JP4982812B2 - Phosphor for vacuum ultraviolet light excitation - Google Patents

Phosphor for vacuum ultraviolet light excitation Download PDF

Info

Publication number
JP4982812B2
JP4982812B2 JP2008545414A JP2008545414A JP4982812B2 JP 4982812 B2 JP4982812 B2 JP 4982812B2 JP 2008545414 A JP2008545414 A JP 2008545414A JP 2008545414 A JP2008545414 A JP 2008545414A JP 4982812 B2 JP4982812 B2 JP 4982812B2
Authority
JP
Japan
Prior art keywords
phosphor
weight
vacuum ultraviolet
group
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008545414A
Other languages
Japanese (ja)
Other versions
JPWO2008062797A1 (en
Inventor
智子 赤井
広平 角野
偉 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008545414A priority Critical patent/JP4982812B2/en
Publication of JPWO2008062797A1 publication Critical patent/JPWO2008062797A1/en
Application granted granted Critical
Publication of JP4982812B2 publication Critical patent/JP4982812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7743Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
    • C09K11/7744Chalcogenides
    • C09K11/7746Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7759Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing samarium
    • C09K11/776Chalcogenides
    • C09K11/7761Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/42Fluorescent layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、真空紫外光励起用蛍光体に関する。   The present invention relates to a phosphor for vacuum ultraviolet light excitation.

近年、環境規制に伴い、水銀を使用しない蛍光ランプへの要望が高まっている。水銀を使用しない蛍光ランプとしては、キセノンを用いて得られる波長172nmの真空紫外領域の紫外線によって励起される蛍光ランプが知られている。しかしながら、従来の蛍光体は、水銀線波長(254nm)の紫外線で励起できるように最適化されているため、キセノン励起に適した蛍光体が必要とされている。   In recent years, with the environmental regulations, there is an increasing demand for fluorescent lamps that do not use mercury. As a fluorescent lamp that does not use mercury, a fluorescent lamp that is excited by ultraviolet rays in the vacuum ultraviolet region having a wavelength of 172 nm obtained using xenon is known. However, since conventional phosphors are optimized so that they can be excited by ultraviolet rays having a mercury ray wavelength (254 nm), a phosphor suitable for xenon excitation is required.

波長172nmの真空紫外光は、母体結晶の吸収端より高エネルギーの光であるために、水銀線で励起した場合のように直接紫外線によって発光イオンが励起されて可視光の蛍光を生じる直接励起メカニズムではなく、母体が吸収したエネルギーが発光中心に移動する間接励起メカニズムによって可視蛍光が起こる必要があるが、間接励起が効率よく起こる結晶はあまり多くない。   Since the vacuum ultraviolet light with a wavelength of 172 nm is light with higher energy than the absorption edge of the host crystal, the direct excitation mechanism in which the emitted ions are excited directly by ultraviolet rays and visible fluorescence is generated as in the case of excitation with mercury rays. Rather, visible fluorescence needs to be generated by an indirect excitation mechanism in which the energy absorbed by the matrix moves to the emission center, but there are not many crystals in which indirect excitation occurs efficiently.

現在使用されているキセノン励起用蛍光体としては、青色に発光するBaMgAl10O17:Eu、緑色に発光するLaPO4:Tb,Ce, Zn2SiO4:Mn、(Y,Gd)BO3:Tb、赤色に発光する(Y,Gd)BO3:Eu,Y(P,V)O4:Euなどがある。しかしながら、これらの蛍光体は、母体材料が光を吸収する波長で励起するため劣化し易いという欠点がある。このため、例えば、シリカ等を母材とする安定な蛍光体が求められている。Currently used phosphors for xenon excitation include BaMgAl 10 O 17 : Eu that emits blue light, LaPO 4 that emits green light: Tb, Ce, Zn 2 SiO 4 : Mn, (Y, Gd) BO 3 : Tb, (Y, Gd) BO 3 : Eu, Y (P, V) O 4 : Eu, etc. that emit red light. However, these phosphors have a drawback that they are easily deteriorated because the host material is excited at a wavelength that absorbs light. For this reason, for example, a stable phosphor using silica or the like as a base material is required.

そのための方法として、蛍光体表面をコーティングするなどの改良を行う方法(特許文献1)が行われている。また、その他にシリカ系結晶(特許文献2、3)、アルミン酸結晶(特許文献4,5)を利用した新規な組成の蛍光体の開発が多数行われているが、新規な蛍光体は数多くは見出されていない。   As a method therefor, a method (Patent Document 1) for performing an improvement such as coating the phosphor surface has been performed. In addition, many other phosphors having a new composition using silica-based crystals (Patent Documents 2 and 3) and aluminate crystals (Patent Documents 4 and 5) have been developed, but there are many new phosphors. Has not been found.

キセノンの発光線で蛍光体を励起する装置としては、無水銀蛍光ランプ以外に、プラズマディスプレイ装置を挙げることができる。プラズマディスプレイは、Xeの147nmの発光線を用いるものであり、蛍光体としては、Zn2SiO4:Mn(緑)、(Y,Gd)BO3:Eu(赤)、BaMgAl10O17:Eu(青)等が使用されている。プラズマディスプレイにおいては、色度(CIE座標中のX、Y値)と彩度が重要である。本来は、シャープな発光ピークを示す希土類のf-f遷移に由来する蛍光体が望ましいが、適切な色純度を示す蛍光体がなく、しかも十分な蛍光強度が得られる蛍光体がないなどの理由で、f-d遷移を利用したBaMgAl10O17:Euやd-d遷移を利用したZn2SiO4:Mn等が使用されている。In addition to mercury-free fluorescent lamps, plasma display devices can be cited as devices that excite phosphors with xenon emission lines. The plasma display uses Xe's 147 nm emission line, and phosphors include Zn 2 SiO 4 : Mn (green), (Y, Gd) BO 3 : Eu (red), BaMgAl 10 O 17 : Eu (Blue) etc. are used. In a plasma display, chromaticity (X and Y values in CIE coordinates) and saturation are important. Originally, a phosphor derived from a rare earth ff transition exhibiting a sharp emission peak is desirable, but there is no phosphor exhibiting appropriate color purity, and there is no phosphor capable of obtaining sufficient fluorescence intensity. BaMgAl 10 O 17 : Eu using fd transition, Zn 2 SiO 4 : Mn using dd transition, or the like is used.

また、その他の問題として、使用されるR,G,Bの3色のマトリックス組成が異なるため駆動電圧を変換するための回路も必要となるという欠点があり、赤(R)、緑(G)、青(B)の蛍光体母体は、類似の誘電率をもつことが望ましい。   Another problem is that a circuit for converting the drive voltage is required because the three R, G, and B colors used in the matrix composition are different. Red (R) and Green (G) The blue (B) phosphor matrix preferably has a similar dielectric constant.

安定なアモルファスシリカ中に希土類の発光中心を固定化したR,G,Bの蛍光体が得られれば、上記の問題は解決できると考えられる。アモルファスシリカを利用した蛍光体としは、特許文献6のような例が報告されているが、真空紫外域での発光については報告されていない。また、シリカをベースとした多孔質ガラスに、金属、希土類元素などを導入し、焼成して作製した蛍光体が真空紫外領域で比較的強い蛍光強度を示すことや(特許文献7、特許文献8、非特許文献1)、ポーラスシリカ粉末を焼結した粉末において、多くの希土類金属に発光現象が見られること(非特許文献2、3)等も報告されている。しかしながら、これらの発光体では、真空紫外光励起による蛍光強度は市販の蛍光体と比較すると10%〜20%程度と低いために、実用性が十分ではない。
特開2002-38148 特開2005-60670 特開2003-213254 特開2004-197044 特開2005-60679 特開2003-155478 特開2005-142037 特開2005-060679 Chemistry Letters 86(23):231908 (2005) 第67回応用物理学会学術講演会講演要旨集、p.1323 第19回秋季シンポジウム講演要旨集、p.79
It is considered that the above problem can be solved if a phosphor of R, G, B in which a rare earth emission center is fixed in stable amorphous silica is obtained. As a phosphor using amorphous silica, an example as in Patent Document 6 has been reported, but light emission in the vacuum ultraviolet region has not been reported. In addition, a phosphor produced by introducing a metal, a rare earth element, or the like into a porous glass based on silica and firing the phosphor exhibits a relatively strong fluorescence intensity in the vacuum ultraviolet region (Patent Documents 7 and 8). Non-Patent Document 1), and the fact that a light emission phenomenon is observed in many rare earth metals in a powder obtained by sintering porous silica powder (Non-Patent Documents 2 and 3) has also been reported. However, these phosphors are not practical enough because the fluorescence intensity by vacuum ultraviolet light excitation is as low as about 10% to 20% compared to commercially available phosphors.
JP2002-38148 JP2005-60670 JP2003-213254 JP2004-197044 JP2005-60679 JP2003-155478 JP2005-142037 JP2005-060679 Chemistry Letters 86 (23): 231908 (2005) Proceedings of the 67th Annual Conference of the Japan Society of Applied Physics, p.1323 19th Autumn Symposium Abstracts, p.79

本発明の主な目的は、真空紫外領域の紫外光で励起される蛍光体であって、長期化間安定に使用でき、発光強度が高く、しかも適切な色度を示すことのできる新規な真空紫外光励起用蛍光体を提供することである。   The main object of the present invention is a phosphor excited by ultraviolet light in the vacuum ultraviolet region, which can be used stably over a long period of time, has a high emission intensity, and can exhibit a suitable chromaticity. It is to provide a phosphor for ultraviolet light excitation.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、ポーラスシリカを母材として用い、これに希土類元素からなる発光元素と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素からなる増感剤をドープさせた後、焼成する方法によれば、上記した目的を達成し得る真空紫外光励起用蛍光体が得られることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, porous silica is used as a base material, and it is doped with a light-emitting element composed of a rare earth element and a sensitizer composed of at least one alkali metal element selected from the group consisting of Li, Na, K, Rb and Cs. Then, according to the firing method, it has been found that a phosphor for vacuum ultraviolet light excitation that can achieve the above-described object can be obtained, and the present invention has been completed here.

即ち、本発明は、下記の真空紫外光励起用蛍光体を提供するものである。
1. ポーラスシリカに、f-f遷移によって蛍光を示す希土類元素と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素をドープさせた後、焼成して得られる真空紫外光励起用蛍光体。
2. ポーラスシリカが、SiOを95重量%以上含有し、細孔径が1nm〜10nm、比表面積が100m2/g〜800m2/gの多孔質体である上記項1に記載の真空紫外光励起用蛍光体。
3. 希土類元素が、Tb、Eu、Sm、Tm及びDyからなる群から選ばれた少なくとも一種である上記項1又は2に記載の真空紫外光励起用蛍光体。
4. 希土類元素の含有量が0.01〜12重量%であり、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素の含有量が0.01〜9重量%であって、Liの含有量が0.4重量%以下、Naの含有量が1重量%以下、Kの含有量が3重量%以下である上記項1〜3のいずれかに記載の真空紫外光励起用蛍光体。
5. アルカリ金属元素の含有量が希土類元素1モルに対して0.6〜1.6モルである上記項1〜4のいずれかに記載の真空紫外光励起用蛍光体。
6. ポーラスシリカに、更に、Ba、Er、In及びGdからなる群から選ばれた少なくとも一種の元素をドープさせた後、焼成して得られる上記項1〜5のいずれかに記載の真空紫外光励起用蛍光体。
7. Tbを0.01〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下含有する緑色発光する蛍光体である上記項1〜5のいずれかに記載の真空紫外光励起用蛍光体。
8. Eu及びSmからなる群から選ばれた少なくとも一種の元素を0.01〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下含有する赤色発光をする蛍光体である上記項1〜5のいずれかに記載の真空紫外光励起用蛍光体。
9. Tmを0.01〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下含有する青色発光をする蛍光体である上記項1〜5のいずれかに記載の真空紫外光励起用蛍光体。
10. Tbを0.01〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下と、Gdを0.01〜9重量%含有する緑色発光する蛍光体である上記項6に記載の真空紫外光励起用蛍光体。
11. Eu及びSmからなる群から選ばれた少なくとも一種の元素を0.01%〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下と、Gdを0.01〜9重量%含有する赤色発光する蛍光体である上記項6に記載の真空紫外光励起用蛍光体。
12. Tmを0.01〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下と、Er及びInからなる群から選ばれた少なくとも一種の元素を0.01〜9重量%含有する青色発光する蛍光体である上記項6に記載の真空紫外光励起用蛍光体。
13. Tmを0.02〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下と、Baを0.01〜1重量%含有する青色発光する蛍光体である上記項6に記載の真空紫外光励起用蛍光体。
That is, the present invention provides the following phosphor for vacuum ultraviolet light excitation.
1. Vacuum ultraviolet light excitation obtained by doping porous silica with a rare earth element that exhibits fluorescence by ff transition and at least one alkali metal element selected from the group consisting of Li, Na, K, Rb, and Cs, followed by firing Phosphor.
2. Porous silica, a SiO 2 contained more than 95 wt%, the pore diameter is 1 nm to 10 nm, fluorescence vacuum ultraviolet excitation according specific surface area to item 1, which is a porous body of 100m 2 / g~800m 2 / g body.
3. Item 3. The phosphor for vacuum ultraviolet light excitation according to Item 1 or 2, wherein the rare earth element is at least one selected from the group consisting of Tb, Eu, Sm, Tm, and Dy.
4). The content of the rare earth element is 0.01 to 12% by weight, the content of at least one alkali metal element selected from the group consisting of Li, Na, K, Rb and Cs is 0.01 to 9% by weight, The phosphor for vacuum ultraviolet light excitation according to any one of the above items 1 to 3, wherein the content of is 0.4% by weight or less, the content of Na is 1% by weight or less, and the content of K is 3% by weight or less.
5. Item 5. The phosphor for vacuum ultraviolet light excitation according to any one of Items 1 to 4, wherein the content of the alkali metal element is 0.6 to 1.6 mol with respect to 1 mol of the rare earth element.
6). The porous ultraviolet light excitation according to any one of the above items 1 to 5, obtained by further calcination after doping porous silica with at least one element selected from the group consisting of Ba, Er, In and Gd Phosphor.
7). 0.01 to 12% by weight of Tb, 0.01 to 9% by weight of at least one alkali metal selected from the group consisting of Li, Na, K, Rb, and Cs, and 0.4% by weight or less of Li and 1% of Na Item 6. The phosphor for vacuum ultraviolet light excitation according to any one of Items 1 to 5, which is a phosphor emitting green light containing not more than wt% and not more than 3 wt% of K.
8). 0.01 to 12% by weight of at least one element selected from the group consisting of Eu and Sm, and 0.01 to 9% by weight of at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs The phosphor for vacuum ultraviolet light excitation according to any one of the above items 1 to 5, which is a phosphor emitting red light containing 0.4% by weight or less of Li, 1% by weight or less of Na, and 3% by weight or less of K. .
9. 0.01 to 12% by weight of Tm, 0.01 to 9% by weight of at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs, wherein Li is 0.4% by weight or less, and Na is 1%. Item 6. The phosphor for vacuum ultraviolet light excitation according to any one of Items 1 to 5, which is a phosphor emitting blue light containing not more than% by weight and not more than 3% by weight of K.
10. 0.01 to 12% by weight of Tb, 0.01 to 9% by weight of at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs, with Li of 0.4% by weight or less and Na of 1 Item 7. The phosphor for vacuum ultraviolet light excitation according to Item 6, which is a phosphor that emits green light and contains 0.01% to 9% by weight of Gd and 0.01 to 9% by weight of Gd or less, K is 3% by weight or less.
11. 0.01% to 12% by weight of at least one element selected from the group consisting of Eu and Sm, and 0.01% to 9% by weight of at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs Item 7. The vacuum ultraviolet ray according to Item 6, which is a phosphor emitting red light containing 0.4% by weight or less of Li, 1% by weight or less of Na, 3% by weight or less of K, and 0.01 to 9% by weight of Gd. Phosphor for photoexcitation.
12 0.01 to 12% by weight of Tm, 0.01 to 9% by weight of at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs, with Li of 0.4% by weight or less and Na of 1 Item 7. The vacuum ultraviolet light excitation according to Item 6, wherein the phosphor emits blue light and contains 0.01 to 9% by weight of at least one element selected from the group consisting of Er and In, and less than 10% by weight, K is 3% by weight or less. Phosphor.
13. Tm is 0.02 to 12% by weight, at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs is 0.01 to 9% by weight, Li is 0.4% by weight or less, and Na is 1%. Item 7. The phosphor for vacuum ultraviolet light excitation according to Item 6, which is a phosphor that emits blue light and contains 0.01% to 1% by weight of Ba and 0.01 to 1% by weight of K.

本発明の真空紫外光励起用蛍光体は、アモルファスシリカを主成分とし、これに特定の発光元素と増感剤成分を固定化したものであり、真空紫外領域以下の紫外光を照射することによって、長期間安定に強い蛍光を発するものである。   The phosphor for vacuum ultraviolet light excitation of the present invention has amorphous silica as a main component, a specific light emitting element and a sensitizer component fixed thereto, and by irradiating ultraviolet light below the vacuum ultraviolet region, It emits strong fluorescence stably for a long time.

また、色度については、市販のものと比較してより純粋なR,G,Bが得られるという利点がある。   As for chromaticity, there is an advantage that purer R, G, and B can be obtained as compared with commercially available products.

従って、本発明の蛍光体を利用することによって、例えば、省エネ型、長寿命の無水銀蛍光ランプ、無水銀CCFLまたはそれをバックライトとして利用した液晶ディスプレイ、長寿命で色鮮やかなプラズマディスプレイ製品などを得ることが可能となる。   Therefore, by using the phosphor of the present invention, for example, an energy-saving, long-life mercury-free fluorescent lamp, a mercury-free CCFL or a liquid crystal display using it as a backlight, a long-life and colorful plasma display product, etc. Can be obtained.

実施例4で得られた青色蛍光体の蛍光スペクトルを示す図面である。4 is a drawing showing a fluorescence spectrum of a blue phosphor obtained in Example 4. 実施例10で得られた緑色蛍光体の蛍光スペクトルを示す図面である。6 is a drawing showing a fluorescence spectrum of a green phosphor obtained in Example 10. FIG. 実施例13で得られた赤色蛍光体の蛍光スペクトルを示す図面である。4 is a drawing showing a fluorescence spectrum of a red phosphor obtained in Example 13. 実施例10、13、17、4の蛍光体と市販の蛍光体の色度値を示す色度座標である。It is a chromaticity coordinate which shows the chromaticity value of the fluorescent substance of Example 10, 13, 17, 4 and a commercially available fluorescent substance.

本発明の真空紫外光励起用蛍光体は、母材としてポーラスシリカを用い、これに希土類元素と特定の増感剤をドープさせた後、焼成して得られるものである。   The phosphor for vacuum ultraviolet light excitation according to the present invention is obtained by using porous silica as a base material, doping a rare earth element and a specific sensitizer, and then firing.

以下、本発明の真空紫外光励起用蛍光体について具体的に説明する。   The vacuum ultraviolet excitation phosphor of the present invention will be specifically described below.

ポーラスシリカ
本発明で用いるポーラスシリカは、SiOを主成分とする多孔質体であればよく、特に、SiOを95重量%以上含有するものであることが好ましい。該ポーラスシリカでは、SiO以外の成分としては、その製法に応じて、Al、B等の元素が含まれることがある。
Porous silica The porous silica used in the present invention may be a porous body mainly composed of SiO 2 , and particularly preferably contains 95% by weight or more of SiO 2 . In the porous silica, as components other than SiO 2 , elements such as Al and B may be contained depending on the production method.

ポーラスシリカの細孔の形状は、外部から内部にイオンが導入できるように、連続細孔であることが好ましい。細孔径は、1nm〜10nm程度であることが好ましく、2nm〜4nm程度であることがより好ましい。この範囲内の細孔径を有するポーラスシリカを用いることによって、良好な輝度を有する蛍光体を得ることができる。尚、この場合の細孔径は、窒素吸着法を用いてBET法によって求めた値である。   The pore shape of the porous silica is preferably continuous pores so that ions can be introduced from the outside to the inside. The pore diameter is preferably about 1 nm to 10 nm, and more preferably about 2 nm to 4 nm. By using porous silica having a pore diameter within this range, a phosphor having good luminance can be obtained. In this case, the pore diameter is a value obtained by the BET method using the nitrogen adsorption method.

ポーラスシリカの粒径については特に限定的ではないが、通常、平均粒径が1μm〜30μm程度の範囲であることが好ましく、3μm〜20μm程度であることがより好ましい。尚、ポーラスシリカの平均粒径は、光学式の粒度測定装置を用いて、JIS R 1629-1997 原料のレーザ回折、散乱法による粒子径分布測定法により測定した値である。   The particle size of the porous silica is not particularly limited, but usually the average particle size is preferably in the range of about 1 μm to 30 μm, more preferably about 3 μm to 20 μm. The average particle size of the porous silica is a value measured by a particle size distribution measuring method using a laser diffraction / scattering method of JIS R 1629-1997 raw material using an optical particle size measuring device.

また、ポーラスシリカの比表面積は、100m2/g〜800m2/g程度であることが好ましく、300m2/g〜600m2/g程度であることがより好ましい。比表面積は、窒素吸着法を用いてBET法によって求めた値である。The specific surface area of porous silica is preferably 100m 2 / g~800m 2 / g approximately, and more preferably 300m 2 / g~600m 2 / g approximately. The specific surface area is a value determined by the BET method using the nitrogen adsorption method.

また、ポーラスシリカ中にFe等の金属不純物が存在すると輝度の低下につながる。このため、Feの含有量は100ppm以下であることが望ましい。   Further, the presence of metal impurities such as Fe in the porous silica leads to a decrease in luminance. For this reason, the Fe content is desirably 100 ppm or less.

ポーラスシリカを製造する方法としては、特に限定されず、上記した条件を満足するポーラスシリカを製造できる方法であればよい。例えば、シリカコロイドを凝集させて作製する市販シリカゲルの製造方法でもよく、また、ホウケイ酸ガラスをホウ酸相とシリカ相にスピノーダル分相させ、酸でホウ酸相をリーチングして多孔質シリカを得る方法でもよい。特に、後者の方法は、孔径や表面積を自由に変更できる点で特に有利である。   It does not specifically limit as a method to manufacture porous silica, What is necessary is just the method which can manufacture porous silica which satisfies above-described conditions. For example, it may be a commercially available silica gel production method produced by agglomerating silica colloid, or spinodal phase separation of borosilicate glass into boric acid phase and silica phase and leaching of boric acid phase with acid to obtain porous silica. The method may be used. In particular, the latter method is particularly advantageous in that the pore diameter and surface area can be freely changed.

発光元素
本発明の蛍光体では、発光元素としては、f-f遷移によって蛍光を示す希土類元素を用いる。この様な希土類元素としては、Tb、Eu、Sm、Tm、Dy等を例示できる。これらの希土類元素から、目的とする発光色に応じて使用する元素を決めればよい。例えば、緑色に発光する蛍光体を得るためにはTbを用いることができ、赤色に発光する蛍光体を得るためにはEu又はSmを用いることができ、青色に発光する蛍光体を得るためにはTmを用いることができる。
Luminescent Element In the phosphor of the present invention, a rare earth element that exhibits fluorescence by ff transition is used as the luminescent element. Examples of such rare earth elements include Tb, Eu, Sm, Tm, Dy and the like. From these rare earth elements, an element to be used may be determined according to the target emission color. For example, Tb can be used to obtain a phosphor emitting green light, Eu or Sm can be used to obtain a phosphor emitting red light, and a phosphor emitting blue light can be obtained. Tm can be used.

本発明の真空紫外光励起用蛍光体における希土類元素の含有量は、目的とする発光強度に応じて適宜決めることができる。通常は、蛍光体全体を基準として希土類元素の含有量を0.01〜12重量%程度とすることが好ましく、0.5〜5重量%程度とすることがより好ましい。   The content of the rare earth element in the phosphor for vacuum ultraviolet light excitation of the present invention can be appropriately determined according to the target emission intensity. Usually, the rare earth element content is preferably about 0.01 to 12% by weight, more preferably about 0.5 to 5% by weight, based on the entire phosphor.

尚、本発明の真空紫外光励起用蛍光体では、希土類元素は、アモルファスシリカを母材として、イオンの状態で固定化されているものと考えられる。   In the phosphor for vacuum ultraviolet light excitation according to the present invention, it is considered that the rare earth element is immobilized in an ionic state using amorphous silica as a base material.

増感剤
本発明の真空紫外光励起用蛍光体では、増感剤として、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素を用いることが必要である。上記した希土類元素と共にこれらの増感剤を用いることによって、発光強度を大きく向上させて、高輝度の発光体とすることができる。その中でも特にRb,Csが発光強度の増大には有効である。
Sensitizer In the phosphor for vacuum ultraviolet light excitation of the present invention, it is necessary to use at least one alkali metal element selected from the group consisting of Li, Na, K, Rb and Cs as the sensitizer. By using these sensitizers together with the rare earth elements described above, the emission intensity can be greatly improved, and a high-luminance luminescent material can be obtained. Among them, Rb and Cs are particularly effective for increasing the emission intensity.

Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素の含有量は、0.01〜9重量%程度とすることが好ましく、0.1〜2重量%程度とすることがより好ましい。但し、Li、Na及びKの各元素については、上記範囲内であっても、添加量が多くなりすぎると、発光強度が低下する場合がある。このため、Liの含有量は0.4重量%程度以下、Naの含有量は1重量程度%以下、Kの含有量は3重量%程度以下とすることが好ましい。   The content of at least one alkali metal element selected from the group consisting of Li, Na, K, Rb and Cs is preferably about 0.01 to 9% by weight, more preferably about 0.1 to 2% by weight. preferable. However, for each element of Li, Na, and K, even if the amount is within the above range, if the addition amount is too large, the emission intensity may decrease. Therefore, it is preferable that the Li content is about 0.4% by weight or less, the Na content is about 1% by weight or less, and the K content is about 3% by weight or less.

また、アルカリ金属元素は、上記した含有量の範囲内において、希土類元素1モルに対して0.6〜1.6モル程度、より好ましくは0.7〜1.3の範囲内で用いる場合、特に、発光強度を大きく向上させることができる。   In addition, when the alkali metal element is used in the range of the above content, about 0.6 to 1.6 mol, more preferably 0.7 to 1.3, with respect to 1 mol of the rare earth element, the emission intensity is greatly improved. be able to.

その他の成分
本発明の真空紫外光励起用蛍光体では、更に、必要に応じて、Ba、Er、In、Gd等を含有させることによって、発光強度をより向上させることができる。
Other Components In the phosphor for vacuum ultraviolet light excitation according to the present invention, the emission intensity can be further improved by further containing Ba, Er, In, Gd or the like, if necessary.

Ba、Er、In、Gd等の含有量は、目的とする発光強度に応じて適宜決めることができるが、通常、0.01〜9重量%程度の含有量の範囲において、発光強度の増強効果を得ることができる。   The content of Ba, Er, In, Gd, and the like can be appropriately determined according to the target emission intensity, but usually the effect of enhancing the emission intensity in the range of about 0.01 to 9% by weight. Can be obtained.

真空紫外光励起用蛍光体の製造方法
本発明の真空紫外光励起用蛍光体を製造するには、まず、ポーラスシリカに発光元素と増感剤をドープさせる。
Production Method of Vacuum Ultraviolet Light Exciting Phosphor To produce the vacuum ultraviolet light excitation phosphor of the present invention, first, porous silica is doped with a light emitting element and a sensitizer.

発光元素と増感剤をドープさせる方法については、特に限定はなく、例えば、CVD法などの気相法によって目的とする元素をドープさせる方法、発光元素と増感剤成分を含む溶液中にポーラスシリカを浸漬する方法などを適用できる。特に、溶液中に浸漬する方法によれば、均質に元素がドープしやすい点で有利である。   There is no particular limitation on the method for doping the luminescent element and the sensitizer, for example, a method of doping the target element by a vapor phase method such as a CVD method, or a porous solution in a solution containing the luminescent element and the sensitizer component. A method of immersing silica can be applied. In particular, the method of immersing in a solution is advantageous in that the element is easily homogeneously doped.

溶液中にポーラスシリカを浸漬する方法では、使用する溶液中における希土類元素の濃度は、通常、0.01mol/L〜6mol/L程度とすることが好ましく、0.03mol/L〜3mol/L程度とすることがより好ましい。また、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素の濃度については、通常、0.01mol/L〜6mol/L程度とすることが好ましく、0.03mol/L〜3mol/L程度とすることがより好ましい。更に、Ba、Er、In、Gd等をドープする場合には、これらの成分の濃度は、0.05〜6mol/L程度とすることが好ましい。   In the method of immersing porous silica in the solution, the concentration of rare earth elements in the solution to be used is usually preferably about 0.01 mol / L to 6 mol / L, preferably about 0.03 mol / L to 3 mol / L. More preferably. The concentration of at least one alkali metal element selected from the group consisting of Li, Na, K, Rb and Cs is usually preferably about 0.01 mol / L to 6 mol / L, preferably about 0.03 mol / L to about 3 mol / L is more preferable. Further, when doping with Ba, Er, In, Gd or the like, the concentration of these components is preferably about 0.05 to 6 mol / L.

該溶液の溶媒としては、通常、水を用いればよい。上記した発光元素及び増感剤は、使用する溶媒に対して可溶性の化合物を用いればよい。水を溶媒とする場合には、硝酸塩、塩化物などを用いることができる。   As a solvent of the solution, water is usually used. As the above-described luminescent element and sensitizer, a compound that is soluble in the solvent to be used may be used. When water is used as a solvent, nitrates, chlorides and the like can be used.

発光元素と増感剤を含む溶液中にポーラスシリカを浸漬する方法では、該溶液中にポーラスシリカを添加し、攪拌して十分に分散させて放置すればよい。該溶液の温度は、通常0℃〜室温程度とすればよく、浸漬時間は10分〜2時間程度とすればよい。   In the method of immersing porous silica in a solution containing a light emitting element and a sensitizer, the porous silica may be added to the solution, stirred and sufficiently dispersed and allowed to stand. The temperature of the solution may normally be about 0 ° C. to room temperature, and the immersion time may be about 10 minutes to 2 hours.

次いで、該溶液からポーラスシリカを取り出して、焼成することによって、目的とする真空紫外光励起用蛍光体を得ることができる。焼成温度は、850℃〜1250℃程度とすることが好ましく1000〜1100℃程度とすることがより好ましい。焼成温度が低すぎたり、高すぎたりすると十分な蛍光強度が得られないので好ましくない。焼成時間は、通常、2時間〜6時間程度とすればよい。   Next, by removing the porous silica from the solution and baking it, the intended phosphor for exciting vacuum ultraviolet light can be obtained. The firing temperature is preferably about 850 ° C. to 1250 ° C., more preferably about 1000 to 1100 ° C. If the baking temperature is too low or too high, sufficient fluorescence intensity cannot be obtained, which is not preferable. The firing time may usually be about 2 to 6 hours.

焼成雰囲気については特に限定的ではないが、Eu3+については赤色発光に寄与しないEu2+の存在量を減少できる酸素雰囲気中の焼成が特に望ましい。The firing atmosphere is not particularly limited, but for Eu 3+ , firing in an oxygen atmosphere that can reduce the amount of Eu 2+ that does not contribute to red light emission is particularly desirable.

真空紫外光励起用蛍光体
上記した方法で得られる真空紫外光励起用蛍光体は、アモルファスシリカ中に発光元素と増感剤が固定化されたものとなる。
Phosphor for vacuum ultraviolet light excitation The phosphor for vacuum ultraviolet light excitation obtained by the above-described method is obtained by immobilizing a light emitting element and a sensitizer in amorphous silica.

得られた蛍光体は、真空紫外領域の紫外線の照射により励起されて、強い蛍光を発するものであり、母材とするシリカは、紫外線透過率が高く、短波長の光で励起できるだけでなく、紫外線照射による欠陥が生じにくく、発光体として長期間安定に使用できる。更に、色純度については、市販のものと比較してより純粋な赤(R)、緑(G)、青(B)が得られるという利点がある。   The obtained phosphor is excited by irradiation with ultraviolet rays in the vacuum ultraviolet region and emits strong fluorescence.Silica as a base material has high ultraviolet transmittance and can be excited with short-wavelength light. Defects due to ultraviolet irradiation are less likely to occur and can be used stably as a light emitter for a long period of time. Further, the color purity has an advantage that purer red (R), green (G), and blue (B) can be obtained as compared with commercially available products.

本発明の真空紫外光励起用蛍光体は、希土類元素の種類を選択することによって、目的とする発光色の蛍光体とすることができる。この様な特定の発光色を有する蛍光体の具体例を挙げると以下の通りである。   The phosphor for vacuum ultraviolet light excitation of the present invention can be made into a phosphor having a target emission color by selecting the kind of rare earth element. Specific examples of the phosphor having such a specific emission color are as follows.

緑色発光をする真空紫外光励起用蛍光体としては、蛍光体全体を基準として、Tbを0.01〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下含有する蛍光体を例示できる。   As a phosphor for vacuum ultraviolet light excitation that emits green light, Tb is 0.01 to 12% by weight based on the whole phosphor, and at least one alkali metal selected from the group consisting of Li, Na, K, Rb, and Cs Examples include phosphors containing 0.01 to 9% by weight of elements, 0.4% by weight or less of Li, 1% by weight or less of Na, and 3% by weight or less of K.

赤色発光をする真空紫外光励起用蛍光体としては、蛍光体全体を基準として、Eu及びSmからなる群から選ばれた少なくとも一種の元素を0.01%〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下含有する蛍光体を例示できる。   As the phosphor for vacuum ultraviolet light excitation that emits red light, 0.01% to 12% by weight of at least one element selected from the group consisting of Eu and Sm, based on the whole phosphor, Li, Na, K, Rb And phosphor containing 0.01 to 9% by weight of at least one alkali metal element selected from the group consisting of Cs, Li of 0.4% by weight or less, Na of 1% by weight or less, and K of 3% by weight or less. It can be illustrated.

青色発光をする真空紫外光励起用蛍光体としては、蛍光体全体を基準として、Tmを0.01〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下含有する蛍光体を例示できる。   As a phosphor for vacuum ultraviolet light excitation that emits blue light, Tm is 0.01 to 12% by weight based on the whole phosphor, and at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs Examples include phosphors containing 0.01 to 9% by weight of elements, 0.4% by weight or less of Li, 1% by weight or less of Na, and 3% by weight or less of K.

また、発光強度がより増強された緑色発光をする真空紫外光励起用蛍光体としては、蛍光体全体を基準として、Tbを0.01〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下と、Gdを0.01〜9重量%含有する蛍光体を例示できる。   In addition, as a phosphor for vacuum ultraviolet light excitation that emits green light with enhanced emission intensity, the group consisting of 0.01 to 12% by weight of Tb and Li, Na, K, Rb, and Cs on the basis of the whole phosphor. 0.01 to 9% by weight of at least one alkali metal element selected from Li, 0.4% by weight or less of Li, 1% by weight or less of Na, 3% by weight or less of K, and 0.01 to 9% by weight of Gd Examples of phosphors to be used are as follows.

発光強度がより増強された赤色発光をする真空紫外光励起用蛍光体としては、蛍光体全体を基準として、Eu及びSmからなる群から選ばれた少なくとも一種の元素を0.01%〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下と、Gdを0.01〜9重量%含有する蛍光体を例示できる。   As a phosphor for vacuum ultraviolet light excitation that emits red light with enhanced emission intensity, 0.01% to 12% by weight of at least one element selected from the group consisting of Eu and Sm, based on the whole phosphor, At least one alkali metal element selected from the group consisting of Li, Na, K, Rb, and Cs is 0.01 to 9 wt%, Li is 0.4 wt% or less, Na is 1 wt% or less, and K is 3 wt%. And phosphors containing 0.01 to 9% by weight of Gd.

発光強度がより増強された青色発光をする真空紫外光励起用蛍光体としては、蛍光体全体を基準として、Tmを0.01%〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下と、Er及びInからなる群から選ばれた少なくとも一種の元素を0.01〜9重量%含有する蛍光体を例示できる。   As a phosphor for vacuum ultraviolet light excitation that emits blue light with enhanced emission intensity, Tm is 0.01% to 12% by weight based on the whole phosphor, and a group consisting of Li, Na, K, Rb and Cs. At least one selected alkali metal element is 0.01 to 9% by weight, Li is 0.4% by weight or less, Na is 1% by weight or less, K is 3% by weight or less, and is selected from the group consisting of Er and In. Examples thereof include phosphors containing 0.01 to 9% by weight of at least one element.

発光強度がより増強された青色発光をする真空紫外光励起用蛍光体のその他の例としては、蛍光体全体を基準として、Tmを0.02%〜12重量%と、Li、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素を0.01〜9重量%であって、Liを0.4重量%以下、Naを1重量%以下、Kを3重量%以下と、Baを0.01〜1重量%含有する蛍光体を例示できる。   Other examples of phosphors for vacuum ultraviolet light excitation that emit blue light with enhanced emission intensity include 0.02% to 12% by weight of Tm, Li, Na, K, Rb, and Cs, based on the entire phosphor. 0.01 to 9% by weight of at least one alkali metal element selected from the group consisting of Li, 0.4% by weight or less, Na 1% by weight or less, K 3% by weight or less, and Ba 0.01 to 1%. Illustrative examples include phosphors containing wt%.

本発明の真空紫外光励起用蛍光体は、上記した優れた特性を利用して、真空紫外光励起用蛍光体として各種の用途に有効に用いることができる。例えば、照明装置、ディスプレイ装置、無水銀蛍光ランプ、プラズマディスプレイ等における蛍光体として使用でき、また、本発明の蛍光体を用いた蛍光ランプは、液晶ディスプレイ、コピー装置、スキャナー装置等に利用可能である。   The phosphor for vacuum ultraviolet light excitation of the present invention can be effectively used for various applications as a phosphor for vacuum ultraviolet light excitation utilizing the above-described excellent characteristics. For example, it can be used as a phosphor in a lighting device, a display device, a mercury-free fluorescent lamp, a plasma display, and the like, and the fluorescent lamp using the phosphor of the present invention can be used in a liquid crystal display, a copy device, a scanner device, etc. is there.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜25及び比較例1〜8
下記表1に示す組成(重量%)のホウケイ酸ガラスを1400℃で溶融させ、急冷した後、平均粒径8〜9μm程度まで粉砕した。次いで、90℃で1Nの硝酸で2時間処理し、濾取した後、水洗して、ポーラスシリカを得た。
Examples 1-25 and Comparative Examples 1-8
A borosilicate glass having the composition (% by weight) shown in Table 1 below was melted at 1400 ° C., quenched, and then pulverized to an average particle size of about 8 to 9 μm. Subsequently, it was treated with 1N nitric acid at 90 ° C. for 2 hours, collected by filtration, and washed with water to obtain porous silica.

Figure 0004982812
Figure 0004982812

得られたポーラスシリカの比表面積、細孔径及び平均粒径を下記表2に示す。尚、比表面積と細孔径は、窒素吸着法を用いてBET法によって求めた値であり、平均粒径は、光学式の粒度測定装置を使用して測定した値である。また、別途市販のシリカゲルとして、東ソーシリカ株式会社(CX-200:記号E)及び長良サイエンス(株)製シリカゲル(NA-300H:記号F)を粉砕して分級したものを用いた。   The specific surface area, pore diameter and average particle diameter of the obtained porous silica are shown in Table 2 below. The specific surface area and the pore diameter are values obtained by the BET method using a nitrogen adsorption method, and the average particle diameter is a value measured using an optical particle size measuring device. In addition, as a commercially available silica gel, silica gel (NA-300H: symbol F) manufactured by Tosoh Silica Co., Ltd. (CX-200: symbol E) and Nagara Science Co., Ltd. was used.

Figure 0004982812
Figure 0004982812

上記した方法で得られた各ポーラスシリカについて、下記表3〜表8に示す発光元素及び増感剤を含有する溶液に20℃で約1時間浸漬した後、濾取し、表3〜表8に示す温度で2時間焼成して、真空紫外光励起用蛍光体を得た。Tbについては大気中で6時間、Tmについては還元雰囲気中で2時間、Euについては酸素雰囲気中で2時間焼成した。   Each porous silica obtained by the above-described method was immersed in a solution containing a luminescent element and a sensitizer shown in Tables 3 to 8 at about 20 ° C. for about 1 hour, and then collected by filtration. Tables 3 to 8 Was fired at the temperature shown in FIG. 2 for 2 hours to obtain a phosphor for vacuum ultraviolet light excitation. Tb was fired in air for 6 hours, Tm was fired in a reducing atmosphere for 2 hours, and Eu was fired in an oxygen atmosphere for 2 hours.

上記した方法で得られた各真空紫外光励起用蛍光体について、ペレット作成による輝度の不均一性を除くために、石英製セルガラス窓を有するセルに粉体をつめ、石英ガラス側から紫外光を照射することで蛍光スペクトルの測定を行った。蛍光スペクトル測定は、重水素ランプ(波長160nm)を用いて窒素パージ下で行った。   In order to eliminate the non-uniformity of brightness due to the pellet preparation for each vacuum ultraviolet light excitation phosphor obtained by the above method, powder is packed in a cell having a quartz cell glass window, and ultraviolet light is emitted from the quartz glass side. The fluorescence spectrum was measured by irradiation. The fluorescence spectrum was measured under a nitrogen purge using a deuterium lamp (wavelength 160 nm).

下記表3〜表8に各蛍光体についての発光のピーク強度を示す。尚、Tb含有緑色蛍光体については543nmの蛍光、Eu含有赤色蛍光体については610nmの蛍光、Tm含有青色蛍光体については458nmの蛍光のピーク強度を示す。   Tables 3 to 8 below show the peak intensity of light emission for each phosphor. The Tb-containing green phosphor has a peak intensity of 543 nm, the Eu-containing red phosphor has a peak intensity of 610 nm, and the Tm-containing blue phosphor has a peak intensity of 458 nm.

Figure 0004982812
Figure 0004982812

Figure 0004982812
Figure 0004982812

Figure 0004982812
Figure 0004982812

Figure 0004982812
Figure 0004982812

Figure 0004982812
Figure 0004982812

Figure 0004982812
Figure 0004982812

表3に示す実施例1〜6は、発光元素としてのTmと増感剤としてのCsを含む青色発光蛍光体の蛍光強度を示すものである。Csを含有しない比較例1の蛍光体と比較すると蛍光強度が向上していることが明らかである。   Examples 1 to 6 shown in Table 3 show the fluorescence intensities of blue light emitting phosphors containing Tm as a light emitting element and Cs as a sensitizer. It is clear that the fluorescence intensity is improved as compared with the phosphor of Comparative Example 1 that does not contain Cs.

表4に示す実施例7〜12は、発光元素としてのTbと増感剤元素としてのCs又はRbを含む緑色発光蛍光体についての蛍光強度を示すものである。増感剤成分を含まない比較例2の蛍光体と比較すると蛍光強度の向上が認められる。   Examples 7 to 12 shown in Table 4 show the fluorescence intensities of green-emitting phosphors containing Tb as a luminescent element and Cs or Rb as a sensitizer element. Compared with the phosphor of Comparative Example 2 that does not contain a sensitizer component, an improvement in fluorescence intensity is observed.

表5に示す実施例13〜16は、発光元素としてのEuと増感剤元素としてのRb又はCsを含む赤色発光蛍光体についての蛍光強度を示すものである。増感剤成分を含有しない比較例3の蛍光体と比較すると蛍光強度が向上していることが明らかである。   Examples 13 to 16 shown in Table 5 show the fluorescence intensities of red light emitting phosphors containing Eu as a light emitting element and Rb or Cs as a sensitizer element. It is clear that the fluorescence intensity is improved as compared with the phosphor of Comparative Example 3 which does not contain a sensitizer component.

表6に示す実施例17〜18は、発光元素としてのSmと増感剤元素としてのRb又はCsを含む赤色発光蛍光体についての蛍光強度を示すものである。増感剤成分を含有しない比較例4の蛍光体と比較すると蛍光強度が向上していることが明らかである。   Examples 17 to 18 shown in Table 6 show the fluorescence intensities of red light-emitting phosphors containing Sm as a luminescent element and Rb or Cs as a sensitizer element. It is clear that the fluorescence intensity is improved as compared with the phosphor of Comparative Example 4 which does not contain a sensitizer component.

表7に示す実施例19〜25は、発光元素としてのTbと増感剤元素としてのLi、Na又はKを含む緑色蛍光体についての蛍光強度を示すものである。表8に示す増感剤成分を含有しない比較例5の蛍光体と比較すると、蛍光強度が向上していることが明らかである。また、比較例6〜8はLi、Na又はKの添加量が多い場合の例であり、これらの成分の添加量が過剰になると蛍光強度の低下が認められる。   Examples 19 to 25 shown in Table 7 show the fluorescence intensities of green phosphors containing Tb as a luminescent element and Li, Na or K as a sensitizer element. When compared with the phosphor of Comparative Example 5 which does not contain the sensitizer component shown in Table 8, it is clear that the fluorescence intensity is improved. Comparative Examples 6 to 8 are examples in which the amount of Li, Na, or K added is large. When the amount of these components added is excessive, a decrease in fluorescence intensity is observed.

また、図1〜図3に、実施例4、実施例10及び実施例13で得られた各蛍光体の蛍光スペクトルを示す。   1 to 3 show fluorescence spectra of the respective phosphors obtained in Example 4, Example 10 and Example 13. FIG.

また、実施例10の緑色蛍光体(発光元素:Tb3+)、実施例13の赤色蛍光体(発光元素:Eu3+)、実施例17の赤色蛍光体(発行元素:Sm3+)及び実施例4の青色蛍光体(発光元素:Tm3+)のCIE色度座標におけるx、y座標は、それぞれ、x=0.32 、Y=0.57、x=0.63、y=0.36, X=0.55,Y=0.32, X=0.152、Y=0.15であった。Further, the green phosphor of Example 10 (luminescent element: Tb 3+ ), the red phosphor of Example 13 (luminescent element: Eu 3+ ), the red phosphor of Example 17 (issuing element: Sm 3+ ), and The x and y coordinates in the CIE chromaticity coordinates of the blue phosphor (luminescent element: Tm 3+ ) of Example 4 are x = 0.32, Y = 0.57, x = 0.63, y = 0.36, X = 0.55, Y, respectively. = 0.32, X = 0.152, Y = 0.15.

図4は、実施例10、13、17及び4の蛍光体と市販の蛍光体の色度値を示す色度座標である。市販のものと比較して、特にB,Gは人がB,Gと感じる方向にシフトしていることが判る。   FIG. 4 is chromaticity coordinates showing chromaticity values of the phosphors of Examples 10, 13, 17 and 4 and commercially available phosphors. It can be seen that B and G are shifted in the direction that people feel B and G, in particular, compared with those on the market.

Claims (11)

ポーラスシリカに、f-f遷移によって蛍光を示す希土類元素と、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素をドープさせた後、焼成して得られる真空紫外光励起用蛍光体であって、希土類元素の含有量が0.01〜12重量%であり、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属元素の含有量が0.01〜9重量%である真空紫外光励起用蛍光体The porous silica, a rare earth element showing fluorescence by ff transition, after doped with at least one alkali metal element selected from the group consisting of Rb and Cs, a vacuum ultraviolet excitation phosphor obtained by firing A phosphor for vacuum ultraviolet light excitation, wherein the rare earth element content is 0.01 to 12% by weight and the content of at least one alkali metal element selected from the group consisting of Rb and Cs is 0.01 to 9% by weight . ポーラスシリカが、SiOを95重量%以上含有し、細孔径が1nm〜10nm、比表面積が100m2/g〜800m2/gの多孔質体である請求項1に記載の真空紫外光励起用蛍光体。 2. The fluorescent material for exciting vacuum ultraviolet light according to claim 1, wherein the porous silica is a porous material containing 95% by weight or more of SiO 2 , a pore diameter of 1 nm to 10 nm, and a specific surface area of 100 m 2 / g to 800 m 2 / g. body. 希土類元素が、Tb、Eu、Sm、Tm及びDyからなる群から選ばれた少なくとも一種である請求項1に記載の真空紫外光励起用蛍光体。2. The phosphor for vacuum ultraviolet light excitation according to claim 1, wherein the rare earth element is at least one selected from the group consisting of Tb, Eu, Sm, Tm and Dy. ポーラスシリカに、更に、Ba、Er、In及びGdからなる群から選ばれた少なくとも一種の元素をドープさせた後、焼成して得られる請求項1に記載の真空紫外光励起用蛍光体。2. The phosphor for vacuum ultraviolet light excitation according to claim 1, wherein the phosphor is further obtained by doping porous silica with at least one element selected from the group consisting of Ba, Er, In and Gd, followed by firing. Tbを0.01〜12重量%と、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%含有する緑色発光する蛍光体である請求項1に記載の真空紫外光励起用蛍光体。And 0.01 to 12% by weight of Tb, fluorescence vacuum ultraviolet excitation of claim 1 is a phosphor emitting green light having 0.01 to 9 wt% including at least one alkali metal selected from the group consisting of Rb and Cs body. Eu及びSmからなる群から選ばれた少なくとも一種の元素を0.01〜12重量%と、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%含有する赤色発光をする蛍光体である請求項1に記載の真空紫外光励起用蛍光体。Fluorescence and at least one element of 0.01 to 12 wt%, a red emission having 0.01 to 9 wt% including at least one alkali metal selected from the group consisting of Rb and Cs selected from the group consisting of Eu and Sm 2. The phosphor for vacuum ultraviolet light excitation according to claim 1, wherein the phosphor is a body. Tmを0.01〜12重量%と、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%含有する青色発光をする蛍光体である請求項1に記載の真空紫外光励起用蛍光体。And 0.01 to 12% by weight of Tm, for vacuum ultraviolet excitation of claim 1 is a phosphor that emits blue light having at least one 0.01 to 9 wt% containing an alkali metal selected from the group consisting of Rb and Cs Phosphor. Tbを0.01〜12重量%と、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%と、 Gdを0.01〜9重量%含有する緑色発光する蛍光体である請求項に記載の真空紫外光励起用蛍光体。And 0.01 to 12% by weight of Tb, claims and 0.01 to 9 wt% of at least one alkali metal selected from the group consisting of Rb and Cs, a phosphor emitting green light containing Gd 0.01 to 9 wt% 4. The phosphor for vacuum ultraviolet light excitation according to 4 . Eu及びSmからなる群から選ばれた少なくとも一種の元素を0.01%〜12重量%と、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%と、Gdを0.01〜9重量%含有する赤色発光する蛍光体である請求項に記載の真空紫外光励起用蛍光体。At least the one element and 0.01% to 12% by weight selected from the group consisting of Eu and Sm, and 0.01 to 9 wt% of at least one alkali metal selected from the group consisting of Rb and Cs, 0.01 to the Gd The phosphor for vacuum ultraviolet light excitation according to claim 4 , which is a phosphor that emits red light and contains 9% by weight. Tmを0.01〜12重量%と、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%と、Er及びIn からなる群から選ばれた少なくとも一種の元素を0.01〜9重量%含有する青色発光する蛍光体である請求項に記載の真空紫外光励起用蛍光体。0.01 to 12% by weight of Tm, 0.01 to 9% by weight of at least one alkali metal selected from the group consisting of Rb and Cs , and 0.01 to 9 % of at least one element selected from the group consisting of Er and In. The phosphor for vacuum ultraviolet light excitation according to claim 4 , which is a phosphor emitting blue light which is contained by weight%. Tmを0.02〜12重量%と、Rb及びCsからなる群から選ばれた少なくとも一種のアルカリ金属を0.01〜9重量%と、Baを0.01〜1重量%含有する青色発光する蛍光体である請求項に記載の真空紫外光励起用蛍光体。And from 0.02 to 12% by weight of Tm, claim at least a one 0.01 to 9 wt% of an alkali metal selected from the group consisting of Rb and Cs, a phosphor which emits blue light containing Ba 0.01 to 1 wt% 4. The phosphor for vacuum ultraviolet light excitation according to 4 .
JP2008545414A 2006-11-21 2007-11-20 Phosphor for vacuum ultraviolet light excitation Active JP4982812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008545414A JP4982812B2 (en) 2006-11-21 2007-11-20 Phosphor for vacuum ultraviolet light excitation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006313767 2006-11-21
JP2006313767 2006-11-21
JP2008545414A JP4982812B2 (en) 2006-11-21 2007-11-20 Phosphor for vacuum ultraviolet light excitation
PCT/JP2007/072472 WO2008062797A1 (en) 2006-11-21 2007-11-20 Phosphor for vacuum ultraviolet excitation

Publications (2)

Publication Number Publication Date
JPWO2008062797A1 JPWO2008062797A1 (en) 2010-03-04
JP4982812B2 true JP4982812B2 (en) 2012-07-25

Family

ID=39429728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008545414A Active JP4982812B2 (en) 2006-11-21 2007-11-20 Phosphor for vacuum ultraviolet light excitation

Country Status (2)

Country Link
JP (1) JP4982812B2 (en)
WO (1) WO2008062797A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196311A1 (en) * 2021-03-15 2022-09-22 パナソニックIpマネジメント株式会社 Phosphor and solar cell module using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129855B2 (en) * 1992-10-12 2001-01-31 日立電線株式会社 Method for manufacturing rare earth ion / alkali metal added glass substrate and method for manufacturing rare earth ion / alkali metal added glass waveguide
JP4161193B2 (en) * 2003-01-21 2008-10-08 独立行政法人産業技術総合研究所 Fluorescent glass and method for producing the same
JP4320442B2 (en) * 2003-07-25 2009-08-26 独立行政法人科学技術振興機構 Method for producing phosphor for vacuum ultraviolet light, and phosphor for vacuum ultraviolet light
JP4640176B2 (en) * 2003-09-24 2011-03-02 日立化成工業株式会社 Glass scintillator

Also Published As

Publication number Publication date
JPWO2008062797A1 (en) 2010-03-04
WO2008062797A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP2001226672A (en) Phosphor with improved lumen maintenance
JP2008202044A (en) Deep red phosphor and method for production thereof
JP5399020B2 (en) Blue light emitting phosphor
JP2001172626A (en) Display and light emitting device
CN102134486A (en) Vacuum ultraviolet induced green emitting phosphor and preparation method thereof
CN102134487A (en) Green emitting phosphor for plasma display panel and preparation method thereof
JP5965551B2 (en) Silicate luminescent material and method for producing the same
US8324793B2 (en) Rare earth doped luminescent material
CN1391255A (en) Gas discharge lamp with lower frequency converting luminating body
Jung et al. Effective energy transfer between Ce3+ and Eu2+ in CaAl2Si2O8 host under vacuum ultraviolet illumination
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
US20140191652A1 (en) Illuminant and illuminant lamp comprising said illuminant
JP4982812B2 (en) Phosphor for vacuum ultraviolet light excitation
JP5380790B2 (en) Alkaline earth metal aluminate phosphor and fluorescent lamp using the same
TWI336725B (en)
EP2734603A1 (en) Phosphor precursor composition
JP4272973B2 (en) Vacuum ultraviolet light excited green phosphor material and light emitting device using the same
JP2005060670A (en) Silicate phosphor
JP2003234089A (en) Cold cathode discharge tube and unit for lighting the same
CN103224791A (en) Eu ion-activated molybdate red fluorescent powder and its preparation method and use
JP2001303047A (en) Vacuum ultraviolet exciting fluorescent substance and emission device using the same
JP2013100388A (en) Fluorescent lamp small in used amount of rare earth element and phosphor to be used for the same
JP2009280773A (en) Phosphor
GB2437729A (en) Ultraviolet excited white phosphor and light emitting devices thereof
JP2009062246A (en) Green fluorescent glass

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

R150 Certificate of patent or registration of utility model

Ref document number: 4982812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250