばれる少なくとも 1種の繰り返し単位 At least one repeating unit selected from the group consisting of repeating units represented by
(ただし、 上記式 (I) 乃至 (I I I) において A r 1は、 p—フエ二レン、 m 一フエ二レン、 2, 6—ナフ夕レンジィル、 4, 4, 一ビフエ二レン、 4, 4 ' 一スルホニルジフエ二レンから選ばれる 1つ以上の基であり、 上記式 (I I I) において Ar 2は p—フエ二レン、 m—フエ二レン、 3, 4, 一ォキシジフ ェニレン、 4, 4' —ォキシジフエ二レン、 4, 4 ' —ビフエ二レン、 4, 4 ' 一スルホニルジフエ二レンから選ばれる 1つ以上の基である。 ) (However, in the above formulas (I) to (III), A r 1 is p-phenylene, m 1-phenylene, 2, 6-naphthylene range 4, 4, 4, 1-biphenylene, 4, 4 'One or more groups selected from monosulfonyldiphenylene, wherein Ar 2 in the above formula (III) is p-phenylene, m-phenylene, 3, 4, mono-oxydiphenylene, 4, 4 '—Oxidiphenylene, 4, 4' — Biphenylene, 4, 4 'One or more groups selected from monosulfonyldiphenylene.
で表される繰り返し単位から主としてなり、 上記式 (I) 、 (I I) 及び (I I I) の繰り返し単位の共重合モル比率 (I I I) Z ( (I) + (I I) ) 力 S 0≤ ( I I I ) / ( ( I ) + ( I I ) ) ≤ δ Copolymer molar ratio of repeating units of the above formulas (I), (II) and (III) (III) Z ((I) + (II)) force S 0≤ (III ) / ((I) + (II)) ≤ δ
であって、 0. 5 g/l 00mlの濃度の硫酸酸溶液で 25でにて測定した特 有粘度が 0. 05〜100 d 1 である剛直系複素環高分子 100質量部と 、 リン酸、 ポリリン酸、 硫酸、 およびメタンスルホン酸よりなる群から選ばれ る少なくとも 1種の酸 0. 1〜100質量部とからなる固体高分子電解質。 2. 上記 1に記載の固体高分子電解質を厚さ 10〜200 mのフィルム状 にした固体高分子電解質膜。 3 . 上記 1に記載の固体高分子電解質と、 イオン伝導性を有する高分子とか らなる固体高分子電解質組成物。 100 parts by mass of a rigid heterocyclic polymer having a specific viscosity of 0.05 to 100 d 1 measured at 25 with a sulfuric acid solution having a concentration of 0.5 g / l 00 ml at 25, and phosphoric acid A solid polymer electrolyte comprising 0.1 to 100 parts by mass of at least one acid selected from the group consisting of polyphosphoric acid, sulfuric acid, and methanesulfonic acid. 2. A solid polymer electrolyte membrane obtained by forming the solid polymer electrolyte according to 1 above into a film form having a thickness of 10 to 200 m. 3. A solid polymer electrolyte composition comprising the solid polymer electrolyte described in 1 above and a polymer having ion conductivity.
4 . 固体高分子電解質とイオン伝導性を有する高分子とがそれぞれフィルム 状であり、 それらの積層体となっていることを特徴とする上記 3に記載の固体 高分子電解質組成物。  4. The solid polymer electrolyte composition as described in 3 above, wherein the solid polymer electrolyte and the polymer having ion conductivity are each in the form of a film and are a laminate thereof.
5 . イオン伝導性を有する高分子がパーフルォロカーボンスルホン酵樹脂で ある上記 3または 4に記載の固体高分子電解質組成物。  5. The solid polymer electrolyte composition according to 3 or 4 above, wherein the polymer having ionic conductivity is a perfluorocarbon sulfone fermentation resin.
6 . 上記 2記載の固体高分子電解質膜または上記 5に記載の固体高分子電解 質組成物の両表面に触媒電極を設けていることを特徴とする膜 電極接合体。 7 . . 上記 6の腠 Z電極接合体を有することを特徴とする燃料電池。 発明の効果  6. A membrane / electrode assembly, wherein catalyst electrodes are provided on both surfaces of the solid polymer electrolyte membrane according to 2 or 5 above. 7. A fuel cell comprising the above-described 6-Z electrode assembly. The invention's effect
本発明により燃料電池、 水電解、 ハロゲン化水素酸電解、 食塩電解、 酸素濃 縮器、 湿度センサー、 ガスセンサ一等に用いられる電解質膜等に好適な耐酸化 性等に優れた低コスト高耐久性固体高分子電解質またはその組成物を得ること ができ、 そして該高分子電解質またはその組成物を用いた燃料電池を得ること ができる。 発明を実施するための最良の形態  Low cost and high durability with excellent oxidation resistance suitable for electrolyte membranes used in fuel cells, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors, etc. A solid polymer electrolyte or a composition thereof can be obtained, and a fuel cell using the polymer electrolyte or a composition thereof can be obtained. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。 なお、 .特に記載が無い限り、 p p mまたは %表記の数値は質量基準のものである。  Hereinafter, the present invention will be described in detail. Unless otherwise specified, numerical values in p pm or% are based on mass.
(剛直系複素環高分子)  (Rigid heterocyclic polymers)
本発明において用いられる剛直系複素環高分子は、  The rigid heterocyclic polymer used in the present invention is:
下記式 (I ) および (I I ) The following formulas (I) and (II)
で表される繰り返し単位よりなる群から選ばれる少なくとも 1種の繰り返し単位 At least one repeating unit selected from the group consisting of repeating units represented by
(ただし、 上記式 (I) 乃至 (I I I ) において A r 1は、 p—フエ二レン、 m —フエ二レン、 2, 6—ナフ夕レンジィル、 4, 4 ' —ビフエ二レン、 4, 4 ' 一スルホニルジフエ二レンから選ばれる 1つ以上の基であり、 上記式 (I I I ) において A r 2は p—フエ二レン、 m—フエ二レン、 3, 4, 一ォキシジフ ェニレン、 4, 4, ーォキシジフエ二レン、 4., 4, ービフエ二レン、 4, 4 ' 一スルホニルジフエ二レンから選ばれる 1つ以上の基である。 ) (However, in the above formulas (I) to (III), A r 1 is p-phenylene, m-phenylene, 2, 6-naphthenyl, 4, 4'-biphenylene, 4, 4 'One or more groups selected from monosulfonyldiphenylene, In the above formula (III), Ar 2 is p-phenylene, m-phenylene, 3, 4, mono-oxydiphenylene, 4, One or more groups selected from 4, oxydiphenylene, 4,4, bibiylene, 4,4′-monosulfonyldiphenylene.
で表される繰り返し単位から主としてなり、 上記式 (I ) 、 ( I I ) 及び (I I I) の繰り返し単位の共重合モル比率 (I I I) Z ( (I) + (I I) ) 力 0≤ (I I I) / ( (I) I (I I) ) ≤δ Copolymer molar ratio of repeating units of the above formulas (I), (II) and (III) (III) Z ((I) + (II)) force 0≤ (III) / ((I) I (II)) ≤δ
であって、 0. 5 00mlの濃度の硫酸酸溶液で 25でにて測定した特 有粘度が 0. 05〜:! O O d lZg、 好ましくは 0. l〜50 d l/g、 より 好ましくは 1〜: 10 d 1 Zgのものである。 '  The specific viscosity measured at 25 in a 0.500 ml sulfuric acid solution at a concentration of 0.05-! O O d lZg, preferably from 0.1 to 50 d l / g, more preferably from 1 to 10 d 1 Zg. '
なお、 上記の共重合モル比率 (I I I) ( (I) + (I I) ) は、 0以上 1 以下だとより好ましく、 0以上 0. 5以下であると更に好ましい。  The copolymer molar ratio (I I I) ((I) + (I I)) is more preferably 0 or more and 1 or less, and further preferably 0 or more and 0.5 or less.
本発明の固体高分子電解質は、 上 剛直系複素環高分子 100質量部と、 リ ン酸、 ポリリン酸、 硫酸、 およびメタンスルホン酸よりなる群から選ばれる少 なくとも 1種の酸 0. 1〜100質量部とからなるものである。  The solid polymer electrolyte of the present invention comprises 100 parts by mass of an upper rigid heterocyclic polymer and at least one acid selected from the group consisting of phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid. It consists of ˜100 parts by mass.
酸は成型体に導電性を向上する上で存在させるものであり、 固体高分子電解 質における酸の含有量は剛直系複素環高分子 100質量部に対して、 好ましく は 0. 5〜50質量部、 より好ましくは 1. 0〜30質量部、 更に好ましくは 3. 0〜 20質量部である。  The acid is present in the molded body to improve conductivity, and the acid content in the solid polymer electrolyte is preferably 0.5 to 50 mass with respect to 100 mass parts of the rigid heterocyclic polymer. Part, more preferably 1.0 to 30 parts by weight, still more preferably 3.0 to 20 parts by weight.
(製造方法)  (Production method)
前記式 (I) および (I I) で表される繰り返し単位よりなる群から選ばれ る少な.くとも 1種の繰り返し単位からなる剛直系複素環高分子は、 下記式 (A The rigid heterocyclic polymer consisting of at least one repeating unit selected from the group consisting of the repeating units represented by the formulas (I) and (I I) is represented by the following formula (A
) . ).
(式 (A) 中の Ar 1は、 p—フエ二レン、 m—フエ二レン、 2, 6—ナフタレ ンジィル、 4, 4 ' —ビフエ二レン、 4, 4' —スルホニルジフエ二レンから 選ばれる 1つ以上の基である。 式 (A) 中の Xは OH、 ハロゲン原子、 または(Ar 1 in the formula (A) is derived from p-phenylene, m-phenylene, 2, 6-naphthalene, 4, 4'-biphenylene, 4, 4'-sulfonyldiphenylene. One or more selected groups X in formula (A) is OH, halogen atom, or
ORで表される基であり、 Rは炭素数 6〜20の 1価の芳香族基を表す。 ) で表される芳香族ジカルボン酸化合物と、 下記式 (B) または (C) R is a group represented by OR, and R represents a monovalent aromatic group having 6 to 20 carbon atoms. And an aromatic dicarboxylic acid compound represented by the following formula (B) or (C)
H H
で表される複素環芳香族ジァミンおよびその塩酸塩、 硫酸塩、 リン酸塩かちな る群から選ばれる少なくとも 1種、 および下記式 (D) And at least one selected from the group consisting of a heterocyclic aromatic diamine and its hydrochloride, sulfate, and phosphate represented by formula (D):
H2N ,ΝΗ, H 2 N, ΝΗ,
、A ■ (D) (式 (D) 中の A r 2は、 p—フエ二レン、 m—フエ二レン、 3 , 4, 一ォキシ ジフエ二レン、 4, 4 ' —ォキシジフエ二レン、 4, 4 ' —ビフエ二レン、 4 , 4 ' 一スルホニルジフエ二レンから選ばれる 1つ以上の基である。 ) で表される芳香族ジァミンあるいはこれらの塩酸塩、 硫酸塩、 リン酸塩により 好ましく得ることができる。 , A ■ ( D ) (In formula (D), A r 2 is p-phenylene, m-phenylene, 3, 4, 1-oxydiphenylene, 4, 4'-oxydiphenylene, 4 , 4 '— Biphenylene, 4, 4' One or more groups selected from monosulfonyldiphenylene.) Aromatic diamine represented by or a hydrochloride, sulfate or phosphate thereof It can be obtained preferably.
前記式 (A) で表される芳香族ジカルボン酸化合物は、 その芳香環、 つまり 式 (A) 中の A r 1力 p—フエ二レン、 m—フエ二レン、 2 , 6 —ナフ夕レン ジィル、 4, 4 ' ービフエ二レン、 および 4, 4 ' —スルホニルジフエ二レン から選ばれる 1つ以上の基であるものであり、 このうち、 p—フエ二レン、 m —フエ二レン、 および 2, 6 _ナフ夕レンジィルが好ましく、 p—フエ二レン が特に好ましい。 また、 得られるポリマーの性質を改良する目的で前記式 (A ) 以外の各種のジカルボン酸類、 例えばアジピン酸類などを共重合することも できる。 The aromatic dicarboxylic acid compound represented by the formula (A) has an aromatic ring, that is, Ar 1 force p-phenylene, m-phenylene, 2, 6-naphthylene in the formula (A). Is one or more groups selected from diyl, 4,4'-biphenylene, and 4,4'-sulfonyldiphenylene, of which p-phenylene, m-phenylene, And 2,6_naphthenic diyl are preferred, and p-phenylene is particularly preferred. In addition, various dicarboxylic acids other than the above formula (A) such as adipic acids can be copolymerized for the purpose of improving the properties of the polymer obtained.
上記式 (A) で表される芳香族ジカルボン酸化合物について、 Xはハロゲン 原子であることが好ましく、 中でも X = C 1の芳香族ジカルボン酸クロリドが 好ましい。  In the aromatic dicarboxylic acid compound represented by the above formula (A), X is preferably a halogen atom, and among them, aromatic dicarboxylic acid chloride of X = C 1 is preferable.
前記式 (D) で表される芳香族ジァミン化合物は、 その芳香環、 つまり式 ( D) 中の A r 2力 p—フエ二レン、 m—フエ二レン、 3 , 4, 一ォキシジフエ 二レン、 4, 4 ' —ォキシジフエ二レン、 4, 4 ' ーピフエ二レン、 および 4 , 4 ' 一スルホニルジフエ二レンから選ばれる 1つ以上の基であるものであり 、 このうち、 p—フエ二レン、 m—フエ二レン、 および 3 , 4 ' —ォキシジフ ェニレンが好ましく、 p—フエ二レンが特に好ましい。 また、 得られるポリマ —の性質を改良する目的で前記式 (A) 以外の各種のジァミン類、 例えば 1, 4—ジァミノナフ夕レン、 1, 5—ジァミノナフ夕レン、 1, 8—ジアミノナ フタレン、 2, 6—ジァミノナフ夕レン、 2, 7—ジァミノナフ夕レン、 2, 5—ジァミノピリジン、 2, 6—ジァミノピリジン、 3, 5—ジァミノピリジ ン、 3, 3 ' —ジアミノビフエニル、 3, 3 ' ージクロ口べンジジン、 3, 3 ' —ジアミノジフエ二ルェ一テルなどを共重合することもできる。 The aromatic diamine compound represented by the formula (D) has an aromatic ring, that is, Ar 2 force p-phenylene, m-phenylene, 3, 4, monooxydiene diylene in the formula (D). , 4, 4′—oxydiphenylene, 4,4′-piphenylene, and 4,4 ′ monosulfonyldiphenylene, among which p-phenylene Len, m—Phenylene, and 3, 4 '— Oxydiff Enylene is preferred, and p-phenylene is particularly preferred. In order to improve the properties of the polymer obtained, various diamines other than the above formula (A), such as 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2 , 6-Diaminonaphthalene, 2, 7-Diaminonaphthalene, 2,5-Diaminopyridine, 2,6-Diaminopyridine, 3,5-Diaminopyridine, 3,3'-Diaminobiphenyl, 3,3 ' Ndidine, 3, 3'-diaminodiphenyl ether, etc. can also be copolymerized.
また、 得られるポリマーの性質を改良する目的で、 分子内にアミノ基とカル ボキシル基の両方を有する化合物、 例えば、 ァミノ安息香酸類などを共重合す ることもできる。  Further, for the purpose of improving the properties of the resulting polymer, a compound having both an amino group and a carboxyl group in the molecule, for example, aminobenzoic acid can be copolymerized.
重合を行うのに用いる溶媒については、 特に限定はされないが上記の如き原 料モノマー (A) 、 (B) 、 (C) 、 および (D) を溶解し、 かつそれらと実 質的に非反応性であり、 好ましくは特有粘度が少なくとも 1. 0以上、 より好 ましくは 1. 2以上のポリマーを得ることが可能なものであれば如何なる溶媒 も使用できる。 例えば、 N, N, N' , N' ーテトラメチル尿素 (TMU) 、 N, N—ジメチルァセトアミド (DMAC) 、 N, N—ジェチルァセトアミド (DEAC) 、 N, N—ジメチルプロピオンアミド (DMPR) 、 N, N—ジ メチルブチルアミド (NMBA) 、 N, N—ジメチルイソブチルアミド (NM I B) 、 N—メチル一2—ピロリジノン (NMP) 、 N—シクロへキシル _2 一ピロリジノン (NCP) 、 N—ェチルピロリドン一 2 (NE P) 、 N—メチ ルカプロラクタム (NMC) 、 N, N—ジメチルメトキシァセトアミド、 N— ァセチルピロリジン (NARP) 、 N_ァセチルビペリジン、 N—メチルピぺ リドン一 2 (NMPD) 、 N, N' ージメチルエチレン尿素、 N, N' ージメ チルプロピレン尿素、 N, N, N' , N' ーテトラメチルマロンアミド、 N— ァセチルピロリドン等のアミド系溶媒、 p—クロルフエノール、 フエノール、 m—クレゾ一ル、 p—クレゾール、 2; 4—ジクロルフエノール等のフエノー ル系溶媒もしくはこれらの混合物をあげることができる。  The solvent used for the polymerization is not particularly limited, but dissolves the raw material monomers (A), (B), (C), and (D) as described above and is substantially non-reactive with them. Any solvent can be used as long as it can obtain a polymer having a specific viscosity of at least 1.0 or more, more preferably 1.2 or more. For example, N, N, N ', N'-tetramethylurea (TMU), N, N-dimethylacetamide (DMAC), N, N-jetylacetamide (DEAC), N, N-dimethylpropionamide ( DMPR), N, N-dimethylbutyramide (NMBA), N, N-dimethylisobutyramide (NMIB), N-methyl-2-pyrrolidinone (NMP), N-cyclohexyl_2monopyrrolidinone (NCP), N-Ethylpyrrolidone I 2 (NE P), N-Methylcaprolactam (NMC), N, N-Dimethylmethoxyacetamide, N-Acetylpyrrolidine (NARP), N_Acetylbiperidine, N— Amides such as methylpiperidone 1 (NMPD), N, N'-dimethylethyleneurea, N, N'-dimethylpropyleneurea, N, N, N ', N'-tetramethylmalonamide, N-acetylpyrrolidone Solvents, p-chlorophenol, phenol, m-cresol p- cresol, 2; 4-Axis or Fueno Le solvents Rolf enol like can be mentioned a mixture thereof.
これらの中でも好ましい溶媒は N, N—ジメチルァセトアミド (DMAC) 、 N—メチル—2—ピロリジノン (NM P ) である。 Among these, the preferred solvent is N, N-dimethylacetamide (DMAC) N-methyl-2-pyrrolidinone (NM P).
この場合、 溶解性を挙げるために重合前、 途中、 あるいは終了時に公知の無 機塩を適当量添加しても差し支えない。 このような無機塩として例えば、 塩化 リチウム、 塩化カルシウム等が挙げられる。  In this case, an appropriate amount of a known organic salt may be added before, during, or at the end of polymerization in order to increase solubility. Examples of such inorganic salts include lithium chloride and calcium chloride.
ポリマーの製造は、 前記モノマー (A) 、 (B ) 、 (C ) , および (D) を 脱水した上記の溶媒中で通常のポリアミドの溶液重合法と同様に製造する。 こ の際の反応温度は 8 0 以下、 好ましくは 6 0 以下とする。 また、 この時の 濃度はモノマー濃度として 1〜2 O w t %程度が好ましい。  The polymer is produced in the same manner as a conventional polyamide solution polymerization method in the above-mentioned solvent in which the monomers (A), (B), (C), and (D) are dehydrated. In this case, the reaction temperature is 80 ° or lower, preferably 60 ° or lower. The concentration at this time is preferably about 1 to 2 O wt% as the monomer concentration.
また、 本発明'ではトリアルキルシリルクロライドをポリマー高重合度化の目 的で使用することも可能である。  In the present invention, trialkylsilyl chloride can be used for the purpose of increasing the degree of polymerization of the polymer.
また、 一般に用いられる芳香族ジカルボン酸化合物とジァミンの反応におい ては生成する塩化水素のごとき酸を捕捉するために脂肪族や芳香族のァミン、 第 4級アンモニゥム塩を併用できる。  In the reaction of a diamine with a commonly used aromatic dicarboxylic acid compound, an aliphatic or aromatic ammine or a quaternary ammonium salt can be used in combination to capture an acid such as hydrogen chloride.
この発明における全芳香族ポリアミドを得るためには前記の有機溶媒中にて 、 (B ) 、 ( C ) および (D) で表されるジァミンの使用量合計が (A) で表 される芳香族ジカルボン酸化合物のモル数に対する比として好ましくは 0 . 9 0 ~ 1 . 1 0で、 'より好ましくは 0 . 9 5〜 1 . 0 5で反応させ、 全芳香族ポ リアミドとすることが好ましい。  In order to obtain the wholly aromatic polyamide in this invention, the total amount of diamines represented by (B), (C) and (D) in the organic solvent is the aromatics represented by (A) The ratio with respect to the number of moles of the dicarboxylic acid compound is preferably 0.90 to 1.10, and more preferably 0.95 to 1.05 to make a wholly aromatic polyamide.
この全芳香族ポリアミドにおいてポリマーの末端を封止することが好ましく 利用できる。 末端封止剤を用いて封止する場合、 その末端封止剤としてはベン ゾイルク口リド、 無水フ夕ル酸及びその置換体、 へキサヒドロ無水フ夕ル酸及 びその置換体、 無水コハク酸及びその置換体、 ァミン成分としてはァニリン及 びその置換体が挙げられるがこれに限るものではない。  In this wholly aromatic polyamide, it is preferable to seal the ends of the polymer. In the case of sealing with an end-capping agent, the end-capping agents include benzoyl alkyd, phthalic anhydride and its substitution, hexahydrofuranic anhydride and its substitution, succinic anhydride and Examples of the substitution product and amine component include, but are not limited to, aniline and its substitution product.
, 本発明の固体高分子電解質は、 剛直系複素環高分子と、 リン酸、 ポリリン酸 、 硫酸、 メタンスルホン酸よりなる群から選ばれる少なくとも 1種の酸からな る。 剛直系複素環高分子への上記酸類の添加方法としては、 ドープにあらかじ め加えておく、 凝固時に添加する、 水洗後添加する、 または水洗乾燥後添加す るいずれの方法も利用できる。 (固体高分子電解質膜およびその製膜方法) The solid polymer electrolyte of the present invention comprises a rigid heterocyclic polymer and at least one acid selected from the group consisting of phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid. As a method for adding the acids to the rigid heterocyclic polymer, any method of adding to the dope in advance, adding at the time of solidification, adding after washing with water, or adding after washing with water and drying can be used. (Solid polymer electrolyte membrane and film forming method thereof)
本発明の固体高分子電解質は厚さが 1 0〜2 0 0 mのフィルム形状である ことが好ましい。 製膜方法としては、 ( i ) キャスト法もしくは ( i i ) プレ 'ス法で行うことが好ましい。 電解質膜の厚みは、 より好ましくは 3 0〜1 0 0 / mである。 実用に耐える膜の強度を得るには 1 0 / mより厚い方が好ましく 、 膜抵抗の低減つまり発電性能向上のためには 2 0 0 mより薄い方が好まし レ^ フィルムの厚みは、 溶液キャスト法の場合、 溶液濃度あるいは基板上への 塗布厚により制御でき、 プレス法の場合、 溶液濃度あるいはプレスの圧力で制 御できる。  The solid polymer electrolyte of the present invention is preferably in the form of a film having a thickness of 10 to 200 m. As a film forming method, it is preferable to carry out by (i) casting method or (ii) press method. The thickness of the electrolyte membrane is more preferably 30 to 100 / m. A thickness of more than 10 m is preferable to obtain a membrane strength that can withstand practical use, and a thickness of less than 200 m is preferable to reduce membrane resistance, that is, to improve power generation performance. In the case of the casting method, it can be controlled by the solution concentration or the coating thickness on the substrate. In the case of the pressing method, it can be controlled by the solution concentration or the pressure of the press.
' (キャスト法) '(Cast method)
キャスト法とは、 剛直系複素環高分子および溶媒を含有するポリマー溶液 ( ドープ) をガラス板などの基板上に流延し、 溶媒を除去することにより製膜す る方法である。  The casting method is a method of forming a film by casting a polymer solution (dope) containing a rigid heterocyclic polymer and a solvent on a substrate such as a glass plate and removing the solvent.
溶媒は、 剛直系複素環高分子を溶解し、 その後に除去し得るものであるなら ば特に制限はなく N, N—ジメチルァセトアミド、 N, N—ジメチルホルムァ ミド、 ジメチルスルホキシド、 N—メチル _ 2—ピロリドン、 へキサメチルホ スホンアミドなど非プロトン極性溶媒や、 ポリリン酸、 メタンスルホン酸、 硫 酸、 トリフルォロ酢酸などの強酸を用いることができる。  The solvent is not particularly limited as long as it can dissolve and remove the rigid heterocyclic polymer, and N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, N— Aprotic polar solvents such as methyl_2-pyrrolidone and hexamethylphosphonamide, and strong acids such as polyphosphoric acid, methanesulfonic acid, sulfuric acid, and trifluoroacetic acid can be used.
これらの溶媒は、 可能な範囲で複数を混合して使用してもよい。 また、 溶解 性を向上させる手段として、 臭化リチウム、 塩化リチウム、 塩化アルミニウム などのルイス酸を有機溶媒に添加したものを溶媒としてもよい。 ドープ中の剛 直系複素環高分子の濃度は、 好ましくは 0 . 1〜8質量%である。 低すぎると 成形性が悪化し、 高すぎると加工性が悪化する。 溶液キャスト法において、 ド· —プ中の剛直系複素環高分子の濃度を所定の範囲にすることにより、 面内方向 の配向度の低い膜が得られる。  A plurality of these solvents may be used as a mixture within a possible range. As a means for improving solubility, a solvent obtained by adding a Lewis acid such as lithium bromide, lithium chloride, or aluminum chloride to an organic solvent may be used. The concentration of the rigid heterocyclic polymer in the dope is preferably 0.1 to 8% by mass. If it is too low, the formability will deteriorate, and if it is too high, the workability will deteriorate. In the solution casting method, a film having a low degree of orientation in the in-plane direction can be obtained by setting the concentration of the rigid heterocyclic polymer in the dopant within a predetermined range.
キャスト法として、 ドクターブレード、 バーコ一夕一、 アプリケ一夕一等を 用いドープを支持体にキャストし、 溶媒を洗浄した後、 フィルムを乾燥する方 法を採用することが好ましい。 乾燥温度としては、 0 〜 2 0 0 、 好ましく は 2 O :〜 1 5 0 、 更には 5 Ο ΐ:〜 8 0 が利用できる。 Casting the dope onto a support using a doctor blade, Barco overnight, Aprique overnight, etc., washing the solvent, and then drying the film The method is preferably adopted. As the drying temperature, 0 to 2200, preferably 2O: to 1550, and further 5 to 8: 80 can be used.
(プレス法)  (Pressing method)
剛直系複素環高分子は結晶性が高く、 通常の押出製膜では、 面内方向に等方 性の膜が得られない。 そのため、 剛直系複素環高分子および溶媒を含有するド ープを基板に挟み圧力をかけながら製膜することにより、 面内方向に等方性の 膜を得ることができる。 溶媒はキャス卜法と同じである。 ドープ中の剛直系複 素環高分子の濃度は、 好ましくは 0 . 1〜3 0質量%、 より好ましくは 0 . 5 〜8質量%である。 圧力は、 好ましくは 0 . 0 1〜1 0 0 0 M P a、 より好ま しくは 1〜1 O M P aである。 製膜時には加熱することが好ましい。.加熱温度 は好ましくは 1 0 0〜3 0 O t:、 好ましくは 1 3 0〜2 5 0でである。  Rigid heterocyclic polymers have high crystallinity, and ordinary extrusion film formation does not yield an isotropic film in the in-plane direction. Therefore, an isotropic film can be obtained in the in-plane direction by sandwiching a dope containing a rigid heterocyclic polymer and a solvent between the substrates and applying pressure. The solvent is the same as in the casting method. The concentration of the rigid bicyclic polymer in the dope is preferably 0.1 to 30% by mass, more preferably 0.5 to 8% by mass. The pressure is preferably from 0.01 to 100 Mpa, more preferably from 1 to 1 OMPa. It is preferable to heat at the time of film formation. The heating temperature is preferably from 100 to 30 Ot: preferably from 130 to 2550.
(ペレット) (Pellet)
なお、 本発明の固体高分子電解質は上述のフィルム形状の他、 ペレット状に することもできる。ペレットの場合の製造方法としては例えば圧縮ロール方式、 プリケッテング方式、 打錠方式等が挙げられる。 より具体的には錠剤成形機や 圧縮成形機を用いて造粒するのが好ましい。  The solid polymer electrolyte of the present invention can be formed into a pellet in addition to the above-mentioned film shape. Examples of the manufacturing method in the case of pellets include a compression roll method, a pre-ketting method, and a tableting method. More specifically, granulation is preferably performed using a tablet molding machine or a compression molding machine.
(イオン伝導性を有する高分子) (Ion conductive polymer)
本発明で用いられるイオン伝導性を有する高分子は、 例えば、 — S〇3 Hのよ うなイオン交換基を有しているモノマーの単重合体、 ブロック共重合体、 ラン ダム共重合体、 一 S O 3 H基等ィォン交換基に後処理を施し導入したもののよう な、 イオン伝導性を有するパーフルォロカーボンスルホン酸樹脂、 ポリエーテ ルエーテルケトンスルホン酸樹脂等が挙げられる。 なかでもイオン伝導性を有 する高分子がパーフルォロカ一ポンスルホン酸樹脂であることが好ましい。 Polymer with ion conductivity used in the present invention, for example, - homopolymers of S_〇 3 H yo Una monomer having an ion exchange group, a block copolymer, random copolymer, one Examples thereof include perfluorocarbon sulfonic acid resins and polyether ether ketone sulfonic acid resins having ionic conductivity, such as those introduced by subjecting SO 3 H groups and other ion exchange groups to post-treatment. In particular, it is preferable that the polymer having ion conductivity is a perfluorocarpone sulfonic acid resin.
(固体高分子電解質と、 ィォン伝導性を有する高分子とからなる固体高分子電 解質組成物) (Solid polymer electrolyte composition comprising a solid polymer electrolyte and a polymer having ion conductivity)
本発明の固体高分子電解質組成物は、 前記の剛直系複素環高分子を含む固体 高分子電解質とイオン伝導性を有する高分子からなる。 該固体高分子電解質と ィォン伝導性を有する高分子との混合物からなる固体高分子電解質であつても 、 該固体高分子電解質をフィルム状にしたものからなる層とイオン伝導性を有 する高分子をフィルム状にしたものからなる層との積層体であってもよい。 混 合物の場合は剛直系複素環高分子 100質量部に対しイオン伝導性を有する高 分子 1〜800質量部、 好ましくは 3〜300質量部、 更には 5〜100質量 部であることが好ましい。 積層体の場合は剛直系複素環高分子からなる層の片 側、 あるいは両側にイオン伝導性を有する高分子からなる層を設ければ良い。 積層方法としては例えば公知のプレス法、 ホットプレス法、 キャスト法、 スピ ンコーティング法、 ラミネート法などが挙げられるがこれに限定されるもので はない。 The solid polymer electrolyte composition of the present invention is a solid containing the rigid heterocyclic polymer. It consists of a polymer electrolyte and a polymer having ionic conductivity. Even if the solid polymer electrolyte is made of a mixture of the solid polymer electrolyte and a polymer having ion conductivity, the layer made of a film of the solid polymer electrolyte and a polymer having ion conductivity. It may be a laminate with a layer made of a film. In the case of a mixture, it is preferably 1 to 800 parts by weight, preferably 3 to 300 parts by weight, and more preferably 5 to 100 parts by weight with respect to 100 parts by weight of the rigid heterocyclic polymer. . In the case of a laminate, a layer made of a polymer having ion conductivity may be provided on one side or both sides of a layer made of a rigid heterocyclic polymer. Examples of the lamination method include, but are not limited to, a known press method, hot press method, cast method, spin coating method, and laminate method.
(膜 Z電極接合体) ■ (Membrane Z electrode assembly) ■
本発明の膜 Z電極接合体 (Memb r a n e E l e c t r ode As s emb l y、 以下、 ME Aと略することがある) は、 本発明の電解質膜の両表 面上に触媒電極を有する。 触媒電極は、 触媒金属の微粒子を導電材に担持した ものである。 触媒金属としては、 水素の酸化反応および酸素の還元反応を促進 する金属であればいずれのものでもよい。 例えば、 白金、 金、'銀、 パラジウム . The membrane Z electrode assembly of the present invention (Membrane Electrode Assembly, hereinafter abbreviated as ME A) has catalyst electrodes on both surfaces of the electrolyte membrane of the present invention. The catalyst electrode is one in which fine particles of catalyst metal are supported on a conductive material. The catalyst metal may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen. For example, platinum, gold, 'silver, palladium.
、 イリジウム、 ロジウム、 ルテニウム、 鉄、 コバルト、 ニッケル、 クロム、 夕 ングステン、 マンガン、 バナジウム、 あるいはそれらの合金が挙げられる。 特 に白金が多くの場合、 用いられる。 触媒金属の粒径は、 通常は 10〜300ォ ングストローム (l〜30nm) である。 Iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium, evening tungsten, manganese, vanadium, or alloys thereof. In particular, platinum is often used. The particle size of the catalytic metal is usually 10 to 300 angstroms (l to 30 nm).
導電材は電子伝導性物質であれば良い。 導電材として、 各種金属や炭素材料 などが挙げられる。 炭素材料としては、 ファーネスブラック、 チャンネルブラ ック、 アセチレンブラック等のカーボンブラック、 活性炭、 黒鉛等が挙げられ る。 これらは単独あるいは混合して使用され.る。 触媒金属の担持量は電極が成 形された状態で 0. 01〜: I Omgノ cm2が好ましい。 The conductive material may be an electron conductive material. Examples of conductive materials include various metals and carbon materials. Examples of the carbon material include furnace black, channel black, carbon black such as acetylene black, activated carbon, graphite and the like. These may be used alone or in combination. The supported amount of catalyst metal is preferably 0.01 to: I Omg no cm 2 in the state where the electrode is formed.
これら導電材に触媒金属を担持させる方法としては、 触媒金属を還元法によ り導電材の表面に析出させる方法や、 溶剤に触媒金属を懸濁させ、 これを導電 材表面に塗布する方法などがある。 As a method for supporting the catalytic metal on these conductive materials, the catalytic metal is reduced by a reduction method. There are a method of depositing on the surface of a conductive material, a method of suspending a catalyst metal in a solvent and applying this to the surface of the conductive material.
(燃料電池)  (Fuel cell)
本発明の固体高分子電解質は燃料電池に好ましく用いられる。 本発明の燃料 電池は、 膜 電極接合体の外側にセパレー夕と呼ばれる燃料流路もしくは酸化 剤流路を形成する溝付きの集電体を配したものを単セルとし、 この様な単セル を複数個、 冷却板等を介して積層することにより構成される。  The solid polymer electrolyte of the present invention is preferably used for a fuel cell. The fuel cell of the present invention has a single cell in which a grooved current collector for forming a fuel channel or an oxidant channel called a separator channel is arranged on the outside of the membrane electrode assembly. It is configured by laminating a plurality via a cooling plate.
燃料電池は、 膜 Z電極接合体の外側にセパレー夕と呼ばれる燃料流路もしく は酸化剤流路を形成する溝付きの集電体を配したものを単セルとし、 この様な 単セルを複数個、 冷却板等を介して積層することにより構成される。 燃料電池 は高い温度で作動させる方が電極の触媒活性が上がり電極過電圧が減少するた め望ましいが、 電解質膜は水分がないと機能しないため、 水分管理が可能な温 度で作動させる必要がある。 燃料電池の作動温度の好ましい範囲は室温〜 1 0 0でである。 実施例 , ,  In a fuel cell, a single cell is formed by arranging a fuel flow channel called a separator or a grooved current collector that forms an oxidant flow channel on the outside of the membrane Z electrode assembly. It is configured by laminating a plurality via a cooling plate. It is desirable to operate the fuel cell at a high temperature because the catalytic activity of the electrode increases and the electrode overvoltage decreases. However, the electrolyte membrane does not function without moisture, so it must be operated at a temperature that allows moisture management. . The preferred range of operating temperature of the fuel cell is from room temperature to 100. Example , ,
以下、 実施例及び比較例により本発明を更に具体的に説明するが、 本発明は これらによっていささかも限定されるものではない。 なお、 以下の実施例にお ける各測定値は次の方法により求めた値である。 [特有粘度]  EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these. In addition, each measured value in the following examples is a value obtained by the following method. [Specific viscosity]
濃硫酸を用いてポリマー濃度 0. 5 gZd 1で 30 において測定した相対 粘度 ( re l) を基に下記式により求めた値である。 Is a value determined by the following equation based on the measured relative viscosity (re l) at 30 at a polymer concentration 0. 5 GZD 1 using concentrated sulfuric acid.
7? i nh= ( 1 n r? r e ,) /C 7? I nh = (1 nr? Re ,) / C
(r? i nhは特有粘度、 7? f e lは相対粘度、 Cは濃度を表す) (r? i nh is the specific viscosity, 7? fel is the relative viscosity, and C is the concentration)
[イオン伝導度測定]  [Ion conductivity measurement]
本発明の電解質膜を、 電気化学インピーダンス測定装置 (ソーラトロン製、 S I 1 2 8 7) を用いて周波数 0. l Hz〜 6 5 kHzの領域で膜の厚み方向 のインピーダンス測定をし、 イオン伝導度を測定した。 なお、 上記測定で電解 質膜は水蒸気雰囲気下、 75 にて保存された。 The electrolyte membrane of the present invention was measured for impedance in the thickness direction of the membrane at a frequency of 0.1 Hz to 65 kHz using an electrochemical impedance measuring device (Solartron, SI 1 2 8 7), and the ionic conductivity Was measured. In the above measurement, electrolysis The membrane was stored at 75 in a steam atmosphere.
' [耐酸化性試験] '[Oxidation resistance test]
本発 の電解質膜を、 30%過酸化水素水 20mlに硫酸鉄 7水和物 1. 9 mgを加えることからなる 60でに加熱したフェントン試薬 (鉄 40 p pmを 含む) に浸潰させ、 電解質膜がフェントン試薬に溶解するに至る時間を求めた  The electrolyte membrane of the present invention was soaked in Fenton reagent (containing 40 ppm of iron) heated at 60, consisting of adding 1.9 mg of iron sulfate heptahydrate to 20 ml of 30% hydrogen peroxide solution, The time required for the electrolyte membrane to dissolve in the Fenton reagent was determined.
[リン原子の含有量の測定方法] [Measurement method of phosphorus atom content]
試料を還流冷却付き湿式分解容器に採り、 濃硫酸を添加後加熱しながら、 試 料が飛散しないように徐々に硝酸を滴下して有機物を完全に分解した。 放冷後 、 純水を加え白色透明ガラス容器に定容して、 I CP発光分析法によりリン原 子を定量した。 - 参考例 1 (ポリマーの重合)  The sample was placed in a wet decomposition vessel with reflux cooling, and after adding concentrated sulfuric acid, while heating, the nitric acid was gradually added dropwise to prevent the sample from scattering, and the organic matter was completely decomposed. After standing to cool, pure water was added and the volume was measured in a white transparent glass container, and phosphorus atoms were quantified by the ICP emission spectrometry. -Reference Example 1 (Polymer polymerization)
塩化カルシウム 14. 24質量部を窒素気流下、 フラスコ内で 250でにて 1時間乾燥させ、 フラスコ内の温度を室温に戻した後、 N—メチル—2—ピロ リジノン (NMP) 250質量部を加えた。 5 (6) 一アミノー 2— C4—ァ ミノフエニル) ベンズイミダゾール (c a s . r e g. no. 7621 - 86 一 5) 10質量部、 p—フエ二レンジァミン 2. 066質量部を加え溶解させ た。 この溶液を外部冷却により 0でに保ち、 テレフタル酸クロリド 12. 93 3質量部添加し、 0 で 1. 5時間、 50でで 3時間反応せしめ水酸化カルシ ゥム 4. 72.0質量部を加えポリマードープを得た。 得られたポリマーの特有 粘度は 4. 9であった。 実施例 1 (キャストフィルムの作成)  14. 24 parts by weight of calcium chloride was dried in a flask at 250 at 250 ° C for 1 hour. After returning the temperature in the flask to room temperature, 250 parts by weight of N-methyl-2-pyrrolidinone (NMP) was added. added. 5 (6) Mono-amino-2-C4-amino-phenyl) benzimidazole (cas. Reg. No. 7621-86) 5) 10 parts by mass and 2.066 parts by mass of p-phenylenediamine were dissolved. Keep this solution at 0 by external cooling, add 3 parts by mass of 12.93 terephthalic acid chloride, react for 1.5 hours at 0 and 3 hours at 50, add 4.72.0 parts by mass of calcium hydroxide and add polymer A dope was obtained. The specific viscosity of the obtained polymer was 4.9. Example 1 (Creation of cast film)
. 参考例 1にて得られたポリマードープをドクターナイフによりガラス上に展 開し、 85%リン酸中にて 24時間凝固し、 1時間水洗した後 120でにて乾 燥することで、 膜厚 200 / mの電解質膜を作成した.。 リン原子の含有量は 5 質量%であり、 リン酸の含有量は 15. 8質量%であった。 得ちれたキャスト フィルムのイオン伝導度及び耐酸化性を測定した。 結果を表 1に示す。 実施例 2 (積層体の作成) The polymer dope obtained in Reference Example 1 was spread on a glass with a doctor knife, solidified in 85% phosphoric acid for 24 hours, washed with water for 1 hour, and then dried at 120 to form a membrane. A 200 / m thick electrolyte membrane was created. The phosphorus atom content was 5% by mass, and the phosphoric acid content was 15.8% by mass. The resulting cast film was measured for ionic conductivity and oxidation resistance. The results are shown in Table 1. Example 2 (Creation of laminate)
実施例 1にて得られたフィルムを膜厚 170; amの Du P on t社製 N a f i on (登録商標) フィルムにて両面を挟みイオン伝導度及び耐酸化性を測 定した。.結果を表 1に示す。 参考例 2 (ポリマーの重合)  The film obtained in Example 1 was sandwiched between Nafion (registered trademark) films manufactured by Du Pont, Inc. having a film thickness of 170; am, and the ionic conductivity and oxidation resistance were measured. The results are shown in Table 1. Reference Example 2 (Polymer polymerization)
塩化カルシウム 15. 8質量部を窒素気流下、 フラスコ内で 250でにて 1 時間乾燥させ、 フラスコ内の温度を室温に戻した後、 N—メチルー 2—ピロリ ジノン 300質量部を加えた。 5 (6) ーァミノ一 2_ (4—ァミノフエニル) ベンズイミダゾール (c a s . r e g. n o. 7621— 86— 5) 10質量 部を加え溶解させた。 この溶液を外部冷却により ot:に保ち、 テレフ夕ル酸ク ロリド 9. 0528質量部添加し、 0でで 3時間、 50でで 3時間反応せしめ 水酸化カルシウム 3. 303質量部を加えポリマードープを得た。 得られたポ リマーの特有粘度は 4. 3であった。 実施例 3 (キャストフィルムの作成)  Calcium chloride (15.8 parts by mass) was dried in a flask at 250 at 250 ° C. for 1 hour. The temperature in the flask was returned to room temperature, and then 300 parts by mass of N-methyl-2-pyrrolidinone was added. 5 (6) Amino 2_ (4-Aminophenyl) benzimidazole (c as. Reg g. No. 7621- 86-5) 10 parts by mass was added and dissolved. This solution was kept at ot: by external cooling, and 9.0528 parts by mass of terephthalic acid chloride was added, and the reaction was carried out at 0 for 3 hours and at 50 at 3 hours. Got. The resulting polymer had a specific viscosity of 4.3. Example 3 (Creation of cast film)
参考例 2にて得られたポリマードープを.ドクターナイフによりガラス上に展 開し、 85%りん酸中にて 24時間凝固し、 1時間水洗した後 120でにて乾 燥することで、 膜厚 40 ;amの電解質膜を作成した。 リン原子の含有量は 6質 量%であり、 リン酸換算での含有量は約 19質量%であった。 得られたキャス トフイルムの物性の測定結果を表 1に示す。 実施例 4 (積層体の作成)  The polymer dope obtained in Reference Example 2 was spread on a glass with a doctor knife, solidified in 85% phosphoric acid for 24 hours, washed with water for 1 hour, and dried at 120 to form a film. An electrolyte membrane with a thickness of 40; am was prepared. The phosphorus atom content was 6% by mass, and the phosphoric acid content was about 19% by mass. Table 1 shows the measurement results of the physical properties of the obtained cast film. Example 4 (Creation of laminate)
実施例 3にて得られたフィルムを膜厚 170 mの Du P o n t社製 N a f i on (登録商標) フィルムにて両面を挟みイオン伝導度及び耐酸化性を測 定した。 結果を表 1に示す。 実施例 5 (膜ノ電極接合体 (MEA) の作成) 実施例 3で得られたキャストフィルム (電解質膜) を用いて、 触媒付き電極 Z電解質膜/触媒付き電極の構成からなる積層体をホッ卜プレス法にて作成し た。 The film obtained in Example 3 was sandwiched on both sides by a Nafion (registered trademark) film made by Du Pont having a film thickness of 170 m, and ion conductivity and oxidation resistance were measured. The results are shown in Table 1. Example 5 (Preparation of membrane electrode assembly (MEA)) Using the cast film (electrolyte membrane) obtained in Example 3, a laminate composed of a catalyst electrode Z electrolyte membrane / catalyst electrode was prepared by a hot press method.
触媒付き電極は厚さ 400 //mのカーボンペーパーテフロン処理品からなる 電極基材および担持触媒である白金を 1 m g / c m 2の目付けで担持したカーボ ン担体からなる触媒層より構成されるものを用いた。 Ones catalyst-electrodes are composed of a catalyst layer composed of carbon emissions carrier carrying platinum of 1 mg / cm 2 of basis weight which is an electrode substrate and a supported catalyst comprising a carbon paper Teflon-treated product of the thickness of 400 // m Was used.
ホットプレス条件は圧力 1 0 0 k gZcm2 (9. 8 P a) , 温度は 1 5 0 °C, 保持時間は 3分間であった。 Hot press conditions were a pressure of 100 kg Kcm 2 (9.8 Pa), a temperature of 150 ° C, and a holding time of 3 minutes.
これにより電解質と触媒付き電極との接合性に優れた M E Aを作成すること が出来た。 実施例 6 (発電特性評価)  As a result, it was possible to create MEA with excellent bonding properties between the electrolyte and the electrode with catalyst. Example 6 (Evaluation of power generation characteristics)
実施例 5にて作成した ME Aを用いて下記の条件にて発電特性を観察した。 Using the ME A prepared in Example 5, the power generation characteristics were observed under the following conditions.
(1) 評価用燃料電池用セル (1) Fuel cell for evaluation
ガスフロー部 5 cm2、 セパレー夕としてグラフアイトプレートを用い; 集 電体として金メッキ鋼板から構成されるエレクトロケム社製品のシンダルセル を用いた。  Gas flow section 5 cm2, Graphite plate was used as a separator; Electrochem Cinder cell made of gold-plated steel plate was used as a current collector.
(2) 測定条件  (2) Measurement conditions
•水素:供給速度 50 m .1 Zm i n  • Hydrogen: Supply speed 50 m .1 Zm i n
•混合エアー:酸素ノ窒素 (2 0 %/80 %) 供給速度 2 2 0m l /m i n '水素、 混合エアーともに加湿を行った。  • Mixed air: Oxygen / nitrogen (20% / 80%) Supply speed 2 20 ml / min 'Hydrogen and mixed air were both humidified.
•セル温度: 40、 50、 6 0、 7 0 にて測定を行った。  • Measurements were made at cell temperatures of 40, 50, 60 and 70.
表 2に各温度における出力特性の一覧を示す。 表 1 表 2 Table 2 shows a list of output characteristics at each temperature. table 1 Table 2

Claims

請 求 の 範 囲 The scope of the claims
で表される繰り返し単位よりなる群から選ばれる少なくとも 1種の繰り返し単位 At least one repeating unit selected from the group consisting of repeating units represented by
(ただし、 上記式 (I) 乃至 (I I I) において A r.1は、 p—フエ二レン、 m —フエ二レン、 2, 6_ナフ夕レンジィル、 4, 4 ' ービフエ二レン、 4, 4 ' —スルホニルジフエ二レンから選ばれる 1つ以上の基であり、 上記式 (I I I) において Ar 2は p—フエ二レン、 m—フエ二レン、 3, 4' —ォキシジフ ェニレン、 4, 4 ' ーォキシジフエ二レン、 4, 4 ' ービフエ二レン、 4, 4 ' —スルホニルジフエ二レンから選ばれる 1つ以上の基である。 ) (However, in the above formulas (I) to (III), A r. 1 is p-phenylene, m-phenylene, 2, 6_naphthenylene, 4, 4'-biphenylene, 4, 4 '— One or more groups selected from sulfonyldiphenylene, wherein Ar 2 in the above formula (III) is p-phenylene, m-phenylene, 3, 4' —oxydif One or more groups selected from enylene, 4,4'-oxydiphenylene, 4,4'-biphenylene, 4,4'-sulfonyldiphenylene. )
で表される繰り返し単位から主としてなり、 上記式 (I) 、 (I I) 及び (I I I) の繰り返し単位の共重合モル比率 (I I I) Z ( (I) + (I I) ) 力 0≤ (Ι Ι Ί) / ( (Ι) + (Ι Ι) ) ≤δ Copolymer molar ratio of repeating units of the above formulas (I), (II) and (III) (III) Z ((I) + (II)) Force 0≤ (Ι Ι Ί) / ((Ι) + (Ι Ι)) ≤δ
であって、 0. 5 gZl 00m 1の濃度の硫酸酸溶液で 25でにて測定した特 有粘度が 0. 05〜10 O d 1/gである剛直系複素環高分子 1.00質量部と 、 リン酸、 ポリリン酸、 硫酸、 およびメタンスルホン酸よりなる群から選ばれ る少なくとも 1種の酸 0. 1〜100質量部とからなる固体高分子電解質。1.00 parts by mass of a rigid heterocyclic polymer having a specific viscosity of 0.05 to 10 O d 1 / g measured at 25 in a sulfuric acid solution having a concentration of 0.5 gZl 00m 1; A solid polymer electrolyte comprising 0.1 to 100 parts by mass of at least one acid selected from the group consisting of phosphoric acid, polyphosphoric acid, sulfuric acid, and methanesulfonic acid.
2. 請求項 1に記載の固体高分子電解質を厚さ 10〜200; mのフィルム 状にした固体高分子電解質膜。 2. A solid polymer electrolyte membrane obtained by forming the solid polymer electrolyte according to claim 1 into a film having a thickness of 10 to 200 m.
3. 請求項 1に記載の固体高分子電解質と、 イオン伝導性を有する高分子と からなる固体高分子電解質組成物。  3. A solid polymer electrolyte composition comprising the solid polymer electrolyte according to claim 1 and a polymer having ion conductivity.
4. 固体高分子電解質とイオン伝導性を有する高分子とがそれぞれフィルム 状であり、 それらの積層体となっていることを特徴とする請求項 3に記載の固 体高分子電解質組成物。  4. The solid polymer electrolyte composition according to claim 3, wherein the solid polymer electrolyte and the polymer having ion conductivity are each in the form of a film and are a laminate thereof.
5. イオン伝導性を有する高分子がパーフルォロカーボンスルホン酸樹脂で ある請求項 3または 4に記載の固体高分子電解質組成物、。  5. The solid polymer electrolyte composition according to claim 3, wherein the polymer having ion conductivity is a perfluorocarbon sulfonic acid resin.
6. 請求項 2記載の固体高分子電解質膜または請求項 5に記載の固体高分子 電解質組成物の両表面に触媒電極を設けていることを特徴とする膜 電極接合 体。  6. A membrane / electrode assembly comprising catalyst electrodes on both surfaces of the solid polymer electrolyte membrane according to claim 2 or the solid polymer electrolyte composition according to claim 5.
7. 請求項 6の膜 Z電極接合体を有することを特徴とする燃料電池。  7. A fuel cell comprising the membrane Z electrode assembly according to claim 6.
PCT/JP2008/053713 2007-02-27 2008-02-25 Solid polymer electrolyte WO2008105547A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-046785 2007-02-27
JP2007046785 2007-02-27
JP2007189441 2007-07-20
JP2007-189441 2007-07-20

Publications (1)

Publication Number Publication Date
WO2008105547A1 true WO2008105547A1 (en) 2008-09-04

Family

ID=39721369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053713 WO2008105547A1 (en) 2007-02-27 2008-02-25 Solid polymer electrolyte

Country Status (2)

Country Link
TW (1) TW200903890A (en)
WO (1) WO2008105547A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019581A1 (en) * 2011-07-29 2013-02-07 E. I. Du Pont De Nemours And Company Process for forming an aramid copolymer
US8716432B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Process for forming an aramid copolymer
US8716434B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Aramid copolymer
US8716433B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Aramid copolymer
US8716431B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Process for preparing aramid copolymer
US8809434B2 (en) 2011-07-29 2014-08-19 Ei Du Pont De Nemours And Company Process for preparing aramid copolymer
US8822632B2 (en) 2011-07-29 2014-09-02 E I Du Pont De Nemours And Company Process for forming an aramid copolymer
US8907051B2 (en) 2011-07-29 2014-12-09 E I Du Pont De Nemours And Company Process for forming an aramid copolymer
US8907052B2 (en) 2011-07-29 2014-12-09 E I Du Pont De Nemours And Company Process of forming an aramid copolymer
US9732442B2 (en) 2012-01-11 2017-08-15 E I Du Pont De Nemours And Company Process for preparing aramid copolymer yarn having low residual sulfur
US9845553B2 (en) 2012-01-11 2017-12-19 E I Du Pont De Nemours And Company Process for preparing aramid copolymer yarn using an acid wash
US10240282B2 (en) 2012-01-11 2019-03-26 E I Du Pont De Nemours And Company Process for preparing aramid copolymer yarn using a halide acid wash

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9111686B2 (en) 2011-02-16 2015-08-18 Taiwan Textile Research Institute Flexible supercapacitor and preparation method thereof
CN103259041A (en) * 2012-02-16 2013-08-21 财团法人纺织产业综合研究所 Speek solid electrolyte and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530875A1 (en) * 1974-07-10 1976-01-22 Teijin Ltd ANISOTROPIC LIQUIDS OF AROMATIC POLYAMIDES
WO2004078827A1 (en) * 2003-03-05 2004-09-16 Toray Industries, Inc. Aromatic polymer, film, electrolyte membrane and separator
WO2005054337A1 (en) * 2003-11-21 2005-06-16 Teijin Twaron B.V. Process for making dapbi-containing aramid crumbs
WO2006098495A1 (en) * 2005-03-17 2006-09-21 Teijin Limited Electrolyte membrane
WO2006129694A1 (en) * 2005-06-03 2006-12-07 Samsung Yokohama Research Institute Proton conducting polymer membrane, method for producing same, and fuel cell using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530875A1 (en) * 1974-07-10 1976-01-22 Teijin Ltd ANISOTROPIC LIQUIDS OF AROMATIC POLYAMIDES
WO2004078827A1 (en) * 2003-03-05 2004-09-16 Toray Industries, Inc. Aromatic polymer, film, electrolyte membrane and separator
WO2005054337A1 (en) * 2003-11-21 2005-06-16 Teijin Twaron B.V. Process for making dapbi-containing aramid crumbs
WO2006098495A1 (en) * 2005-03-17 2006-09-21 Teijin Limited Electrolyte membrane
WO2006129694A1 (en) * 2005-06-03 2006-12-07 Samsung Yokohama Research Institute Proton conducting polymer membrane, method for producing same, and fuel cell using same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019581A1 (en) * 2011-07-29 2013-02-07 E. I. Du Pont De Nemours And Company Process for forming an aramid copolymer
US8716432B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Process for forming an aramid copolymer
US8716430B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Aramid copolymer
US8716434B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Aramid copolymer
US8716433B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Aramid copolymer
US8716431B2 (en) 2011-07-29 2014-05-06 E I Du Pont De Nemours And Company Process for preparing aramid copolymer
CN103857728A (en) * 2011-07-29 2014-06-11 纳幕尔杜邦公司 Process for forming an aramid copolymer
US8809434B2 (en) 2011-07-29 2014-08-19 Ei Du Pont De Nemours And Company Process for preparing aramid copolymer
JP2014521782A (en) * 2011-07-29 2014-08-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing aramid copolymer
JP2014521788A (en) * 2011-07-29 2014-08-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aramid copolymer
US8822632B2 (en) 2011-07-29 2014-09-02 E I Du Pont De Nemours And Company Process for forming an aramid copolymer
US8835600B2 (en) 2011-07-29 2014-09-16 E I Du Pont De Nemours And Company Process of forming an aramid copolymer
US8907051B2 (en) 2011-07-29 2014-12-09 E I Du Pont De Nemours And Company Process for forming an aramid copolymer
US8907052B2 (en) 2011-07-29 2014-12-09 E I Du Pont De Nemours And Company Process of forming an aramid copolymer
US8921512B2 (en) 2011-07-29 2014-12-30 E I Du Pont De Nemours And Company Process for forming an aramid copolymer
US9115244B2 (en) 2011-07-29 2015-08-25 E I Du Pont De Nemours And Company Process for forming an aramid copolymer
US9127143B2 (en) 2011-07-29 2015-09-08 E I Du Pont De Nemours And Company Aramid copolymer
CN103857728B (en) * 2011-07-29 2016-03-16 纳幕尔杜邦公司 Form the method for aramid copolymers
US9732442B2 (en) 2012-01-11 2017-08-15 E I Du Pont De Nemours And Company Process for preparing aramid copolymer yarn having low residual sulfur
US9845553B2 (en) 2012-01-11 2017-12-19 E I Du Pont De Nemours And Company Process for preparing aramid copolymer yarn using an acid wash
US10240282B2 (en) 2012-01-11 2019-03-26 E I Du Pont De Nemours And Company Process for preparing aramid copolymer yarn using a halide acid wash

Also Published As

Publication number Publication date
TW200903890A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
WO2008105547A1 (en) Solid polymer electrolyte
Li et al. Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells
Yang et al. Poly (2, 6-dimethyl-1, 4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells
Yang et al. Synthesis and properties of poly (aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells
Bose et al. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges
Zeng et al. Physicochemical properties of alkaline doped polybenzimidazole membranes for anion exchange membrane fuel cells
Krishnan et al. Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells
Yang et al. Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells
Berber et al. Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions
Yang et al. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes
Han et al. Cross-linked sulfonated poly (ether ether ketone) membranes formed by poly (2, 5-benzimidazole)-grafted graphene oxide as a novel cross-linker for direct methanol fuel cell applications
Molla et al. Polymer blends of SPEEK for DMFC application at intermediate temperatures
Li et al. Partially fluorinated aarylene polyethers and their ternary blends with PBI and H3PO4. Part II. Characterisation and fuel cell tests of the ternary membranes
Harilal et al. Pyridine-bridged polybenzimidazole for use in high-temperature PEM fuel cells
Yuan et al. Poly (imide benzimidazole) s for high temperature polymer electrolyte membrane fuel cells
Li et al. Synthesis and properties of sulfonated polyimide–polybenzimidazole copolymers as proton exchange membranes
US20100183941A1 (en) Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell
Park et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs
Sheng et al. Synthesis and properties of novel sulfonated polybenzimidazoles from disodium 4, 6-bis (4-carboxyphenoxy) benzene-1, 3-disulfonate
Lin et al. Phosphoric acid doped polybenzimidazole/imidazolium-modified silsesquioxane hybrid proton conducting membranes for anhydrous proton exchange membrane application
JP6108587B2 (en) POLYMER ELECTROLYTE, MEMBRANE ELECTRODE ASSEMBLY, SOLID POLYMER FUEL CELL, AND METHOD FOR PRODUCING POLYMER ELECTROLYTE
Li et al. Development of a crosslinked pore-filling membrane with an extremely low swelling ratio and methanol crossover for direct methanol fuel cells
JP4283125B2 (en) Polymer electrolyte, proton conducting membrane and membrane-electrode structure
JP2009206086A (en) Polyelectrolyte composition, method of production of same, and fuel cell
WO2008143330A1 (en) Crosslinked aromatic polymer, polymer electrolyte, catalyst ink, polymer electrolyte membrane, membrane-electrode assembly and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08721133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP