JP2010002158A - Control method of air conditioner and air conditioner - Google Patents

Control method of air conditioner and air conditioner Download PDF

Info

Publication number
JP2010002158A
JP2010002158A JP2008163555A JP2008163555A JP2010002158A JP 2010002158 A JP2010002158 A JP 2010002158A JP 2008163555 A JP2008163555 A JP 2008163555A JP 2008163555 A JP2008163555 A JP 2008163555A JP 2010002158 A JP2010002158 A JP 2010002158A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
air
heat
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008163555A
Other languages
Japanese (ja)
Other versions
JP5291396B2 (en
Inventor
Kunihiko Kitamura
邦彦 北村
Osamu Ishihara
修 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyudenko Corp
Original Assignee
Kyudenko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyudenko Corp filed Critical Kyudenko Corp
Priority to JP2008163555A priority Critical patent/JP5291396B2/en
Publication of JP2010002158A publication Critical patent/JP2010002158A/en
Application granted granted Critical
Publication of JP5291396B2 publication Critical patent/JP5291396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an air conditioner capable of returning cold water (or hot water) to a heat source machine while the temperature difference of the cold water (or hot water) is sufficiently secured, and thus, to achieve reduction in pump carrying power and improvement of efficiency-performance coefficient COP of the heat source machine. <P>SOLUTION: In the control method of the air conditioner, changing characteristics of a flow ratio and an air conditioning load factor of heat exchangers approximate to a linear function. The heat exchangers are constituted to form multiple stages, and by operating all the heat exchangers, the full load time flow rate of cold water (or hot water) of the heat exchangers during full load can be secured. By stopping the cold water (or hot water) made to flow in any one of the multistage heat exchangers accompanying reduction in the air conditioning load, the operation of the one heat exchanger is stopped. A control valve is controlled so that the flow rate of the operated heat exchangers other than the stopped heat exchanger becomes a state of the maximum flow ratio of these heat exchangers. After any one of the heat exchangers is stopped, the control is performed so that the indoor temperature becomes set temperature by increasing/reducing the flow rate of the operated heat exchangers. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水方式セントラル熱源システム等の空調設備に用いて好適な空調機の制御方法及び空調機に関する。   The present invention relates to an air conditioner control method and an air conditioner suitable for use in air conditioning equipment such as a water-type central heat source system.

この種の空調設備に関する先行技術文献情報としては次のものがある(特許文献1、特許文献2)。   Prior art document information relating to this type of air conditioning equipment includes the following (Patent Document 1, Patent Document 2).

従来、図8に示すように、空調機53には熱交換器(冷水コイル又は温水コイル又は冷温水コイル)56が内蔵され、熱交換器56は水方式セントラル熱源システムからの冷水(又は温水)往管62と還管63が接続される。熱交換器56には、送風ファン81により室内空気及び外気が供給され、熱交換器56を通過した空気96は熱交換されることにより、冷気(又は暖気)となって室内に供給される。   Conventionally, as shown in FIG. 8, a heat exchanger (cold water coil or hot water coil or cold / hot water coil) 56 is built in the air conditioner 53, and the heat exchanger 56 is cold water (or hot water) from a water-type central heat source system. The outgoing pipe 62 and the return pipe 63 are connected. Indoor air and outside air are supplied to the heat exchanger 56 by the blower fan 81, and the air 96 that has passed through the heat exchanger 56 is supplied with heat to the room as cold air (or warm air).

この種の空調機53の熱交換器56は分割されることなく単段であり、制御弁86も1つだけ設置されている。空調機53は、室内温度検出センサー73によって検出された室内温度又は給気温度検出センサー74によって検出された給気温度、又は除湿の要求により冷水(又は温水)の制御弁86を流量増減制御している。   The heat exchanger 56 of this type of air conditioner 53 is a single stage without being divided, and only one control valve 86 is provided. The air conditioner 53 performs flow rate increase / decrease control of the control valve 86 for cold water (or hot water) according to the indoor temperature detected by the indoor temperature detection sensor 73 or the supply air temperature detected by the supply air temperature detection sensor 74 or the request for dehumidification. ing.

従って、例えば空調機が冷房運転の場合、運転と同時に制御弁86が開かれ、冷水が熱交換器56に循還供給されるとともに、設定温度と室内温度との温度差により、又は、設定温度と給気温度との温度差等に応じて制御弁86が開閉制御される。   Therefore, for example, when the air conditioner is in the cooling operation, the control valve 86 is opened simultaneously with the operation, and the chilled water is circulated and supplied to the heat exchanger 56, and the temperature difference between the set temperature and the room temperature or the set temperature. The control valve 86 is controlled to open and close according to a temperature difference between the air supply temperature and the supply air temperature.

そして、冷気吹出しにより室温が設定温度以下まで低下すると、その温度が検出され、熱交換器56への冷水量を削減することで、冷却能力を小さくし、室温を設定温度に維持する。   And if room temperature falls below preset temperature by cold air blowing, the temperature will be detected, cooling capacity will be made small by reducing the amount of cold water to the heat exchanger 56, and room temperature will be maintained at preset temperature.

特開2004−125316号JP 2004-125316 A 特開2008−20168号JP 2008-20168 A

しかし、上記の制御方法では、例えば冷房の場合、夏期の昼間は十分な冷却負荷が空気側にあるので、冷水の往き温度と還り温度の温度差も十分に確保されるが、夏期の夜間及び中間期と冬期においては(図2の「空調負荷率―熱交換器の流量比特性」における空調負荷率75%以下の領域においては)、空気側の冷却負荷が減少するため、熱交換器に入る空気96の温度が下がる、又は熱交換器を通過した後の給気温度が上昇するため、熱交換器を循還する冷水は制御弁86で減少されるものの(図2の破線(イ)〜(ロ)の流量比参照)、往き温度と還り温度との温度差が十分確保されずに、水方式セントラル熱源システムの熱源機に還らされる。これにより、冷却負荷の減少に対して冷水(又は温水)流量を十分に低減し得ず、上記熱交換器56へ冷水(又は温水)を循還させる冷水(又は温水)ポンプの搬送動力の増大と熱源機効率・成績係数COPの低下をもたらしている。結果として、従来の熱交換器を使用した空調機では、図2中破線で示すように、空調負荷率が低下しても熱交換器の流量比が十分に低下しない傾向が現れている。
上記特許文献1の装置は、熱交換器は単独であり、還水温度が低下した場合は対応する制御弁を開閉制御するのみであるから上記従来と同様の課題がある(同文献1「0020」欄)。上記特許文献2の装置は、中間期及び冬期において冷却負荷が減少した場合は、温度の低い外気を熱交換器を通さずにバイパスさせることにより、熱交換器における往き温度と還り温度の温度差を確保するものであるが、熱交換器は単独であるため、上記従来と同様の課題がある。
However, in the above control method, for example, in the case of cooling, since there is a sufficient cooling load on the air side during the daytime in the summer, a sufficient temperature difference between the return temperature and the return temperature of the cold water is ensured. In the intermediate and winter seasons (in the region where the air conditioning load factor is 75% or less in the “air conditioning load factor vs. heat exchanger flow ratio characteristics” in FIG. 2), the cooling load on the air side is reduced. Although the temperature of the incoming air 96 decreases or the supply air temperature after passing through the heat exchanger increases, the chilled water circulating through the heat exchanger is reduced by the control valve 86 (broken line (ii) in FIG. 2). (Refer to the flow ratio in (b)), the temperature difference between the going temperature and the return temperature is not sufficiently secured, and the temperature is returned to the heat source unit of the water type central heat source system. As a result, the flow rate of the cold water (or hot water) cannot be sufficiently reduced with respect to the reduction of the cooling load, and the conveyance power of the cold water (or hot water) pump that circulates the cold water (or hot water) to the heat exchanger 56 is increased. As a result, the efficiency of the heat source equipment and the coefficient of performance COP are reduced. As a result, in the air conditioner using the conventional heat exchanger, as shown by the broken line in FIG. 2, there is a tendency that the flow rate ratio of the heat exchanger does not sufficiently decrease even when the air conditioning load factor decreases.
Since the apparatus of Patent Document 1 has a single heat exchanger and only opens and closes the corresponding control valve when the return water temperature is lowered, there is a problem similar to that of the above-described conventional technique (refer to “Document 1”, “0020”). "Column). When the cooling load decreases in the intermediate period and the winter period, the apparatus of Patent Document 2 bypasses the low temperature outside air without passing through the heat exchanger, so that the temperature difference between the forward temperature and the return temperature in the heat exchanger is reduced. However, since the heat exchanger is independent, there is a problem similar to the above-described conventional one.

本発明は上記従来の状況に鑑みてなされたもので、冷水(又は温水)の温度差を十分に確保したまま、熱源機に還水させることのできる空調機及び空調機の制御方法を提供し、ポンプの搬送動力の低減、熱源機の効率・成績係数COPの向上を図ることを目的とする。   The present invention has been made in view of the above-described conventional situation, and provides an air conditioner that can return water to a heat source unit while sufficiently ensuring a temperature difference between cold water (or hot water) and a method for controlling the air conditioner. The purpose is to reduce the conveyance power of the pump and improve the efficiency and coefficient of performance COP of the heat source machine.

上記の目的を達成するため本発明は、
第1に、空調機内の熱交換器を2つ(6,7)に分割し、分割した2つの熱交換器(6,7)に冷水(又は温水)を循還供給するとともに、これらの熱交換器(6,7)に室内空気及び外気の混合空気(46,47)を通過させることにより熱交換をさせる空調機の制御方法であって、分割した上記熱交換器(6,7)の各々の還管又は往管に制御弁(36,37)を各々設置し、これらの制御弁(36,37)により上記各熱交換器(6,7)毎に熱交換器(6,7)を通過する冷水(又は温水)の量を増減又は全停止し得るように構成し、室内温度又は給気温度が設定温度となるように室内温度又は給気温度を検出し、冷水(又は温水)が循還している上記熱交換器(6,7)の各制御弁(36,37)を開閉することにより各熱交換器(6,7)を通過する冷水(又は温水)を増減制御して室内温度又は給気温度を一定に制御し、さらに上記各熱交換器(6,7)への冷水(又は温水)の往き温度(T11)、還り温度(T12)及び各熱交換器(6,7)を通過する流量(Q)に基づいて熱量を検出し、全負荷時に対して熱量が分割の段数で定めた設定値となった場合、分割した上記熱交換器(6,7)に設置した上記制御弁(36,37)のいずれか1つ(例えば37)を全閉すると共に、その他の上記制御弁(36)の流量を増加させて2つの熱交換器の総流量より低い流量とすることにより、往き温度と還り温度との温度差を確保するように制御し、一方、何れかの制御弁(37)を全閉した後は、上記空調機に入力する熱交換後の室内空気と外気が、制御弁(37)により冷水(又は温水)の循還を止められた熱交換器(7)にて熱交換していない空気となり、また、冷水(又は温水)が循還している熱交換器(6)にて熱交換した空気となり、2つの空気を混合して室内に給気し、かかる状態において、室内温度又は給気温度が設定温度となるように、冷水(又は温水)が循還している上記熱交換器(6)の上記制御弁(36)により冷水(又は温水)を増減制御することを特徴とする空調機の制御方法により構成される。
In order to achieve the above object, the present invention
First, the heat exchanger in the air conditioner is divided into two (6, 7), and cold water (or hot water) is recirculated and supplied to the two divided heat exchangers (6, 7). A control method of an air conditioner for exchanging heat by passing a mixed air (46, 47) of indoor air and outside air through an exchanger (6, 7), wherein the divided heat exchanger (6, 7) A control valve (36, 37) is installed in each return pipe or outgoing pipe, and the heat exchanger (6, 7) is provided for each heat exchanger (6, 7) by the control valve (36, 37). The amount of cold water (or hot water) that passes through is configured to be able to increase / decrease or stop completely, and the indoor temperature or supply air temperature is detected so that the indoor temperature or supply air temperature becomes the set temperature, and cold water (or hot water) Each heat exchanger is opened and closed by opening and closing each control valve (36, 37) of the heat exchanger (6, 7). 6, 7) Increase or decrease control of the cold water (or hot water) passing through to control the room temperature or the supply air temperature constant, and further the temperature of the cold water (or hot water) going to each of the heat exchangers (6, 7) (T11), the return temperature (T12), and the amount of heat detected based on the flow rate (Q) passing through each heat exchanger (6, 7), and the amount of heat determined by the number of divisions for the full load In this case, one of the control valves (36, 37) installed in the divided heat exchanger (6, 7) (for example, 37) is fully closed, and the other control valves (36) By increasing the flow rate so that the flow rate is lower than the total flow rate of the two heat exchangers, control is performed so as to ensure a temperature difference between the forward temperature and the return temperature, while any one of the control valves (37) is controlled. After closing, the indoor air and the outside air after heat exchange input to the air conditioner are connected to the control valve (37 In the heat exchanger (6) in which the circulation of cold water (or hot water) is stopped, the heat is not exchanged in the heat exchanger (7), and in the heat exchanger (6) in which the cold water (or hot water) is recirculated. Heat is exchanged air, the two air are mixed and air is supplied to the room, and in this state, the cold water (or hot water) is circulated so that the room temperature or the supply air temperature becomes the set temperature. The control valve (36) of the exchanger (6) is used to control the increase or decrease of cold water (or hot water).

空調機の処理熱量は例えば式(1)(熱量Q[kW]=流量M[L/h]×(T12−T11)[℃]×比熱)に基づいて演算により求めることができ、例えばコントローラー(21)により演算することができる。全負荷時とは分割した熱交換器の全てが処理可能最大熱量(空調負荷率100%、熱交換器の流量比100%)で動作している状態をいう。全負荷時に対して熱量が分割の段数で定めた設定値とは、例えば全負荷時に対して熱量が1/2以下に低下したときをいい、空調機の処理熱量が空調機の処理可能最大熱量の1/2以下になったときを設定値とすることができる。その他の上記制御弁(36)の流量を増加させて2つの熱交換器の総流量より低い流量とするとは、例えば全負荷時に対して1/2に低下した流量、即ち、何れかの制御弁を閉鎖した後、閉鎖していない制御弁に対応する熱交換器(6)を最大流量比で運転している状態をいう。   The amount of heat processed by the air conditioner can be obtained by calculation based on, for example, the equation (1) (heat amount Q [kW] = flow rate M [L / h] × (T12−T11) [° C.] × specific heat). 21). Full load means that all of the divided heat exchangers are operating at the maximum heat amount that can be processed (air conditioning load factor 100%, heat exchanger flow rate ratio 100%). The set value in which the amount of heat is determined by the number of divisions for the full load is when, for example, the heat amount is reduced to ½ or less with respect to the full load. Can be set as a set value. The flow rate of the other control valve (36) is increased to a flow rate lower than the total flow rate of the two heat exchangers. Is closed, and the heat exchanger (6) corresponding to the non-closed control valve is operated at the maximum flow rate ratio.

第2に、上記第1記載の空調機の制御方法において、上記各熱交換器への冷水(又は温水)の往き温度、還り温度及び各熱交換器を通過する流量に基づいて熱量を検出し、全負荷時に対して熱量が分割の段数で定めた設定値となった場合、分割した上記熱交換器に設置した上記制御弁のいずれか1つを全閉する制御に代えて、上記室内空気及び外気の混合空気温度と給気温度の検出により、それらの温度差(t1−t2)を測定し、全負荷に対して上記温度差が分割の段数で定めた設定値となった場合に、分割した上記熱交換器に設置した上記制御弁のいずれか1つを全閉する制御を行うことを特徴とする空調機の制御方法により構成される。   Secondly, in the control method for an air conditioner according to the first aspect, the amount of heat is detected based on the temperature of the cold water (or hot water) sent to each heat exchanger, the return temperature, and the flow rate passing through each heat exchanger. When the amount of heat reaches the set value determined by the number of divisions for the full load, instead of the control for fully closing any one of the control valves installed in the divided heat exchanger, the indoor air When the temperature difference (t1-t2) is measured by detecting the mixed air temperature and the supply air temperature of the outside air and the temperature difference becomes the set value determined by the number of divisions for all loads, The control method of the air conditioner is characterized by performing control to fully close any one of the control valves installed in the divided heat exchanger.

混合空気と給気の温度差は例えば式(2)(温度差Δt[℃]=t1−t2[℃])に基づいて演算により求めることができ、例えばコントローラー(21)により演算することができる。全負荷時とは分割した熱交換器の全てが処理可能最大温度差(空調負荷率100%、熱交換器の流量比100%)で動作している状態をいう。全負荷時に対して温度差が分割の段数で定めた設定値とは、例えば全負荷時に対して温度差が1/2以下に低下した例えば中間期等の状態をいい、空調機の処理可能最大温度差の1/2以下になったときを設定値とすることができる。   The temperature difference between the mixed air and the supply air can be obtained by calculation based on, for example, the equation (2) (temperature difference Δt [° C.] = T 1 -t 2 [° C.]), and can be calculated by the controller (21), for example. . Full load refers to a state where all of the divided heat exchangers are operating at the maximum temperature difference that can be processed (air conditioning load factor 100%, heat exchanger flow rate ratio 100%). The set value in which the temperature difference is determined by the number of divided stages with respect to the full load is, for example, a state such as an intermediate period in which the temperature difference is reduced to 1/2 or less with respect to the full load. When the temperature difference is ½ or less, the set value can be set.

第3に、空調機内の熱交換器を2つ以上のn段(nは2以上の整数)に分割し、分割したn段の熱交換器に冷水(又は温水)を循還供給するとともに、これらの熱交換器に室内空気及び外気を通過させることにより熱交換をさせる空調機の制御方法であって、熱交換器をn段に分割し、分割した熱交換器ごとの還管又は往管に各々制御弁を設置し、これらの制御弁により上記熱交換器ごとに熱交換器を通過する冷水(又は温水)の量を増減又は全停止し得るように構成し、室内温度又は給気温度が設定温度となるように、室内温度又は給気温度を検出し、冷水(又は温水)が循還している熱交換器の各制御弁を開閉することにより各熱交換器を通過する冷水(又は温水)を増減制御して室内温度を一定に制御し、さらに上記熱交換器への往き温度、還り温度及び流量計より熱量を検出し、全負荷時に対して、熱量が分割の段数で定めた設定値となる度に、上記制御弁の何れか1つを全閉すると共に、その他の上記制御弁の流量を増加させて全負荷時の総流量に対して1/nに相当する流量を低下させた状態とすることにより、往き温度と還り温度との温度差を確保するように制御し、一方、何れかの制御弁を全閉した後は、前記空調機に入力する熱交換後の室内空気と外気が、制御弁により冷水(又は温水)の循還を止められた熱交換器にて熱交換していない空気となり、また、冷水(又は温水)が循還している熱交換器にて熱交換した空気となり、これらの空気を混合して室内に給気し、かかる状態において、室内温度又は給気温度が設定温度となるように、冷水(又は温水)が循還している上記熱交換器の上記制御弁により冷水(又は温水)を増減制御することを特徴とする空調機の制御方法により構成される。   Thirdly, the heat exchanger in the air conditioner is divided into two or more n stages (n is an integer of 2 or more), and cold water (or hot water) is circulated and supplied to the divided n stages of heat exchangers. A control method for an air conditioner that exchanges heat by passing room air and outside air through these heat exchangers, wherein the heat exchanger is divided into n stages, and a return pipe or an outgoing pipe for each divided heat exchanger Each control valve is provided with a control valve, and the amount of cold water (or hot water) passing through the heat exchanger for each heat exchanger can be increased, decreased, or completely stopped by these control valves, and the room temperature or the supply air temperature Chilled water that passes through each heat exchanger by detecting the room temperature or the supply air temperature so that the temperature becomes the set temperature and opening and closing each control valve of the heat exchanger in which the chilled water (or hot water) is circulated ( (Or hot water) is controlled to increase or decrease the room temperature, and further to the heat exchanger. The amount of heat is detected from the degree, return temperature, and flow meter, and every time the amount of heat reaches the set value determined by the number of divisions for all loads, one of the above control valves is fully closed and the other The flow rate of the control valve is increased to reduce the flow rate corresponding to 1 / n with respect to the total flow rate at full load, thereby controlling the temperature difference between the return temperature and the return temperature. On the other hand, after fully closing any one of the control valves, the heat exchanger in which the indoor air and the outside air after heat exchange input to the air conditioner are stopped from circulating cold water (or hot water) by the control valve. In this state, the air is not heat-exchanged in the air, and the air is heat-exchanged in the heat exchanger in which the cold water (or hot water) is circulated. Cool water (or hot water) is circulated so that the room temperature or the supply air temperature becomes the set temperature. Constituted by the control method of the air conditioner, characterized in that the to and the heat exchanger of the control valve to increase or decrease control of cold water (or hot water).

n段は2以上の整数であるが、好ましくは2以上8以下の整数をいう。熱量が分割の段数で定めた設定値となる度とは、例えば全負荷時(空調機の処理可能最大熱量)に対して熱量が1/n以下に低下する度、即ち全負荷に対して分割した熱交換器の数(n)で除した熱負荷だけ低下する度をいい、例えば3段に分割した場合は、上記処理熱量が処理可能最大熱量の2/3になったとき、及び、上記処理熱量が処理可能最大熱量の1/3になったときの各々をいう。全負荷時の流量(流量比100%)に対して1/nに相当する流量を低下させた状態とは、何れかの制御弁を閉鎖後、閉鎖していない制御弁によって動作中の熱交換器の流量比を最大とした状態をいい、n段の熱交換器の総流量より減少した状態をいう。例えば、熱交換器を3段に分割した場合においては、処理熱量が処理可能最大熱量の2/3になったときは、1/3に相当する流量が低下され、結果的に総流量の2/3の流量となり、処理熱量が処理可能最大熱量の1/3になったときは、さらに1/3に相当する流量が低下され、結果として総流量の1/3の流量となるような制御を行う。   The n stage is an integer of 2 or more, preferably an integer of 2 or more and 8 or less. When the amount of heat becomes a set value determined by the number of stages of division, for example, when the amount of heat decreases to 1 / n or less with respect to the full load (the maximum heat amount that can be processed by the air conditioner), that is, divided for the entire load. When the heat load divided by the number of heat exchangers (n) is reduced, for example, when divided into three stages, when the amount of heat treated is 2/3 of the maximum heat amount that can be treated, and Each of the cases where the amount of heat processed becomes 1/3 of the maximum heat amount that can be processed. The state in which the flow rate corresponding to 1 / n is reduced with respect to the flow rate at the full load (flow rate ratio 100%) is the heat exchange during operation by the non-closed control valve after closing any control valve. The state where the flow rate ratio of the heat exchanger is maximized, and the state where the flow rate is reduced from the total flow rate of the n-stage heat exchanger. For example, in the case where the heat exchanger is divided into three stages, when the processing heat amount becomes 2/3 of the maximum heat amount that can be processed, the flow rate corresponding to 1/3 is reduced, and as a result, the total flow rate is 2 / 3, and when the heat of treatment becomes 1/3 of the maximum heat that can be processed, the flow corresponding to 1/3 is further reduced, resulting in a flow of 1/3 of the total flow. I do.

この空調機の制御方法では、往管と還管の冷水(又は温水)温度及び流量により熱交換の熱量が検出され、例えば2分割の場合、この空調機の処理可能熱量を分割した熱交換器の数2で割った値以下となると、分割された熱交換器にそれぞれ取り付けられた制御弁のいずれか1つを全閉とすることで、循還を止めた熱交換器での冷水(又は温水)と空気との熱交換が止まる。これにより、冷水(又は温水)の流量が1/2以下となるが、全閉としていない制御弁が設置されている熱交換器だけで必要な熱量の熱交換を集中して行うことになるため、室内空気又は外気と十分に熱交換可能となり、かつ要求された適正な熱交換が確保されると共に、往管と還管との十分な温度差が常時確保されるようになる。この結果、冷水量(又は温水量)が小水量に制御されて、ポンプの搬送動力の低減、熱源機の効率、成績係数COPの向上が可能となる。   In this air conditioner control method, the heat exchange heat quantity is detected by the cold water (or hot water) temperature and flow rate of the outgoing pipe and return pipe. For example, in the case of two divisions, the heat exchanger that divides the heat quantity that can be processed by this air conditioner When the value is equal to or less than the value divided by the number 2, the chilled water in the heat exchanger that stopped circulation (or Heat exchange between hot water and air stops. As a result, the flow rate of cold water (or hot water) is ½ or less, but heat exchange of a necessary amount of heat is concentrated and performed only with a heat exchanger in which a control valve that is not fully closed is installed. The heat exchange with the indoor air or the outside air can be sufficiently performed, the required proper heat exchange is ensured, and a sufficient temperature difference between the outgoing pipe and the return pipe is always secured. As a result, the amount of cold water (or the amount of hot water) is controlled to a small amount of water, and the pumping power of the pump can be reduced, the efficiency of the heat source machine, and the coefficient of performance COP can be improved.

第4に、上記第3記載の空調機の制御方法において、上記熱交換器への往き温度、還り温度及び流量計より熱量を検出し、全負荷時に対して、熱量が分割の段数で定めた設定値となる度に、上記制御弁の何れか1つを全閉する制御に代えて、上記室内空気及び外気の混合空気温度と給気温度の検出によりそれらの温度差を計測し、全負荷時に対して上記温度差が分割の段数で定めた設定値となる度に、上記制御弁の何れか1つを全閉する制御を行うことを特徴とする空調機の制御方法により構成される。   Fourthly, in the control method for an air conditioner described in the third aspect, the amount of heat is detected from the temperature going back to the heat exchanger, the return temperature and the flow meter, and the amount of heat is determined by the number of divisions for the full load. Instead of the control to fully close any one of the control valves every time the set value is reached, the temperature difference is measured by detecting the mixed air temperature and the supply air temperature of the indoor air and the outside air, and the full load Each time the temperature difference becomes a set value determined by the number of divisions, control is performed to fully close any one of the control valves.

温度差が分割の段数で定めた設定値となる度とは、例えば全負荷時(空調機の処理可能最大温度差)に対して温度差が1/n以下に低下する度、即ち全負荷に対して分割した熱交換器の数(n)で除した熱負荷だけ低下する度をいい、例えば3段に分割した場合は、上記温度差が処理可能最大温度差の2/3になったとき、及び、上記処理温度差が処理可能最大温度差の1/3になったときの各々をいう。   When the temperature difference becomes a set value determined by the number of divisions, for example, when the temperature difference decreases to 1 / n or less with respect to the full load (the maximum temperature difference that can be processed by the air conditioner), that is, to the full load. The degree to which the heat load divided by the number of divided heat exchangers (n) is reduced. For example, when divided into three stages, the temperature difference becomes 2/3 of the maximum processable temperature difference. , And when the processing temperature difference is 1/3 of the maximum temperature difference that can be processed.

この空調機の制御方法では、混合空気温度と給気温度より温度差が検出され、例えば2分割の場合、この空調機の処理可能温度差を分割した熱交換器の数2で割った値以下となると、分割された熱交換器にそれぞれ取り付けられた制御弁のいずれか1つを全閉とすることで、循還を止めた熱交換器での冷水(又は温水)と空気との熱交換が止まる。これにより、冷水(又は温水)の流量が1/2以下となるが、全閉としていない制御弁が設置されている熱交換器だけで必要な温度差の熱交換を集中して行うことになるため、室内空気又は外気と十分に熱交換可能となり、かつ要求された適正な熱交換が確保されると共に、往管と還管との十分な温度差が常時確保されるようになる。この結果、冷水量(又は温水量)が小水量に制御されて、ポンプの搬送動力の低減、熱源機の効率、成績係数COPの向上が可能となる。   In this air conditioner control method, the temperature difference is detected from the mixed air temperature and the supply air temperature. For example, in the case of two divisions, the temperature difference that can be processed by this air conditioner is equal to or less than the value divided by the number of divided heat exchangers. Then, by completely closing any one of the control valves attached to the divided heat exchangers, heat exchange between cold water (or hot water) and air in the heat exchanger that stopped circulation Stops. As a result, the flow rate of cold water (or hot water) is ½ or less, but heat exchange of a necessary temperature difference is concentrated and performed only by a heat exchanger provided with a control valve that is not fully closed. Therefore, heat can be sufficiently exchanged with room air or outside air, the required proper heat exchange is ensured, and a sufficient temperature difference between the outgoing pipe and the return pipe is always secured. As a result, the amount of cold water (or the amount of hot water) is controlled to a small amount of water, and the pumping power of the pump can be reduced, the efficiency of the heat source machine, and the coefficient of performance COP can be improved.

第5に、空調機内の熱交換器を2つ以上のn段(nは2以上の整数)に分割し、分割された熱交換器毎の還管又は往管に制御弁を各々設置し、前記空調機の熱交換器に冷水(又は温水)を循還供給するとともに、前記熱交換器に室内空気及び外気を通過させることにより、冷水(又は温水)と空気とを熱交換させるように構成し、上記各熱交換器に共通の往管に往管温度センサーを設置すると共に、上記各熱交換器に共通の還管に還管温度センサー及び流量計を設置し、かつ給気対象の室内に給気温度センサー又は室内温度センサーを設け、さらに上記給気温度センサー又は室内温度センサーの検出温度、上記往管温度センサー及び還管温度センサーの検出温度、上記流量計の検出流量を認識し、上記各制御弁を開閉制御し得るコントローラーを設け、該コントローラーは、上記給気温度センサー又は上記室内温度センサーの検出温度を認識し、上記検出温度が設定値となるように上記制御弁を開閉制御する室内温度設定手段と、上記往管温度センサーの検出温度、上記還管温度センサーの検出温度、及び上記検出流量に基づいて熱量を演算する熱量演算手段と、熱量演算手段の熱量が全負荷時の1/n以下になったことを検出する度に、動作中の制御弁の内何れか一の制御弁を全閉して対応する熱交換器の冷水(又は温水)の循還を停止する制御弁閉鎖手段と、何れか一の制御弁の全閉と共に、稼働中の熱交換器の流量が、全負荷時の流量に対して1/n低下するように動作中の制御弁を開閉制御する流量制御手段と、を具備しているものであることを特徴とする空調機により構成される。   Fifth, the heat exchanger in the air conditioner is divided into two or more n stages (n is an integer of 2 or more), and a control valve is installed in each return pipe or outgoing pipe for each divided heat exchanger, The cooling water (or hot water) is recirculated and supplied to the heat exchanger of the air conditioner, and the indoor air and the outside air are passed through the heat exchanger, so that heat is exchanged between the cold water (or hot water) and the air. In addition, an outgoing pipe temperature sensor is installed in the outgoing pipe common to the heat exchangers, a return pipe temperature sensor and a flow meter are installed in the return pipe common to the heat exchangers, and Is provided with a supply air temperature sensor or a room temperature sensor, and further detects the detection temperature of the supply air temperature sensor or the room temperature sensor, the detection temperature of the forward pipe temperature sensor and the return pipe temperature sensor, the detection flow rate of the flow meter, Controller capable of opening / closing each control valve The controller recognizes the detected temperature of the supply air temperature sensor or the indoor temperature sensor, and controls the opening and closing of the control valve so that the detected temperature becomes a set value, and the forward pipe The calorific value calculating means for calculating the calorific value based on the detected temperature of the temperature sensor, the detected temperature of the return pipe temperature sensor, and the detected flow rate, and that the calorific value of the calorific value calculating means has become 1 / n or less at full load. Control valve closing means for completely closing any one of the operating control valves each time it is detected and stopping the circulation of the cold water (or hot water) of the corresponding heat exchanger, And a flow rate control means for controlling opening and closing of the operating control valve so that the flow rate of the operating heat exchanger is reduced by 1 / n with respect to the flow rate at the time of full load together with the control valve being fully closed. The air conditioner is characterized by It is.

この空調機では、往管と還管の冷水(又は温水)温度を検出する温度センサーと(往管又は)還管の流量を検出する流量計により、空調機で消費される熱量を検出することにより、2つ以上の多段に分割された熱交換器は、それぞれの熱交換器ごとに設置された制御弁により冷水(又は温水)量を増減又は全停止制御することで、多段に分割された熱交換器のいくつかを、室内空気及び外気と熱交換をさせないで通過させる。一方、全閉された熱交換器とは異なる熱交換器では、十分な熱交換がされるようになり、循還する冷水(又は温水)の冷房(又は暖房)能力を十分に引き出して、往き温度と還り温度との温度差を十分確保できるように制御される。   In this air conditioner, the amount of heat consumed by the air conditioner is detected by a temperature sensor that detects the cold water (or hot water) temperature of the outgoing pipe and the return pipe, and a flow meter that detects the flow rate of the outgoing pipe (or the outgoing pipe). Thus, the heat exchangers divided into two or more multi-stages were divided into multi-stages by increasing or decreasing the amount of cold water (or hot water) by the control valve installed for each heat exchanger or total stop control Some of the heat exchangers are passed through without heat exchange with room air and outside air. On the other hand, in a heat exchanger different from a fully-closed heat exchanger, sufficient heat exchange is performed, and the cooling (or heating) capacity of the chilled water (or hot water) to be circulated is fully extracted, so It is controlled so as to ensure a sufficient temperature difference between the temperature and the return temperature.

第6に、空調機内の熱交換器を2つ以上のn段(nは2以上の整数)に分割し、分割された熱交換器毎の還管又は往管に制御弁を各々設置し、前記空調機の熱交換器に冷水(又は温水)を循還供給するとともに、前記熱交換器に室内空気及び外気を通過させることにより、冷水(又は温水)と空気とを熱交換させるように構成し、上記熱交換器の入口側に室内空気及び外気の混合空気温度センサーを設け、かつ給気対象の室内に給気温度センサー又は室内温度センサーを設け、さらに上記混合空気温度センサー、上記給気温度センサー又は室内温度センサーの検出温度を認識し、上記各制御弁を開閉制御し得るコントローラーを設け、該コントローラーは、上記給気温度センサー又は上記室内温度センサーの検出温度を認識し、上記検出温度が設定値となるように上記制御弁を開閉制御する室内温度設定手段と、上記混合空気温度センサーと給気温度センサーの検出温度に基づいて両センサーの検出温度の温度差を演算する温度差演算手段と、上記温度差演算手段の温度差が全負荷時の温度差に対して1/n減少したことを検出する度に、動作中の制御弁の内何れか一の制御弁を全閉して対応する熱交換器の冷水(又は温水)の循還を停止する制御弁閉鎖手段と、何れか一の制御弁の全閉と共に、稼働中の熱交換器の流量が、全負荷時の流量に対して1/n低下するように動作中の制御弁を開閉制御する流量制御手段と、を具備しているものであることを特徴とする空調機により構成される。   Sixth, the heat exchanger in the air conditioner is divided into two or more n stages (n is an integer of 2 or more), and a control valve is installed in each return pipe or outgoing pipe for each divided heat exchanger, The cooling water (or hot water) is recirculated and supplied to the heat exchanger of the air conditioner, and the indoor air and the outside air are passed through the heat exchanger, so that heat is exchanged between the cold water (or hot water) and the air. A mixture air temperature sensor for indoor air and outside air is provided on the inlet side of the heat exchanger, and a supply air temperature sensor or an indoor temperature sensor is provided in a room to be supplied, and the mixed air temperature sensor and the supply air A controller capable of recognizing the temperature detected by the temperature sensor or the indoor temperature sensor and controlling the opening and closing of each control valve is provided, the controller recognizes the temperature detected by the air supply temperature sensor or the room temperature sensor, and detects the detected temperature. An indoor temperature setting means for controlling the opening and closing of the control valve so as to be a set value; and a temperature difference calculating means for calculating a temperature difference between the detected temperatures of the two sensors based on the detected temperatures of the mixed air temperature sensor and the supply air temperature sensor And every time it detects that the temperature difference of the temperature difference calculation means has decreased by 1 / n with respect to the temperature difference at the time of full load, it fully closes one of the operating control valves. With the control valve closing means for stopping the circulation of cold water (or hot water) in the corresponding heat exchanger and the full closing of any one control valve, the flow rate of the operating heat exchanger becomes the flow rate at full load On the other hand, it comprises an air conditioner characterized by comprising flow rate control means for controlling opening and closing of a control valve that is operating so as to decrease by 1 / n.

この空調機では、室内空気及び外気の混合空気温度と給気温度とを検出する温度センサーにより、空調機で低下(又は上昇)される温度差を検出することにより、2つ以上の多段に分割された熱交換器は、それぞれの熱交換器ごとに設置された制御弁により冷水(又は温水)量を増減又は全停止制御することで、多段に分割された熱交換器のいくつかを、室内空気及び外気と熱交換をさせないで通過させる。一方、全閉された熱交換器とは異なる熱交換器では、十分な熱交換がされるようになり、循還する冷水(又は温水)の冷房(又は暖房)能力を十分に引き出して、往き温度と還り温度との温度差を十分確保できるように制御される。   This air conditioner is divided into two or more multi-stages by detecting the temperature difference that is lowered (or raised) by the air conditioner by the temperature sensor that detects the mixed air temperature of the room air and the outside air and the supply air temperature. Each of the heat exchangers is designed to increase or decrease the amount of cold water (or hot water) using a control valve installed for each heat exchanger, or to stop all of the heat exchangers. Pass through air and outside air without heat exchange. On the other hand, in a heat exchanger different from a fully-closed heat exchanger, sufficient heat exchange is performed, and the cooling (or heating) capacity of the chilled water (or hot water) to be circulated is fully extracted, so It is controlled so as to ensure a sufficient temperature difference between the temperature and the return temperature.

第7に、上記室内温度設定手段は、何れかの制御弁を閉鎖した後は、動作中の熱交換器に対応する制御弁を開閉制御して室内温度を一定に維持するものであることを特徴とする上記第6又は7記載の空調機。   Seventhly, after the indoor temperature setting means has closed any of the control valves, the control valve corresponding to the operating heat exchanger is controlled to open and close to maintain the room temperature constant. 8. The air conditioner according to the sixth or seventh feature.

第8に、熱交換器の流量比と空調負荷率の変化特性が、一次関数に近似する変化特性を持つ空調機を使用して、熱交換器の制御弁を開閉制御することにより熱交換器に流れる冷水(又は温水)の流量を増減して、給気温度又は室内温度が設定温度となるように制御する空調機の制御方法であって、熱交換器を多段に構成して、全部の熱交換器を稼動させることにより全負荷時の熱交換器の冷水(又は温水)の全負荷時流量を確保し得るように構成し、上記多段の熱交換器の何れか一に流れる冷水(又は温水)を空調負荷の減少に伴って停止して同熱交換器の動作を停止すると共に、停止した熱交換器以外の動作中の熱交換器の流量がそれらの熱交換器の最大流量比の状態となるように制御弁を制御し、上記何れかの熱交換器を停止した後は、動作中の熱交換器の流量を増減することにより給気温度又は室内温度が設定温度となるように制御することを特徴とする空調機の制御方法により構成される。   Eighth, by using an air conditioner whose change characteristics of the flow rate ratio and the air conditioning load factor of the heat exchanger approximate to a linear function, the heat exchanger is controlled to open and close by controlling the opening and closing of the control valve of the heat exchanger. Is a control method of an air conditioner that controls the supply air temperature or the room temperature to be a set temperature by increasing or decreasing the flow rate of cold water (or hot water) flowing through the heat exchanger. By configuring the heat exchanger to ensure a full load flow rate of chilled water (or hot water) of the heat exchanger at full load, the chilled water flowing in any one of the multi-stage heat exchangers (or When the air conditioning load decreases, the operation of the heat exchanger is stopped and the flow rate of the heat exchangers other than the stopped heat exchanger is equal to the maximum flow rate ratio of those heat exchangers. After controlling the control valve to be in a state and stopping any of the above heat exchangers, Constituted by the control method of the air conditioner and the controller controls so that the supply air temperature or the indoor temperature reaches the set temperature by increasing or decreasing the flow rate of the heat exchanger Sakuchu.

本発明に係る空調機の制御方法及び空調機によれば、室内温度又は給気温度を検出し、熱交換器を通過する冷水(又は温水)の量を増減制御する一方、往き温度と還り温度及び流量の検出により処理熱量を算出し、熱交換器ごとに設置した制御弁のいずれかを全閉することにより、空気と熱交換させる熱交換器と、熱交換させない熱交換器とに分け、空調機全体の流量を低下させることで、熱交換させる熱交換器では十分に熱交換させることができて、結果として往管と還管の温度差を十分に確保できるようになる。この結果、ポンプ動力の低減、熱源機の効率・成績係数COPの向上を実現することができるものである。   According to the control method of an air conditioner and the air conditioner according to the present invention, the indoor temperature or the supply air temperature is detected, and the amount of cold water (or hot water) passing through the heat exchanger is controlled to increase or decrease, while the forward temperature and the return temperature And by calculating the amount of heat treated by detecting the flow rate and fully closing any of the control valves installed for each heat exchanger, it is divided into a heat exchanger that exchanges heat with air and a heat exchanger that does not exchange heat, By reducing the flow rate of the entire air conditioner, the heat exchanger that exchanges heat can sufficiently exchange heat, and as a result, a sufficient temperature difference between the outgoing pipe and the return pipe can be secured. As a result, the pump power can be reduced and the efficiency and coefficient of performance COP of the heat source machine can be improved.

また、本発明に係る空調機の制御方法及び空調機によれば、室内空気及び外気の混合空気温度と給気温度を検出することにより処理温度差を算出し、熱交換器ごとに設置した制御弁のいずれかを全閉することにより、空気と熱交換させる熱交換器と、熱交換させない熱交換器とに分け、空調機全体の流量を低下させることで、熱交換させる熱交換器では十分に熱交換させることができて、結果として往管と還管の温度差を十分に確保できるようになる。この結果、ポンプ動力の低減、熱源機の効率・成績係数COPの向上を実現することができるものである。   In addition, according to the control method and the air conditioner of the air conditioner according to the present invention, the processing temperature difference is calculated by detecting the mixed air temperature and the supply air temperature of the indoor air and the outside air, and the control installed for each heat exchanger By fully closing any of the valves, heat exchangers that exchange heat with air are divided into heat exchangers that do not exchange heat, and heat exchangers that exchange heat by reducing the flow rate of the entire air conditioner are sufficient. As a result, a sufficient temperature difference between the outgoing pipe and the return pipe can be secured. As a result, the pump power can be reduced and the efficiency and coefficient of performance COP of the heat source machine can be improved.

以下、本発明に係る空調機の制御方法及び空調機の好適な実施の形態を図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of an air conditioner control method and an air conditioner according to the present invention will be described in detail with reference to the drawings.

図1は本発明に係る実施形態としての空調機(多段式熱交換器・コイルによる冷水(又は温水)往き還り温度差確保型空調機)の概略を示す構成図である。   FIG. 1 is a configuration diagram showing an outline of an air conditioner (a multistage heat exchanger / cold water (or hot water) return temperature difference securing air conditioner) using an embodiment of the present invention.

本実施形態による空調機3は、2つ以上の多段に分割された熱交換器が内臓されている。図1は2つに分割された2段式の場合で、熱交換機6と熱交換器7に冷水(又は温水)を循還供給するとともに、この熱交換器6と熱交換器7にほぼ均等に室内空気(還気RA)及び外気(OA)を通過させることにより、冷水(又は温水)と室内空気及び外気とを熱交換させる。尚、これらの熱交換器6,7は、冷水コイル又は温水コイル又は冷温水コイルにより構成されている。   The air conditioner 3 according to the present embodiment includes a heat exchanger divided into two or more multistages. FIG. 1 shows a case of a two-stage system divided into two, and chilled water (or hot water) is circulated and supplied to the heat exchanger 6 and the heat exchanger 7, and the heat exchanger 6 and the heat exchanger 7 are almost equally distributed. By passing the room air (return air RA) and the outside air (OA), the cold water (or hot water) is exchanged with the room air and the outside air. In addition, these heat exchangers 6 and 7 are comprised by the cold water coil, the hot water coil, or the cold / hot water coil.

熱交換器6と熱交換器7は、水方式セントラル冷暖房システム(冷凍機及びボイラ等の熱源設備)からの冷水(又は温水)往管12及び冷水(又は温水)還管13が接続されている。また、空調機3には送風ファン31が内蔵され、送風ファン31は室内空気及び外気を吸い込み、熱交換器6と熱交換器7に通過させることで熱交換させ、冷風(又は温風)となった空気を室内へ吹き出す。また、この送風ファン31は、例えばインバータコントローラー32等により、送風量が可変制御可能となっている。   The heat exchanger 6 and the heat exchanger 7 are connected to a cold water (or hot water) forward pipe 12 and a cold water (or hot water) return pipe 13 from a water-type central air conditioning system (heat source equipment such as a refrigerator and a boiler). . The air conditioner 3 has a built-in blower fan 31, which sucks indoor air and outside air, passes the heat through the heat exchanger 6 and the heat exchanger 7, exchanges heat, and cool air (or hot air). Blow out the air. Further, the blower fan 31 can be variably controlled in the amount of blown air, for example, by an inverter controller 32 or the like.

熱交換器6の還管には制御弁36が、熱交換器7の還管には制御弁37が取り付けてあり、熱交換器6と熱交換器7に接続した熱交換器6,7共通の往管12には往管温度センサー26が、熱交換器6,7共通の還管13には還管温度センサー27及び流量計33が取り付けてあり、往管温度センサー26、還管温度センサー27及び流量計33からの検出信号により、コントローラー21にて熱交換器6と熱交換器7で熱交換する処理熱量を検出する。   A control valve 36 is attached to the return pipe of the heat exchanger 6, and a control valve 37 is attached to the return pipe of the heat exchanger 7, and the heat exchangers 6 and 7 connected to the heat exchanger 6 and the heat exchanger 7 are common. The outgoing pipe temperature sensor 26 is attached to the outgoing pipe 12, and the return pipe temperature sensor 27 and the flow meter 33 are attached to the return pipe 13 common to the heat exchangers 6 and 7. 27 and the detection signal from the flow meter 33, the controller 21 detects the amount of heat to be exchanged between the heat exchanger 6 and the heat exchanger 7.

制御弁36と制御弁37は弁開度が無段階制御可能となっている。すなわち、この制御弁36と制御弁37は、室内温度(室内温度センサー25)又は給気温度(給気温度センサー24)が設定温度となるように、熱交換器6と熱交換器7を通過する冷水(又は温水)の量を増減制御するようになっている。さらに、往管温度センサー26と還管温度センサー27及び流量計33にて検出されて、コントローラー21により熱量が算出され、例えば2分割された2段式熱交換器の場合は、この空調機3の処理可能最大熱量の1/2以下になると、又は外気(OA)と還気(RA)の混合空気の温度センサー23と給気温度センサー24により温度が検出されて、混合空気と給気温度との温度差が所定値になると、制御弁36又は制御弁37のいずれか一方を全閉として、それに対応する熱交換器の冷水(又は温水)の循還を止める。そして、他方の制御弁のみにて室内温度又は給気温度が設定温度となるように冷水(又は温水)の循還量を制御するようになっている。   The control valve 36 and the control valve 37 can be controlled steplessly. That is, the control valve 36 and the control valve 37 pass through the heat exchanger 6 and the heat exchanger 7 so that the room temperature (the room temperature sensor 25) or the supply air temperature (the supply air temperature sensor 24) becomes the set temperature. The amount of cold water (or hot water) to be controlled is increased or decreased. Further, in the case of a two-stage heat exchanger divided into two, for example, the air conditioner 3 is detected by the outgoing pipe temperature sensor 26, the return pipe temperature sensor 27, and the flow meter 33, and the amount of heat is calculated by the controller 21. When the maximum heat quantity that can be processed becomes less than 1/2, or the temperature is detected by the temperature sensor 23 and the supply air temperature sensor 24 of the mixed air of the outside air (OA) and the return air (RA), the mixed air and the supply air temperature When the temperature difference between the control valve 36 and the control valve 37 reaches a predetermined value, either the control valve 36 or the control valve 37 is fully closed, and the circulation of cold water (or hot water) in the corresponding heat exchanger is stopped. And the circulation amount of cold water (or hot water) is controlled only by the other control valve so that the room temperature or the supply air temperature becomes the set temperature.

尚、上記熱量による制御と、上記温度差による制御は、何れか一方を選択して行う。   The control based on the heat quantity and the control based on the temperature difference are performed by selecting either one.

制御弁36と制御弁37は、室内温度センサー25又は給気温度センサー24から検出された温度が設定温度に保持されるように制御を行う。この制御はコントローラー21に、混合空気温度センサー23、室内温度センサー25、給気温度センサー24、往管温度センサー26、還管温度センサー27及び流量計33からの検出信号が入力することにより実現する。   The control valve 36 and the control valve 37 perform control so that the temperature detected from the indoor temperature sensor 25 or the supply air temperature sensor 24 is maintained at the set temperature. This control is realized by inputting detection signals from the mixed air temperature sensor 23, the indoor temperature sensor 25, the supply air temperature sensor 24, the outgoing pipe temperature sensor 26, the return pipe temperature sensor 27, and the flow meter 33 to the controller 21. .

したがって熱交換器6、熱交換器7では、全風量が通過する時、処理可能最大熱量の熱交換が行われ、定格の往き温度と還り温度及び温度差が確保される。   Therefore, in the heat exchanger 6 and the heat exchanger 7, when the total air volume passes, heat exchange of the maximum heat quantity that can be processed is performed, and the rated forward temperature, return temperature, and temperature difference are secured.

空調機3には、2つに分割された2段式熱交換器に、室内空気(還気RA)及び外気(OA)を熱交換器6と熱交換器7にほぼ均等に通過される。したがって空調機3に吸引された空気のうち、熱交換器6を通過した空気と熱交換器7を通過した空気が混合された後、送風ファン31を介して室内へと供給される。   In the air conditioner 3, indoor air (returned air RA) and outside air (OA) are passed through the heat exchanger 6 and the heat exchanger 7 almost evenly through a two-stage heat exchanger divided into two. Therefore, the air that has passed through the heat exchanger 6 and the air that has passed through the heat exchanger 7 out of the air sucked into the air conditioner 3 are mixed and then supplied to the room via the blower fan 31.

この時、制御弁36又は制御弁37のいずれかが全閉となっている場合は、熱交換した空気と熱交換しない空気が混合されて室内へと供給される。この室内には、室内温度センサー25を設けている。また、空調機3の吹き出し口近傍には、給気温度を検出する給気温度センサー24を設けている。   At this time, when either the control valve 36 or the control valve 37 is fully closed, the heat-exchanged air and the non-heat-exchanged air are mixed and supplied to the room. An indoor temperature sensor 25 is provided in the room. An air supply temperature sensor 24 for detecting the air supply temperature is provided in the vicinity of the air outlet of the air conditioner 3.

なお、多段式熱交換器空調機3にて、室内空気及び外気を2つ以上に分割された熱交換器において、熱交換した空気と熱交換しない空気を混合する方式は、一般空調機53にて、空気を全て均一に熱交換させる熱交換器56を通過させる方式よりも冷却除湿能力は高くなり、この方式では再熱が軽減される効果がある。   In the heat exchanger in which the indoor air and the outside air are divided into two or more in the multi-stage heat exchanger air conditioner 3, a method of mixing heat exchanged air and air that does not exchange heat is used in the general air conditioner 53. Thus, the cooling and dehumidifying capacity is higher than the method of passing through the heat exchanger 56 that uniformly heat-exchanges all the air, and this method has an effect of reducing reheating.

次にこのような構成を有する空調機3の動作を説明する。
図2は、熱交換器の流量比と空調負荷率の変化特性であり、細実線で示す一次関数が最も効率の高い理想的な流量比変化特性を示す。本発明は、熱交換器を2段以上の多段とすることにより、この一次関数に近似した変化特性を持つ空調機を実現する。尚、上記図2の特性図において、夏場の冷房において最大冷房負荷での最大冷房熱量に対して、冷凍機の最も効率の良い往き温度と還り温度との温度差と流量のとき、その流量を「熱交換器の流量比」の100%流量(最大流量比)とする。また、その時の最大冷房負荷を「空調負荷率」の100%とする。冬場の暖房においても同様に、暖房において最大負荷での最大熱量に対して、冷凍機の最も効率の良い往き温度と還り温度との温度差と流量のとき、その流量を「熱交換器の流量比」の100%流量とし、また、その時の最大負荷を「空調負荷率」の100%とする。
Next, the operation of the air conditioner 3 having such a configuration will be described.
FIG. 2 is a change characteristic of the flow ratio of the heat exchanger and the air conditioning load factor, and a linear function indicated by a thin solid line shows an ideal flow ratio change characteristic with the highest efficiency. The present invention realizes an air conditioner having a change characteristic approximating this linear function by providing a heat exchanger having two or more stages. In the characteristic diagram of FIG. 2, the flow rate is the difference between the most efficient forward temperature and return temperature of the refrigerator and the flow rate with respect to the maximum cooling heat amount at the maximum cooling load in the summer cooling. The flow rate is 100% of the "heat exchanger flow rate ratio" (maximum flow rate ratio). The maximum cooling load at that time is set to 100% of the “air conditioning load factor”. Similarly, in the case of heating in winter, when the temperature difference and flow rate between the most efficient forward temperature and return temperature of the refrigerator are compared to the maximum heat amount at the maximum load in heating, the flow rate is referred to as the heat exchanger flow rate. The flow rate is 100% of the “ratio”, and the maximum load at that time is 100% of the “air conditioning load factor”.

また、上記空調負荷率100%でかつ100%流量のときを(図2のa点)を「最大流量比」という。また、「最大流量比」を各熱交換器毎に捉えると、熱交換器を多段に分割したとき、例えば熱交換器を2段に分割した場合は、各熱交換器毎の最大流量比は各々50%となり(図2のb点)、3段に分割したときは各熱交換器の最大流量比は各々33%(図6のb’点、c’点)となり、各々各熱交換器を合計したときに空調機全体の最大流量比100%が確保されるものとする。   Further, the case where the air conditioning load factor is 100% and the flow rate is 100% (point a in FIG. 2) is referred to as “maximum flow rate ratio”. In addition, when the “maximum flow rate ratio” is captured for each heat exchanger, when the heat exchanger is divided into multiple stages, for example, when the heat exchanger is divided into two stages, the maximum flow rate ratio for each heat exchanger is 50% each (point b in FIG. 2), when divided into three stages, the maximum flow rate ratio of each heat exchanger is 33% (points b ′ and c ′ in FIG. 6), and each heat exchanger It is assumed that a maximum flow rate ratio of 100% for the entire air conditioner is secured.

本発明に係る2つ以上の多段に分割された熱交換器のうち(図2参照)、2つに分割した2段式熱交換器の場合の想定値として、低負荷時又は部分負荷時において全閉としない制御弁36を設置した熱交換器6を流れる冷水(又は温水)の流量比を「1点鎖線」にて、低負荷時には全閉とする制御弁を設置した熱交換器7を流れる冷水(又は温水)の流量比を「2点鎖線」にて、熱交換器6と熱交換器7の合計の流量比を「太実線」で、さらに一般空調機の熱交換器56を流れる冷水(又は温水)の流量比を「破線」にて示す。   Among the heat exchangers divided into two or more multistages according to the present invention (see FIG. 2), as an assumed value in the case of a two-stage heat exchanger divided into two, at low load or partial load The flow rate ratio of cold water (or hot water) flowing through the heat exchanger 6 provided with the control valve 36 that is not fully closed is “one-dot chain line”, and the heat exchanger 7 provided with a control valve that is fully closed when the load is low. The flow rate ratio of the flowing cold water (or hot water) is “two-dot chain line”, the total flow rate ratio of the heat exchanger 6 and the heat exchanger 7 is “thick solid line”, and further flows through the heat exchanger 56 of the general air conditioner. The flow rate ratio of cold water (or hot water) is indicated by “broken line”.

ここで、本発明の2段式熱交換器も、一般空調機の熱交換器も空調負荷率100%では往き温度と還り温度の十分な温度差が確保されているが、2分割した熱交換器の1つの熱交換器の最少必要流量比を30%(従来の1つの熱交換器56の最小必要流量比の1/2)と仮定し、流量比30%では、往き温度と還り温度の温度差が50%しか確保されないと想定している。   Here, although the two-stage heat exchanger of the present invention and the heat exchanger of the general air conditioner have a sufficient temperature difference between the return temperature and the return temperature at an air conditioning load factor of 100%, the heat exchange is divided into two parts. Assuming that the minimum required flow ratio of one heat exchanger of the heat exchanger is 30% (1/2 of the minimum required flow ratio of one conventional heat exchanger 56), at the flow ratio of 30%, the forward temperature and the return temperature are It is assumed that only 50% of the temperature difference is secured.

よって、一般空調機の熱交換器56の流量比は、空調負荷率100%では流量比100%(最大流量比)、空調負荷率50%では流量比70%、空調負荷率30%では流量比60%となる(図2破線参照)。   Therefore, the flow rate ratio of the heat exchanger 56 of the general air conditioner is as follows. The flow rate ratio is 100% (maximum flow rate ratio) when the air conditioning load factor is 100%, the flow rate ratio is 70% when the air conditioning load factor is 50%, and the flow rate ratio when the air conditioning load factor is 30%. 60% (see broken line in FIG. 2).

一方、2段式熱交換器の場合、空調負荷率100%では、熱交換器6の流量比50%(最大流量比)と熱交換器7の流量比50%(最大流量比)の計100%、空調負荷率50%では熱交換器6の流量比35%と熱交換器7の流量比35%の計70%となり、一般空調機と同時と想定される。   On the other hand, in the case of a two-stage heat exchanger, when the air conditioning load factor is 100%, a total of 100% of the flow ratio 50% (maximum flow ratio) of the heat exchanger 6 and the flow ratio 50% (maximum flow ratio) of the heat exchanger 7 is 100. %, And the air conditioning load factor 50%, the flow rate ratio 35% of the heat exchanger 6 and the flow rate ratio 35% of the heat exchanger 7 total 70%, which is assumed to be simultaneous with the general air conditioner.

しかし例えば空調負荷率49%では、熱交換器6の流量比49%と熱交換器7の流量比0%の計49%、空調負荷率30%では、熱交換器6の流量比40%と熱交換器7の流量比0%の計40%となり、一般空調機の60%と比較して流量が小水量(20%減)となることで温度差の十分な確保が可能となる。さらに最小必要流量が1/2となるので、最小流量比30%、空調負荷率15%まで制御可能となる。   However, for example, when the air conditioning load factor is 49%, the flow rate ratio of 49% of the heat exchanger 6 and the flow rate ratio of the heat exchanger 7 is 49%, and when the air conditioning load factor is 30%, the flow rate ratio of the heat exchanger 6 is 40%. A total of 40% of the flow rate ratio 0% of the heat exchanger 7 is obtained, and a sufficient flow rate difference can be secured by reducing the flow rate by a small amount of water (20% reduction) compared to 60% of the general air conditioner. Furthermore, since the minimum required flow rate is halved, control is possible up to a minimum flow rate ratio of 30% and an air conditioning load factor of 15%.

なお、図2に示した多段熱交換空調機は2段式熱交換器の流量比を説明の簡略化のために示したものであり、3段式、4段式と段数が増えるに従って、往き温度と還り温度との温度差確保はさらに十分確実なものとなっていく。   The multi-stage heat exchange air conditioner shown in FIG. 2 shows the flow rate ratio of the two-stage heat exchanger for simplification of explanation, and the number of stages increases as the number of stages increases to three-stage and four-stage. Ensuring the temperature difference between the temperature and the return temperature is even more reliable.

上記コントローラー21は、実際にはCPUを備えた制御手段であり、当該CPUは図4乃至図6に示す動作手順に従って上記制御弁36,37を開閉制御するものであり、その機能を図3に機能ブロック図として示す。上記コントローラー21における室内温度設定手段21aは、混合空気温度センサー23、給気温度センサー24又は室内温度センサー25からの温度の検出信号を受けて、これらの検出信号を設定値(設定温度)と比較し、当該比較の結果、検出温度が設定温度より高い場合(又は低い場合)は制御弁36及び制御弁37を開いて冷水(又は温水)の流量を増加させ、熱交換器6,7を通過する空気46、47の温度を低下させる(又は上昇させる)方向に制御を行い、検出温度が設定温度より低い場合(又は高い場合)は制御弁36及び制御弁37を絞って冷水(又は温水)の流量を減少させ、熱交換器6,7を通過する空気46、47の温度を上昇させる(又は下降させる)方向に制御を行い、室内温度を一定に維持する。また、この室内温度設定手段21aは、制御弁37が全閉された後は、制御弁36のみの開閉制御を行うことで室内温度を一定に制御する動作を行う。   The controller 21 is actually a control means including a CPU. The CPU controls the opening and closing of the control valves 36 and 37 according to the operation procedure shown in FIGS. 4 to 6, and the function thereof is shown in FIG. It is shown as a functional block diagram. The room temperature setting means 21a in the controller 21 receives temperature detection signals from the mixed air temperature sensor 23, the supply air temperature sensor 24 or the room temperature sensor 25, and compares these detection signals with a set value (set temperature). If the detected temperature is higher (or lower) than the set temperature as a result of the comparison, the control valve 36 and the control valve 37 are opened to increase the flow rate of cold water (or hot water) and pass through the heat exchangers 6 and 7. When the detected temperature is lower (or higher) than the set temperature, the control valve 36 and the control valve 37 are squeezed to cool water (or hot water). The flow rate of the air is reduced, and the temperature of the air 46 and 47 passing through the heat exchangers 6 and 7 is controlled to increase (or decrease) to maintain the room temperature constant. In addition, after the control valve 37 is fully closed, the room temperature setting means 21a performs an operation of controlling the room temperature to be constant by performing opening / closing control of only the control valve 36.

熱量演算手段21bは、往管温度センサー26の温度の検出信号T11、還管温度センサー27の温度の検出信号T12、流量計33からの流量の検出信号を受けて、次式により処理熱量Qの演算を行う。   The calorific value calculation means 21b receives the temperature detection signal T11 of the outgoing pipe temperature sensor 26, the temperature detection signal T12 of the return pipe temperature sensor 27, and the flow rate detection signal from the flow meter 33, and calculates the processing heat quantity Q by the following equation. Perform the operation.

熱量Q[kW]=流量M[L/h]×(T12−T11)[℃]×比熱 (1)
そして、上記熱量Qが空調機3の処理可能最大熱量Qmax(空調負荷率100%)の1/2以下になったか否かを判断し、熱量演算手段21bが処理熱量が処理可能最大熱量Qmaxの1/2以下になったことを検出すると、制御弁閉鎖手段21cが制御弁37を全閉する動作を行うものである。また、熱量演算手段21bが上記処理熱量が処理可能最大熱量Qmaxの1/2になったことを検出すると、同時に流量制御手段21dは制御弁36の流量を増加して、熱交換器6の最大能力運転状態(最大流量比の状態)とするものである。
Heat quantity Q [kW] = flow rate M [L / h] × (T12−T11) [° C.] × specific heat (1)
Then, it is determined whether or not the heat quantity Q is ½ or less of the maximum heat quantity Qmax that can be processed by the air conditioner 3 (air conditioning load factor 100%), and the heat quantity calculation means 21b determines the maximum heat quantity Qmax that can be processed. When it is detected that the ratio has become ½ or less, the control valve closing means 21c performs an operation of fully closing the control valve 37. Further, when the calorific value calculating means 21b detects that the processing heat quantity becomes 1/2 of the maximum heat quantity Qmax that can be processed, the flow rate control means 21d increases the flow rate of the control valve 36 at the same time, thereby increasing the maximum heat exchanger 6 capacity. The capacity operation state (maximum flow rate ratio state) is assumed.

熱量ではなく、温度差で制御を行う場合は、上記熱量演算手段21bが温度差演算手段として機能し、以下の制御を行う。温度差演算手段21bは、室内空気及び外気の混合空気温度センサー23の温度の検出信号t1、給気温度センサー24の温度の検出信号t2を受けて、次式により処理温度差Δtの演算を行う。
温度差Δt[℃]=t1−t2[℃] (2)
そして、上記温度差Δtが空調機3の処理可能最大温度差Δtmax(空調負荷率100%、例えばΔt=15℃〜16℃)の1/2(Δt=7.5℃〜8℃)になったか否かを判断し、温度差演算手段21bが処理温度差が処理可能最大温度差Δtの1/2以下になったことを検出すると、制御弁閉鎖手段21cが制御弁37を全閉する制御を行うものである。また、温度差演算手段21bが上記処理温度差が処理可能最大温度差Δtmaxの1/2になったことを検出すると、同時に流量制御手段21dは制御弁36の流量を増加して、熱交換器6の最大能力運転状態(最大流量比の状態)とするものである。
When the control is performed based on the temperature difference instead of the heat amount, the heat amount calculation unit 21b functions as a temperature difference calculation unit and performs the following control. The temperature difference calculating means 21b receives the temperature detection signal t1 of the mixed air temperature sensor 23 of the indoor air and the outside air and the temperature detection signal t2 of the supply air temperature sensor 24, and calculates the processing temperature difference Δt by the following equation. .
Temperature difference Δt [° C.] = T 1 −t 2 [° C.] (2)
The temperature difference Δt becomes 1/2 (Δt = 7.5 ° C. to 8 ° C.) of the maximum temperature difference Δtmax that can be processed by the air conditioner 3 (air conditioning load factor 100%, for example, Δt = 15 ° C. to 16 ° C.). When the temperature difference calculating means 21b detects that the processing temperature difference is ½ or less of the maximum processable temperature difference Δt, the control valve closing means 21c controls the control valve 37 to be fully closed. Is to do. When the temperature difference calculating means 21b detects that the processing temperature difference is ½ of the maximum processable temperature difference Δtmax, the flow rate control means 21d simultaneously increases the flow rate of the control valve 36, and the heat exchanger 6 is the maximum capacity operation state (maximum flow rate state).

上記熱量で制御する場合及び上記温度差で制御する場合の何れの場合も、その後は、室内温度設定手段21aが給気温度センサー24又は室内温度センサー25からの検出信号に基づいて、制御弁36のみを開閉制御して室内温度を一定に制御する動作を行う。   In either case of controlling by the amount of heat and controlling by the temperature difference, the indoor temperature setting means 21a thereafter controls the control valve 36 based on the detection signal from the supply air temperature sensor 24 or the indoor temperature sensor 25. Only the opening / closing control is performed to control the room temperature to be constant.

次に、本発明に係る空調機の動作を図4乃至図6のフローチャートに基づいて具体的に説明する。   Next, the operation of the air conditioner according to the present invention will be specifically described based on the flowcharts of FIGS.

空調負荷率100%〜50%の間は(図2の(ハ)の領域)、制御弁36,37が共に開いており、コントローラー21(室内温度設定手段21a)により開閉制御される。即ち、コントローラー21(室内温度設定手段21a)は、室内温度センサー25及び給気温度センサー24を検出し、室内温度が設定値にあるか否か、又は給気温度が設定値にあるか否かを判断し(図4P1,P2)、設定値にない場合は、制御弁36及び制御弁37を開閉制御して熱交換器6及び熱交換器7の流量を制御し(図4P3)、これによって熱交換器6及び7を通過する空気の温度を低下又は上昇せしめ、室内の温度が設定値(一定)になるように制御している。   Between the air conditioning load factors of 100% to 50% (region (C) in FIG. 2), the control valves 36 and 37 are both open and controlled to be opened and closed by the controller 21 (indoor temperature setting means 21a). That is, the controller 21 (room temperature setting means 21a) detects the room temperature sensor 25 and the supply air temperature sensor 24, and determines whether the room temperature is at the set value or whether the supply air temperature is at the set value. (P1 and P2 in FIG. 4), if not in the set value, the control valve 36 and the control valve 37 are controlled to open and close to control the flow rates of the heat exchanger 6 and the heat exchanger 7 (FIG. 4P3). The temperature of the air passing through the heat exchangers 6 and 7 is lowered or raised, and the room temperature is controlled to be a set value (constant).

例えば、真夏等の最大負荷時、還気46及び外気47の混合温度が30℃、往管12の冷水温度が7℃であるとすると、還気46及び外気47は熱交換器6,7で15℃〜16℃に冷却され、送風ファン31により室内に給気される。室内に給気された空気温度は室内の顕熱負荷等により上昇し、設定温度の26℃となるように制御される。このとき冷水は還管13において12℃〜17℃に上昇しており、図示しない水方式セントラル冷暖房システムで再度7℃に冷却されて往管12に流れていく。   For example, assuming that the mixing temperature of the return air 46 and the outside air 47 is 30 ° C. and the cold water temperature of the outgoing pipe 12 is 7 ° C. at the maximum load such as midsummer, the return air 46 and the outside air 47 are the heat exchangers 6 and 7. It is cooled to 15 ° C. to 16 ° C. and supplied to the room by the blower fan 31. The temperature of the air supplied to the room rises due to the sensible heat load in the room, and is controlled to a set temperature of 26 ° C. At this time, the cold water rises to 12 ° C. to 17 ° C. in the return pipe 13, and is cooled again to 7 ° C. by a water-type central air conditioning system (not shown) and flows to the outgoing pipe 12.

上記コントローラー21(熱量演算手段21b)は、往管温度センサー26の温度T11、還管温度センサー27の温度T12、及び流量計33の流量Mを検出し(図4P4,P5,P6)、上記(1)式により処理熱量を演算する(図4P7)。   The controller 21 (heat quantity calculating means 21b) detects the temperature T11 of the outgoing pipe temperature sensor 26, the temperature T12 of the return pipe temperature sensor 27, and the flow rate M of the flowmeter 33 (FIGS. 4P4, P5, P6), and ( 1) Calculate the heat of treatment according to the equation (P7 in FIG. 4).

そして、コントローラー21(熱量演算手段21b)は上記熱量Qが、空調機3の処理可能最大熱量の1/2以下になったか否かを判断する(図4P8)。上記コントローラー21(熱量演算手段21b)は、上記熱量Qが処理可能最大熱量の1/2(空調負荷率50%)より大きい場合は、ステップP1に戻り、上記室内温度設定手段21aが上記制御弁36、37の両方を制御して、2つの熱交換器6,7による熱交換を行って室内温度を設定値に維持する動作を継続する(図4P1〜P3)。即ち、空調負荷率100%から50%に至るまでは(図2の(ハ)の領域)、このように2つの熱交換器6,7を使用して熱交換を行う動作を行うので、例えば空調負荷率が80%のときは熱交換器6,7の流量比は約90%となり(図2太実線参照)、単独の熱交換器56を使用した従来と同様の特性(図2破線参照)となる。   Then, the controller 21 (heat quantity calculation means 21b) determines whether or not the heat quantity Q has become 1/2 or less of the maximum heat quantity that can be processed by the air conditioner 3 (P8 in FIG. 4). When the heat quantity Q is greater than 1/2 of the maximum heat quantity that can be processed (air conditioning load factor 50%), the controller 21 (heat quantity calculation means 21b) returns to step P1, and the room temperature setting means 21a controls the control valve. By controlling both 36 and 37, the heat exchange by the two heat exchangers 6 and 7 is performed and the operation of maintaining the room temperature at the set value is continued (FIGS. 4P1 to P3). That is, from the air conditioning load factor 100% to 50% (region (c) in FIG. 2), the heat exchange operation is performed using the two heat exchangers 6 and 7 in this way. When the air-conditioning load factor is 80%, the flow rate ratio of the heat exchangers 6 and 7 is about 90% (see the thick solid line in FIG. 2), and the same characteristics as the conventional one using the single heat exchanger 56 (see the broken line in FIG. 2). )

次に、夏場の夜間或いは中間期、冬期において、上記熱量が処理最大熱量の1/2(空調負荷率が50%)となった場合は(図2の(イ))、以下の動作となる。即ち、コントローラー21(熱量演算手段21b)が上記(1)式の演算により、上記熱量が処理可能最大熱量の1/2(空調負荷率が50%)になったことを検出すると、上記コントローラー21(制御弁閉鎖手段21c)は上記制御弁37を全閉し、対応する熱交換器7の流量を0にすると共に(図2の(ニ)から(ホ)参照、図6P1)、上記コントローラー21(流量制御手段21b)は、制御弁36を開いて、熱交換器6の流量比が35%から50%となるように流量を増加させ(図2の(ニ)から(へ)参照)、熱交換器6の最大能力運転状態とする(図6P2)。   Next, when the heat quantity becomes ½ of the maximum heat quantity to be processed (air-conditioning load factor is 50%) at night in the summer or in the middle and winter seasons ((b) in FIG. 2), the following operation is performed. . That is, when the controller 21 (heat quantity calculation means 21b) detects that the heat quantity is ½ of the maximum heat quantity that can be processed (the air conditioning load factor is 50%) by the calculation of the equation (1), the controller 21 (Control valve closing means 21c) fully closes the control valve 37, sets the flow rate of the corresponding heat exchanger 7 to 0 (see (d) to (e) in FIG. 2, FIG. 6P1), and controls the controller 21 (Flow control means 21b) opens the control valve 36 to increase the flow rate so that the flow rate ratio of the heat exchanger 6 is 35% to 50% (see (d) to (f) in FIG. 2), The maximum capacity operation state of the heat exchanger 6 is set (FIG. 6P2).

熱量ではなく、温度差で制御を行う場合は、以下の制御となる(図5)。尚、図5におけるステップP11,P12は上記ステップP1,P2と同様の制御となる。上記コントローラー21(温度差演算手段21b)は、室内空気と外気の混合空気温度センサー23の温度t1、給気温度センサー24の温度t2を検出し(図5P14,P15)、上記式(2)より温度差を演算する(図5P16)。   When the control is performed not by the amount of heat but by the temperature difference, the following control is performed (FIG. 5). Note that steps P11 and P12 in FIG. 5 are the same control as steps P1 and P2. The controller 21 (temperature difference calculation means 21b) detects the temperature t1 of the mixed air temperature sensor 23 of the indoor air and the outside air and the temperature t2 of the supply air temperature sensor 24 (FIG. 5P14, P15), and from the above equation (2) The temperature difference is calculated (P16 in FIG. 5).

そして、コントローラー21(温度差演算手段21b)は上記熱温度差Δtが、空調機3の処理可能最大温度差(例えば15℃)の1/2(例えば7.5℃)以下になったか否かを判断する(図5P17)。上記コントローラー21(温度差演算手段21b)は、上記温度差Δtが処理可能最大温度差の1/2より大きい場合は、ステップP11に戻り、上記室内温度設定手段21aが上記制御弁36、37の両方を制御して、2つの熱交換器6,7による熱交換を行って室内温度を設定値に維持する動作を継続する(図5P11〜P13)。即ち、空調負荷率100%から50%に至るまでは(図2の(ハ)の領域)、このように2つの熱交換器6,7を使用して熱交換を行う動作を行うので、例えば空調負荷率が80%のときは熱交換器6,7の流量比は約90%となり(図2太実線参照)、単独の熱交換器56を使用した従来と同様の特性(図2点線参照)となる。   Then, the controller 21 (temperature difference calculation means 21b) determines whether or not the thermal temperature difference Δt is equal to or less than 1/2 (for example, 7.5 ° C.) of the maximum processable temperature difference (for example, 15 ° C.) of the air conditioner 3. Is determined (FIG. 5P17). If the temperature difference Δt is larger than half of the maximum processable temperature difference, the controller 21 (temperature difference calculating means 21b) returns to step P11, and the indoor temperature setting means 21a controls the control valves 36 and 37. By controlling both, heat exchange is performed by the two heat exchangers 6 and 7, and the operation of maintaining the room temperature at the set value is continued (P11 to P13 in FIG. 5). That is, from the air conditioning load factor 100% to 50% (region (c) in FIG. 2), the heat exchange operation is performed using the two heat exchangers 6 and 7 in this way. When the air-conditioning load factor is 80%, the flow rate ratio of the heat exchangers 6 and 7 is about 90% (see the thick solid line in FIG. 2), and the same characteristics as the conventional one using the single heat exchanger 56 (see the dotted line in FIG. 2). )

次に、夏場の夜間或いは中間期、冬期において、上記温度差が処理最大温度差(15℃)の1/2(7.5℃、空調負荷率が50%に相当)となった場合は(図2の(イ))、以下の動作となる。即ち、コントローラー21(温度差演算手段21b)が上記(2)式の演算により、上記温度差が処理可能最大温度差の1/2(空調負荷率が50%)になったことを検出すると、上記コントローラー21(制御弁閉鎖手段21c)は上記制御弁37を全閉し、対応する熱交換器7の流量を0にすると共に(図2の(ニ)から(ホ)参照、図6P1)、上記コントローラー21(流量制御手段21d)は、制御弁36を開いて、熱交換器6の流量比が35%から50%となるように流量を増加させ(図2の(ニ)から(へ)参照)、熱交換器6の最大能力運転状態とする(図6P2)。   Next, when the temperature difference becomes 1/2 of the maximum processing temperature difference (15 ° C) (7.5 ° C, air conditioning load factor is equivalent to 50%) at night or in the middle and winter in summer ( The following operations are performed as shown in FIG. That is, when the controller 21 (temperature difference calculation means 21b) detects that the temperature difference is ½ of the maximum processable temperature difference (the air conditioning load factor is 50%) by the calculation of the equation (2), The controller 21 (control valve closing means 21c) fully closes the control valve 37, sets the flow rate of the corresponding heat exchanger 7 to 0 (see (D) to (E) in FIG. 2, FIG. 6P1), The controller 21 (flow rate control means 21d) opens the control valve 36 and increases the flow rate so that the flow rate ratio of the heat exchanger 6 is 35% to 50% (from (D) to (F) in FIG. 2). (See Fig. 6P2).

上記熱量制御の場合、又は温度差制御の場合の何れも、上記熱交換器7の流量を0とした後は、以下の制御となる。   In either case of the heat amount control or temperature difference control, after the flow rate of the heat exchanger 7 is set to 0, the following control is performed.

上記熱交換器7の運転が停止されると、熱交換器6のみの最大能力運転(最大流量比50%の状態)に切り換えられる(図2の(イ)から(へ)参照)。空調負荷率50%以下の負荷率の範囲(図2の(ト)の領域)では、このように熱交換器6のみが動作した状態で空調機3の運転が行われる。   When the operation of the heat exchanger 7 is stopped, the operation is switched to the maximum capacity operation (a state where the maximum flow rate ratio is 50%) of only the heat exchanger 6 (see (a) to (f) in FIG. 2). In the range of the load factor of 50% or less of the air conditioning load factor (region (G) in FIG. 2), the air conditioner 3 is operated with only the heat exchanger 6 operating as described above.

このとき、上記空調機3に入力する熱交換後の室内空気(還気RA)と外気(OA)が、制御弁37により冷水(又は温水)の循還を止められた熱交換器7にて熱交換していない空気となり、また、冷水(又は温水)が循還している熱交換器6にて熱交換した空気となり、2つの空気が送風ファン31により混合されて室内に給気され、かかる状態において、上記コントローラー21(室内温度設定手段21a)は、室内温度又は給気温度が設定温度となるように、冷水(又は温水)が循還している上記熱交換器6の上記制御弁36により冷水(又は温水)の流量を増減制御する。即ち、還気46及び外気47は全量の約半分が動作中の熱交換器6を通過し、全量の約半分が停止中の熱交換器7を通過する。   At this time, the indoor air (return air RA) and the outside air (OA) after heat exchange input to the air conditioner 3 are transferred to the heat exchanger 7 in which the circulation of cold water (or hot water) is stopped by the control valve 37. It becomes air that has not been heat-exchanged, and air that has been heat-exchanged in the heat exchanger 6 in which cold water (or hot water) is circulated, and the two airs are mixed by the blower fan 31 and supplied to the room, In this state, the controller 21 (room temperature setting means 21a) is configured to control the control valve of the heat exchanger 6 in which cold water (or hot water) is circulated so that the room temperature or the supply air temperature becomes the set temperature. The flow rate of cold water (or hot water) is increased or decreased by 36. That is, about half of the total amount of the return air 46 and the outside air 47 passes through the heat exchanger 6 that is operating, and about half of the total amount passes through the heat exchanger 7 that is stopped.

例えば、熱交換後の室内空気(還気RA:26℃)と外気OA(28℃)との混合気46,47の温度が27℃であるとすると、室内温度を26℃に制御する場合は、熱交換器6を通過した空気は例えば15℃に低下するように制御弁36を制御し、停止中の熱交換器7を通過した空気は熱交換されずに27℃のまま熱交換器7を通過し、送風機31にて15℃の空気と27℃の空気が混合され、その結果、約21℃の空気として室内に給気される。   For example, assuming that the temperature of the air-fuel mixture 46, 47 of indoor air (return air RA: 26 ° C.) and outside air OA (28 ° C.) after heat exchange is 27 ° C., the room temperature is controlled to 26 ° C. The control valve 36 is controlled so that the air that has passed through the heat exchanger 6 drops to, for example, 15 ° C., and the air that has passed through the stopped heat exchanger 7 remains at 27 ° C. without heat exchange. And air at 15 ° C. and air at 27 ° C. are mixed by the blower 31, and as a result, the air is supplied to the room as air at about 21 ° C.

そして、空調負荷率が50%以下の領域(ト)においては、上記コントローラー21(室内温度設定手段21a)は、同様に室内温度センサー25、又は給気温度センサー24の温度が設定温度(例えば室内温度26℃、給気温度21℃)にあるか否かを監視しており(図6P3、P4)、給気温度又は室内温度が設定温度より高い場合、或いは給気温度又は室内温度が設定温度より低い場合は、制御弁36のみを開閉制御して熱交換器6の流量を制御し(図6P5)、室内温度及び給気温度が設定温度を維持するように制御を行う(図2の(ト)の領域)。   In the region (G) where the air conditioning load factor is 50% or less, the controller 21 (indoor temperature setting means 21a) similarly sets the temperature of the indoor temperature sensor 25 or the supply air temperature sensor 24 to the set temperature (for example, indoors). Whether the temperature is 26 ° C. or the supply air temperature 21 ° C.) (P3 and P4 in FIG. 6) and the supply air temperature or the room temperature is higher than the set temperature, or the supply air temperature or the room temperature is the set temperature. If it is lower, only the control valve 36 is controlled to open and close to control the flow rate of the heat exchanger 6 (FIG. 6P5), and control is performed so that the room temperature and the supply air temperature maintain the set temperatures ((( G) area).

ここで、空調負荷率50%以下の流量比(図2の太実線)を従来の1台の熱交換器56の特性(図2の破線)と比較すると、流量比において全体として約20%低減しており、空調負荷率50%以下の領域(ト)において、より少ない流量での運転が可能であることがわかる。例えば空調負荷率30%における流量比は1台の熱交換器56の場合は、60%の流量比を必要とするが、本発明においては40%の流量比で運転が可能であることがわかる。よって、熱交換させる熱交換器(本実施形態の場合は熱交換器6)において少ない流量で十分に熱交換させることができ、結果として、往管12と還管13の温度差を十分に確保できるようになる。この結果、往管12及び還管13に冷水(又は温水)を循還させるポンプ動力の低減を実現することができ、よって熱源機の効率・成績計数COPの向上、2ポンプ方式のシステムにおいて、大幅なバイパス流量の削減が可能となる。   Here, when the flow rate ratio of 50% or less of the air-conditioning load factor (thick solid line in FIG. 2) is compared with the characteristic of one conventional heat exchanger 56 (broken line in FIG. 2), the overall flow rate ratio is reduced by about 20%. Thus, it can be seen that operation with a smaller flow rate is possible in the region (g) where the air conditioning load factor is 50% or less. For example, the flow rate ratio at an air conditioning load factor of 30% requires a flow rate ratio of 60% in the case of one heat exchanger 56, but in the present invention, it can be seen that operation is possible at a flow rate ratio of 40%. . Therefore, it is possible to sufficiently exchange heat with a small flow rate in the heat exchanger (heat exchanger 6 in the case of the present embodiment) to exchange heat, and as a result, a sufficient temperature difference between the outgoing pipe 12 and the return pipe 13 is secured. become able to. As a result, it is possible to realize a reduction in pump power for circulating cold water (or hot water) to the outgoing pipe 12 and the return pipe 13, thereby improving the efficiency of the heat source unit and the performance count COP, and in the two-pump system, Significant reduction of bypass flow rate is possible.

また、上述のように空調負荷率50%以下の領域(図2の(ト))において、例えば空気の結露温度が18℃以下であったとすると、上述のように上記熱交換器6において空気温度を15℃まで減少させると、熱交換器6において結露が生じるので、該熱交換器6を通過した空気の除湿を行うことができるという効果がある。空調負荷率50%以下の中間期等においては、従来の1台の熱交換器56において室内温度を26℃に設定するとすれば、熱交換器56において空気を21℃に低下させることになるが、これでは空気温度を結露温度まで低下させることができず、熱交換器56を通過する空気の除湿を行うことが難しくなる。このように、本発明は上述の流量の低減効果に加えて、中間期等において除湿能力が高いという効果をも奏し得るものである。   Further, in the region where the air-conditioning load factor is 50% or less as described above ((G) in FIG. 2), for example, if the condensation temperature of air is 18 ° C. or less, the air temperature in the heat exchanger 6 is as described above. When the temperature is decreased to 15 ° C., dew condensation occurs in the heat exchanger 6, so that the air that has passed through the heat exchanger 6 can be dehumidified. In an intermediate period where the air conditioning load factor is 50% or less, if the room temperature is set to 26 ° C. in one conventional heat exchanger 56, the air is lowered to 21 ° C. in the heat exchanger 56. In this case, the air temperature cannot be lowered to the dew condensation temperature, and it becomes difficult to dehumidify the air passing through the heat exchanger 56. Thus, in addition to the above-described effect of reducing the flow rate, the present invention can also exhibit an effect that the dehumidifying ability is high in an intermediate period or the like.

上記の説明は熱交換器を2段に分割した場合の例を中心に行ったが、例えば3段に分割した場合の空調負荷率―流量比特性は概略図7の太破線に示すようになる。この場合、領域(リ)では3台の熱交換器を動作させて対応する3つの制御弁を制御することにより、室内温度を一定に保持しており、従来の1台の熱交換器を使用した場合と同等の制御となる。尚、各熱交換器の最大流量比は各々33%であり(図7b’,c’点)、3段の熱交換器を合計すると最大流量比100%(図7a’点)となる。   The above explanation has been made mainly on the case where the heat exchanger is divided into two stages. For example, the air-conditioning load factor-flow rate characteristic when the heat exchanger is divided into three stages is schematically shown by a thick broken line in FIG. . In this case, in the area (li), the three heat exchangers are operated and the corresponding three control valves are controlled to keep the room temperature constant, and the conventional one heat exchanger is used. The control is equivalent to that of the case. The maximum flow rate ratio of each heat exchanger is 33% (FIG. 7b ', point c'), and the total of the three stages of heat exchangers is 100% (FIG. 7a 'point).

処理熱量Qが処理可能最大熱量(空調負荷率100%)の1/3に相当する量低下したとき(図7の(ヌ))、3つの制御弁の1つを全閉すると共に、全閉しない制御弁を開いて流量を増加させ、残りの2台の熱交換器の最大流量比(100%流量比の2/3)の状態とする(図7の(ル))。以下、領域(オ)では、稼動中の2つの熱交換器に対応する制御弁の開閉制御を行って室内温度を一定に制御する。この状態においては、一般熱交換器56の流量(図7破線)に比較して約10%流量比が低下しており、より少ない流量にて運転が可能となっている。   When the processing heat quantity Q decreases by an amount corresponding to 1/3 of the maximum heat quantity that can be processed (air conditioning load factor 100%) ((N) in FIG. 7), one of the three control valves is fully closed and fully closed. The control valve is not opened and the flow rate is increased to obtain the maximum flow rate ratio (2/3 of the 100% flow rate ratio) of the remaining two heat exchangers ((l) in FIG. 7). Hereinafter, in the region (e), the opening / closing control of the control valves corresponding to the two heat exchangers in operation is performed to control the room temperature to be constant. In this state, the flow rate ratio is about 10% lower than the flow rate of the general heat exchanger 56 (broken line in FIG. 7), and the operation can be performed with a smaller flow rate.

さらに熱量Qが処理可能最大熱量(空調負荷率100%)の1/3に相当する量低下したとき(図7の(ワ))、動作中の2つの制御弁の1つを全閉すると共に、全閉しない制御弁を開いて流量を増加させ、1台の熱交換器の最大流量比(100%流量比の1/3)の状態とする(図7の(カ))。そして、領域(ヨ)では、稼動中の1台の熱交換器に対応する制御弁の開閉制御を行って室内温度を一定に制御する。この領域(ヨ)では2段の熱交換器の場合(図7の太実線)と比較しても、さらに少ない流量にて運転が可能であり、しかも最低流量比を15%まで低下させることができ、より効率的な運転が可能となる。   Further, when the heat quantity Q decreases by an amount corresponding to 1/3 of the maximum heat quantity that can be processed (air conditioning load factor 100%) ((W) in FIG. 7), one of the two control valves in operation is fully closed. Then, the control valve that is not fully closed is opened to increase the flow rate, and the maximum flow rate ratio of one heat exchanger (1/3 of the 100% flow rate ratio) is obtained ((f) in FIG. 7). And in area | region (Y), the opening / closing control of the control valve corresponding to one heat exchanger in operation is performed, and room temperature is controlled uniformly. In this region (Y), even when compared with the case of a two-stage heat exchanger (thick solid line in FIG. 7), operation can be performed with a smaller flow rate, and the minimum flow rate ratio can be reduced to 15%. More efficient operation is possible.

このように、熱交換器の段数を増加させて同様の制御を行うことにより、熱交換器の流量比と空調負荷率の変化特性を、細実線で示す最も効率の高い理想的な流量比特性に近づけていくことができる。   In this way, by performing the same control by increasing the number of stages in the heat exchanger, the flow rate ratio of the heat exchanger and the change characteristics of the air conditioning load factor are the most efficient ideal flow ratio characteristics indicated by the thin solid line You can get closer to.

上述のように、熱交換器をn段に分割し、分割した熱交換器ごとの還管又は往管に各々制御弁を設置し、これらの制御弁により上記熱交換器ごとに熱交換器を通過する冷水(又は温水)の量を増減又は全停止し得るように構成し、室内温度又は給気温度が設定温度となるように、室内温度又は給気温度を検出し、冷水(又は温水)が循還している熱交換器の各制御弁を開閉することにより各熱交換器を通過する冷水(又は温水)を増減制御して室内温度を一定に制御し、さらに、上記室内空気及び外気の混合空気温度と給気温度より温度差を検出し、全負荷時に対して温度差が分割の段数で定めた設定値になる度に(例えば処理温度差が処理可能最大温度差の1/nに低下する度に)、又は、上記熱交換器への往き温度、還り温度及び流量計より熱量を検出し、全負荷時に対して、熱量が分割の段数で定めた設定値となる度に(例えば、処理熱量が処理可能最大熱量の1/n低下する度に)、上記制御弁の何れか1つを全閉すると共に、その他の上記制御弁の流量を増加させて全負荷時の総流量に対して1/nに相当する流量を低下させた状態とし、一方、何れかの制御弁を全閉した後は、動作している熱交換器に対応する制御弁を開閉制御して、室内の温度を一定に制御するものである。   As described above, the heat exchanger is divided into n stages, and a control valve is installed in each return pipe or outgoing pipe for each divided heat exchanger, and a heat exchanger is provided for each heat exchanger by these control valves. It is configured so that the amount of passing cold water (or hot water) can be increased, decreased, or stopped, and the indoor temperature or supply air temperature is detected so that the indoor temperature or supply air temperature becomes the set temperature, and cold water (or hot water) is detected. Open and close the control valves of the circulating heat exchanger to increase / decrease the chilled water (or hot water) passing through each heat exchanger to control the room temperature to a constant level. The temperature difference is detected from the mixed air temperature and the supply air temperature, and each time the temperature difference becomes a set value determined by the number of divisions for all loads (for example, the processing temperature difference is 1 / n of the maximum temperature difference that can be processed). Every time it falls to the above), or the return temperature, return temperature and flow meter to the heat exchanger Whenever the amount of heat reaches a set value determined by the number of divisions for all loads (for example, every time the amount of processed heat decreases by 1 / n of the maximum amount of heat that can be processed), the control valve Either one is fully closed and the flow rate of the other control valve is increased to reduce the flow rate corresponding to 1 / n with respect to the total flow rate at full load. After the valve is fully closed, the control valve corresponding to the operating heat exchanger is controlled to open and close to control the room temperature to be constant.

尚、熱交換熱量の代わりに、流量計33の位置に流量増減用の制御弁を設置し、その制御弁のバルブ開度に応じて制御弁36、37をON−OFF制御とする制御でもできる。   In place of the heat exchange heat amount, a control valve for increasing or decreasing the flow rate is installed at the position of the flow meter 33, and the control valves 36 and 37 can be controlled to be ON / OFF controlled according to the valve opening degree of the control valve. .

以上、詳細に説明したように、本発明に係る空調機の2つ以上に分割した多段式熱交換器及び制御方法によれば、室内温度又は給気温度を検出し、熱交換器を通過する冷水(又は温水)の量を増減制御する一方、室内空気及び外気の混合空気温度と給気温度の検出により、処理温度差を検出し、又は、往き温度と還り温度及び流量の検出により処理熱量を算出し、熱交換器ごとに設置した制御弁のいずれかを全閉することにより、空気と熱交換させる熱交換器と、熱交換させない熱交換器とに分けることで、熱交換させる熱交換器では十分に熱交換させることができて、結果として往管と還管の温度差を十分に確保できるようになる。この結果、ポンプ動力の低減、熱源機の効率・成績係数COPの向上及び、2ポンプ方式のシステムにおいて、大幅なバイパス流量の削減が可能となる効果を得ることができる。   As described above in detail, according to the multistage heat exchanger divided into two or more of the air conditioners and the control method according to the present invention, the indoor temperature or the supply air temperature is detected and passed through the heat exchanger. While the amount of cold water (or hot water) is controlled to increase / decrease, processing temperature difference is detected by detecting the mixed air temperature and supply air temperature of indoor air and outside air, or processing heat amount by detecting the return temperature, return temperature and flow rate Heat exchange to exchange heat by dividing the heat exchanger that exchanges heat with air and the heat exchanger that does not exchange heat by fully closing any of the control valves installed for each heat exchanger. The vessel can sufficiently exchange heat, and as a result, a sufficient temperature difference between the outgoing pipe and the return pipe can be secured. As a result, the pump power can be reduced, the efficiency of the heat source unit can be improved, and the coefficient of performance COP can be improved. In the two-pump system, the bypass flow rate can be greatly reduced.

さらに、冷水一次ポンプと冷水二次ポンプの設置された2ポンプ方式のシステムにおいて、大幅なバイパス配管内流量の削減が可能となる。   Furthermore, in the two-pump system in which the cold water primary pump and the cold water secondary pump are installed, the flow rate in the bypass pipe can be greatly reduced.

上記実施形態では、中間期等において、空調機の空調負荷率が50%になったことを検出する基準として、熱量の演算による実施形態と、温度差の演算による実施形態を示したが、何れを用いるかは空調機の設置状況等に応じて選択すればよい。例えば、工場等において機械のみが稼動し人が存在しない場合は熱量に基づく制御を行い、人が存在し還気だけでなく外気導入が重要な必要な場合は温度差による制御を行うことが好ましい。   In the above-described embodiment, as a reference for detecting that the air conditioning load factor of the air conditioner has reached 50% in the intermediate period or the like, the embodiment by the calculation of the heat amount and the embodiment by the calculation of the temperature difference are shown. It may be selected according to the installation status of the air conditioner. For example, it is preferable to perform control based on the amount of heat when only a machine is operating and no one is present in a factory or the like, and when there is a person and it is important to introduce not only return air but also outside air, it is preferable to perform control based on a temperature difference. .

本発明に係る空調機の制御方法及び空調機によれば、水方式セントラル熱源システムにおいて効率的な空調機の制御方法及び空調機を実現するものであるから、ビル、ホテル、研究施設、工場等の空調システムとして広く利用が可能である。   According to the air conditioner control method and the air conditioner according to the present invention, an efficient air conditioner control method and an air conditioner are realized in the water-type central heat source system, so that buildings, hotels, research facilities, factories, etc. It can be widely used as an air conditioning system.

本発明に係る空調機の制御方法を使用する空調機の概略を表わす構成図である。It is a block diagram showing the outline of the air conditioner which uses the control method of the air conditioner which concerns on this invention. 本発明に係る制御方法を空調負荷率と熱交換器の流量比で表わした動作説明図である。It is operation | movement explanatory drawing which represented the control method which concerns on this invention with the flow rate ratio of the air-conditioning load factor and the heat exchanger. 本発明に係る空調機のコントローラーの機能ブロック図である。It is a functional block diagram of the controller of the air conditioner concerning the present invention. 同上空調機のコントローラーの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the controller of an air conditioner same as the above. 同上空調機のコントローラーの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the controller of an air conditioner same as the above. 同上空調機のコントローラーの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the controller of an air conditioner same as the above. 本発明に係る制御方法を空調負荷率と熱交換器の流量比で表わした動作説明図である。It is operation | movement explanatory drawing which represented the control method which concerns on this invention with the flow rate ratio of the air-conditioning load factor and the heat exchanger. 従来の空調機の概略を表わす構成図である。It is a block diagram showing the outline of the conventional air conditioner.

符号の説明Explanation of symbols

3 空調機
6 熱交換器
7 熱交換器
12 往管
13 還管
21 コントローラー
21a 室内温度設定手段
21b 熱量演算手段(温度差演算手段)
21c 制御弁閉鎖手段
21d 流量制御手段
23 混合空気温度センサー
24 給気温度センサー
25 室内温度センサー
26 往管温度センサー
27 還管温度センサー
33 流量計
36 制御弁
37 制御弁
3 Air Conditioner 6 Heat Exchanger 7 Heat Exchanger 12 Outward Pipe 13 Return Pipe 21 Controller 21a Room Temperature Setting Means 21b Calorific Value Calculation Means (Temperature Difference Calculation Means)
21c Control valve closing means 21d Flow rate control means 23 Mixed air temperature sensor 24 Supply air temperature sensor 25 Indoor temperature sensor 26 Outgoing pipe temperature sensor 27 Return pipe temperature sensor 33 Flow meter 36 Control valve 37 Control valve

Claims (8)

空調機内の熱交換器を2つに分割し、分割した2つの熱交換器に冷水(又は温水)を循還供給するとともに、これらの熱交換器に室内空気及び外気の混合空気を通過させることにより熱交換をさせる空調機の制御方法であって、
分割した上記熱交換器の各々の還管又は往管に制御弁を各々設置し、これらの制御弁により上記各熱交換器毎に熱交換器を通過する冷水(又は温水)の量を増減又は全停止し得るように構成し、
室内温度又は給気温度が設定温度となるように室内温度又は給気温度を検出し、冷水(又は温水)が循還している上記熱交換器の各制御弁を開閉することにより各熱交換器を通過する冷水(又は温水)を増減制御して室内温度又は給気温度を一定に制御し、
さらに上記各熱交換器への冷水(又は温水)の往き温度、還り温度及び各熱交換器を通過する流量に基づいて熱量を検出し、全負荷時に対して熱量が分割の段数で定めた設定値となった場合、分割した上記熱交換器に設置した上記制御弁のいずれか1つを全閉すると共に、
その他の上記制御弁の流量を増加させて2つの熱交換器の総流量より低い流量とすることにより、往き温度と還り温度との温度差を確保するように制御し、
一方、何れかの制御弁を全閉した後は、上記空調機に入力する熱交換後の室内空気と外気が、制御弁により冷水(又は温水)の循還を止められた熱交換器にて熱交換していない空気となり、また、冷水(又は温水)が循還している熱交換器にて熱交換した空気となり、2つの空気を混合して室内に給気し、かかる状態において、室内温度又は給気温度が設定温度となるように、冷水(又は温水)が循還している上記熱交換器の上記制御弁により冷水(又は温水)を増減制御することを特徴とする空調機の制御方法。
Dividing the heat exchanger in the air conditioner into two parts, circulating and supplying cold water (or hot water) to the two divided heat exchangers, and passing the mixed air of indoor air and outside air through these heat exchangers A method of controlling an air conditioner that exchanges heat by
A control valve is installed in each return pipe or outgoing pipe of the divided heat exchanger, and the amount of cold water (or hot water) passing through the heat exchanger for each heat exchanger is increased or decreased by these control valves. Configured to be able to stop all,
Each heat exchange is performed by detecting the room temperature or the supply air temperature so that the room temperature or the supply air temperature becomes the set temperature, and opening and closing each control valve of the heat exchanger in which the cold water (or hot water) is circulated. Increase or decrease control of cold water (or hot water) passing through the vessel to control the room temperature or the supply air temperature to be constant,
Furthermore, the amount of heat is detected based on the temperature of the cold water (or hot water) sent to each heat exchanger, the return temperature, and the flow rate passing through each heat exchanger, and the amount of heat is determined by the number of divisions for all loads. When it becomes a value, while fully closing any one of the control valves installed in the divided heat exchanger,
By controlling the flow rate of the other control valves to be lower than the total flow rate of the two heat exchangers, control is performed to ensure a temperature difference between the forward temperature and the return temperature,
On the other hand, after fully closing any one of the control valves, the indoor air and the outside air after heat exchange input to the air conditioner are exchanged in a heat exchanger in which the circulation of cold water (or hot water) is stopped by the control valve. It becomes air that has not been heat-exchanged, and air that has been heat-exchanged in a heat exchanger in which cold water (or hot water) is circulated, and the two airs are mixed and supplied to the room. An air conditioner characterized in that cold water (or hot water) is controlled to increase or decrease by the control valve of the heat exchanger in which cold water (or hot water) is circulated so that the temperature or the supply air temperature becomes a set temperature. Control method.
上記請求項1記載の空調機の制御方法において、
上記各熱交換器への冷水(又は温水)の往き温度、還り温度及び各熱交換器を通過する流量に基づいて熱量を検出し、全負荷時に対して熱量が分割の段数で定めた設定値となった場合、分割した上記熱交換器に設置した上記制御弁のいずれか1つを全閉する制御に代えて、
上記室内空気及び外気の混合空気温度と給気温度の検出により、それらの温度差を測定し、全負荷に対して上記温度差が分割の段数で定めた設定値となった場合に、分割した上記熱交換器に設置した上記制御弁のいずれか1つを全閉する制御を行うことを特徴とする空調機の制御方法。
In the control method of the air conditioner according to claim 1,
Detects the amount of heat based on the cold water (or hot water) temperature and return temperature to each heat exchanger, and the flow rate passing through each heat exchanger. In this case, instead of the control of fully closing any one of the control valves installed in the divided heat exchanger,
By detecting the mixed air temperature and the supply air temperature of the indoor air and the outside air, the temperature difference between them is measured, and when the temperature difference becomes a set value determined by the number of divisions for all loads, it is divided. A control method for an air conditioner, wherein control is performed to fully close any one of the control valves installed in the heat exchanger.
空調機内の熱交換器を2つ以上のn段(nは2以上の整数)に分割し、分割したn段の熱交換器に冷水(又は温水)を循還供給するとともに、これらの熱交換器に室内空気及び外気を通過させることにより熱交換をさせる空調機の制御方法であって、
熱交換器をn段に分割し、分割した熱交換器ごとの還管又は往管に各々制御弁を設置し、これらの制御弁により上記熱交換器ごとに熱交換器を通過する冷水(又は温水)の量を増減又は全停止し得るように構成し、
室内温度又は給気温度が設定温度となるように、室内温度又は給気温度を検出し、冷水(又は温水)が循還している熱交換器の各制御弁を開閉することにより各熱交換器を通過する冷水(又は温水)を増減制御して室内温度を一定に制御し、
さらに上記熱交換器への往き温度、還り温度及び流量計より熱量を検出し、全負荷時に対して、熱量が分割の段数で定めた設定値となる度に、上記制御弁の何れか1つを全閉すると共に、
その他の上記制御弁の流量を増加させて全負荷時の総流量に対して1/nに相当する流量を低下させた状態とすることにより、往き温度と還り温度との温度差を確保するように制御し、
一方、何れかの制御弁を全閉した後は、前記空調機に入力する熱交換後の室内空気と外気が、制御弁により冷水(又は温水)の循還を止められた熱交換器にて熱交換していない空気となり、また、冷水(又は温水)が循還している熱交換器にて熱交換した空気となり、これらの空気を混合して室内に給気し、かかる状態において、室内温度又は給気温度が設定温度となるように、冷水(又は温水)が循還している上記熱交換器の上記制御弁により冷水(又は温水)を増減制御することを特徴とする空調機の制御方法。
The heat exchanger in the air conditioner is divided into two or more n stages (n is an integer of 2 or more), and cold water (or hot water) is recirculated and supplied to the divided n stage heat exchangers. A control method for an air conditioner that exchanges heat by allowing room air and outside air to pass through the chamber,
The heat exchanger is divided into n stages, and control valves are respectively installed in the return pipe or the outgoing pipe for each divided heat exchanger, and cold water (or passed through the heat exchanger for each heat exchanger by these control valves (or Configured to increase or decrease the amount of hot water)
Each heat exchange is performed by detecting the room temperature or the supply air temperature so that the room temperature or the supply air temperature becomes the set temperature, and opening and closing each control valve of the heat exchanger in which the cold water (or hot water) is circulated. Increase or decrease the control of cold water (or hot water) passing through the vessel to control the room temperature to a constant level,
Further, when the amount of heat is detected from the temperature going back to the heat exchanger, the return temperature and the flow meter, and the amount of heat reaches a set value determined by the number of divisions for all loads, one of the control valves is selected. Is fully closed,
By increasing the flow rate of the other control valves and reducing the flow rate corresponding to 1 / n with respect to the total flow rate at full load, a temperature difference between the going temperature and the return temperature is secured. Control to
On the other hand, after any control valve is fully closed, the indoor air and the outside air after heat exchange input to the air conditioner are cooled in a heat exchanger in which the circulation of cold water (or hot water) is stopped by the control valve. It becomes air that has not been heat-exchanged, and air that has been heat-exchanged in a heat exchanger in which cold water (or hot water) is circulated, and these air are mixed and supplied to the room. An air conditioner characterized in that cold water (or hot water) is controlled to increase or decrease by the control valve of the heat exchanger in which cold water (or hot water) is circulated so that the temperature or the supply air temperature becomes a set temperature. Control method.
上記請求項3記載の空調機の制御方法において、
上記熱交換器への往き温度、還り温度及び流量計より熱量を検出し、全負荷時に対して、熱量が分割の段数で定めた設定値となる度に、上記制御弁の何れか1つを全閉する制御に代えて、
上記室内空気及び外気の混合空気温度と給気温度の検出によりそれらの温度差を計測し、全負荷時に対して上記温度差が分割の段数で定めた設定値となる度に、上記制御弁の何れか1つを全閉する制御を行うことを特徴とする空調機の制御方法。
In the control method of the air conditioner according to claim 3,
When the amount of heat is detected from the temperature going back to the heat exchanger, the return temperature and the flow meter, and when the amount of heat reaches the set value determined by the number of divisions for the full load, any one of the control valves is Instead of a fully closed control,
The temperature difference is measured by detecting the mixed air temperature and the supply air temperature of the indoor air and the outside air, and each time the temperature difference becomes a set value determined by the number of divisions for the full load, the control valve A control method for an air conditioner, characterized by performing control to fully close any one of them.
空調機内の熱交換器を2つ以上のn段(nは2以上の整数)に分割し、分割された熱交換器毎の還管又は往管に制御弁を各々設置し、前記空調機の熱交換器に冷水(又は温水)を循還供給するとともに、前記熱交換器に室内空気及び外気を通過させることにより、冷水(又は温水)と空気とを熱交換させるように構成し、
上記各熱交換器に共通の往管に往管温度センサーを設置すると共に、上記各熱交換器に共通の還管に還管温度センサー及び流量計を設置し、かつ給気対象の室内に給気温度センサー又は室内温度センサーを設け、
さらに上記給気温度センサー又は室内温度センサーの検出温度、上記往管温度センサー及び還管温度センサーの検出温度、上記流量計の検出流量を認識し、上記各制御弁を開閉制御し得るコントローラーを設け、
該コントローラーは、上記給気温度センサー又は上記室内温度センサーの検出温度を認識し、上記検出温度が設定値となるように上記制御弁を開閉制御する室内温度設定手段と、
上記往管温度センサーの検出温度、上記還管温度センサーの検出温度、及び上記検出流量に基づいて熱量を演算する熱量演算手段と、
熱量演算手段の熱量が全負荷時の1/n以下になったことを検出する度に、動作中の制御弁の内何れか一の制御弁を全閉して対応する熱交換器の冷水(又は温水)の循還を停止する制御弁閉鎖手段と、
何れか一の制御弁の全閉と共に、稼働中の熱交換器の流量が、全負荷時の流量に対して1/n低下するように動作中の制御弁を開閉制御する流量制御手段と、を具備しているものであることを特徴とする空調機。
The heat exchanger in the air conditioner is divided into two or more n stages (n is an integer of 2 or more), and a control valve is installed in each return pipe or outgoing pipe of each divided heat exchanger. While circulating and supplying cold water (or hot water) to the heat exchanger, the indoor air and the outside air are passed through the heat exchanger, so that the cold water (or hot water) and the air are configured to exchange heat.
A forward pipe temperature sensor is installed in the common forward pipe of each heat exchanger, a return pipe temperature sensor and a flow meter are installed in the common return pipe of each of the heat exchangers, and the supply air is supplied to the air supply target room. Air temperature sensor or indoor temperature sensor is provided,
In addition, a controller is provided that can recognize the detected temperature of the supply air temperature sensor or indoor temperature sensor, the detected temperature of the outgoing pipe temperature sensor and the return pipe temperature sensor, the detected flow rate of the flowmeter, and control the opening and closing of the control valves. ,
The controller recognizes the detected temperature of the supply air temperature sensor or the indoor temperature sensor, and indoor temperature setting means for controlling the opening and closing of the control valve so that the detected temperature becomes a set value;
A calorific value calculating means for calculating a calorific value based on the detected temperature of the outgoing pipe temperature sensor, the detected temperature of the return pipe temperature sensor, and the detected flow rate;
Every time it detects that the heat quantity of the heat quantity calculation means has become 1 / n or less of the full load, any one of the control valves in operation is fully closed, and the cold water ( Or a control valve closing means for stopping the circulation of hot water),
A flow rate control means for controlling opening and closing of the operating control valve so that the flow rate of the heat exchanger in operation is reduced by 1 / n with respect to the flow rate at the time of full load together with the full closing of any one control valve; The air conditioner characterized by comprising.
空調機内の熱交換器を2つ以上のn段(nは2以上の整数)に分割し、分割された熱交換器毎の還管又は往管に制御弁を各々設置し、前記空調機の熱交換器に冷水(又は温水)を循還供給するとともに、前記熱交換器に室内空気及び外気を通過させることにより、冷水(又は温水)と空気とを熱交換させるように構成し、
上記熱交換器の入口側に室内空気及び外気の混合空気温度センサーを設けると共に、給気対象の室内に給気温度センサー又は室内温度センサーを設け、
さらに上記混合空気温度センサー、上記給気温度センサー又は室内温度センサーの検出温度を認識し、上記各制御弁を開閉制御し得るコントローラーを設け、
該コントローラーは、上記給気温度センサー又は上記室内温度センサーの検出温度を認識し、上記検出温度が設定値となるように上記制御弁を開閉制御する室内温度設定手段と、
上記混合空気温度センサーと給気温度センサーの検出温度に基づいて両センサーの検出温度の温度差を演算する温度差演算手段と、
上記温度差演算手段の温度差が全負荷時の温度差に対して1/n減少したことを検出する度に、動作中の制御弁の内何れか一の制御弁を全閉して対応する熱交換器の冷水(又は温水)の循還を停止する制御弁閉鎖手段と、
何れか一の制御弁の全閉と共に、稼働中の熱交換器の流量が、全負荷時の流量に対して1/n低下するように動作中の制御弁を開閉制御する流量制御手段と、を具備しているものであることを特徴とする空調機。
The heat exchanger in the air conditioner is divided into two or more n stages (n is an integer of 2 or more), and a control valve is installed in each return pipe or outgoing pipe of each divided heat exchanger. While circulating and supplying cold water (or hot water) to the heat exchanger, the indoor air and the outside air are passed through the heat exchanger, so that the cold water (or hot water) and the air are configured to exchange heat.
In addition to providing a mixed air temperature sensor of indoor air and outside air on the inlet side of the heat exchanger, a supply air temperature sensor or an indoor temperature sensor is provided in a room to be supplied,
Furthermore, a controller capable of recognizing the detected temperature of the mixed air temperature sensor, the supply air temperature sensor or the indoor temperature sensor and controlling the opening and closing of the control valves is provided.
The controller recognizes the detected temperature of the supply air temperature sensor or the indoor temperature sensor, and indoor temperature setting means for controlling the opening and closing of the control valve so that the detected temperature becomes a set value;
A temperature difference calculating means for calculating a temperature difference between the detected temperatures of both the sensors based on the detected temperature of the mixed air temperature sensor and the supply air temperature sensor;
Whenever the temperature difference of the temperature difference calculating means detects that the temperature difference has decreased by 1 / n with respect to the temperature difference at full load, one of the operating control valves is fully closed. A control valve closing means for stopping circulation of cold water (or hot water) in the heat exchanger;
A flow rate control means for controlling opening and closing of the operating control valve so that the flow rate of the heat exchanger in operation is reduced by 1 / n with respect to the flow rate at the time of full load together with the full closing of any one control valve; The air conditioner characterized by comprising.
上記室内温度設定手段は、何れかの制御弁を閉鎖した後は、動作中の熱交換器に対応する制御弁を開閉制御して室内温度を一定に維持するものであることを特徴とする請求項6又は7記載の空調機。   The indoor temperature setting means is characterized in that after closing any one of the control valves, the control valve corresponding to the heat exchanger in operation is controlled to open and close to maintain the room temperature constant. Item 6. The air conditioner according to item 6 or 7. 熱交換器の流量比と空調負荷率の変化特性が、一次関数に近似する変化特性を持つ空調機を使用して、熱交換器の制御弁を開閉制御することにより熱交換器に流れる冷水(又は温水)の流量を増減して、給気温度又は室内温度が設定温度となるように制御する空調機の制御方法であって、
熱交換器を多段に構成して、全部の熱交換器を稼動させることにより全負荷時の熱交換器の冷水(又は温水)の全負荷時流量を確保し得るように構成し、
上記多段の熱交換器の何れか一に流れる冷水(又は温水)を空調負荷の減少に伴って停止して同熱交換器の動作を停止すると共に、
停止した熱交換器以外の動作中の熱交換器の流量がそれらの熱交換器の最大流量比の状態となるように制御弁を制御し、
上記何れかの熱交換器を停止した後は、動作中の熱交換器の流量を増減することにより給気温度又は室内温度が設定温度となるように制御することを特徴とする空調機の制御方法。
Cooling water flowing through the heat exchanger by controlling the opening and closing of the control valve of the heat exchanger using an air conditioner whose change characteristic of the flow ratio of the heat exchanger and the air conditioning load factor approximates a linear function ( Or a control method of an air conditioner that controls the supply air temperature or the room temperature to become a set temperature by increasing or decreasing the flow rate of hot water),
The heat exchanger is configured in multiple stages, and is configured so that the flow rate at the full load of the cold water (or hot water) of the heat exchanger at the full load can be secured by operating all the heat exchangers,
While stopping the cold water (or hot water) flowing in any one of the multi-stage heat exchangers as the air conditioning load decreases, the operation of the heat exchangers is stopped.
Control the control valve so that the flow rate of the heat exchangers in operation other than the stopped heat exchanger is in the state of the maximum flow rate ratio of those heat exchangers,
After stopping any of the above heat exchangers, the air conditioner control is characterized in that the supply air temperature or the room temperature is controlled to become the set temperature by increasing or decreasing the flow rate of the operating heat exchanger. Method.
JP2008163555A 2008-06-23 2008-06-23 Control method of air conditioner and air conditioner Active JP5291396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163555A JP5291396B2 (en) 2008-06-23 2008-06-23 Control method of air conditioner and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163555A JP5291396B2 (en) 2008-06-23 2008-06-23 Control method of air conditioner and air conditioner

Publications (2)

Publication Number Publication Date
JP2010002158A true JP2010002158A (en) 2010-01-07
JP5291396B2 JP5291396B2 (en) 2013-09-18

Family

ID=41584022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163555A Active JP5291396B2 (en) 2008-06-23 2008-06-23 Control method of air conditioner and air conditioner

Country Status (1)

Country Link
JP (1) JP5291396B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007757A (en) * 2010-06-22 2012-01-12 Mayekawa Mfg Co Ltd Freezer device and operation control method for the same
JP2012047412A (en) * 2010-08-27 2012-03-08 Yamatake Corp Air conditioning control system, and air conditioning control method
CN102434937A (en) * 2011-09-14 2012-05-02 海尔集团公司 Control device of hot water air conditioner
JP2015514957A (en) * 2012-04-25 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Supply method of refrigerant in secondary circuit
KR20150102547A (en) * 2014-02-28 2015-09-07 엘지전자 주식회사 Central control apparatus for facilities, facility control system comprising the same and method for controlling facilities
JP2017036911A (en) * 2016-10-07 2017-02-16 三菱重工冷熱株式会社 Control device of outdoor air conditioning unit
CN106594841A (en) * 2016-11-01 2017-04-26 中节能城市节能研究院有限公司 Novel regional energy secondary pump system for accumulating energy by using conveying pipe network
JP2017101875A (en) * 2015-12-01 2017-06-08 新晃工業株式会社 Method for operating air conditioner having plural air supply fans
JP2020138697A (en) * 2019-03-01 2020-09-03 株式会社竹内製作所 Heating device for work vehicle
KR102524281B1 (en) * 2022-05-31 2023-04-21 (주)에이피 Up-and-down heating operation type fan coil cooling and heating system with refrigerant flow interlocking inverter turbofan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4421316Y1 (en) * 1965-12-29 1969-09-10
JPS6375712U (en) * 1986-11-05 1988-05-20
JPH07253227A (en) * 1994-03-15 1995-10-03 Shimizu Corp Air conditioner
JP2007132651A (en) * 2005-10-13 2007-05-31 Kankyo Setsubi Keikaku:Kk Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4421316Y1 (en) * 1965-12-29 1969-09-10
JPS6375712U (en) * 1986-11-05 1988-05-20
JPH07253227A (en) * 1994-03-15 1995-10-03 Shimizu Corp Air conditioner
JP2007132651A (en) * 2005-10-13 2007-05-31 Kankyo Setsubi Keikaku:Kk Air conditioner

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007757A (en) * 2010-06-22 2012-01-12 Mayekawa Mfg Co Ltd Freezer device and operation control method for the same
JP2012047412A (en) * 2010-08-27 2012-03-08 Yamatake Corp Air conditioning control system, and air conditioning control method
CN102434937A (en) * 2011-09-14 2012-05-02 海尔集团公司 Control device of hot water air conditioner
CN102434937B (en) * 2011-09-14 2014-08-06 海尔集团公司 Control device of hot water air conditioner
JP2015514957A (en) * 2012-04-25 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Supply method of refrigerant in secondary circuit
KR20150102547A (en) * 2014-02-28 2015-09-07 엘지전자 주식회사 Central control apparatus for facilities, facility control system comprising the same and method for controlling facilities
KR102283893B1 (en) 2014-02-28 2021-07-30 엘지전자 주식회사 Central control apparatus for facilities, facility control system comprising the same and method for controlling facilities
JP2017101875A (en) * 2015-12-01 2017-06-08 新晃工業株式会社 Method for operating air conditioner having plural air supply fans
JP2017036911A (en) * 2016-10-07 2017-02-16 三菱重工冷熱株式会社 Control device of outdoor air conditioning unit
CN106594841A (en) * 2016-11-01 2017-04-26 中节能城市节能研究院有限公司 Novel regional energy secondary pump system for accumulating energy by using conveying pipe network
JP2020138697A (en) * 2019-03-01 2020-09-03 株式会社竹内製作所 Heating device for work vehicle
JP7169228B2 (en) 2019-03-01 2022-11-10 株式会社竹内製作所 Work vehicle heating system
KR102524281B1 (en) * 2022-05-31 2023-04-21 (주)에이피 Up-and-down heating operation type fan coil cooling and heating system with refrigerant flow interlocking inverter turbofan

Also Published As

Publication number Publication date
JP5291396B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5291396B2 (en) Control method of air conditioner and air conditioner
JP6541790B2 (en) Ventilation system
JP5328951B2 (en) Air conditioning system
US10443882B2 (en) Outside-air processing device and air-conditioning apparatus
JP5355649B2 (en) Air conditioning system
JP2723953B2 (en) Air conditioner
JP6479210B2 (en) Air conditioning system and control method of air conditioning system
JP3997482B2 (en) Water source air conditioning system
JP2018521288A (en) Cooling system with direct expansion and pumping refrigerant saving cooling
JP2012141113A (en) Air conditioning/water heating device system
JP2006349270A (en) Water heat source heat pump type air conditioner for radiation panel
JP6681896B2 (en) Refrigeration system
CN103154621A (en) Air conditioner
JP4327296B2 (en) Air conditioning system
JP2012211709A (en) Air conditioner
JP6156245B2 (en) Ventilation device and ventilation air conditioning system
JP6907653B2 (en) Air conditioning system
JP6230701B2 (en) Air conditioner and air conditioning system
JP7374633B2 (en) Air conditioners and air conditioning systems
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP2015007484A (en) Air conditioning system
JP5066022B2 (en) Air conditioning system
JP6938950B2 (en) Air conditioning system
JP7277839B1 (en) ventilator
WO2023148854A1 (en) Heat-exchange-type ventilation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250