JP2010006664A - Green fluorescent glass - Google Patents
Green fluorescent glass Download PDFInfo
- Publication number
- JP2010006664A JP2010006664A JP2008169741A JP2008169741A JP2010006664A JP 2010006664 A JP2010006664 A JP 2010006664A JP 2008169741 A JP2008169741 A JP 2008169741A JP 2008169741 A JP2008169741 A JP 2008169741A JP 2010006664 A JP2010006664 A JP 2010006664A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- mol
- content
- fluorescent
- fluorescent glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 100
- 108010043121 Green Fluorescent Proteins Proteins 0.000 title description 2
- 239000005373 porous glass Substances 0.000 claims abstract description 39
- 238000010304 firing Methods 0.000 claims abstract description 18
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 17
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 239000011148 porous material Substances 0.000 claims description 16
- 230000005284 excitation Effects 0.000 claims description 14
- 238000010790 dilution Methods 0.000 claims description 11
- 239000012895 dilution Substances 0.000 claims description 11
- 238000007865 diluting Methods 0.000 claims description 10
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 abstract description 3
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910002651 NO3 Inorganic materials 0.000 description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000000695 excitation spectrum Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000075 oxide glass Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000005383 fluoride glass Substances 0.000 description 2
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 229910002492 Ce(NO3)3·6H2O Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000005303 fluorophosphate glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0095—Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
本発明は、紫外線による励起によって緑色発光する蛍光ガラスに関するものであり、特に、波長350nm以上の紫外線によっても高輝度に緑色発光する蛍光ガラスに関する。 The present invention relates to a fluorescent glass that emits green light when excited by ultraviolet rays, and particularly relates to a fluorescent glass that emits green light with high brightness even when irradiated with ultraviolet rays having a wavelength of 350 nm or more.
近年、発光波長365nm〜380mの紫外発光ダイオード(LED)が低価格で量産されるようになり、光源の水銀フリー化の要請もあって、この光源と蛍光体を組み合わせて照明・ディスプレイ用の光源としての利用が期待されている。しかしながら、LEDは点光源であり、
長寿命な平面光源を得るためには、紫外線を可視の面に変換する蛍光板が必要である。ガラスは紫外線透過率が高く、しかも耐久性が良好で安定性に優れた材料であるが、一般的には輝度が低く、光源としての利用には適さないと考えられている。
In recent years, ultraviolet light emitting diodes (LEDs) with an emission wavelength of 365 nm to 380 m have been mass-produced at a low price, and there has been a demand for mercury-free light sources. The use as is expected. However, LED is a point light source,
In order to obtain a long-life planar light source, a fluorescent plate that converts ultraviolet light into a visible surface is required. Glass is a material having high ultraviolet transmittance, good durability and excellent stability, but generally has low luminance and is considered unsuitable for use as a light source.
一方、ガラス組成を改良し、発光中心である希土類元素の中心の構造を変えることで、高輝度な蛍光ガラスを得られることが報告されている。たとえば、高輝度な蛍光ガラスとして、Tbを0.8〜8%、Ceを0〜0.2%を含むフツリン酸蛍光ガラス(下記特許文献1参照)、Tbを0〜6.5%,Ceを0〜0.2%含むフツリン酸蛍光ガラス(下記特許文献2参照)、Tb3+濃度
が5〜25mol%, Ce3+濃度が0.05mol%〜10mol%であるフッ化物ガラス(下記特許文献3参照
)等が知られている。しかしながら、これらの蛍光ガラスに用いられるフッ化物ガラスやフツリン酸ガラスは、溶融に特殊な環境が必要であるために製造工程が煩雑であり、しかも耐水性が劣るために、長期間使用するデバイスへの使用には不向きである。
On the other hand, it has been reported that a fluorescent glass with high brightness can be obtained by improving the glass composition and changing the structure of the center of the rare earth element that is the emission center. For example, as a high-intensity fluorescent glass, fluorophosphate fluorescent glass containing 0.8 to 8% Tb and 0 to 0.2% Ce (see Patent Document 1 below), 0 to 6.5% Tb and 0 to 0.2% Ce Fluorophosphate fluorescent glass (see Patent Document 2 below), fluoride glass (see Patent Document 3 below) having a Tb 3+ concentration of 5 to 25 mol% and a Ce 3+ concentration of 0.05 mol% to 10 mol% are known. Yes. However, the fluoride glass and fluorophosphate glass used in these fluorescent glasses require a special environment for melting, and thus the manufacturing process is complicated, and the water resistance is inferior. Not suitable for use.
また、SiO2を2〜60mol%、B2O3を5〜70mol%含有するホウケイ酸ガラスに蛍光剤
としてTb又はEuを含有させた酸化物ガラスが紫外線照射で可視域に強い蛍光を呈することも報告されている(下記特許文献4参照)。しかしながら、この酸化物ガラスは、耐久性が不十分であり、例えば、エキシマレーザーなどのレーザー光軸調整などに使用した場合に、徐々に劣化して十分な耐久性を示すことができない。
In addition, oxide glass containing Tb or Eu as a fluorescent agent in borosilicate glass containing 2 to 60 mol% of SiO 2 and 5 to 70 mol% of B 2 O 3 exhibits strong fluorescence in the visible region when irradiated with ultraviolet rays. Has also been reported (see Patent Document 4 below). However, this oxide glass is insufficient in durability. For example, when used for adjusting the laser optical axis of an excimer laser or the like, the oxide glass is gradually deteriorated and cannot exhibit sufficient durability.
また、化学的に安定なシリカを主成分とする多孔質ガラスに希土類と増感剤をドープして焼成することで高輝度な紫外励起蛍光ガラスを得ることができることが知られている(下記特許文献5参照)。更に、TbとCeを共ドープした蛍光ガラスも報告されている(下記非特許文献1参照)。しかしながら、これらのガラスは、300nm以下の紫外光で励起した
場合には高効率に発光するものの、紫外LEDによる波長365nm〜380m程度の紫外線で励起した場合には、極めて輝度の低い発光が得られるに過ぎない。
In addition, it is known that a high-intensity ultraviolet-excited fluorescent glass can be obtained by doping a rare earth and a sensitizer into porous glass mainly composed of chemically stable silica and baking it (Patent below). Reference 5). Furthermore, fluorescent glass co-doped with Tb and Ce has also been reported (see Non-Patent Document 1 below). However, these glasses emit light with high efficiency when excited with ultraviolet light of 300 nm or less, but when excited with ultraviolet light having a wavelength of about 365 nm to 380 m by an ultraviolet LED, emission with extremely low luminance is obtained. Only.
また、下記特許文献6には、多孔質ガラスにTb、Gd、Y、Ce等の元素を導入した後焼成
して緑色発光するガラスを作製する方法が記載されている。しかしながら、この文献に具体的に記載されている組成を有するガラスは、350nm以上の励起波長では低い蛍光強度し
か得ることができず、さらに400〜450nmの波長領域に発光がみられ、緑色発光の色純度が低下している。
Patent Document 6 below describes a method for producing a glass that emits green light by introducing an element such as Tb, Gd, Y, or Ce into a porous glass and then firing it. However, the glass having the composition specifically described in this document can only obtain low fluorescence intensity at an excitation wavelength of 350 nm or more, and further emits light in the wavelength region of 400 to 450 nm, and emits green light. Color purity is reduced.
下記非特許文献2には、ゾルゲル法によってTbとCeを共ドープした蛍光ガラスを作製する方法が記載されている。しかしながら、この方法では、アルコシキドを原料とするために、空気中又は酸素中で焼成した後、水素ガス中で高温処理をして高輝度化することが必要であり、製造工程が煩雑である。しかも、得られたガラスは、近紫外〜可視短波長域での吸光係数が大きいために紫外線がガラス内部まで浸透せず、ガラスの着色がみられている。さらに得られた励起スペクトルについては、ピーク波長が330nmにあり、365〜380nm
程度の紫外線で励起した場合には、十分な発光強度が得られない。
When excited with about ultraviolet rays, sufficient light emission intensity cannot be obtained.
本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、紫外発光ダイオード(LED)による波長365nm以上の紫外線で励起した場合にも高輝度な緑色蛍光を呈し、しかも耐久性に優れた新規な蛍光ガラスを提供することである。 The present invention has been made in view of the above-mentioned problems of the prior art, and its main purpose is to produce high-intensity green fluorescence even when excited by ultraviolet light having a wavelength of 365 nm or more by an ultraviolet light emitting diode (LED). It is another object of the present invention to provide a novel fluorescent glass exhibiting excellent durability.
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、シリカを主成分とする多孔質ガラスに、TbとCe、及び更に必要に応じて希釈元素を特定の割合でドープさせた後、還元性雰囲気下で焼成して得られるガラスは、波長350nm程度以上の長波長
紫外線、特に、紫外発光ダイオードによる365nm以上の紫外線で励起した場合にも、高輝
度な緑色蛍光を呈し、しかも透明性にも優れた蛍光ガラスとなること見出した。本発明は、この様な知見に基づいて更に研究を重ねた結果、完成されたものである。
The present inventor has intensively studied to achieve the above-described object. As a result, the glass obtained by doping the porous glass mainly composed of silica with Tb and Ce, and further diluting elements if necessary at a specific ratio, and firing in a reducing atmosphere has a wavelength of It has been found that even when excited by ultraviolet light having a long wavelength of about 350 nm or more, in particular, ultraviolet light of 365 nm or more by an ultraviolet light emitting diode, the fluorescent glass exhibits high-intensity green fluorescence and excellent in transparency. The present invention has been completed as a result of further research based on such knowledge.
即ち、本発明は、下記の緑色発光する蛍光ガラス及びその製造方法を提供するものである。
1. SiO2を85mol%以上、Tbを0.04〜0.75mol%、Ceを0.09〜1.5mol%、及び希釈元素をTb量に対して0〜2倍モル含有するガラスであって、多孔質ガラスを焼成して得られるものであり、Ceの含有量がTbの含有量より多いことを特徴とする、紫外線による励起によって緑色発光する蛍光ガラス。
2. 希釈元素が、Li, B, Na, Mg, Al, P, K, Ca, Zn, Ga, Ge, Rb, Sr, Y, Zr, Sn, Cs, Ba, La, Gd及びTlからなる群から選ばれた少なくとも一種である上記項1に記載の蛍光ガラス。
3. Ceと希釈元素の合計含有量が、Tb含有量の2倍モル以上である上記項1又は2に記載の蛍光ガラス。
4. 波長350nm以上の紫外線で励起されて高輝度に緑色発光する上記項1〜3のいずれ
かに記載の蛍光ガラス。
5. SiO2を主成分とする多孔質ガラスに、Tb、Ce、及び必要に応じて希釈元素をドープさせた後、還元性雰囲気下で焼成することを特徴とする上記項1〜4のいずれかに記載の緑色発光する蛍光ガラスの製造方法。
6. 多孔質ガラスが、SiO2を90mol%以上含有し、平均細孔径1〜10nmの連続細孔を有する多孔質体である上記項5に記載の蛍光ガラスの製造方法。
7. 950℃以上の温度で焼成する上記項5又は6に記載の方法。
That is, the present invention provides the following fluorescent glass that emits green light and a method for producing the same.
1. A glass containing 85 mol% or more of SiO 2 , 0.04 to 0.75 mol% of Tb, 0.09 to 1.5 mol% of Ce, and 0 to 2 times mol of a dilution element with respect to the amount of Tb, and firing the porous glass A fluorescent glass that emits green light by excitation with ultraviolet rays, characterized in that the Ce content is greater than the Tb content.
2. The dilution element is selected from the group consisting of Li, B, Na, Mg, Al, P, K, Ca, Zn, Ga, Ge, Rb, Sr, Y, Zr, Sn, Cs, Ba, La, Gd and Tl Item 2. The fluorescent glass according to Item 1, which is at least one kind.
3. Item 3. The fluorescent glass according to Item 1 or 2, wherein the total content of Ce and diluting elements is at least twice as much as the Tb content.
4). Item 4. The fluorescent glass according to any one of Items 1 to 3, which is excited by ultraviolet rays having a wavelength of 350 nm or more and emits green light with high luminance.
5). Any one of the above items 1 to 4, wherein the porous glass mainly composed of SiO 2 is doped with Tb, Ce and, if necessary, a dilution element, and then fired in a reducing atmosphere. The manufacturing method of fluorescent glass which emits green light of description.
6). Item 6. The method for producing fluorescent glass according to Item 5, wherein the porous glass is a porous body containing 90 mol% or more of SiO 2 and having continuous pores having an average pore diameter of 1 to 10 nm.
7). Item 7. The method according to Item 5 or 6, wherein baking is performed at a temperature of 950 ° C or higher.
以下、本発明の蛍光ガラス及びその製造方法について具体的に説明する。 Hereinafter, the fluorescent glass of the present invention and the manufacturing method thereof will be described in detail.
蛍光ガラスの製造方法
本発明の蛍光ガラスは、SiO2を主成分とする多孔質ガラスに、Tb及びCeをドープさせた後、還元性雰囲気下で焼成することによって製造することができる。以下、この製造方法
について説明する。
Method for Producing Fluorescent Glass The fluorescent glass of the present invention can be produced by doping Tb and Ce into a porous glass containing SiO 2 as a main component and then baking it in a reducing atmosphere. Hereinafter, this manufacturing method will be described.
(1)多孔質ガラス
本発明の蛍光ガラスの製造方法で用いる多孔質ガラスは、SiO2を主成分とする多孔質
ガラスであればよく、特に、SiO2を90mol%程度以上含有するものであることが好ましく、95 mol%程度以上含有するものであることがより好ましい。該多孔質ガラスでは、SiO
2以外の成分としては、その製法に応じて、Al、B等の元素が含まれることがある。
(1) Porous glass The porous glass used in the method for producing a fluorescent glass of the present invention may be a porous glass mainly composed of SiO 2 , and particularly contains about 90 mol% or more of SiO 2. The content is preferably about 95 mol% or more. In the porous glass, SiO
Components other than 2 may contain elements such as Al and B depending on the production method.
多孔質ガラスにおける細孔の形状は、外部から内部にイオンが導入できるように、連続細孔であることが好ましい。細孔径は、1nm〜10nm程度であることが好ましく、2nm〜6nm
程度であることがより好ましい。この範囲内の細孔径を有する多孔質ガラスを用いることによって、後述する元素をガラス内部まで均一にドープすることができ、高輝度を有する蛍光体を得ることができる。細孔径が小さすぎるとTbとCeが隣接する確率が低下するために輝度が低下し、一方、大きすぎると焼成後のガラスが不透明になりやすく、更に、焼成時に割れが生じやすくなるので好ましくない。尚、この場合の細孔径は、窒素吸着法を用いてBET法によって求めた値である。
The shape of the pores in the porous glass is preferably continuous pores so that ions can be introduced from the outside into the inside. The pore diameter is preferably about 1 nm to 10 nm, and 2 nm to 6 nm.
More preferably, it is about. By using a porous glass having a pore diameter in this range, an element described later can be uniformly doped to the inside of the glass, and a phosphor having high luminance can be obtained. If the pore diameter is too small, the probability that Tb and Ce will be adjacent to each other decreases, resulting in a decrease in luminance. On the other hand, if the pore size is too large, the glass after firing tends to become opaque, and further, cracks are likely to occur during firing. . In this case, the pore diameter is a value obtained by the BET method using the nitrogen adsorption method.
また、平面状の蛍光体を製造する場合には、均一に発光をする蛍光体を得るために、多孔質ガラスの厚さは、0.3mm〜2.5mm程度が好ましく、0.5〜2mm程度であることがより好ましい。多孔質ガラスが厚すぎると、ドープした元素の分布が不均一になりやすく、一方薄すぎると焼成時に割れが生じやすくなるので好ましくない。 In the case of producing a flat phosphor, the thickness of the porous glass is preferably about 0.3 mm to 2.5 mm, and about 0.5 to 2 mm in order to obtain a phosphor that emits light uniformly. Is more preferable. If the porous glass is too thick, the distribution of the doped element tends to be non-uniform, while if it is too thin, cracking tends to occur during firing, which is not preferable.
多孔質ガラスを製造する方法については特に限定されず、上記した条件を満足する多孔質ガラスを製造できる方法であればよい。例えば、ホウケイ酸ガラスをホウ酸相とシリカ相にスピノーダル分相させ、酸でホウ酸相をリーチングして多孔質シリカを得る方法によって得ることができる。この方法は、孔径や表面積を自由に変更できる点で特に有利であり、例えば、バイコールガラス(商標名)として市販されている。これらの市販品には、通常、SiO2が95mol%程度以上含まれ、その他に、Al、Bなどの不純物が少量存在するこ
とが一般的である。
It does not specifically limit about the method of manufacturing porous glass, What is necessary is just the method which can manufacture porous glass which satisfies above-described conditions. For example, it can be obtained by a method in which borosilicate glass is spinodal phase-separated into a boric acid phase and a silica phase, and the boric acid phase is leached with an acid to obtain porous silica. This method is particularly advantageous in that the pore diameter and surface area can be freely changed, and is commercially available, for example, as Vycor glass (trade name). These commercially available products generally contain about 95 mol% or more of SiO 2 , and in addition, impurities such as Al and B are generally present in a small amount.
(2)添加元素のドープ工程
本発明の蛍光ガラスでは、上記した多孔質ガラスにドープさせる元素としてTb及びCeを用いる。これらの内で、Tbは発光中心となる元素であり、緑色発光のために必須の元素である。Ceは増感剤として作用する元素である。
(2) Doping process of additive element In the fluorescent glass of the present invention, Tb and Ce are used as elements to be doped into the porous glass. Among these, Tb is an element that becomes a light emission center, and is an essential element for green light emission. Ce is an element that acts as a sensitizer.
更に、本発明の蛍光ガラスでは、上記したTbとCeの他に、必要に応じて、希釈元素を添加することができる。希釈元素としては、無色で蛍光を発せず、多孔質ガラス内に導入しやすいものであれば特に限定なく使用できる。例えば、Li, B, Na, Mg, Al, P, K, Ca, Zn, Ga, Ge, Rb, Sr, Y, Zr, Sn, Cs, Ba, La, Gd、Tl等の元素を一種単独又は二種以上混合して用いることができる。 Furthermore, in the fluorescent glass of the present invention, in addition to the above-described Tb and Ce, a dilution element can be added as necessary. The diluting element can be used without particular limitation as long as it is colorless and does not emit fluorescence and can be easily introduced into the porous glass. For example, Li, B, Na, Mg, Al, P, K, Ca, Zn, Ga, Ge, Rb, Sr, Y, Zr, Sn, Cs, Ba, La, Gd, Tl, etc. Two or more kinds can be mixed and used.
上記した各元素をドープする方法については、特に限定はなく、例えば、CVD法などの
気相法によってドープさせる方法、上記した元素を含む溶液中に多孔質ガラスを浸漬する方法などを適用できる。特に、溶液中に浸漬する方法によれば、均一に元素がドープしやすい点で有利である。
The method for doping each element described above is not particularly limited, and for example, a method of doping by a vapor phase method such as a CVD method, a method of immersing porous glass in a solution containing the element described above, and the like can be applied. In particular, the method of immersing in a solution is advantageous in that the element is easily uniformly doped.
溶液中に多孔質ガラスを浸漬する方法では、後述する蛍光ガラス中の各元素の濃度範囲となるように各元素をドープできればよい。溶液中における各元素の濃度については特に限定的ではないが、例えば、Tbの濃度については、通常、0.01mol/L〜3mol/L程度とす
ることが好ましく、0.1mol/L〜1mol/L程度とすることがより好ましい。Ceは、0.1〜2.5
mol/L程度が好ましく、0.2〜1.5mol/L程度がより好ましい。また、希釈元素をドープさせる場合には、これらの元素の濃度は、0.05〜2.5mol/L程度が好ましく、0.1mol/L〜1mol/L程度がより好ましい。
In the method of immersing the porous glass in the solution, it is sufficient that each element can be doped so as to be in the concentration range of each element in the fluorescent glass described later. The concentration of each element in the solution is not particularly limited. For example, the concentration of Tb is usually preferably about 0.01 mol / L to 3 mol / L, preferably about 0.1 mol / L to 1 mol / L. More preferably. Ce is 0.1 to 2.5
About mol / L is preferable, and about 0.2 to 1.5 mol / L is more preferable. In addition, when doping diluted elements, the concentration of these elements is preferably about 0.05 to 2.5 mol / L, and more preferably about 0.1 mol / L to 1 mol / L.
該溶液の溶媒としては、通常、水を用いればよいが、エタノール、アセトンなどの有機溶媒も適宜使用できる。水を溶媒とする場合には、各元素は、硝酸塩、塩化物などの水溶性化合物として水に溶解すればよい。 As a solvent for the solution, water is usually used, but organic solvents such as ethanol and acetone can also be used as appropriate. When water is used as a solvent, each element may be dissolved in water as a water-soluble compound such as nitrate or chloride.
具体的な浸漬方法としては、上記した各元素を含む溶液中に多孔質ガラスを浸漬して、放置すればよい。該溶液の温度は、室温程度でよく、浸漬時間は2分〜60分程度とすればよい。 As a specific dipping method, the porous glass may be dipped in a solution containing each of the above elements and allowed to stand. The temperature of the solution may be about room temperature, and the immersion time may be about 2 minutes to 60 minutes.
(3)焼成工程
上記した各元素を含む溶液中に多孔質ガラスを浸漬した後、該溶液から多孔質ガラスを取り出し、950℃以上で焼成する。
(3) Firing step After immersing the porous glass in a solution containing each of the elements described above, the porous glass is taken out from the solution and baked at 950 ° C or higher.
通常は、溶液から多孔質ガラスを取り出した後、350℃程度まで数時間かけてゆっくり
と昇温して乾燥する。昇温時間が早すぎるとガラスが割れることがあるので注意が必要である。原料に硝酸塩を用いた場合には硝酸塩の分解を行うが、還元剤との急激な反応を避けるため、空気又は不活性ガス中での乾燥が好ましい。乾燥後は、通常、いったん室温まで冷却する。
Usually, after removing the porous glass from the solution, the temperature is slowly raised to about 350 ° C. over several hours and dried. Care should be taken because the glass may break if the heating time is too early. When nitrate is used as the raw material, nitrate is decomposed, but in order to avoid a rapid reaction with the reducing agent, drying in air or an inert gas is preferred. After drying, it is usually once cooled to room temperature.
次いで、このガラスを還元雰囲気中で950℃以上で焼成することにより緻密化する。焼
成温度は、950℃〜1200℃程度とすることが好ましく1000〜1150℃程度とすることがより
好ましい。焼成温度が低すぎたり、高すぎたりすると十分な蛍光強度が得られないので好ましくない。焼成時間は、通常、0.5〜2時間程度とすればよい。
Next, the glass is densified by firing at 950 ° C. or higher in a reducing atmosphere. The firing temperature is preferably about 950 ° C to 1200 ° C, more preferably about 1000 to 1150 ° C. If the baking temperature is too low or too high, sufficient fluorescence intensity cannot be obtained, which is not preferable. The firing time may normally be about 0.5 to 2 hours.
尚、焼成工程において、焼成温度より50〜200℃程度低い温度、好ましくは100〜150℃
程度低い温度であって、900〜1050℃程度、好ましくは930〜1000℃程度の温度範囲に0.5〜2時間程度保持した後、上記した焼成温度に温度を上昇させて焼成することが好ましい。これにより、輝度をより向上させることができる。
In the firing step, a temperature lower by about 50 to 200 ° C. than the firing temperature, preferably 100 to 150 ° C.
It is preferable that the temperature is about 900 to 1050 ° C., preferably about 930 to 1000 ° C., held for about 0.5 to 2 hours, and then heated to the above baking temperature for baking. . Thereby, a brightness | luminance can be improved more.
乾燥後のガラスを、上記した保持温度まで加熱するのに要する時間は、通常、3〜20時間程度とすることが好ましく、4〜10時間程度とすることがより好ましい。 The time required to heat the glass after drying to the above holding temperature is usually preferably about 3 to 20 hours, more preferably about 4 to 10 hours.
焼成時の雰囲気は、Ceを3価に還元するために、還元雰囲気とすることが必要である。たとえば、密閉容器内に炭素粉を入れて焼成することによって還元性の雰囲気とすることができる。その他、雰囲気調整炉中に水素を含む窒素ガスなどを流して還元する方法等を採用できる。 The atmosphere during firing needs to be a reducing atmosphere in order to reduce Ce to trivalent. For example, a reducing atmosphere can be obtained by putting carbon powder in an airtight container and baking it. In addition, a method of reducing by flowing nitrogen gas containing hydrogen or the like in an atmosphere adjustment furnace can be employed.
焼成時には、多孔質ガラスをセラミックス平板の上に置き、さらにその上にセラミックス平板を置くことによって、加熱によるガラスの反りを防ぐことができる。セラミックス平板の材質は特に限定はなく、アルミナなどを用いることができる。焼成の際のガラスの収縮による割れを防ぐため、セラミックス平板の表面には凹凸のないことが望ましい。 At the time of firing, the glass is warped by heating by placing the porous glass on the ceramic flat plate and further placing the ceramic flat plate thereon. The material of the ceramic flat plate is not particularly limited, and alumina or the like can be used. In order to prevent cracking due to shrinkage of the glass during firing, it is desirable that the surface of the ceramic flat plate be free of irregularities.
蛍光ガラス
本発明の蛍光ガラスは、上記した製造方法によって製造できるものであり、SiO2を85mol%以上、Tbを0.04〜0.75mol%、及びCeを0.09〜1.5mol%含有し、Ce含有量がTb含有量より多いことを特徴とするものである。尚、Tb及びCeは、通常、本発明の蛍光ガラス中では、酸化物として存在する。
Fluorescent glass The fluorescent glass of the present invention can be produced by the above-described production method, contains SiO 2 at 85 mol% or more, Tb at 0.04 to 0.75 mol%, and Ce at 0.09 to 1.5 mol%, and has a Ce content. More than the Tb content. Tb and Ce are usually present as oxides in the fluorescent glass of the present invention.
特に、純度の高い高輝度の緑色発光を生じさせるためには、Tbの含有量は0.1〜0.75mol%程度であることが好ましい。 In particular, the Tb content is preferably about 0.1 to 0.75 mol% in order to produce high-luminance green light emission with high purity.
該蛍光ガラスは、多孔質ガラスを焼成して得られるSiO2を主成分とする母ガラス中に、上記した濃度範囲でTb及びCeが均一に分散し、固定化されたものである。これらの成分の内で、Tbは紫外線励起によって緑色蛍光を生じさせる発光中心となる元素である。Tbの含有量が少なすぎる場合には十分な蛍光強度を得難く、一方、Tbの含有量が多すぎる場合には、濃度消光により輝度が低下し、更に、ガラスが失透しやすいので好ましくない。Ceは、緑色発光の輝度を高くするための増感剤として作用するものであり、Ceの含有量が少なすぎる場合には十分な輝度を得ることができず、一方、Ce含有量が多すぎると発光色が青くなるという欠点がある。 The fluorescent glass is one in which Tb and Ce are uniformly dispersed and fixed in the above-described concentration range in a mother glass mainly composed of SiO 2 obtained by firing porous glass. Among these components, Tb is an element that becomes a light emission center that generates green fluorescence by ultraviolet excitation. When the Tb content is too low, it is difficult to obtain sufficient fluorescence intensity. On the other hand, when the Tb content is too high, the brightness decreases due to concentration quenching, and the glass tends to be devitrified. . Ce acts as a sensitizer for increasing the luminance of green light emission. If the Ce content is too low, sufficient luminance cannot be obtained, while the Ce content is too high. And the emission color is blue.
本発明の蛍光ガラスには、更に、必要に応じて、希釈元素を加えることができる。希釈元素としては、無色で蛍光を発せず、多孔質ガラス内に導入しやすいものであれば特に限定なく使用できる。例えば、Li, B, Na, Mg, Al, P, K, Ca, Zn, Ga, Ge, Rb, Sr, Y, Zr, Sn, Cs, Ba, La, Gd、Tl等の元素を一種単独又は二種以上混合して用いることができる。これらの希釈元素は、Tb元素同士が隣接することによる濃度消光を防ぎ、かつCeによる青色発光を抑える働きがあり、さらにCeによる励起波長の長波長化を助ける働きがある。このため、これらの希釈元素を加えることによって、Ceの含有量を低減することができる。 A dilution element can be further added to the fluorescent glass of the present invention as necessary. The diluting element can be used without particular limitation as long as it is colorless and does not emit fluorescence and can be easily introduced into the porous glass. For example, Li, B, Na, Mg, Al, P, K, Ca, Zn, Ga, Ge, Rb, Sr, Y, Zr, Sn, Cs, Ba, La, Gd, Tl, etc. Two or more kinds can be mixed and used. These diluting elements have functions of preventing concentration quenching due to adjacent Tb elements, suppressing blue light emission by Ce, and helping to increase the excitation wavelength by Ce. For this reason, the content of Ce can be reduced by adding these dilution elements.
希釈元素の含有量は、Tbの含有量の2倍モル程度以下とする。即ち、希釈元素の含有量は、Tbの含有量に対して、0〜2倍モル程度の範囲内とする。希釈元素の含有量がこの範囲を上回ると、ガラスが不透明になるので好ましくない。 The content of the diluting element is set to about 2 times or less the Tb content. That is, the content of the diluting element is in the range of about 0 to 2 moles relative to the Tb content. If the content of the dilution element exceeds this range, the glass becomes opaque, which is not preferable.
本発明の蛍光ガラスでは、上記した希釈元素の含有量とCeの含有量の合計量が、Tbの含有量の2倍モル以上であることが好ましく、2.5倍モル以上であることがより好ましい。即ち、希釈元素を含まない場合には、Ce含有量がTb含有量の2倍モル以上であればよく、希釈元素を含む場合には、希釈元素とCeの合計含有量がTb含有量の2倍モル以上であればよい。上記した条件を満足することによって、Tb元素同士が隣接することによる濃度消光を防ぐことができる。 In the fluorescent glass of the present invention, the total content of the above-described dilution element and Ce content is preferably 2 times mol or more, more preferably 2.5 times mol or more of the Tb content. preferable. That is, when the diluent element is not included, the Ce content may be at least twice as much as the Tb content. When the diluent element is included, the total content of the diluent element and Ce is 2 times the Tb content. What is necessary is just to be more than double mole. By satisfying the above conditions, concentration quenching due to the adjacent Tb elements can be prevented.
また、特に透明性の良好なガラスを得るためには、Ce含有量の2倍に、Tb含有量と添加元素の含有量を加えた値が、1.0以下であることが好ましい。 In order to obtain a glass having particularly good transparency, the value obtained by adding the Tb content and the content of the additive element to twice the Ce content is preferably 1.0 or less.
本発明の蛍光ガラスは、上記した濃度範囲で各元素を含むものであればよく、上記した成分以外に、多孔質ガラスの製法に応じて、Al、B等の元素が含まれていても良い。 The fluorescent glass of the present invention only needs to contain each element in the above-described concentration range, and in addition to the above-described components, elements such as Al and B may be contained depending on the production method of the porous glass. .
本発明の蛍光ガラスは、上記した濃度範囲で各元素を組み合わせて含有することによって、高輝度に緑色発光を生じるものとなる。また、本発明のガラスは、SiO2を高濃度で含むものであり、透明性が高く、しかも紫外線照射による欠陥が生じにくく、耐久性に優れた発光体であり、長期間安定に使用できる。 The fluorescent glass of the present invention emits green light with high luminance by containing each element in combination in the concentration range described above. In addition, the glass of the present invention contains SiO 2 at a high concentration, is highly transparent, is not susceptible to defects caused by ultraviolet irradiation, and has excellent durability and can be used stably for a long period of time.
本発明の蛍光ガラスは、紫外線励起によって高い強度で波長543nm程度の緑色蛍光を呈
するガラスであって、450nm程度以下の発光強度の低い、緑色純度の高いガラスとするこ
とができる。励起光としては、例えば、波長200〜380nm程度の広い波長範囲の紫外線を用いることができる。本発明の蛍光ガラスは、波長350nm程度以上の長波長紫外線、特に
、紫外LEDによる波長365nm〜380nm程度の紫外線を励起光とする場合にも、高輝度で緑色
発光を生じることが可能である点で優れた性能を有するものである。
The fluorescent glass of the present invention is a glass exhibiting green fluorescence having a high intensity and a wavelength of about 543 nm by ultraviolet excitation, and can be a glass having a low emission intensity of about 450 nm or less and a high green purity. As the excitation light, for example, ultraviolet rays having a wide wavelength range of about 200 to 380 nm can be used. The fluorescent glass of the present invention can emit green light with high brightness even when long wavelength ultraviolet light having a wavelength of about 350 nm or more, especially ultraviolet light having a wavelength of about 365 nm to 380 nm by an ultraviolet LED is used as excitation light. It has excellent performance.
上記した通り、本発明の蛍光ガラスは、波長350nm以上の長波長の紫外線によっても高
輝度に緑色発光するものであり、しかも紫外線による劣化の少ない耐久性に優れた蛍光ガラスである。よって、本発明の蛍光ガラスを固体発光素子である紫外LEDと組み合わせる
ことによって、長寿命な照明、ディスプレイデバイスを作製することができる。
As described above, the fluorescent glass of the present invention is a fluorescent glass that emits green light with high luminance even by ultraviolet rays having a long wavelength of 350 nm or more, and has excellent durability with little deterioration due to ultraviolet rays. Therefore, by combining the fluorescent glass of the present invention with an ultraviolet LED that is a solid state light emitting device, a long-life illumination and display device can be produced.
また、本発明の蛍光ガラスの内で、透明性の良好なものについては、は紫外線の非照射時には透明であるため、その特徴を生かして、例えば、夜間時のみ発光する透明な看板、フィールドシーケンシャルLCDのR,G、B切り替えバックライトなどに利用できる。更に、耐水性が高いため、照明光源として用いた場合は、屋外でも使用できるという利点がある。 Further, among the fluorescent glasses of the present invention, those having good transparency are transparent when not irradiated with ultraviolet rays. Therefore, taking advantage of this feature, for example, a transparent sign that emits light only at night, a field sequential It can be used for LCD R, G, B switching backlight. Furthermore, since it has high water resistance, there is an advantage that it can be used outdoors when used as an illumination light source.
更に、本発明の蛍光ガラスはTbの含有量が少ないために、従来の同輝度の蛍光ガラスと比較した場合に低価格になる。 Furthermore, since the fluorescent glass of the present invention has a low Tb content, the cost is lower when compared with a conventional fluorescent glass having the same brightness.
また、本発明の蛍光ガラスは、191nm〜351nmの紫外線で蛍光を発生することから、エキシマレーザー位置調整用としても使用可能である。特に、シリカを主成分とするガラスであるために、ArFエキシマレーザー照射による劣化が少ないという利点を有するものであ
る。
In addition, the fluorescent glass of the present invention generates fluorescence with ultraviolet rays of 191 nm to 351 nm, and therefore can be used for excimer laser position adjustment. In particular, since it is a glass mainly composed of silica, it has an advantage that it is less deteriorated by ArF excimer laser irradiation.
以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
実施例1
SiO2含有量99mol%、平均細孔径4nmの多孔質ガラス(10×10×2mm)を原料として用い、これを下記表1の本発明品1〜5の各項に記載されている水溶液中に25℃で5分間浸漬し、その後、該水溶液から取り出して、3時間かけて350℃まで昇温して乾燥
した。尚、表1に記載の各元素は、硝酸塩として添加した。
Example 1
Porous glass (10 × 10 × 2 mm) having an SiO 2 content of 99 mol% and an average pore diameter of 4 nm was used as a raw material, and this was used in the aqueous solution described in each item of the present invention products 1 to 5 in Table 1 below. It was immersed for 5 minutes at 25 ° C., then taken out of the aqueous solution, heated to 350 ° C. over 3 hours and dried. In addition, each element described in Table 1 was added as a nitrate.
その後、上記した方法で乾燥した多孔質ガラスをカーボン粉を入れた蓋付きアルミナ容器中で5時間かけて1000℃に昇温し、この温度で1時間保持した後、更に、1時間かけて1120℃まで昇温して1時間焼結してガラスを作製した。得られた各ガラス中の各元素の含有量を下記表1に示す。尚、残部は、Al2O3 0.4mol%及びNa2O 0.2mol%であった。 Thereafter, the porous glass dried by the above-described method was heated to 1000 ° C. in an alumina container with a lid containing carbon powder for 5 hours, held at this temperature for 1 hour, and then further 1120 over 1 hour. The glass was produced by heating to 0 ° C. and sintering for 1 hour. The content of each element in each obtained glass is shown in Table 1 below. The balance was Al 2 O 3 0.4 mol% and Na 2 O 0.2 mol%.
得られた各ガラスを波長365nmの蛍光ランプ(4W)の上におき、発光色及び透明性を目
視で観察した。この際、紫外線強度をUVメーターで測定すると、3.6mW/cm2であった。
Each obtained glass was placed on a fluorescent lamp (4 W) having a wavelength of 365 nm, and the emission color and transparency were visually observed. At this time, the ultraviolet intensity was measured with a UV meter and found to be 3.6 mW / cm 2 .
各ガラスについて、発光色、輝度及び透明性を下記表1に示す。 The emission color, brightness, and transparency of each glass are shown in Table 1 below.
上記した本発明品1〜5のガラスは、Ce濃度がTb濃度の2倍よりも多く、透明ないし半透明で輝度の高い緑色発光するガラスであった。尚、Tb含有量が0.1mol%を下回る本発明
品1及び2のガラスは、やや青みがかった緑色の発光色となった。
The glasses of the present invention products 1 to 5 described above were glasses that had a Ce concentration higher than twice the Tb concentration, were transparent to translucent and had high luminance, and emitted green light. In addition, the glass of the products 1 and 2 of the present invention having a Tb content of less than 0.1 mol% had a slightly bluish green emission color.
実施例2
SiO2含有量99mol%、平均細孔径4nmの多孔質ガラス(10×10×2mm)を原料として用い、これを下記表2及び3の本発明品6〜11及び比較品1〜4の各項に記載されている水溶液中に25℃で5〜20分間浸漬すること以外は、実施例1と同様にして、蛍光ガラスを作製した。
Example 2
Porous glass (10 × 10 × 2 mm) having a SiO 2 content of 99 mol% and an average pore diameter of 4 nm was used as a raw material, and this was used for each item of the present invention products 6 to 11 and comparative products 1 to 4 in Tables 2 and 3 below. A fluorescent glass was produced in the same manner as in Example 1 except that the glass was immersed in the aqueous solution described in 5 at 25 ° C. for 5 to 20 minutes.
得られた各ガラスを波長365nmの蛍光ランプ(4W)の上におき、輝度及び透明性を目視
で観察した。この際、紫外線強度をUVメーターで測定すると、3.6mW/cm2であった。
Each obtained glass was placed on a fluorescent lamp (4 W) having a wavelength of 365 nm, and the luminance and transparency were visually observed. At this time, the ultraviolet intensity was measured with a UV meter and found to be 3.6 mW / cm 2 .
更に、波長355nmの蛍光ランプで励起した場合と波長254nmの蛍光ランプで励起した場合について、発光強度を測定し、その強度比を求めた。 Further, the emission intensity was measured for the case of excitation with a fluorescent lamp with a wavelength of 355 nm and the case with excitation with a fluorescent lamp with a wavelength of 254 nm, and the intensity ratio was determined.
結果を下記表2及び表3に示す。 The results are shown in Tables 2 and 3 below.
以上の結果から明らかなように、本発明品6〜11のガラスは、いずれも透明ないし半透明で輝度の高い緑色発光するガラスであった。 As is clear from the above results, the glasses 6 to 11 of the present invention are all transparent or translucent and have high luminance and emit green light.
これに対して、Ce含有量がTb含有量より少ない比較品1〜3については、輝度が低く、かつ、励起スペクトルにおいて355nmでの発光強度が254nm励起での発光強度よりも低く、長波長紫外線による緑色発光の強度が低いことが判る。更に、Ce含有量がT含有量の2倍
よりも少なく、希釈元素を含有しない比較品4については、発光強度が低く、発光はCeによる青色が強くなった。
On the other hand, Comparative products 1 to 3 in which the Ce content is lower than the Tb content have low luminance, and the emission intensity at 355 nm in the excitation spectrum is lower than the emission intensity at 254 nm excitation. It can be seen that the intensity of green light emission due to is low. Further, the comparative product 4 having a Ce content less than twice the T content and containing no diluting element had a low emission intensity, and the emission of blue light due to Ce became strong.
尚、本発明品6〜8については、Ce含有量の2倍に、TbとGd含有量の値を加えた値が1.0以下であり、透過度の高いガラスとなった。 In addition, about this invention products 6-8, the value which added the value of Tb and Gd content to twice Ce content was 1.0 or less, and became glass with high transmittance.
更に、本発明品7のガラスについて、図1に発光波長543nmの蛍光の励起スペクトルを
示す。励起スペクトルのピークが350nm付近に存在し、365nm以上の波長による励起でも十分な蛍光強度を示すことが判る。
Further, for the glass of the product 7 of the present invention, FIG. 1 shows an excitation spectrum of fluorescence having an emission wavelength of 543 nm. It can be seen that the peak of the excitation spectrum exists in the vicinity of 350 nm, and that sufficient fluorescence intensity is exhibited even with excitation with a wavelength of 365 nm or more.
図2には、励起波長350nmでの発光スペクトルを示す。発光スペクトルのピークは、545nm付近に存在し、Ceによる400〜450nmの発光強度は低い値であった。 FIG. 2 shows an emission spectrum at an excitation wavelength of 350 nm. The peak of the emission spectrum was in the vicinity of 545 nm, and the emission intensity of 400 to 450 nm by Ce was a low value.
実施例3
SiO2含有量99mol%、平均細孔径4nmの多孔質ガラス(80×80×2mm)を原料
として用い、これを、Tb(NO3)3・5H2Oを0.1mol/L、Gd(NO3)3・6H2Oを0.1mol/L、及びCe(NO3)3・6H2Oを0.3mol/L含有する水溶液中に25℃で5分間浸漬し、その後、該水溶液から取り出して、3時間かけて空気中で350℃まで昇温して乾燥した。
Example 3
Porous glass (80 × 80 × 2 mm) having an SiO 2 content of 99 mol% and an average pore diameter of 4 nm was used as a raw material, and this was made from 0.1 mol / L of Tb (NO 3 ) 3 .5H 2 O, Gd (NO 3 ) It was immersed in an aqueous solution containing 0.1 mol / L of 3 · 6H 2 O and 0.3 mol / L of Ce (NO 3 ) 3 · 6H 2 O at 25 ° C. for 5 minutes. The temperature was raised to 350 ° C. in the air over time, and drying was performed.
その後、カーボン粉を入れたふた付きアルミナ容器中に、100×100×2mmの二枚のSSA−Sアルミナ板の間に乾燥後の該多孔質ガラス板を挟んだものを入れ、5時間かけて1000℃に昇温し、この温度で1時間保持した後、更に、1時間かけて1120℃まで昇温して1時間焼結した。 Thereafter, in a alumina container with a lid containing carbon powder, a sandwiched porous glass plate was placed between two 100 × 100 × 2 mm SSA-S alumina plates and 1000 ° C. over 5 hours. The temperature was raised to 1,120 ° C. for 1 hour, and further heated to 1120 ° C. over 1 hour and sintered for 1 hour.
上記した方法によって、反りのない緑色蛍光ガラス板(本発明品12)が得られた。その組成は、SiO298.7mol%、Al2O3 0.3mol%、Na2O 0.3mol%、TbO1.50.15mol%、CeO2 0.40mol%、GdO1.5 0.15mol%であった。得られたガラス板は無色であり、わずかな散乱がみられ、厚さ1mmあたりの可視光透過率は425nmにおいて70%、600nmにおいて87%であった。上記の365nmUVランプ上での輝度は600cd/m2であった。 By the above-described method, a green fluorescent glass plate (invention product 12) without warping was obtained. Its composition, SiO 2 98.7mol%, Al 2 O 3 0.3mol%, Na 2 O 0.3mol%, TbO 1.5 0.15mol%, CeO 2 0.40mol%, was GdO 1.5 0.15 mol%. The obtained glass plate was colorless and showed slight scattering, and the visible light transmittance per 1 mm thickness was 70% at 425 nm and 87% at 600 nm. The luminance on the 365 nm UV lamp was 600 cd / m 2 .
実施例4
SiO2含有量99mol%、平均細孔径4nmの多孔質ガラス(10×10×1.5mm)を原料として用い、これをTb(NO3)3・5H2Oを0.1mol/L、Ce(NO3)3・6H2Oを0.3mol/L、及び下記表4及び5に示す希釈元素の硝酸塩を0.1mol/L含有する水溶液中に20℃で50分間浸漬し、その後、該水溶液から取り出して、空気中で3時間かけて350℃まで昇温して乾燥し
た。
Example 4
Porous glass (10 × 10 × 1.5 mm) having an SiO 2 content of 99 mol% and an average pore diameter of 4 nm was used as a raw material, and this was made from 0.1 mol / L of Tb (NO 3 ) 3 .5H 2 O, Ce (NO 3 ) Immerse it in an aqueous solution containing 0.3 mol / L of 3 · 6H 2 O and 0.1 mol / L of the nitrate of the dilution element shown in Tables 4 and 5 below at 20 ° C., and then remove it from the aqueous solution. Then, the temperature was raised to 350 ° C. in the air over 3 hours, and drying was performed.
その後、カーボン粉を入れたふた付きアルミナるつぼ中で5時間かけて1000℃に昇温し、この温度で1時間保持した後、更に、1時間かけて1120℃まで昇温して1時間焼結してガラスを作製した。得られた各ガラス中の各元素の含有量を下記表4及び5に示す。 Thereafter, the temperature was raised to 1000 ° C. over 5 hours in an alumina crucible with a carbon powder and held at this temperature for 1 hour, and then heated to 1120 ° C. over 1 hour and sintered for 1 hour. Glass was produced. The contents of each element in each obtained glass are shown in Tables 4 and 5 below.
得られた各ガラスを波長365nmの蛍光ランプ(4W)の上におき、輝度を測定した。各ガ
ラスは、いずれも高輝度の緑色発色を示した。輝度の測定結果を下記表4及び5に示す。
Each glass obtained was placed on a fluorescent lamp (4 W) having a wavelength of 365 nm, and the luminance was measured. Each glass showed a green color with high brightness. The measurement results of luminance are shown in Tables 4 and 5 below.
Claims (7)
載の蛍光ガラス。 The fluorescent glass according to any one of claims 1 to 3, which emits green light with high brightness when excited by ultraviolet rays having a wavelength of 350 nm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008169741A JP5207368B2 (en) | 2008-06-30 | 2008-06-30 | Green fluorescent glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008169741A JP5207368B2 (en) | 2008-06-30 | 2008-06-30 | Green fluorescent glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010006664A true JP2010006664A (en) | 2010-01-14 |
JP5207368B2 JP5207368B2 (en) | 2013-06-12 |
Family
ID=41587581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008169741A Active JP5207368B2 (en) | 2008-06-30 | 2008-06-30 | Green fluorescent glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5207368B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102452793A (en) * | 2010-10-19 | 2012-05-16 | 同济大学 | High-luminous-intensity terbium-activated silicate glass and preparation method thereof |
CN102476918A (en) * | 2010-11-30 | 2012-05-30 | 海洋王照明科技股份有限公司 | High-silica blue luminescent glass and preparation method thereof |
CN102476917A (en) * | 2010-11-30 | 2012-05-30 | 海洋王照明科技股份有限公司 | Vycor luminescent glass and its preparation method |
US20130105734A1 (en) * | 2010-07-14 | 2013-05-02 | Mingjie Zhou | Rare earth ions doped alkali metal silicate luminescent glass and the preparation method thereof |
WO2014010211A1 (en) * | 2012-07-10 | 2014-01-16 | 株式会社小糸製作所 | Light emitting module |
KR20170008746A (en) * | 2014-05-13 | 2017-01-24 | 이보클라 비바덴트 아게 | Method for producing lithium silicate glasses and lithium silicate glass ceramics |
WO2019073784A1 (en) * | 2017-10-12 | 2019-04-18 | Agc株式会社 | Spherical phosphor and manufacturing method therefor |
CN112499945A (en) * | 2020-12-26 | 2021-03-16 | 连云港福东正佑照明电器有限公司 | Production method of low-ultraviolet-transmission high-luminous-efficiency quartz tube |
WO2021192131A1 (en) * | 2020-03-26 | 2021-09-30 | オーエスジー株式会社 | Rolling die and method for manufacturing same |
CN115611514A (en) * | 2022-11-03 | 2023-01-17 | 哈尔滨工程大学 | Ce 3+ Gallium-boron-gadolinium-doped scintillation glass and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004224686A (en) * | 2002-11-29 | 2004-08-12 | Japan Science & Technology Agency | Method of producing luminescent glass and luminescent glass and utilization of luminescent glass |
JP2005142037A (en) * | 2003-11-07 | 2005-06-02 | National Institute Of Advanced Industrial & Technology | Light emitting apparatus |
JP2007091533A (en) * | 2005-09-29 | 2007-04-12 | Matsushita Electric Ind Co Ltd | Glass composition for fluorescent lamp and fluorescent lamp |
JP2009062246A (en) * | 2007-09-10 | 2009-03-26 | National Institute Of Advanced Industrial & Technology | Green fluorescent glass |
-
2008
- 2008-06-30 JP JP2008169741A patent/JP5207368B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004224686A (en) * | 2002-11-29 | 2004-08-12 | Japan Science & Technology Agency | Method of producing luminescent glass and luminescent glass and utilization of luminescent glass |
JP2005142037A (en) * | 2003-11-07 | 2005-06-02 | National Institute Of Advanced Industrial & Technology | Light emitting apparatus |
JP2007091533A (en) * | 2005-09-29 | 2007-04-12 | Matsushita Electric Ind Co Ltd | Glass composition for fluorescent lamp and fluorescent lamp |
JP2009062246A (en) * | 2007-09-10 | 2009-03-26 | National Institute Of Advanced Industrial & Technology | Green fluorescent glass |
Non-Patent Citations (1)
Title |
---|
JPN6012059607; W. Liu et al.: 'Preparation and photoluminescence properties of Vycor glasses impregnated with Tb3+ and Ce3+(or Gd3+' Mater. Chem. Phys. Vol. 109, 20080615, pp. 257-261, Elsevier Science B. V. * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9156733B2 (en) * | 2010-07-14 | 2015-10-13 | Ocean's King Lighting Science & Technology Co., Ltd. | Rare earth ions doped alkali metal silicate luminescent glass and the preparation method thereof |
EP2594537A4 (en) * | 2010-07-14 | 2015-10-28 | Oceans King Lighting Science | Rare earth ions doped alkali metal silicate luminescent glass and the preparation method thereof |
JP2013538170A (en) * | 2010-07-14 | 2013-10-10 | ▲海▼洋王照明科技股▲ふん▼有限公司 | Alkali metal silicate luminescent glass doped with rare earth ions and method for preparing the same |
US20130105734A1 (en) * | 2010-07-14 | 2013-05-02 | Mingjie Zhou | Rare earth ions doped alkali metal silicate luminescent glass and the preparation method thereof |
CN102452793A (en) * | 2010-10-19 | 2012-05-16 | 同济大学 | High-luminous-intensity terbium-activated silicate glass and preparation method thereof |
CN102476917A (en) * | 2010-11-30 | 2012-05-30 | 海洋王照明科技股份有限公司 | Vycor luminescent glass and its preparation method |
CN102476918A (en) * | 2010-11-30 | 2012-05-30 | 海洋王照明科技股份有限公司 | High-silica blue luminescent glass and preparation method thereof |
CN102476917B (en) * | 2010-11-30 | 2014-05-21 | 海洋王照明科技股份有限公司 | Vycor luminescent glass and preparation method thereof |
CN102476918B (en) * | 2010-11-30 | 2014-07-23 | 海洋王照明科技股份有限公司 | High-silica blue luminescent glass and preparation method thereof |
WO2014010211A1 (en) * | 2012-07-10 | 2014-01-16 | 株式会社小糸製作所 | Light emitting module |
JP2017520498A (en) * | 2014-05-13 | 2017-07-27 | イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG | Method for producing lithium silicate glass and lithium silicate glass ceramic |
US10737972B2 (en) | 2014-05-13 | 2020-08-11 | Ivoclar Vivadent Ag | Method for the preparation of lithium silicate glasses and lithium silicate glass ceramics |
KR102287782B1 (en) * | 2014-05-13 | 2021-08-09 | 이보클라 비바덴트 아게 | Method for producing lithium silicate glasses and lithium silicate glass ceramics |
KR20170008746A (en) * | 2014-05-13 | 2017-01-24 | 이보클라 비바덴트 아게 | Method for producing lithium silicate glasses and lithium silicate glass ceramics |
WO2019073784A1 (en) * | 2017-10-12 | 2019-04-18 | Agc株式会社 | Spherical phosphor and manufacturing method therefor |
WO2021192131A1 (en) * | 2020-03-26 | 2021-09-30 | オーエスジー株式会社 | Rolling die and method for manufacturing same |
CN112499945A (en) * | 2020-12-26 | 2021-03-16 | 连云港福东正佑照明电器有限公司 | Production method of low-ultraviolet-transmission high-luminous-efficiency quartz tube |
CN115611514A (en) * | 2022-11-03 | 2023-01-17 | 哈尔滨工程大学 | Ce 3+ Gallium-boron-gadolinium-doped scintillation glass and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5207368B2 (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5207368B2 (en) | Green fluorescent glass | |
JP4873361B2 (en) | Luminescent color conversion member | |
JP6311715B2 (en) | Phosphor-dispersed glass and method for producing the same | |
JP5939463B2 (en) | Glass and wavelength conversion member using the glass | |
JP5696965B2 (en) | Rare earth ion doped silicate luminescent glass and its preparation method | |
WO2004050576A1 (en) | Luminescent glass | |
Masai et al. | Emission property of Sn2+-doped ZnO–P2O5 glass | |
WO2012006779A1 (en) | Rare earth ions doped alkali metal silicate luminescent glass and the preparation method thereof | |
JP2009286681A (en) | Luminescent glass and luminescent crystallized glass | |
CN101691279B (en) | Method for manufacturing vycor glass emitting green light | |
US8936732B2 (en) | White light emitting glass-ceramic and production method thereof | |
JP5131841B2 (en) | Red fluorescent glass | |
JP2009062246A (en) | Green fluorescent glass | |
JP3890418B2 (en) | Luminous equipment | |
JP5460923B2 (en) | Transparent glass ceramic that emits white light and method for preparing the same | |
TWI622560B (en) | borate glass, method for manufacturing the same and applications thereof | |
CN113387567B (en) | Red fluorescent glass and preparation method thereof | |
JP2014133682A (en) | Luminescent glass, light-emitting device equipped with the luminescent glass and manufacturing method of luminescent glass | |
CN102320746B (en) | Method for manufacturing high-silica glass emitting white light | |
CN112340982A (en) | Composite glass material and preparation and application thereof | |
Maia et al. | Amorphous and crystalline borate nanocompounds doped with europium ions | |
WO2014014070A1 (en) | Method for manufacturing light-emitting glass thin film | |
JP2019163208A (en) | Raw material powder for wavelength conversion member | |
JP6830751B2 (en) | Wavelength conversion member and light emitting device | |
JP4982812B2 (en) | Phosphor for vacuum ultraviolet light excitation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130214 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5207368 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |