TWI622560B - borate glass, method for manufacturing the same and applications thereof - Google Patents

borate glass, method for manufacturing the same and applications thereof Download PDF

Info

Publication number
TWI622560B
TWI622560B TW105102760A TW105102760A TWI622560B TW I622560 B TWI622560 B TW I622560B TW 105102760 A TW105102760 A TW 105102760A TW 105102760 A TW105102760 A TW 105102760A TW I622560 B TWI622560 B TW I622560B
Authority
TW
Taiwan
Prior art keywords
glass
mole
moles
fluorescent
heating
Prior art date
Application number
TW105102760A
Other languages
Chinese (zh)
Other versions
TW201726563A (en
Inventor
吳芳賓
廖晉宏
楊希文
鍾沅潤
張之辰
劉偉仁
Original Assignee
中原大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中原大學 filed Critical 中原大學
Priority to TW105102760A priority Critical patent/TWI622560B/en
Publication of TW201726563A publication Critical patent/TW201726563A/en
Application granted granted Critical
Publication of TWI622560B publication Critical patent/TWI622560B/en

Links

Abstract

在此揭示一種硼酸鹽玻璃及其製備方法。根據某些實施例,藉由混合8-10莫耳份的B2O3、1莫耳份的SiO2、2-8莫耳份的Bi2O3和1-8莫耳份的ZnO得到一混合物;再以梯度加熱方式將混合物加熱至1200℃,之後進行退火處理而製得所述硼酸鹽玻璃。本申請亦揭示了含所述硼酸鹽玻璃成分的螢光玻璃材料及應用此螢光玻璃材料的發光二極體封裝結構。 A borate glass and a method of preparing the same are disclosed herein. According to certain embodiments, by mixing 8-10 mole parts of B 2 O 3 , 1 mole of SiO 2 , 2-8 moles of Bi 2 O 3 and 1-8 moles of ZnO A mixture; the mixture was heated to 1200 ° C in a gradient heating manner, followed by annealing to obtain the borate glass. The present application also discloses a fluorescent glass material containing the borate glass component and a light emitting diode package structure using the same.

Description

硼酸鹽玻璃及其製備方法與應用 Borate glass and preparation method and application thereof

本發明是有關於一種硼酸鹽玻璃材料及其方法,且特別是有關於一種應用於LED封裝領域的硼酸鹽玻璃材料及其製備方法。 The invention relates to a borate glass material and a method thereof, and in particular to a borate glass material applied in the field of LED packaging and a preparation method thereof.

發光二極體(Light emitting diodes;LEDs)具有「節能」與「環保」雙重特性,被喻為第四代照明及綠色光源,將會是取代白熾燈與螢光燈的革命性光源。 Light-emitting diodes (LEDs) have the dual characteristics of "energy saving" and "environmental protection". They are known as the fourth-generation lighting and green light source, and will be the revolutionary light source to replace incandescent lamps and fluorescent lamps.

傳統的LED封裝主要是以螢光粉結合環氧樹脂(epoxy resin)或矽氧樹脂(silicone)等封裝材料來製作;但經過長時間使用後,封裝材料容易產生老化或黃化現象,進而影響其發光效率。 玻璃材料相較於高分子材料具有較佳的耐熱溫度與光學特性,因此已有部分研究朝向利用螢光粉結合無機玻璃材料來進行LED封裝。然而,利用玻璃材料進行封裝時,封裝製程所需的溫度比傳統使用環氧樹脂及矽氧樹脂的製程來得高,然而,許多螢光粉在高溫下卻容易產生質變,增添了利用玻璃材料進行LED封裝的難度。 The traditional LED package is mainly made of fluorescent powder combined with epoxy resin or silicone resin. However, after long-term use, the packaging material is prone to aging or yellowing, which in turn affects Its luminous efficiency. Glass materials have better heat-resistant temperature and optical properties than polymer materials. Therefore, some studies have been conducted on LED packaging using phosphor powder combined with inorganic glass materials. However, when packaging with a glass material, the temperature required for the packaging process is higher than that of the conventional epoxy resin and epoxy resin. However, many phosphor powders are prone to mass change at high temperatures, and the use of glass materials is added. The difficulty of LED packaging.

目前已有多專利申請公開案或公告案揭示各種硼酸鹽玻璃材料及螢光玻璃材料。舉例而言,美國專利公告案US 7879258號專利揭示利用黃色螢光粉(YAG)及氧化鋁製成陶瓷螢光玻璃。美國專利公告案US 7820074號揭示一種新穎的螢光玻璃材料,玻璃成分以下列公式表示:「a(M' 2)O-b(M"O)-c(M'" 2O3)-d(M""O2)-e(M'"" 2O5)」,其中M'可以是Li、Na或K;M"可以是Mg、Ca、Sr、Ba、Cu、Zn、Pb或Be;M'"可以是B、Al、Ga、In、Fe、Y、La、Sc或Bi;M""可以是Si、Ti或Ge;M'""可以是P、Ta或V;且其中a、b、c、d的數值範圍是0≦a ≦0.6、0≦b≦0.6、0≦c≦0.6、0≦d≦0.95和0≦e≦0.2,其中至少c和d非0且數值相等。國際專利公開案WO 2011/013505號揭示一種螢光玻璃,其組成為P2O5-BaO-R2O,其中R可以是Li、Na或K、B2O3-La2O3-R2O-R'O,其中R可以是Li、Na或K、R'可以是Mg、Ca、Sr、Ba或Zn;一SiO2-B2O3-R2O-Al2O3其中R可以是Li、Na或K。美國專利公開案2011/006329號揭示一種螢光玻璃粉末其包含0-10mol% Al2O3、0-10mol% SiO2、0-10mol% Li2O、0-10mol% Na2O、0-10mol% K2O、0-10mol% Li2O+Na2O+K2O、0-10mol% MgO、0-10mol% CaO、0-10mol% SrO、0-10mol% BaO,以及0-10mol% MgO+CaO+SrO+BaO。其他如:美國專利公開案US 2008/030976號、美國專利公開案US 2009/119897號、美國專利公開案US 2010/263723號、國際專利公開案WO 2007/083907號、國際專利公開案WO 2009/104356號、歐洲專利公開案EP 2036965 號、韓國專利公開案KR 100879765號、日本專利公開案JP 2008/303527號、日本專利公開案JP 2008/208380號、日本專利公開案JP 2010/229002號、中國專利公開案CN 101328020號、中國專利公開案CN 101139169號等案,亦揭示了此類技術內容。 Various patent application publications or announcements have been disclosed to disclose various borate glass materials and fluorescent glass materials. For example, U.S. Patent No. 7,879,258 discloses the use of yellow phosphor powder (YAG) and alumina to make ceramic phosphor glass. U.S. Patent Publication No. 7820074 discloses a novel fluorescent glass material in which the glass composition is expressed by the following formula: "a(M ' 2 )Ob(M " O)-c(M '" 2 O 3 )-d(M "" O 2 )-e(M '"" 2 O 5 )", where M ' can be Li, Na or K; M " can be Mg, Ca, Sr, Ba, Cu, Zn, Pb or Be; M '" may be B, Al, Ga, In, Fe, Y, La, Sc or Bi; M "" may be Si, Ti or Ge; M '"" may be P, Ta or V; and wherein a, b The numerical ranges of c, d are 0 ≦ a ≦ 0.6, 0 ≦ b ≦ 0.6, 0 ≦ c ≦ 0.6, 0 ≦ d ≦ 0.95, and 0 ≦ e ≦ 0.2, wherein at least c and d are non-zero and the values are equal. International Patent Publication No. WO 2011/013505 discloses a fluorescent glass having a composition of P 2 O 5 -BaO-R 2 O, wherein R may be Li, Na or K, B 2 O 3 -La 2 O 3 -R 2 O-R'O, wherein R may be Li, Na or K, R' may be Mg, Ca, Sr, Ba or Zn; - SiO 2 -B 2 O 3 -R 2 O-Al 2 O 3 wherein R It can be Li, Na or K. U.S. Patent Publication No. 2011/006329 discloses a glass powder containing fluorescent 0-10mol% Al 2 O 3, 0-10mol % SiO 2, 0-10mol% Li 2 O, 0-10mol% Na 2 O, 0- 10 mol% K 2 O, 0-10 mol% Li 2 O+Na 2 O+K 2 O, 0-10 mol% MgO, 0-10 mol% CaO, 0-10 mol% SrO, 0-10 mol% BaO, and 0-10 mol % MgO+CaO+SrO+BaO. Others are: US Patent Publication No. US 2008/030976, US Patent Publication No. US 2009/119897, US Patent Publication No. US 2010/263723, International Patent Publication No. WO 2007/083907, International Patent Publication WO 2009/ No. 104356, European Patent Publication No. EP2036965, Korean Patent Publication No. KR 100879765, Japanese Patent Publication No. JP 2008/303527, Japanese Patent Publication No. JP 2008/208380, Japanese Patent Publication No. JP 2010/229002, Such technical contents are also disclosed in the case of the patent publication CN 101328020 and the Chinese patent publication CN 101139169.

另外,日本專利公開案JP 2010/280797號揭示了利用螢光粉和玻璃粉混合熱壓的製程。美國專利公開案US 2010/301367號揭示製備螢光陶瓷玻璃的方法,其係將YAG螢光粉和陶瓷混合,加熱至800℃持溫1小時後,再以1600℃高溫燒結。國際專利公開案WO 2010/085480號揭示一種發光裝置,其中螢光材料披覆層是選自於金屬、玻璃、聚合物、聚碳酸酯、丙烯酸、矽、環氧樹脂(epoxy)和PTFE所組成的群組中。國際專利公開案WO 2010/024981號揭示以溶膠凝膠法利用YAG和陶瓷基質合成玻璃,其中陶瓷基質包含鋁、矽、氧化釔、二氧化鋯和氧化鉿;接著,於低溫600℃下進行乾燥,避免破壞螢 光顆粒。美國專利公開案US 2010/207512號揭示利用長晶法製備YAG陶瓷螢光體。中國專利公開案CN 101471417號的製程是將玻璃粉和螢光體粉末混合以熱壓方式製備含螢光體玻璃板。其他關於硼酸鹽玻璃或螢光玻璃材料製程的相關專利如日本專利公開案JP 2010/0083704號以及美國專利公開案US 2010/301367號等。 In addition, Japanese Patent Publication No. 2010/280797 discloses a process of mixing hot pressing using phosphor powder and glass frit. U.S. Patent Publication No. 2010/301367 discloses a method of preparing a phosphor ceramic glass by mixing a YAG phosphor powder and a ceramic, heating to 800 ° C for 1 hour, and then sintering at a high temperature of 1600 ° C. International Patent Publication No. WO 2010/085480 discloses a light-emitting device in which a coating layer of a fluorescent material is selected from the group consisting of metal, glass, polymer, polycarbonate, acrylic, enamel, epoxy and PTFE. In the group. International Patent Publication No. WO 2010/024981 discloses the use of YAG and ceramic matrix synthesis glass by a sol-gel method, wherein the ceramic matrix comprises aluminum, lanthanum, cerium oxide, zirconium dioxide and cerium oxide; and then drying at a low temperature of 600 ° C To avoid destroying firefly Light particles. U.S. Patent Publication No. 2010/207512 discloses the preparation of YAG ceramic phosphors by the long crystal method. The process of Chinese Patent Publication No. CN 101471417 is to prepare a phosphor-containing glass plate by mixing glass frit and phosphor powder by hot pressing. Other patents relating to the process of borate glass or fluorescent glass materials are disclosed in Japanese Patent Publication No. 2010/0083704 and U.S. Patent Publication No. US 2010/301367.

先前技術利用各種不同的材料或製程製備硼酸鹽玻璃或螢光玻璃材料,以改善光學特性和溫度特性但仍有些許限制,無法有效提升LED的發光效率。有鑑於此,本領域亟需一種改良的LED封裝用玻璃材料,其具有較低的特性溫度和較高的光學性能,因此可改善先前技術的不足。 The prior art utilizes a variety of different materials or processes to prepare borate glass or phosphor glass materials to improve optical and temperature characteristics but still has some limitations that do not effectively increase the luminous efficiency of the LED. In view of the above, there is a need in the art for an improved glass material for LED packaging which has a lower characteristic temperature and higher optical performance, thereby improving the deficiencies of the prior art.

發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意 並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。 SUMMARY OF THE INVENTION The Summary of the Disclosure is intended to provide a basic understanding of the present disclosure. This summary is not a complete overview of the disclosure and its intention The important/critical elements of the embodiments of the invention are not pointed out or the scope of the invention is defined.

為解決上述問題,本揭示內容提出一種兼具低特性溫度及高光學性質之硼酸鹽玻璃,所述玻璃藉由添加功能性元素(如,鉍、鋅、鈉、鉀或其組合),能有效地將材料的玻璃轉換溫度(Tg)和將玻璃軟化溫度(Td)分別降低到約500℃以下以及約530℃以下;在光學性質方面,所得玻璃的折射率達到約1.8以上,且於可見光波段(即,波長約390至780nm)下的穿透率可達70%以上。由於此處提出的玻璃材料具有上述理想特性,非常適用於LED裝置的封裝。 In order to solve the above problems, the present disclosure proposes a borate glass having both low characteristic temperature and high optical properties, which is effective by adding a functional element such as bismuth, zinc, sodium, potassium or a combination thereof. The glass transition temperature (Tg) of the material and the glass softening temperature (Td) are respectively reduced to below about 500 ° C and below about 530 ° C; in terms of optical properties, the refractive index of the obtained glass reaches about 1.8 or more, and in the visible light band. (ie, a wavelength of about 390 to 780 nm) can achieve a transmittance of more than 70%. Since the glass material proposed herein has the above desirable characteristics, it is very suitable for the packaging of LED devices.

本發明一態樣是有關於製備所述硼酸鹽玻璃的方法,依據本發明方法的製備步驟,在特定條件下可使所製得的硼酸鹽玻璃具有上述低特性溫度及高光學性質。本發明方法,包含:(a)混合8-10莫耳份的B2O3、1莫耳份的SiO2、2-8莫耳份的Bi2O3和1-8莫耳份的ZnO,以得到一混合物; (b)以梯度加熱方式將該混合物加熱至1200℃並持續1小時進行熔融;以及(c)退火處理步驟(b)之產物,以形成所述的硼酸鹽玻璃。 One aspect of the present invention is directed to a method of preparing the borate glass which, in accordance with the preparation steps of the method of the present invention, provides the borate glass having the above-described low characteristic temperature and high optical properties under specific conditions. The method of the invention comprises: (a) mixing 8-10 mole parts of B 2 O 3 , 1 mole of SiO 2 , 2-8 moles of Bi 2 O 3 and 1-8 moles of ZnO To obtain a mixture; (b) heating the mixture to 1200 ° C in a gradient heating manner for 1 hour to melt; and (c) annealing the product of the step (b) to form the borate glass.

在一具體實施方式中,步驟(b)所述梯度加熱是以每分鐘10℃的升溫速率加熱。 In a specific embodiment, the gradient heating of step (b) is heated at a temperature increase rate of 10 ° C per minute.

依據本發明一特定實施方式,步驟(a)中各材料的莫耳份為9莫耳份的B2O3、1莫耳份的SiO2、3-7莫耳份的Bi2O3和3-7莫耳份的ZnO。 According to a particular embodiment of the invention, the molar content of each material in step (a) is 9 moles of B 2 O 3 , 1 mole of SiO 2 , 3-7 moles of Bi 2 O 3 and 3-7 moles of ZnO.

依據本發明另一特定實施方式,步驟(a)中的材料更包含0.2-1莫耳份的Na2O和0.2-1莫耳份的K2O。 According to another particular embodiment of the invention, the material in step (a) further comprises from 0.2 to 1 part by mole of Na 2 O and from 0.2 to 1 part by mole of K 2 O.

在一具體實施方式中,步驟(a)中各材料的莫耳份為9莫耳份的B2O3、1莫耳份的SiO2、7莫耳份的Bi2O3和1-3莫耳份的ZnO、0.2-1莫耳份的Na2O和0.2-1莫耳份的K2O。 In a specific embodiment, the molar content of each material in step (a) is 9 moles of B 2 O 3 , 1 mole of SiO 2 , 7 moles of Bi 2 O 3 and 1-3 Molar ZnO, 0.2-1 moles of Na 2 O and 0.2-1 moles of K 2 O.

本發明另一態樣是關於一種硼酸鹽玻璃,其係由上述任一實施方式所述的製備方法製 成,藉以使得所製得的硼酸鹽玻璃具有以下特性:玻璃轉換溫度(Tg)低於約500℃、玻璃軟化溫度(Td)低於約530℃、折射率至少約1.8且可見光穿透率至少約70%以上。 Another aspect of the present invention relates to a borate glass produced by the production method according to any of the above embodiments, whereby the borate glass obtained has the following characteristics: low glass transition temperature (T g ) At about 500 ° C, the glass softening temperature (T d ) is less than about 530 ° C, the refractive index is at least about 1.8, and the visible light transmittance is at least about 70%.

本發明又一態樣是關於一種LED封裝用的螢光玻璃材料。根據本發明多種實施方式,上述螢光玻璃材料包含8-20重量份的玻璃粉末,以及1重量份的螢光粉末,其中所述的玻璃粉末是將上述的硼酸鹽玻璃磨成粉末所製得。 Still another aspect of the present invention is directed to a fluorescent glass material for LED packaging. According to various embodiments of the present invention, the above fluorescent glass material comprises 8-20 parts by weight of a glass powder, and 1 part by weight of a fluorescent powder, wherein the glass powder is obtained by grinding the above borate glass into a powder. .

本發明再一實施態樣是關於一種發光二極體封裝結構。根據多種實施方式,此一發光二極體封裝結構包含一基板、一發光二極體晶片和一LED封裝螢光玻璃。所述發光二極體晶片設於基板上且有一出光面。LED封裝螢光玻璃設於基板上並至少包覆發光二極體晶片的出光面,其中LED封裝螢光玻璃係由上述的螢光玻璃材料經一加熱製程所形成。 Yet another embodiment of the present invention is directed to a light emitting diode package structure. According to various embodiments, the LED package structure comprises a substrate, a light emitting diode chip and an LED package fluorescent glass. The light emitting diode chip is disposed on the substrate and has a light emitting surface. The LED package fluorescent glass is disposed on the substrate and covers at least the light emitting surface of the LED chip, wherein the LED package fluorescent glass is formed by the above-mentioned fluorescent glass material through a heating process.

依據本發明一實施方式,所述加熱製程包含將上述的螢光玻璃材料加熱至220-550℃。 在一具體實施例中,所述加熱製程包含將該螢光玻璃材料以梯度加熱方式加熱至250-350℃,並持續至少25分鐘,再加熱至480-540℃,並持續至少200分鐘。 According to an embodiment of the invention, the heating process comprises heating the fluorescent glass material described above to 220-550 °C. In a specific embodiment, the heating process comprises heating the fluorescent glass material to a temperature of 250-350 ° C in a gradient heating manner for at least 25 minutes, and then heating to 480-540 ° C for at least 200 minutes.

在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。 The basic spirit and other objects of the present invention, as well as the technical means and implementations of the present invention, will be readily apparent to those skilled in the art of the invention.

為讓本發明的上述與其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖為依據本發明一實施方式所示之硼酸鹽玻璃穿透率分析的曲線圖;第2A、2B圖為依據本發明另一實施方式所示之螢光玻璃片A(圖中以LH-5%表示)以及螢光玻璃片B(圖中以LH-10%表示)利用掃描式顯微鏡在低倍率下觀察到的影像; 第3圖為依據本發明又一實施方式所示之螢光玻璃片A(圖中以LH-5%表示)、螢光玻璃片B(圖中以LH-10%表示)和YAG之變溫放光光譜比較圖;第4A圖和第4B圖分別為螢光玻璃片A和螢光玻璃片B經由藍光晶片激發所拍攝的影像;以及第5A圖和第5B圖分別為螢光玻璃片A和螢光玻璃片B以CIE色度軟體分析的影像。 In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the description of the drawings is as follows: FIG. 1 is an analysis of the penetration rate of borate glass according to an embodiment of the present invention. 2A and 2B are fluorescent glass sheets A (indicated by LH-5% in the figure) and fluorescent glass sheets B (indicated by LH-10% in the figure) according to another embodiment of the present invention. An image observed at a low magnification using a scanning microscope; Fig. 3 is a view showing a fluorescent glass sheet A (indicated by LH-5% in the figure), a fluorescent glass sheet B (indicated by LH-10% in the figure), and a temperature change of YAG according to still another embodiment of the present invention. Optical spectrum comparison chart; 4A and 4B are images taken by the fluorescent glass sheet A and the fluorescent glass sheet B respectively excited by the blue light wafer; and 5A and 5B are respectively the fluorescent glass sheet A and Fluorescent glass sheet B is an image analyzed by CIE chromaticity software.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。 The description of the embodiments of the present invention is intended to be illustrative and not restrictive. The features of various specific embodiments, as well as the method steps and sequences thereof, are constructed and manipulated in the embodiments. However, other specific embodiments may be utilized to achieve the same or equivalent function and sequence of steps.

雖然用以界定本發明較廣範圍的數值範圍與參數皆是約略的數值,此處已盡可能精確 地呈現具體實施例中的相關數值。然而,任何數值本質上不可避免地含有因個別測試方法所致的標準偏差。在此處,「約」通常係指實際數值在一特定數值或範圍的正負10%、5%、1%或0.5%之內。或者是,「約」一詞代表實際數值落在平均值的可接受標準誤差之內,視本發明所屬技術領域中具有通常知識者的考量而定。除了實驗例之外,或除非另有明確的說明,當可理解此處所用的所有範圍、數量、數值與百分比(例如用以描述材料用量、時間長短、溫度、操作條件、數量比例及其他相似者)均經過「約」的修飾。因此,除非另有相反的說明,本說明書與附隨申請專利範圍所揭示的數值參數皆為約略的數值,且可視需求而更動。至少應將這些數值參數理解為所指出的有效位數與套用一般進位法所得到的數值。在此處,將數值範圍表示成由一端點至另一段點或介於二端點之間;除非另有說明,此處所述的數值範圍皆包含端點。 Although numerical ranges and parameters are used to define a wide range of the invention, they are approximated as much as possible. The relevant values in the specific embodiments are presented. However, any numerical value inherently inevitably contains standard deviations due to individual test methods. As used herein, "about" generally means that the actual value is within plus or minus 10%, 5%, 1%, or 0.5% of a particular value or range. Alternatively, the term "about" means that the actual value falls within the acceptable standard error of the average, depending on the considerations of those of ordinary skill in the art to which the invention pertains. Except for the experimental examples, or unless otherwise explicitly stated, all ranges, quantities, values, and percentages used herein are understood (eg, to describe the amount of material used, the length of time, the temperature, the operating conditions, the quantity ratio, and the like. Are all modified by "about". Therefore, unless otherwise indicated to the contrary, the numerical parameters disclosed in the specification and the appended claims are intended to be At a minimum, these numerical parameters should be understood as the number of significant digits indicated and the values obtained by applying the general carry method. Ranges of values are expressed herein as being from one endpoint to another or between two endpoints; unless otherwise stated, the numerical ranges recited herein are inclusive.

除非本說明書另有定義,此處所用的科學與技術詞彙之含義與本發明所屬技術領域中具 有通常知識者所理解與慣用的意義相同。此外,在不和上下文衝突的情形下,本說明書所用的單數名詞涵蓋該名詞的複數型;而所用的複數名詞時亦涵蓋該名詞的單數型。 Unless otherwise defined in the specification, the meaning of the scientific and technical terms used herein is in the technical field to which the present invention pertains. Those who have the usual knowledge understand the same meaning as the usual. In addition, the singular noun used in this specification covers the plural of the noun in the case of no conflict with the context; the plural noun of the noun is also included in the plural noun used.

本發明所提出的硼酸鹽玻璃可作為製備LED的材料,解決目前市售以環氧樹脂及矽氧樹脂進行封裝的LED,於高功率系統下面臨老化及黃化進而導致發光效率不佳的問題。利用本發明提出的硼酸鹽玻璃或螢光玻璃材料作為LED封裝材料,能夠大幅度提升LED封裝體的熱穩定性、發光效率以及使用壽命。 The borate glass proposed by the invention can be used as a material for preparing LED, and solves the problem that LEDs which are currently packaged with epoxy resin and epoxy resin are faced with aging and yellowing under high power system, thereby causing poor luminous efficiency. . By using the borate glass or the fluorescent glass material proposed by the invention as the LED packaging material, the thermal stability, luminous efficiency and service life of the LED package can be greatly improved.

本發明之硼酸鹽玻璃是利用特定的原料及配比,以特定的製程參數製備而成,使其有低特性溫度;因此,將硼酸鹽玻璃粉末和螢光粉混合燒結時,能減少螢光粉的熱淬滅,進而減少對於螢光粉發光效率的影響;另一方面,本發明之硼酸鹽玻璃僅使用較少的能量即可製成螢光玻璃片。 The borate glass of the invention is prepared by using specific raw materials and ratios with specific process parameters to have a low characteristic temperature; therefore, when the borate glass powder and the phosphor powder are mixed and sintered, the fluorescence can be reduced. The heat quenching of the powder further reduces the effect on the luminous efficiency of the phosphor powder; on the other hand, the borate glass of the present invention can be made into a fluorescent glass sheet using only a small amount of energy.

本發明所提出的新穎硼酸鹽玻璃是由以下方法製備而成: (a)混合8-10莫耳份的B2O3、1莫耳份的SiO2、2-8莫耳份的Bi2O3和1-8莫耳份的ZnO得到一混合物;(b)以梯度加熱方式將該混合物加熱至1200℃並持續1小時進行熔融;以及(c)退火處理步驟(b)之產物以形成該硼酸鹽玻璃。 The novel borate glass proposed by the present invention is prepared by the following method: (a) mixing 8-10 mole parts of B 2 O 3 , 1 mole of SiO 2 , 2-8 mole parts of Bi 2 O 3 and 1-8 mole parts of ZnO give a mixture; (b) heating the mixture to 1200 ° C in a gradient heating manner for 1 hour to melt; and (c) annealing the product of step (b) to form The borate glass.

在本發明一實驗例中,步驟(a)是混合9莫耳份的B2O3、1莫耳份的SiO2、3-7莫耳份的Bi2O3和3-7莫耳份的ZnO,且依據本發明揭示多種實施例的結果發現Bi2O3含量高的硼酸鹽玻璃,其玻璃熱轉換玻璃轉換溫度(Tg)和玻璃軟化溫度(Td)會較低。在一較佳的實施方式中,本發明硼酸鹽玻璃是以9莫耳份的B2O3、1莫耳份的SiO2、5莫耳份的Bi2O3和5莫耳份的ZnO所製得,其玻璃轉換溫度(Tg)和玻璃軟化溫度(Td)皆低於500℃。 In an experimental example of the present invention, step (a) is a mixture of 9 mole parts of B 2 O 3 , 1 mole of SiO 2 , 3-7 mole parts of Bi 2 O 3 and 3-7 moles. ZnO, and in accordance with the results of various embodiments of the present invention, found that borate glasses having a high Bi 2 O 3 content have a lower glass transition glass transition temperature (T g ) and glass softening temperature (T d ). In a preferred embodiment, the borate glass of the present invention is 9 moles of B 2 O 3 , 1 mole of SiO 2 , 5 moles of Bi 2 O 3 and 5 moles of ZnO. The glass transition temperature (T g ) and the glass softening temperature (T d ) were both lower than 500 ° C.

在另一實施方式中,本發明製備硼酸鹽玻璃的原料可更包含IA族金屬離子,例如,鋰、 鈉、鉀等。舉例而言,本發明硼酸鹽玻璃可添加Na2O和K2O至上述步驟(a)的混合物中。在一實例中,製備本發明硼酸鹽玻璃時,可利用Na2O和K2O取代部分ZnO。由本發明實驗例結果可知,添加Na2O和K2O會顯著地影響硼酸鹽玻璃特性;具體而言,隨著Na2O和K2O的添加比例提升的同時,玻璃轉換溫度(Tg)和玻璃軟化溫度(Td)亦隨著降低,添加Na2O和K2O的優點在於可降低玻璃軟化點溫度,使其更容易在低溫下進行加工。依據本發明一較佳實例,本發明硼酸鹽玻璃的原料是混合9莫耳份的B2O3、1莫耳份的SiO2、7莫耳份的Bi2O3和1-3莫耳份的ZnO、0.2-1莫耳份的Na2O和0.2-1莫耳份的K2O而成。 In another embodiment, the raw material for preparing the borate glass of the present invention may further comprise a Group IA metal ion such as lithium, sodium, potassium or the like. For example, the borate glass of the present invention may be added with a mixture of Na 2 O and K 2 O to the above step (a). In one example, when the borate glass of the present invention is prepared, a portion of ZnO may be replaced with Na 2 O and K 2 O. It can be seen from the results of the experimental examples of the present invention that the addition of Na 2 O and K 2 O significantly affects the characteristics of the borate glass; specifically, as the ratio of addition of Na 2 O and K 2 O increases, the glass transition temperature (T g ) And the glass softening temperature (T d ) also decreases, and the addition of Na 2 O and K 2 O has the advantage of lowering the softening point temperature of the glass, making it easier to process at low temperatures. According to a preferred embodiment of the present invention, the raw material of the borate glass of the present invention is a mixture of 9 mole parts of B 2 O 3 , 1 mole of SiO 2 , 7 mole parts of Bi 2 O 3 and 1-3 moles. Parts of ZnO, 0.2-1 moles of Na 2 O and 0.2-1 moles of K 2 O.

接著,於步驟(b)中,利用高溫固相法處理上述步驟(a)中的硼酸鹽玻璃原料混合物,來製備欲求的硼酸鹽玻璃。詳言之,係透過梯度加熱來處理上述步驟(a)中的硼酸鹽玻璃原料;所述梯度加熱是以每分鐘約5-20℃的升溫速率,例如約5、6、7、8、9、10、11、12、13、14、15、16、 17、18、19、或20℃的升溫速率,將上述步驟(a)中的硼酸鹽玻璃原料加熱至約1100-1300℃,例如約1100、1150、1200、1250、或1300℃,且持溫至少約1小時,例如約1、1.5或2小時。此外,此一梯度加熱過程較佳是在大氣環境下進行。在具體實施方式中,此一梯度加熱是以每分鐘10℃的升溫速率加熱至1200℃,並持溫至少1小時。 Next, in the step (b), the borate glass raw material mixture in the above step (a) is treated by a high-temperature solid phase method to prepare a desired borate glass. In particular, the borate glass raw material in the above step (a) is treated by gradient heating; the gradient heating is a heating rate of about 5-20 ° C per minute, for example about 5, 6, 7, 8, 9 , 10, 11, 12, 13, 14, 15, 16 17., 18, 19, or 20 ° C heating rate, the borate glass raw material in the above step (a) is heated to about 1100-1300 ° C, for example about 1100, 1150, 1200, 1250, or 1300 ° C, and holding temperature At least about 1 hour, such as about 1, 1.5 or 2 hours. Further, this gradient heating process is preferably carried out in an atmospheric environment. In a specific embodiment, the gradient heating is heated to 1200 ° C at a ramp rate of 10 ° C per minute and held for at least 1 hour.

依據上述任一實施方式所示之製備方法製成的硼酸鹽玻璃,其玻璃轉換溫度(Tg)低於500℃、玻璃軟化溫度(Td)低於530℃、折射率至少1.8且可見光穿透率至少70%以上。因此,本發明所提出的硼酸鹽玻璃及其所加工製成的材料(例如,硼酸鹽玻璃粉末)與螢光粉燒結的過程中,螢光粉的晶體結果不會被破壞,適用於LED封裝領域。 A borate glass prepared by the preparation method according to any of the above embodiments, having a glass transition temperature (Tg) of less than 500 ° C, a glass softening temperature (Td) of less than 530 ° C, a refractive index of at least 1.8, and a visible light transmittance. At least 70% or more. Therefore, in the process of sintering the borate glass and the processed material (for example, borate glass powder) of the present invention and the phosphor powder, the crystal result of the phosphor powder is not destroyed, and is suitable for the LED package. field.

在非限制的實施方式中,可將上述任一實施方式所製成的硼酸鹽玻璃和螢光粉末,以重量份約8-20:1的比例混合,例如以約8:1、9:1、10:1、11:1、12:1、13:1、14:1、15: 1、16:1、17:1、18:1、19:1或20:1的比例混合,即可得到一新穎的螢光玻璃材料。 In a non-limiting embodiment, the borate glass and the phosphor powder prepared in any of the above embodiments may be mixed in a ratio of about 8-20:1 by weight, for example, at about 8:1, 9:1. , 10:1, 11:1, 12:1, 13:1, 14:1, 15: 1, 16:1:17:1, 18:1, 19:1 or 20:1 ratio mixing, a novel fluorescent glass material can be obtained.

在可任選的實施方式中,所述螢光粉末可以是市售螢光粉末,例如:YAG螢光粉、(Ca,Sr,Ba)xSiyNz:Eu氮化物螢光粉、α-SiAlON:Eu2+、β-SiAlON:Eu2+、其他商用螢光粉(例如,K2(Si,Ti)F6:Mn4+、(Sr,Ca)AlSiN3:Eu2+等)或其組合。適合的YAG螢光粉實例是(Y,Lu,Gd)3(Al,Ga)5O12:Ce3+。適合的(Ca,Sr,Ba)xSiyNz:Eu氮化物螢光粉實例是(Ca,Sr,Ba)2Si5N8:Eu2+、(Ca,Sr,Ba)2SiO4:Eu2+或(Ca,Sr,Ba)Si2O2N2:Eu2+In an optional embodiment, the fluorescent powder may be a commercially available fluorescent powder such as: YAG fluorescent powder, (Ca, Sr, Ba) x Si y N z : Eu nitride fluorescent powder, α -SiAlON: Eu 2+ , β-SiAlON: Eu 2+ , other commercial phosphors (for example, K 2 (Si, Ti) F 6 : Mn 4+ , (Sr, Ca) AlSiN 3 : Eu 2+, etc.) Or a combination thereof. An example of a suitable YAG phosphor is (Y, Lu, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ . An example of a suitable (Ca,Sr,Ba) x Si y N z :Eu nitride phosphor is (Ca,Sr,Ba) 2 Si 5 N 8 :Eu 2+ , (Ca,Sr,Ba) 2 SiO 4 :Eu 2+ or (Ca,Sr,Ba)Si 2 O 2 N 2 :Eu 2+ .

本發明也提出一種LED封裝結構,其係利用上述螢光玻璃材料進行封裝。因本發明螢光玻璃材料具有低特性溫度,而LED封裝過程是以低溫(220-550℃)進行燒結,因此能避免高溫破壞LED材料或尺寸改變。在一具體的實施方式中,所述燒結的加熱製程是將螢光玻璃材料以梯度加熱方 式加熱至250-350℃,例如,約250、255、260、265、270、275、280、285、290、295、300、305、310、315、320、325、330、335、340、345或350℃,且持溫至少25分鐘,例如,約25、30或35分鐘;接著,再加熱至480-540℃,例如,約480、485、490、495、500、505、510、515、520、525、530、535或540℃,且持溫至少200分鐘,例如約200分鐘、250分鐘或300分鐘。 The present invention also provides an LED package structure that is packaged using the above-described phosphor glass material. Since the fluorescent glass material of the present invention has a low characteristic temperature, and the LED packaging process is sintered at a low temperature (220-550 ° C), it is possible to prevent the high temperature from damaging the LED material or the dimensional change. In a specific embodiment, the sintering heating process is to heat the fluorescent glass material by a gradient. Heating to 250-350 ° C, for example, about 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345 Or 350 ° C, and holding the temperature for at least 25 minutes, for example, about 25, 30 or 35 minutes; then, reheating to 480-540 ° C, for example, about 480, 485, 490, 495, 500, 505, 510, 515, 520, 525, 530, 535 or 540 ° C, and holding the temperature for at least 200 minutes, such as about 200 minutes, 250 minutes or 300 minutes.

綜上所述,以本發明特定製備方法所製成的硼酸鹽玻璃能大幅度降低硼酸鹽玻璃的玻璃轉化溫度及玻璃軟化溫度,使其於LED製備的過程中能大幅度降低製備成本,亦能夠避免螢光粉的結晶結構遭受高溫破壞,提升LED封裝結構的發光效率。 In summary, the borate glass prepared by the specific preparation method of the invention can greatly reduce the glass transition temperature and the glass softening temperature of the borate glass, so that the preparation cost can be greatly reduced in the process of preparing the LED. It can avoid the high temperature damage of the crystal structure of the phosphor powder and improve the luminous efficiency of the LED package structure.

下文提出多個實驗例來說明本發明的某些態樣,以利本發明所屬技術領域中具有通常知識者實作本發明,且不應將這些實驗例視為對本發明範圍的限制。據信習知技藝者在閱讀了此處提 出的說明後,可在不需過度解讀的情形下,完整利用並實踐本發明。此處所引用的所有公開文獻,其全文皆視為本說明書的一部分。 In the following, a plurality of experimental examples are set forth to illustrate certain aspects of the present invention, and the present invention is not limited by the scope of the present invention. It is believed that the skilled artisans are reading here. After the description, the invention may be fully utilized and practiced without undue interpretation. All publications cited herein are hereby incorporated by reference in their entirety.

實施例1 製備硼酸鹽玻璃Example 1 Preparation of borate glass

將玻璃原料B2O3、SiO2、Bi2O3、ZnO、Na2O、K2O或Sb2O3依照表1所示的mol%比例配方秤取並混合均勻得到一混合物。接著,將所述混合物置入坩鍋並放入高溫爐,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時。接著,將玻璃澆注於不銹鋼板於大氣環境下進行退火處理(例如,直接暴露於空氣中),使其冷卻至室溫。 The glass raw materials B 2 O 3 , SiO 2 , Bi 2 O 3 , ZnO, Na 2 O, K 2 O or Sb 2 O 3 were weighed and mixed according to the mol% ratio shown in Table 1 to obtain a mixture. Next, the mixture was placed in a crucible and placed in a high temperature furnace, and heated to 1200 ° C at a heating rate of 10 ° C per minute, and then held for 1 hour. Next, the glass is cast on a stainless steel plate and annealed in an atmosphere (for example, directly exposed to air), and allowed to cool to room temperature.

(1)製備15Bi35Zn玻璃 (1) Preparation of 15Bi35Zn glass

取0.449莫耳的B2O3(23.45g,FW=69.6182)、0.05莫耳的SiO2(2.25g,FW=60.08)、0.15莫耳的Bi2O3(52.32g,FW=465.96)、0.35莫耳的ZnO(21.33g,FW=81.408)以及0.003莫耳的Sb2O3(0.66g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時;接著,將玻璃澆注於不銹鋼板進行退火處理,裁切過後即可得到玻璃純相。 0.449 mol of B 2 O 3 (23.45 g, FW=69.6182), 0.05 mol of SiO 2 (2.25 g, FW=60.08), 0.15 mol of Bi 2 O 3 (52.32 g, FW=465.96), 0.35 mol of ZnO (21.33 g, FW = 81.408) and 0.003 mol of Sb2O3 (0.66 g, FW = 291.52), uniformly mixed, placed in a crucible, and placed in a high temperature furnace, under atmospheric conditions, per After heating at a temperature of 10 ° C for 10 ° C, the temperature was maintained at 1200 ° C for 1 hour; then, the glass was poured into a stainless steel plate for annealing treatment, and after cutting, a pure glass phase was obtained.

(2)製備20Bi30Zn玻璃 (2) Preparation of 20Bi30Zn glass

取0.449莫耳的B2O3(20.50g,FW=69.6182)、0.05莫耳的SiO2(1.97g,FW=60.08)、0.199莫耳的Bi2O3(60.979g,FW=465.96)、0.299莫耳的ZnO(15.98g,FW=81.408)以及0.003莫耳的Sb2O3(0.57g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加 熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 0.449 mol of B 2 O 3 (20.50 g, FW=69.6182), 0.05 mol of SiO 2 (1.97 g, FW=60.08), 0.199 mol of Bi 2 O 3 (60.979 g, FW=465.96), 0.299 mol of ZnO (15.98 g, FW = 81.408) and 0.003 mol of Sb 2 O 3 (0.57 g, FW = 291.52), uniformly mixed, placed in a crucible, and placed in a high temperature furnace under atmospheric conditions After heating to 1200 ° C at a heating rate of 10 ° C per minute, the temperature was maintained for 1 hour. Then, the glass was poured on a stainless steel plate to be annealed, and after cutting, a pure glass phase was obtained.

(3)製備25Bi25Zn玻璃 (3) Preparation of 25Bi25Zn glass

取0.449莫耳的B2O3(18.21g,FW=69.6182)、0.05莫耳的SiO2(1.75g,FW=60.08)、0.249莫耳的Bi2O3(67.71g,FW=465.96)、0.249莫耳的ZnO(11.83g,FW=81.408)以及0.003莫耳的Sb2O3(0.51g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 0.449 mol of B 2 O 3 (18.21 g, FW=69.6182), 0.05 mol of SiO 2 (1.75 g, FW=60.08), 0.249 mol of Bi 2 O 3 (67.71 g, FW=465.96), 0.249 mole of ZnO (11.83g, FW=81.408) and 0.003 mole of Sb 2 O 3 (0.51g, FW=291.52), uniformly mixed, placed in a crucible, and placed in a high temperature furnace under atmospheric conditions After heating to 1200 ° C at a heating rate of 10 ° C per minute, the temperature was maintained for 1 hour. Then, the glass was poured on a stainless steel plate to be annealed, and after cutting, a pure glass phase was obtained.

(4)製備30Bi20Zn玻璃 (4) Preparation of 30Bi20Zn glass

取0.449莫耳的B2O3(16.38g,FW=69.6182)、0.05莫耳的SiO2(1.57g,FW=60.08)、0.299莫耳的Bi2O3(73.08g,FW=465.96)、0.199莫耳的ZnO(8.51g, FW=81.408)以及0.003莫耳的Sb2O3(0.46g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 0.449 mol of B 2 O 3 (16.38 g, FW=69.6182), 0.05 mol of SiO 2 (1.57 g, FW=60.08), 0.299 mol of Bi 2 O 3 (73.08 g, FW=465.96), 0.199 mol of ZnO (8.51 g, FW=81.408) and 0.003 mol of Sb 2 O 3 (0.46 g, FW=291.52), uniformly mixed, placed in a crucible, and placed in a high temperature furnace under atmospheric conditions After heating to 1200 ° C at a heating rate of 10 ° C per minute, the temperature was maintained for 1 hour. Then, the glass was poured on a stainless steel plate to be annealed, and after cutting, a pure glass phase was obtained.

(5)製備35Bi15Zn玻璃 (5) Preparation of 35Bi15Zn glass

取0.449莫耳的B2O3(14.87g,FW=69.6182)、0.05莫耳的SiO2(1.43g,FW=60.08)、0.349莫耳的Bi2O3(77.40g,FW=465.96)、0.149莫耳的ZnO(5.80g,FW=81.408)以及0.003莫耳的Sb2O3(0.42g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 0.449 mol of B 2 O 3 (14.87 g, FW=69.6182), 0.05 mol of SiO 2 (1.43 g, FW=60.08), 0.349 mol of Bi 2 O 3 (77.40 g, FW=465.96), 0.149 moles of ZnO (5.80g, FW=81.408) and 0.003 moles of Sb 2 O 3 (0.42g, FW=291.52), uniformly mixed, placed in a crucible, and placed in a high temperature furnace under atmospheric conditions After heating to 1200 ° C at a heating rate of 10 ° C per minute, the temperature was maintained for 1 hour. Then, the glass was poured on a stainless steel plate to be annealed, and after cutting, a pure glass phase was obtained.

(6)製備1Na1K玻璃 (6) Preparation of 1Na1K glass

取0.449mole B2O3(14.89g,FW=69.6182)、0.05mole SiO2(1.43g,FW=60.08)、0.349mole Bi2O3(77.49g,FW=465.96)、0.130mole ZnO(5.03g,FW=81.408)、0.010mole Na2O(0.29g,FW=61.98)、0.01mole K2O(0.45g,FW=94.2)、0.003mole Sb2O3(0.4168g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 Take 0.449 mole B 2 O 3 (14.89 g, FW=69.6182), 0.05 mole SiO 2 (1.43 g, FW=60.08), 0.349 mole Bi 2 O 3 (77.49 g, FW=465.96), 0.130 mole ZnO (5.03 g) , FW=81.408), 0.010 mole Na 2 O (0.29 g, FW=61.98), 0.01 mole K 2 O (0.45 g, FW=94.2), 0.003 mole Sb 2 O 3 (0.4168 g, FW=291.52), uniform After mixing, put it into a crucible, place it in a high-temperature furnace, and heat it to 1200 ° C at a heating rate of 10 ° C per minute for 1 hour under atmospheric conditions. Then, the glass is poured on a stainless steel plate to be annealed. After cutting, the pure phase of the glass can be obtained.

(7)製備2Na2K玻璃 (7) Preparation of 2Na2K glass

取0.449mole B2O3(14.89g,FW=69.6182)、0.05mole SiO2(1.43g,FW=60.08)、0.349mole Bi2O3(77.52g,FW=465.96)、0.110mole ZnO(4.26g,FW=81.408)、0.020mole Na2O(0.59g,FW=61.98)、0.020mole K2O(0.90g, FW=94.2)、0.003mole Sb2O3(0.4169g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 0.449 mole B 2 O 3 (14.89 g, FW=69.6182), 0.05 mole SiO 2 (1.43 g, FW=60.08), 0.349 mole Bi 2 O 3 (77.52 g, FW=465.96), 0.110 mole ZnO (4.26 g, FW=81.408), 0.020 mole Na 2 O (0.59 g, FW=61.98), 0.020 mole K 2 O (0.90 g, FW=94.2), 0.003 mole Sb 2 O 3 (0.4169 g, FW=291.52), uniformly mixed After being placed in a crucible, placed in a high-temperature furnace, heated to 1200 ° C at a heating rate of 10 ° C per minute in an atmosphere, and held for 1 hour. Then, the glass is poured on a stainless steel plate to be annealed, and cut. The pure phase of the glass is obtained afterwards.

(8)製備3Na3K玻璃 (8) Preparation of 3Na3K glass

取0.449mole B2O3(14.89g,FW=69.6182)、0.05mole SiO2(1.43g,FW=60.08)、0.349mole Bi2O3(77.55g,FW=465.96)、0.090mole ZnO(3.48g,FW=81.408)、0.030mole Na2O(0.88g,FW=61.98)、0.030mole K2O(1.34g,FW=94.2)、0.003mole Sb2O3(0.4171g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 Take 0.449 mole B 2 O 3 (14.89 g, FW=69.6182), 0.05 mole SiO 2 (1.43 g, FW=60.08), 0.349 mole Bi 2 O 3 (77.55 g, FW=465.96), 0.090 mole ZnO (3.48 g). , FW = 81.408), 0.030 mole Na 2 O (0.88 g, FW = 61.98), 0.030 mole K 2 O (1.34 g, FW = 94.2), 0.003 mole Sb 2 O 3 (0.4171 g, FW = 291.52), uniform After mixing, put it into a crucible, place it in a high-temperature furnace, and heat it to 1200 ° C at a heating rate of 10 ° C per minute for 1 hour under atmospheric conditions. Then, the glass is poured on a stainless steel plate to be annealed. After cutting, the pure phase of the glass can be obtained.

(9)製備4Na4K玻璃 (9) Preparation of 4Na4K glass

取0.449mole B2O3(14.90g,FW=69.6182)、0.05mole SiO2(1.43g,FW=60.08)、0.349mole Bi2O3(77.57g,FW=465.96)、0.70mole ZnO(2.71g,FW=81.408)、0.040mole Na2O(1.18g,FW=61.98)、0.040mole K2O(1.79g,FW=94.2)、0.003mole Sb2O3(0.4172g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 Take 0.449 mole B 2 O 3 (14.90 g, FW = 69.6182), 0.05 mole SiO 2 (1.43 g, FW = 60.08), 0.349 mole Bi 2 O 3 (77.57 g, FW = 465.96), 0.70 mole ZnO (2.71 g) , FW = 81.408), 0.040 mole Na 2 O (1.18 g, FW = 61.98), 0.040 mole K2O (1.79 g, FW = 94.2), 0.003 mole Sb 2 O 3 (0.4172 g, FW = 291.52), after homogeneous mixing Put it into a crucible, place it in a high-temperature furnace, heat it to 1200 ° C at a heating rate of 10 ° C per minute, and hold it for 1 hour. Then, cast the glass on a stainless steel plate to anneal it. After cutting, The pure phase of the glass is obtained.

(10)製備5Na5K玻璃 (10) Preparation of 5Na5K glass

取0.449mole B2O3(14.91g,FW=69.6182)、0.05mole SiO2(1.43g,FW=60.08)、0.349mole Bi2O3(77.59g,FW=465.96)、0.130mole ZnO(1.937g,FW=81.408)、0.010mole Na2O(1.47g, FW=61.98)、0.01mole K2O(2.24g,FW=94.2)、0.003mole Sb2O3(0.4174g,FW=291.52),均勻混合後放入坩鍋,再置入高溫爐中,於大氣環境下,以每分鐘10℃的升溫速率加熱到1200℃後持溫1小時,接著,將玻璃澆注於不銹鋼板以退火處理,裁切過後即可得到玻璃純相。 0.449 mole B 2 O 3 (14.91 g, FW=69.6182), 0.05 mole SiO 2 (1.43 g, FW=60.08), 0.349 mole Bi 2 O 3 (77.59 g, FW=465.96), 0.130 mole ZnO (1.937 g). , FW = 81.408), 0.010 mole Na 2 O (1.47 g, FW = 61.98), 0.01 mole K2O (2.24 g, FW = 94.2), 0.003 mole Sb 2 O 3 (0.4174 g, FW = 291.52), after homogeneous mixing Put it into a crucible, place it in a high-temperature furnace, heat it to 1200 ° C at a heating rate of 10 ° C per minute, and hold it for 1 hour. Then, cast the glass on a stainless steel plate to anneal it. After cutting, The pure phase of the glass is obtained.

實施例2 本發明硼酸鹽玻璃之熱分析Example 2 Thermal Analysis of Borate Glass of the Present Invention

本發明利用熱重分析儀(Differential Scanning Calorimetry,DSC)設備分析依據實施例1製備步驟所製得的各種玻璃的轉換溫度Tg、玻璃軟化溫度Td、結晶溫度Tc、熱膨脹係數CTE和操作範圍WR,結果如表3所示。 The invention utilizes a Differential Scanning Calorimetry (DSC) apparatus to analyze the conversion temperature T g , the glass softening temperature T d , the crystallization temperature T c , the thermal expansion coefficient CTE and the operation of various glasses obtained according to the preparation steps of Example 1. The range WR, the results are shown in Table 3.

由表3的結果可知,本發明硼酸鹽玻璃的轉換溫度Tg和玻璃軟化溫度Td隨著Bi2O3含量增多而降低。舉例而言,由25Bi25Zn玻璃的測 定結果可以發現,當Bi2O3佔25重量份時,玻璃的轉換溫度Tg和玻璃軟化溫度Td皆低於500℃。 As is clear from the results of Table 3, the transition temperature T g and the glass softening temperature T d of the borate glass of the present invention decreased as the content of Bi 2 O 3 increased. For example, from the measurement results of 25Bi25Zn glass, it was found that when Bi 2 O 3 accounts for 25 parts by weight, the glass transition temperature T g and the glass softening temperature T d are both lower than 500 ° C.

另外,在添加Na2O、K2O的各種玻璃中,在Bi2O3所佔比例不變的情況下,隨著Na2O、K2O濃度升高,所得硼酸鹽玻璃的轉換溫度Tg和玻璃軟化溫度Td也隨著降低。 In addition, in various glasses to which Na 2 O and K 2 O are added, when the ratio of Bi 2 O 3 is constant, the conversion temperature of the obtained borate glass increases as the concentration of Na 2 O and K 2 O increases. The Tg and glass softening temperature Td also decreases.

本發明所提供的硼酸鹽玻璃有效降低了玻璃轉換溫度Tg和玻璃軟化溫度Td,有助於LED封裝,避免螢光粉在封裝的過程中因高溫而變質。 Borate glass provided by the invention is effective to reduce the glass transition temperature, T g and the glass transition temperature T d, the LED package helps to prevent phosphor encapsulated in the process of deterioration due to high temperature.

實施例3 本發明硼酸鹽玻璃之光學分 EXAMPLE 3 The optical analysis borate glass embodiment of the invention

本發明利用UV-VIS吸收光譜儀以及橢圓儀分析依據實施例1製備步驟所製得的各種玻璃的光學性質(例如,折射率、阿貝數和可穿透波長),測定結果請參見表3及第1圖的結果。 The invention utilizes a UV-VIS absorption spectrometer and an ellipsometer to analyze the optical properties (for example, refractive index, Abbe number and penetrable wavelength) of various glasses prepared according to the preparation steps of Example 1, and the measurement results are shown in Table 3 and The result of Figure 1.

由下表可知,本發明硼酸鹽玻璃的折射率達1.85以上,且同時參照第1圖的結果,本發明硼酸鹽玻璃在光學性質方面,所得玻璃的折射率達到約1.8以上,且於可見光波段(即,波長約390至780nm)下的穿透率可達70%以上;因此,可應用在LED照明封裝領域。 As can be seen from the following table, the refractive index of the borate glass of the present invention is 1.85 or more, and referring to the result of FIG. 1, the boric acid glass of the present invention has an optical property of about 1.8 or more in the visible light band. (ie, a wavelength of about 390 to 780 nm) can achieve a transmittance of more than 70%; therefore, it can be applied in the field of LED lighting packaging.

實施例4 製備螢光玻璃片Example 4 Preparation of Fluorescent Glass Sheet

將實施例1製成的玻璃磨成粉狀,並將5重量%或10重量% YAG螢光粉倒入燒杯中,加入丙酮(景明化工,純度:100%)和磁石,置於加 熱攪拌器上攪拌至完全乾燥。將混合均勻的粉放入石英棉或耐火磚,再放入高溫爐中燒結;所用的燒結條件如下:每小時5℃的升溫速率加熱到300℃,持溫30分鐘,再升溫到520℃,並再持溫4小時。燒結後讓產物自然降溫到室溫,使其與石英棉或耐火磚分離,再進行切割,即可得到螢光玻璃片A(含5重量%YAG螢光粉)和螢光玻璃片B(含10重量%YAG螢光粉)。 The glass prepared in Example 1 was ground into a powder, and 5% by weight or 10% by weight of YAG phosphor powder was poured into a beaker, acetone (Jingming Chemical, purity: 100%) and magnet were added, and the mixture was placed in a plus Stir on a hot stirrer until completely dry. The uniformly mixed powder is placed in quartz wool or refractory bricks, and then sintered in a high temperature furnace; the sintering conditions used are as follows: heating at a heating rate of 5 ° C per hour to 300 ° C, holding the temperature for 30 minutes, and then heating to 520 ° C, And then hold the temperature for 4 hours. After sintering, the product is naturally cooled to room temperature, separated from quartz wool or refractory bricks, and then cut to obtain fluorescent glass sheet A (containing 5 wt% YAG phosphor powder) and fluorescent glass sheet B (including 10% by weight of YAG phosphor powder).

利用EDS元素分析螢光玻璃片A和螢光玻璃片B中的釔(Y),並利用掃描式顯微鏡在低倍率下觀察,結果示於第2A和2B圖,其中第2A圖為螢光玻璃片A(含5重量%YAG螢光粉)於掃瞄式顯微鏡下的鏡檢照片,而第2B圖為螢光玻璃片B(含10重量%YAG螢光粉)於掃瞄式顯微鏡下的鏡檢照片。第2A和2B圖上的紅點為釔(Y),由圖中釔(Y)的分布可以看出螢光粉能夠均勻分散在本發明的硼酸鹽玻璃中。 The yttrium (Y) in the fluorescent glass sheet A and the fluorescent glass sheet B was analyzed by the EDS element, and observed at a low magnification by a scanning microscope, and the results are shown in Figs. 2A and 2B, wherein the 2A is a fluorescent glass. Sheet A (containing 5% by weight of YAG fluorescing powder) under a scanning microscope, and Figure 2B is a fluorescent glass sheet B (containing 10% by weight of YAG fluorescing powder) under a scanning microscope Microscopic photo. The red dot on the 2A and 2B graphs is ytterbium (Y), and it can be seen from the distribution of yttrium (Y) in the figure that the phosphor powder can be uniformly dispersed in the borate glass of the present invention.

實施例5分析實施例4之螢光玻璃片熱穩定性 Example 5 Analysis of Thermal Stability of Fluorescent Glass Sheet of Example 4

本實施例利用變溫螢光光譜儀測試實施例4螢光玻璃片A和螢光玻璃片B之的熱穩定性,本實施例以YAG螢光粉作為對照組。 In this embodiment, the thermal stability of the fluorescent glass sheet A and the fluorescent glass sheet B of Example 4 was tested using a variable temperature fluorescent spectrometer. In this example, YAG phosphor powder was used as a control group.

由第3圖的結果可以得知,不管是YAG螢光粉或是螢光玻璃片(圖中LH-5%為螢光玻璃片A;LH10%為螢光玻璃片B),三者在300℃時發光強度皆下降;然而,在相對強度方面,YAG螢光粉在300℃時相對強度下降了43.9%,而螢光玻璃片A和螢光玻璃片B相對強度分別下降36%和35.1%。 It can be seen from the results in Fig. 3 that whether it is YAG phosphor powder or fluorescent glass sheet (LH-5% in the figure is fluorescent glass sheet A; LH10% is fluorescent glass sheet B), the three are in 300 At °C, the luminescence intensity decreased; however, in terms of relative intensity, the relative intensity of YAG fluoresce powder decreased by 43.9% at 300 °C, while the relative intensity of fluoroglass sheet A and fluoroglass sheet B decreased by 36% and 35.1%, respectively. .

此一數據證實以本發明硼酸鹽玻璃所製成的螢光玻璃片具有較佳的熱穩定性。 This data confirms that the phosphor glass sheets made of the borate glass of the present invention have better thermal stability.

實施例6電致激發分析實施例4之螢光玻璃片Example 6 Electro-excitation analysis of the fluorescent glass piece of Example 4.

電致激發是利用通電的晶片激發出藍光結合螢光玻璃片,模擬真實應用在LED封裝時的狀況。 Electro-excitation uses a powered wafer to excite blue light combined with a fluorescent glass sheet to simulate the actual application of the LED package.

本實施例利用波長455nm的藍光晶片激發螢光玻璃片,並將其經激發的影像以照相機直接拍攝記錄,螢光玻璃片A和螢光玻璃片B經的結果分別示於第4A圖和第4B圖所示。由肉眼觀察到的結果可以發現,本發明的螢光玻璃片A和螢光玻璃片B皆發出黃色光,且其中又以螢光玻璃片B(含10重量%螢光粉)的發光強度較高。 In this embodiment, a fluorescent glass piece is excited by a blue light wafer having a wavelength of 455 nm, and the excited image is directly recorded by a camera. The results of the fluorescent glass piece A and the fluorescent glass piece B are shown in FIG. 4A and FIG. Figure 4B shows. As a result of observing with the naked eye, it was found that both the fluorescent glass sheet A and the fluorescent glass sheet B of the present invention emit yellow light, and the luminous intensity of the fluorescent glass sheet B (containing 10% by weight of the fluorescent powder) is further compared. high.

此外,本實驗例利用CIE色度軟體來標示螢光玻璃片A和螢光玻璃片B發光座標,分析結果分別示於第5A圖和第5B圖。由圖示可以得知,螢光玻璃片A和螢光玻璃片B經由藍光晶片激發出的黃光具有良好的效果。綜合以上結果可以得知,本發明螢光玻璃片能應用在黃光LED封裝領域。 Further, in this experimental example, the CIE chromaticity software was used to indicate the luminescent coordinates of the fluorescent glass sheet A and the fluorescent glass sheet B, and the analysis results are shown in Fig. 5A and Fig. 5B, respectively. As can be seen from the figure, the yellow light excited by the phosphor glass sheet A and the fluorescent glass sheet B via the blue light wafer has a good effect. Based on the above results, it can be known that the fluorescent glass sheet of the present invention can be applied to the field of yellow LED packaging.

雖然上文實施方式中揭露了本發明的具體實施例,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不悖離本發明 之原理與精神的情形下,當可對其進行各種更動與修飾,因此本發明之保護範圍當以附隨申請專利範圍所界定者為準。 The specific embodiments of the present invention are disclosed in the above embodiments, and are not intended to limit the present invention, and those skilled in the art to which the present invention pertains, without departing from the invention. In the case of the principles and spirits, various changes and modifications may be made thereto, and the scope of the invention is defined by the scope of the appended claims.

Claims (8)

一種製備硼酸鹽玻璃的方法,包含:(a)混合8-10莫耳份的B2O3、1莫耳份的SiO2、2-8莫耳份的Bi2O3、1-8莫耳份的ZnO、0.2-1莫耳份的Na2O和0.2-1莫耳份的K2O得到一混合物;(b)以梯度加熱方式將該混合物加熱至1200℃並持續1小時進行熔融;以及(c)退火處理步驟(b)之產物以形成該硼酸鹽玻璃,其中該梯度加熱是以每分鐘10℃的升溫速率加熱。 A method of preparing borate glass, comprising: (a) mixing 8-10 mole parts of B 2 O 3 , 1 mole of SiO 2 , 2-8 mole parts of Bi 2 O 3 , 1-8 A mixture of ZnO, 0.2-1 moles of Na 2 O and 0.2-1 moles of K 2 O is obtained; (b) the mixture is heated to 1200 ° C in a gradient heating manner for 1 hour for melting And (c) annealing the product of step (b) to form the borate glass, wherein the gradient heating is at a rate of temperature increase of 10 ° C per minute. 如請求項1所述之方法,包含9莫耳份的B2O3、1莫耳份的SiO2、3-7莫耳份的Bi2O3和3-7莫耳份的ZnO。 The method of claim 1, comprising 9 mole parts of B 2 O 3 , 1 mole of SiO 2 , 3-7 mole parts of Bi 2 O 3 and 3-7 mole parts of ZnO. 如請求項1所述之方法,包含9莫耳份的B2O3、1莫耳份的SiO2、7莫耳份的Bi2O3 和1-3莫耳份的ZnO、0.2-1莫耳份的Na2O和0.2-1莫耳份的K2O。 The method of claim 1, comprising 9 moles of B 2 O 3 , 1 mole of SiO 2 , 7 moles of Bi 2 O 3 and 1-3 moles of ZnO, 0.2-1 Molecular Na 2 O and 0.2-1 molar K 2 O. 一種硼酸鹽玻璃,其係由請求項1-3任一製備方法所製成,其中該硼酸鹽玻璃具有以下特性:玻璃轉換溫度(Tg)低於460℃、玻璃軟化溫度(Td)低於490℃、折射率至少1.8且可見光穿透率至少70%以上,其中該硼酸鹽玻璃包含8-10莫耳份的B2O3、1莫耳份的SiO2、2-8莫耳份的Bi2O3、1-8莫耳份的ZnO、0.2-1莫耳份的Na2O和0.2-1莫耳份的K2O。 A borate glass produced by any one of the preparation methods of claim 1-3, wherein the borate glass has the following characteristics: a glass transition temperature (T g ) of less than 460 ° C and a low glass softening temperature (T d ) At 490 ° C, a refractive index of at least 1.8 and a visible light transmittance of at least 70% or more, wherein the borate glass comprises 8-10 mole parts of B 2 O 3 , 1 mole of SiO 2 , 2-8 moles Bi 2 O 3 , 1-8 mole parts of ZnO, 0.2-1 moles of Na 2 O, and 0.2-1 moles of K 2 O. 一種LED封裝用的螢光玻璃材料,包含:8-20重量份的玻璃粉末,其係將請求項4所述的硼酸鹽玻璃磨成粉末;以及1重量份的螢光粉末。 A fluorescent glass material for LED package, comprising: 8-20 parts by weight of a glass powder obtained by grinding the borate glass of claim 4 into a powder; and 1 part by weight of a fluorescent powder. 一種發光二極體封裝結構,包括:一基板;一發光二極體晶片,設於該基板上且有一出光面;以及一LED封裝螢光玻璃,設於該基板上並至少包覆該發光二極體晶片的該出光面,其中該LED封裝螢光玻璃係由請求項5所述的螢光玻璃材料經一加熱製程所形成。 A light emitting diode package structure includes: a substrate; a light emitting diode chip disposed on the substrate and having a light emitting surface; and an LED package fluorescent glass disposed on the substrate and covering at least the light emitting The light emitting surface of the polar body wafer, wherein the LED package fluorescent glass is formed by a heating process of the fluorescent glass material described in claim 5. 如請求項6所述之發光二極體封裝結構,其中該加熱製程包含將該螢光玻璃材料加熱至220-550℃。 The light emitting diode package structure of claim 6, wherein the heating process comprises heating the fluorescent glass material to 220-550 °C. 如請求項6所述之發光二極體封裝結構,其中該加熱製程包含將該螢光玻璃材料以梯度加熱方式加熱至250-350℃,並持續至少25分鐘,再加熱至480-540℃,並持續至少200分鐘。 The light emitting diode package structure of claim 6, wherein the heating process comprises heating the fluorescent glass material to a temperature of 250-350 ° C in a gradient heating manner for at least 25 minutes and then heating to 480-540 ° C. And last for at least 200 minutes.
TW105102760A 2016-01-28 2016-01-28 borate glass, method for manufacturing the same and applications thereof TWI622560B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105102760A TWI622560B (en) 2016-01-28 2016-01-28 borate glass, method for manufacturing the same and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105102760A TWI622560B (en) 2016-01-28 2016-01-28 borate glass, method for manufacturing the same and applications thereof

Publications (2)

Publication Number Publication Date
TW201726563A TW201726563A (en) 2017-08-01
TWI622560B true TWI622560B (en) 2018-05-01

Family

ID=60186582

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105102760A TWI622560B (en) 2016-01-28 2016-01-28 borate glass, method for manufacturing the same and applications thereof

Country Status (1)

Country Link
TW (1) TWI622560B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657064B (en) * 2017-10-05 2019-04-21 中原大學 Fluorescent glass-ceramic material, method for manufaturing the same, and light emitting device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201341335A (en) * 2012-03-30 2013-10-16 Corning Inc Bismuth borate glass encapsulant for LED phosphors
US20140249015A1 (en) * 2011-10-13 2014-09-04 Central Glass Company, Limited Bismuth-Based Glass Composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140249015A1 (en) * 2011-10-13 2014-09-04 Central Glass Company, Limited Bismuth-Based Glass Composition
TW201341335A (en) * 2012-03-30 2013-10-16 Corning Inc Bismuth borate glass encapsulant for LED phosphors

Also Published As

Publication number Publication date
TW201726563A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
CN102040337B (en) Rare earth-doped yttrium aluminum garnet microcrystalline glass material and application thereof in white LED
CN103496852B (en) The glass ceramics and preparation method thereof of blue light excited white light LED
JPWO2011013505A1 (en) Phosphor-dispersed glass and method for producing the same
CN103803797A (en) Luminescent glass for LED (Light-Emitting Diode) and preparation method of luminescent glass
EP2433914A1 (en) Rare earth ion doped silicate luminescence glass and preparation method thereof
Pawar et al. Eu2O3 doped bright orange-red luminescent lithium alumino-borate glasses for solid state lighting
Xu et al. High refractive index coating of phosphor-in-glass for enhanced light extraction efficiency of white LEDs
JP5390706B2 (en) Borate luminescent glass and manufacturing method thereof
KR20140106332A (en) Rare earth ion added glass-phosphor composite and light emitting diode comprising the same
CN109592907B (en) Boron bismuthate glass-based Ce: YAG glass ceramic for white light LED and preparation method thereof
TWI622560B (en) borate glass, method for manufacturing the same and applications thereof
CN109250909A (en) White light emitting diode rear-earth-doped fluorine chlorozirconate fluorescent glass and preparation method thereof
WO2014166085A1 (en) Ce:yag microcrystalline glass for white light led and preparation method therefor
US9127196B2 (en) Tin phosphate glass containing embedded luminescent material particles
CN110117160B (en) Microcrystalline glass and preparation method and application thereof
CN109516694B (en) Fluorescent glass, preparation method thereof and light-emitting device
WO2011017831A1 (en) Green light emitting glass used for ultraviolet led and preparation method thereof
CN111099826A (en) Blue light excited yellow-green full-spectrum fluorescent glass and preparation method thereof
CN102381841B (en) Yellow green luminescent glass ceramic material and preparation method thereof
CN102092952A (en) Transparent glass ceramic with tunable light emitting colors and preparation technique thereof
JP5460923B2 (en) Transparent glass ceramic that emits white light and method for preparing the same
CN113387567B (en) Red fluorescent glass and preparation method thereof
CN114772926A (en) Color temperature tunable Ce/Eu doped silicate luminescent glass for white light LED
CN102092951A (en) Transparent glass ceramic material for ultraviolet excited white LED and preparation technique thereof
Fernández‐Rodríguez et al. Structure and luminescent properties of Sm/Dy‐doped Sr2MgSi2O7 glass–ceramics