JP5355649B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP5355649B2
JP5355649B2 JP2011211507A JP2011211507A JP5355649B2 JP 5355649 B2 JP5355649 B2 JP 5355649B2 JP 2011211507 A JP2011211507 A JP 2011211507A JP 2011211507 A JP2011211507 A JP 2011211507A JP 5355649 B2 JP5355649 B2 JP 5355649B2
Authority
JP
Japan
Prior art keywords
indoor
temperature
humidity
air
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011211507A
Other languages
Japanese (ja)
Other versions
JP2013072590A (en
Inventor
守 濱田
慎一 伊藤
秀元 荒井
一暢 西宮
直道 田村
博司 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011211507A priority Critical patent/JP5355649B2/en
Publication of JP2013072590A publication Critical patent/JP2013072590A/en
Application granted granted Critical
Publication of JP5355649B2 publication Critical patent/JP5355649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、換気装置を備えた空気調和システムに関するものである。   The present invention relates to an air conditioning system including a ventilation device.

従来、冷凍サイクルを備えた空気調和装置と換気装置とを備えた空気調和システムがある。冷凍サイクルは、圧縮機、四方弁、室外熱交換器、減圧装置及び室内熱交換器が順次配管で接続されて冷媒が循環するように構成されている。冷房運転時は、圧縮機で圧縮された高温高圧のガス冷媒を室外熱交換器に送り込み、室外熱交換器で空気と熱交換することにより冷媒を液化する。液化した冷媒は、減圧装置で減圧されて気液二相状態となり、室内熱交換器にて周囲空気から熱を吸収することでガス化する。一方で、室内熱交換器では、空気は、冷媒により熱を奪われる。これにより室内空間が冷房される。室内熱交換器にてガス化した冷媒は圧縮機に戻る。   Conventionally, there is an air conditioning system including an air conditioner including a refrigeration cycle and a ventilator. The refrigeration cycle is configured such that a refrigerant circulates by connecting a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger in order by piping. During the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor is sent to the outdoor heat exchanger, and the refrigerant is liquefied by exchanging heat with air by the outdoor heat exchanger. The liquefied refrigerant is decompressed by the decompression device to be in a gas-liquid two-phase state, and is gasified by absorbing heat from ambient air in the indoor heat exchanger. On the other hand, in the indoor heat exchanger, air is deprived of heat by the refrigerant. As a result, the indoor space is cooled. The refrigerant gasified by the indoor heat exchanger returns to the compressor.

また、換気装置は、室内の空気を室外の新鮮空気と入れ換える運転を行っている。   The ventilator performs an operation of replacing indoor air with fresh outdoor air.

空気調和システムにおける空調負荷としては、換気装置から導入される外気からの熱負荷(=外気全熱負荷)、室内で発生する熱負荷(=室内全熱負荷)、建物壁面から進入する熱負荷(=貫流負荷)が支配的である。室内の快適性を確保するには、室内温湿度を目標温湿度にする必要があるが、そのためには外気全熱負荷、室内全熱負荷及び貫流負荷を処理する必要がある。すなわち、顕熱負荷だけでなく、外気全熱負荷及び室内全熱負荷の一部である潜熱負荷も処理する必要がある。冷房運転時は特に除湿も重視されていることから、潜熱負荷を処理して除湿量を確保する必要があり、そのために蒸発温度を低めにして運転を行っている。この場合、圧縮機入力が増大して運転効率が低下してしまうという課題があった。   The air conditioning load in the air conditioning system includes the heat load from the outside air introduced from the ventilator (= outdoor total heat load), the heat load generated in the room (= indoor total heat load), and the heat load entering from the building wall ( == once-through load) is dominant. In order to ensure indoor comfort, it is necessary to set the indoor temperature and humidity to the target temperature and humidity. To that end, it is necessary to process the outdoor heat total heat load, the indoor total heat load, and the once-through load. That is, it is necessary to process not only the sensible heat load but also the outdoor heat total heat load and the latent heat load that is a part of the room total heat load. Since dehumidification is particularly important during cooling operation, it is necessary to secure the dehumidification amount by treating the latent heat load. For this reason, the operation is performed at a low evaporation temperature. In this case, there has been a problem that the compressor input increases and the operation efficiency decreases.

そこで、従来より、外気温湿度に応じて換気量を変更し、除湿量を確保しつつ高効率運転を可能とした技術がある(例えば特許文献1参照)。   Therefore, conventionally, there is a technique that enables high-efficiency operation while changing the ventilation amount according to the outside air temperature humidity and ensuring the dehumidification amount (see, for example, Patent Document 1).

特開2001−272086号公報(要約)JP 2001-272086 A (summary)

しかしながら、特許文献1の技術では、冷房運転時に換気を行いつつ室内の快適性を確保するにあたり、換気により空調負荷が増加する場合は換気を行わないようにしている。つまり、高効率運転を行うために必要換気量を無視した運転を行っている。このため、換気量が不十分となり、室内のCO2濃度が上昇してしまうという問題があった。 However, in the technique of Patent Document 1, in order to ensure indoor comfort while performing ventilation during cooling operation, ventilation is not performed when the air conditioning load increases due to ventilation. In other words, in order to perform high-efficiency operation, the operation is performed while ignoring the necessary ventilation. Therefore, ventilation is insufficient, the CO 2 concentration in the chamber there is a problem that rises.

本発明はこのような点に鑑みなされたもので、冷房運転時に必要換気量を確保した上で、快適性向上と高効率化を行うことが可能な空気調和システムを提供することを目的とする。   The present invention has been made in view of such points, and an object thereof is to provide an air conditioning system capable of improving comfort and improving efficiency while ensuring a necessary ventilation amount during cooling operation. .

本発明に係る空気調和システムは、圧縮機、室外熱交換器、膨張弁及び室内熱交換器が順次配管で接続されて冷房運転が可能な冷凍サイクルと、室内環境に応じた必要換気量を確保するように風量制御され、室内空気と室外空気を入れ換えて換気を行う換気装置と、室内の温度を検出する室内温度検出装置と、室内の湿度を検出する室内湿度検出装置と、外気の温度を検出する外気温度検出装置と、外気の湿度を検出する外気湿度検出装置と、目標の室内温湿度を設定する温湿度設定装置と、室内全熱負荷及び室内顕熱負荷を設定する室内負荷設定装置と、室内温度検出装置により検出された室内温度と温湿度設定装置に設定された目標室内温度との温度差が小さくなるに連れ、所定の蒸発温度範囲内で目標蒸発温度を上昇させる制御を行う制御装置とを備え、制御装置は、室内温度検出装置、室内湿度検出装置、外気温度検出装置及び外気湿度検出装置のそれぞれの検出値と、換気装置の換気風量とから、外気全熱負荷及び外気顕熱負荷を求め、室内温度検出装置の検出値と、外気温度検出装置の検出値と、建物の壁の表面積と、壁の熱貫流率とから貫流負荷を求め、外気全熱負荷と、外気顕熱負荷と、貫流負荷と、室内負荷設定装置により設定された室内全熱負荷及び室内顕熱負荷とから空調全熱負荷における空調顕熱負荷の比である顕熱比を算出し、算出した顕熱比と、温湿度設定装置により設定された目標室内温湿度とに基づいて所定の蒸発温度範囲の最大値を決定し、室内温度と目標室内温度との差が予め決められた値よりも小さくなった場合に、室内湿度検出装置で検出された検出値と目標室内湿度との差に応じて顕熱比を補正するものである。 The air conditioning system according to the present invention has a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by piping so that the cooling operation can be performed, and a necessary ventilation amount according to the indoor environment is ensured. The air volume is controlled so that the indoor air and the outdoor air are exchanged for ventilation, the indoor temperature detecting device for detecting the indoor temperature, the indoor humidity detecting device for detecting the indoor humidity, and the outdoor air temperature. Detecting outside air temperature detecting device, outside air humidity detecting device for detecting outside air humidity, temperature / humidity setting device for setting target indoor temperature / humidity, and indoor load setting device for setting indoor total heat load and indoor sensible heat load As the temperature difference between the room temperature detected by the room temperature detection device and the target room temperature set in the temperature / humidity setting device becomes smaller, control is performed to increase the target evaporation temperature within a predetermined evaporation temperature range. The control device includes the indoor temperature detection device, the indoor humidity detection device, the outside air temperature detection device, the outside air humidity detection device, and the detected value of the outside air humidity detection device, and the ventilation air volume of the ventilation device. Find the sensible heat load, find the through load from the detected value of the indoor temperature detector, the detected value of the outside air temperature detector, the surface area of the building wall, and the heat transmissivity of the wall. The sensible heat ratio, which is the ratio of the air conditioning sensible heat load in the air conditioning total heat load, is calculated from the sensible heat load, the once-through load, and the indoor total heat load and the indoor sensible heat load set by the indoor load setting device. The maximum value of the predetermined evaporation temperature range is determined based on the sensible heat ratio and the target indoor temperature / humidity set by the temperature / humidity setting device, and the difference between the indoor temperature and the target indoor temperature is greater than a predetermined value. When it becomes smaller, it is detected by the indoor humidity detector. And it corrects the sensible heat ratio according to the difference between the detected value and the target indoor humidity is.

本発明によれば、冷凍サイクルとは独立して換気装置の風量制御を行って常に必要換気量を確保しているため、室内空気質を良好に保つことができる。また、室内温湿度を目標室内温湿度にすることのできる最大蒸発温度以下の範囲で、目標蒸発温度を、室内温度と目標室内温度との温度差に応じて変化させる制御を行うようにしたので、快適性向上と高効率化の両立を実現できる。   According to the present invention, the air volume control of the ventilation device is performed independently of the refrigeration cycle, and the necessary ventilation volume is always secured, so that the indoor air quality can be kept good. In addition, control was performed to change the target evaporation temperature according to the temperature difference between the indoor temperature and the target indoor temperature within the range of the maximum evaporation temperature at which the indoor temperature and humidity can be made the target indoor temperature and humidity. It is possible to achieve both comfort and high efficiency.

本発明の一実施の形態における空気調和システムの概略図である。It is the schematic of the air conditioning system in one embodiment of this invention. 図1の換気装置の概略構成を示す図である。It is a figure which shows schematic structure of the ventilation apparatus of FIG. 図1の空気調和装置に設置された各種検出装置を示す図である。It is a figure which shows the various detection apparatuses installed in the air conditioning apparatus of FIG. 図1の空気調和装置の冷媒回路の概略図である。It is the schematic of the refrigerant circuit of the air conditioning apparatus of FIG. 温度差ΔTに応じた目標蒸発温度Teの決定方法の説明図である。It is explanatory drawing of the determination method of target evaporation temperature Te according to temperature difference (DELTA) T. 図4の冷凍サイクルのp−h線図である。FIG. 5 is a ph diagram of the refrigeration cycle in FIG. 4. 湿り空気線図である。It is a wet air diagram. 最大蒸発温度Te_maxの設定方法を説明するための空気線図である。It is an air line figure for demonstrating the setting method of maximum evaporation temperature Te_max. 本発明の一実施の形態の空気調和システムにおける制御フローを示す図である。It is a figure which shows the control flow in the air conditioning system of one embodiment of this invention. 図9とは別の変形処理1の制御フローを示す図である。It is a figure which shows the control flow of the deformation | transformation process 1 different from FIG. 図9とは別の変形処理2の制御フローを示す図である。It is a figure which shows the control flow of the deformation | transformation process 2 different from FIG. 最大蒸発温度Te_maxの違いによる目標蒸発温度Teの違いの説明図である。It is explanatory drawing of the difference in target evaporation temperature Te by the difference in maximum evaporation temperature Te_max. 図1の換気装置の他の構成例1を示す図である。It is a figure which shows the other structural example 1 of the ventilation apparatus of FIG. 図1の換気装置の他の構成例2を示す図である。It is a figure which shows the other structural example 2 of the ventilation apparatus of FIG.

図1は、本発明の一実施の形態における空気調和システムの概略図で、空気調和システムが設置された部屋の上面図を示している。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。
空気調和システム100は、空気調和装置1と換気装置11とを備えている。空気調和装置1は、複数(ここでは3台)の室内機9と室外機10とを備えている。室外機10は室外に設置され、室内機9は室内101に設置されており、室外機10及び各室内機9のそれぞれは、伝送線12により集中コントローラ102に接続されている。また、空気調和システム100は、使用者が室内温度及び室内湿度を設定するための温湿度設定装置としての入力部33を備えており、入力部33で設定された目標温湿度に近づくように運転が行われる。
FIG. 1 is a schematic diagram of an air conditioning system according to an embodiment of the present invention, and shows a top view of a room in which the air conditioning system is installed. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification.
The air conditioning system 100 includes an air conditioning device 1 and a ventilation device 11. The air conditioner 1 includes a plurality of (here, three) indoor units 9 and an outdoor unit 10. The outdoor unit 10 is installed outside, the indoor unit 9 is installed in the room 101, and each of the outdoor unit 10 and each indoor unit 9 is connected to the centralized controller 102 by a transmission line 12. The air conditioning system 100 includes an input unit 33 as a temperature / humidity setting device for the user to set the room temperature and the room humidity, and operates so as to approach the target temperature / humidity set by the input unit 33. Is done.

図2は、図1の換気装置の概略構成を示す図である。
換気装置11は、図2に示すように送風機20をここでは2個備えており、室内101の環境(空気質、例えばCO2濃度)を良好に保つ(例えば、CO2濃度を1000ppm以下に保つ)ための必要換気量(風量Va)で換気が行われるように、集中コントローラ102により送風機20の回転数が制御される。換気装置11は、外気温度検出装置21、外気湿度検出装置22、室内温度検出装置23及び室内湿度検出装置24を備え、室内外温湿度を検出可能となっている。これらの検出装置21〜24の検出値は、伝送線12を介して集中コントローラ102に出力される。
FIG. 2 is a diagram illustrating a schematic configuration of the ventilation device of FIG. 1.
As shown in FIG. 2, the ventilator 11 includes two blowers 20 here, and keeps the environment (air quality, for example, CO 2 concentration) in the room 101 good (for example, keeps the CO 2 concentration at 1000 ppm or less). The central controller 102 controls the rotational speed of the blower 20 so that ventilation is performed with the necessary ventilation amount (air volume Va). The ventilation device 11 includes an outside air temperature detection device 21, an outside air humidity detection device 22, an indoor temperature detection device 23, and an indoor humidity detection device 24, and can detect indoor and outdoor temperature and humidity. The detection values of these detection devices 21 to 24 are output to the centralized controller 102 via the transmission line 12.

図3は、図1の空気調和装置に設置された各種検出装置を示す図である。
図1においては図示省略していたが、空気調和装置1には図3に示すように各種検出装置が設けられている。すなわち、各室内機9のそれぞれに蒸発温度検出装置31及び室内温度検出装置32を備えている。
FIG. 3 is a diagram showing various detection devices installed in the air conditioner of FIG.
Although not shown in FIG. 1, the air conditioner 1 is provided with various detection devices as shown in FIG. That is, each indoor unit 9 includes an evaporation temperature detection device 31 and an indoor temperature detection device 32.

また、空気調和システム100は、各室内機9毎に、それぞれの空調エリア内に存在する人間の数を検出する在室人数検出装置34を備えており、全ての在室人数検出装置34の検出結果を合計することで、室内101の在室人数を把握可能となっている。在室人数検出装置34は、在室人数が分かるような手法であればどんなものでもよく、赤外線による人感センサを用いてもよいし、入力部33から在室人数を手入力して集中コントローラ102に設定する方法でもよい。   In addition, the air conditioning system 100 includes a occupancy number detection device 34 that detects the number of persons existing in each air-conditioning area for each indoor unit 9, and detection by all the occupancy number detection devices 34. By summing up the results, the number of people in the room 101 can be grasped. The occupancy detection device 34 may be any method as long as it can determine the occupancy, an infrared human sensor may be used, or a centralized controller that manually inputs the occupancy from the input unit 33. A method of setting to 102 may be used.

図4は、図1の空気調和装置の冷媒回路の概略図である。
空気調和装置1は、圧縮機2、四方弁3、室外熱交換器4、減圧装置としての膨張弁5及び室内熱交換器6が順次配管で接続されて冷媒が循環するように構成された冷凍サイクルを備えている。空気調和装置1は更に、室外熱交換器用送風機7及び室内熱交換器用送風機8を備えている。そして、室外機10に、圧縮機2、四方弁3、室外熱交換器4及び室外熱交換器用送風機7が設置され、室内機9に、膨張弁5、室内熱交換器6及び室内熱交換器用送風機8が設置されている。
FIG. 4 is a schematic diagram of a refrigerant circuit of the air conditioner of FIG.
The air conditioner 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5 as a decompression device, and an indoor heat exchanger 6 that are sequentially connected by piping so that the refrigerant circulates. Has a cycle. The air conditioner 1 further includes an outdoor heat exchanger blower 7 and an indoor heat exchanger blower 8. The outdoor unit 10 is provided with a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, and an outdoor heat exchanger blower 7, and the indoor unit 9 is provided with an expansion valve 5, an indoor heat exchanger 6, and an indoor heat exchanger. A blower 8 is installed.

このように構成された空気調和装置1は、四方弁3の切り換えにより冷房運転又は暖房運転が可能となっており、四方弁3を図1の実線側に切り換えた場合、室内熱交換器6が蒸発器、室外熱交換器4が凝縮器となり冷房運転が実施され、四方弁3を図1の点線側に切り換えた場合、室内熱交換器6が凝縮器、室外熱交換器4が蒸発器となり暖房運転が実施される。なお、空気調和装置1は少なくとも冷房運転が可能であればよく、よって、四方弁3は必ずしも必須の構成ではなく、省略可能である。   The air conditioner 1 configured as described above can perform a cooling operation or a heating operation by switching the four-way valve 3. When the four-way valve 3 is switched to the solid line side in FIG. When the evaporator / outdoor heat exchanger 4 becomes a condenser and the cooling operation is performed, and the four-way valve 3 is switched to the dotted line side in FIG. 1, the indoor heat exchanger 6 becomes a condenser and the outdoor heat exchanger 4 becomes an evaporator. Heating operation is performed. The air conditioner 1 is only required to be capable of at least cooling operation. Therefore, the four-way valve 3 is not necessarily an essential configuration and can be omitted.

次に、空気調和装置1の冷凍サイクルの動作について説明する。   Next, operation | movement of the refrigerating cycle of the air conditioning apparatus 1 is demonstrated.

(冷房運転)
空気調和装置1において、冷房時は、圧縮機2で圧縮された冷媒は高温高圧のガス冷媒となり、四方弁3を通り室外熱交換器4に送り込まれる。室外熱交換器4に流入した冷媒は、室外熱交換器用送風機7で搬送される室外空気と熱交換し、放熱することにより液化する。液化した冷媒は膨張弁5で減圧されて気液二相状態となり、室内熱交換器6に流入する。室内熱交換器6に流入した冷媒は、室内熱交換器用送風機8で搬送される室内空気と熱交換し、吸熱することによりガス化し、圧縮機2へ戻される。以上のように冷媒が冷媒回路を循環することにより冷房運転を行う。
(Cooling operation)
In the air conditioner 1, during cooling, the refrigerant compressed by the compressor 2 becomes a high-temperature and high-pressure gas refrigerant, which is sent to the outdoor heat exchanger 4 through the four-way valve 3. The refrigerant flowing into the outdoor heat exchanger 4 is liquefied by exchanging heat with the outdoor air conveyed by the outdoor heat exchanger blower 7 and dissipating heat. The liquefied refrigerant is decompressed by the expansion valve 5 to become a gas-liquid two-phase state, and flows into the indoor heat exchanger 6. The refrigerant that has flowed into the indoor heat exchanger 6 exchanges heat with the indoor air conveyed by the indoor heat exchanger blower 8, gasifies by absorbing heat, and is returned to the compressor 2. As described above, the refrigerant circulates through the refrigerant circuit to perform the cooling operation.

(暖房運転)
空気調和装置1において、暖房時は、圧縮機2で圧縮された冷媒は高温高圧のガス冷媒となり、四方弁3を通り室内熱交換器6に送り込まれる。室内熱交換器6に流入した冷媒は、室内熱交換器用送風機8で搬送される室内空気と熱交換し、放熱することにより液化する。液化した冷媒は膨張弁5で減圧されて気液二相状態となり、室外熱交換器4に流入する。室外熱交換器4に流入した冷媒は、室外熱交換器用送風機7で搬送される室外空気と熱交換し、吸熱することによりガス化し、圧縮機2へ戻される。以上のように冷媒が冷媒回路を循環することにより暖房運転を行う。
(Heating operation)
In the air conditioner 1, during heating, the refrigerant compressed by the compressor 2 becomes a high-temperature and high-pressure gas refrigerant, which is sent to the indoor heat exchanger 6 through the four-way valve 3. The refrigerant flowing into the indoor heat exchanger 6 is liquefied by exchanging heat with the indoor air conveyed by the indoor heat exchanger blower 8 and dissipating heat. The liquefied refrigerant is decompressed by the expansion valve 5 to be in a gas-liquid two-phase state, and flows into the outdoor heat exchanger 4. The refrigerant that has flowed into the outdoor heat exchanger 4 exchanges heat with the outdoor air conveyed by the outdoor heat exchanger blower 7, gasifies by absorbing heat, and is returned to the compressor 2. As described above, the heating operation is performed by circulating the refrigerant through the refrigerant circuit.

次に、空気調和システム100における具体的な制御について説明する。
空気調和システム100は、換気装置11の室内温度検出装置23で検出された室内温度Ta_i[℃]と、入力部33から使用者により設定された目標室内温度Ta_tgt[℃]との差ΔTに応じて目標蒸発温度Te[℃]を決定し、蒸発器の蒸発温度が目標蒸発温度Teになるように、冷凍サイクルの制御(圧縮機2の回転数制御、膨張弁5の開度制御、送風機の制御等)を行う。
Next, specific control in the air conditioning system 100 will be described.
The air conditioning system 100 responds to the difference ΔT between the room temperature Ta_i [° C.] detected by the room temperature detection device 23 of the ventilation device 11 and the target room temperature Ta_tgt [° C.] set by the user from the input unit 33. The target evaporation temperature Te [° C.] is determined, and control of the refrigeration cycle (rotational speed control of the compressor 2, opening control of the expansion valve 5, control of the blower is performed so that the evaporator evaporation temperature becomes the target evaporation temperature Te. Control).

図5は、温度差ΔTに応じた目標蒸発温度Teの決定方法の説明図である。図5において横軸は温度差ΔT、縦軸は目標蒸発温度Teである。図6は、図4の冷凍サイクルのp−h線図である。
目標蒸発温度Teは、最大蒸発温度Te_max[℃]と、最小蒸発温度Te_min[℃]と、ΔTとから図5に示す特性を用いて式(1)により決定する。
FIG. 5 is an explanatory diagram of a method for determining the target evaporation temperature Te according to the temperature difference ΔT. In FIG. 5, the horizontal axis represents the temperature difference ΔT, and the vertical axis represents the target evaporation temperature Te. FIG. 6 is a ph diagram of the refrigeration cycle of FIG.
The target evaporation temperature Te is determined from the maximum evaporation temperature Te_max [° C.], the minimum evaporation temperature Te_min [° C.], and ΔT using the characteristic shown in FIG.

Te={(Te_max−Te_min)/T0×ΔT}+Te_max …(1)   Te = {(Te_max−Te_min) / T0 × ΔT} + Te_max (1)

ここで、T0は、予め決定された温度差であり、例えば1℃である。最小蒸発温度Te_minは、例えば、十分に冷房能力が確保できる温度で例えば0℃等である。また、最大蒸発温度Te_maxは、室内湿度が目標室内湿度RH_tgt[%]を達成できる蒸発温度である。最大蒸発温度Te_maxの設定方法については後述する。   Here, T0 is a predetermined temperature difference, for example, 1 ° C. The minimum evaporation temperature Te_min is, for example, a temperature at which a sufficient cooling capacity can be ensured, for example, 0 ° C. The maximum evaporation temperature Te_max is an evaporation temperature at which the indoor humidity can achieve the target indoor humidity RH_tgt [%]. A method for setting the maximum evaporation temperature Te_max will be described later.

図5より明らかなように、温度差ΔTが小さくなるに連れ、目標蒸発温度Teを上げる制御を行う。このように負荷の減少に伴い目標蒸発温度Teを上げることで、図6に示すように圧縮機2入口の冷媒状態が点aから点bに変化する。これにより、図6に示すp−h線図を見ても分かるように、圧縮機2入力が減少し、高効率運転とすることができる。通常の空気調和装置の運転は、温度差ΔTが小さいところでの運転時間が長いので、この高効率運転が省エネ効果向上に大きく影響する。   As is apparent from FIG. 5, control is performed to increase the target evaporation temperature Te as the temperature difference ΔT decreases. In this way, by increasing the target evaporation temperature Te as the load decreases, the refrigerant state at the inlet of the compressor 2 changes from the point a to the point b as shown in FIG. Thereby, as can be seen from the ph diagram shown in FIG. 6, the input of the compressor 2 is reduced, and high-efficiency operation can be achieved. In the normal operation of the air conditioner, the operation time is long where the temperature difference ΔT is small. Therefore, this high-efficiency operation greatly affects the energy saving effect.

図7は、湿り空気線図であり、蒸発温度と、顕熱比SHFと、除湿量との関係の説明図である。図7において縦軸は絶対湿度[kg/kg’]、横軸は乾球温度[℃]である。なお、空気状態は、温度と湿度とから湿り線図上で1点で表され、室内101の空気状態が点A(以下、空気温湿度Aという)であるものとする。以下、図7を参照して、蒸発温度と、顕熱比SHFと、除湿量との関係について説明する。   FIG. 7 is a moist air diagram, and is an explanatory diagram of the relationship between the evaporation temperature, the sensible heat ratio SHF, and the dehumidification amount. In FIG. 7, the vertical axis represents absolute humidity [kg / kg ′], and the horizontal axis represents dry bulb temperature [° C.]. The air state is represented by one point on the wetness diagram from the temperature and humidity, and the air state of the room 101 is point A (hereinafter referred to as air temperature and humidity A). Hereinafter, the relationship among the evaporation temperature, the sensible heat ratio SHF, and the dehumidification amount will be described with reference to FIG.

ここでまず、顕熱比SHFについて説明する。顕熱比SHFとは、顕熱比=顕熱/(顕熱+潜熱)で表される。よって、顕熱比SHFが1の運転とはつまり、除湿を全く行わず(つまり絶対湿度が変化しない。)、室温を下げる運転となる。したがって、図7において、顕熱比1の運転は、空気温湿度Aから真横に延びる線で表現され、その線と飽和線との交点が、顕熱比1のときの蒸発温度T3となる。逆に言えば、蒸発温度をT3とすると、除湿を全く行わずに室温を下げる顕熱比1の運転が行われることになる。この場合、蒸発器の出口側からは、空気温湿度Aと蒸発温度T3とを結ぶ顕熱比1の線上にある温湿度の空気が流出される。   First, the sensible heat ratio SHF will be described. The sensible heat ratio SHF is expressed as sensible heat ratio = sensible heat / (sensible heat + latent heat). Therefore, the operation where the sensible heat ratio SHF is 1 means that the dehumidification is not performed at all (that is, the absolute humidity does not change) and the room temperature is lowered. Therefore, in FIG. 7, the operation at a sensible heat ratio of 1 is expressed by a line extending directly from the air temperature and humidity A, and the intersection of the line and the saturation line is the evaporation temperature T3 at the sensible heat ratio of 1. In other words, if the evaporation temperature is T3, an operation with a sensible heat ratio of 1 is performed to lower the room temperature without performing dehumidification at all. In this case, air having a temperature and humidity on the line of sensible heat ratio 1 connecting the air temperature and humidity A and the evaporation temperature T3 flows out from the outlet side of the evaporator.

ここで、温度差ΔTが減少して目標蒸発温度TeをT1からT2に上昇させた場合について考える。この場合、上述したように目標蒸発温度Teを上昇させることによって高効率運転となる反面、顕熱比SHFが0.6から0.7に上昇することから潜熱能力(除湿量)が減少し、室内湿度が上昇する。よって、上述したように、運転効率向上のために温度差ΔTの減少に伴って目標蒸発温度Teを上昇させるにしても、目標蒸発温度Teを上昇させたことによって室内湿度が目標室内湿度RH_tgtを超えてしまうことのないようにする必要がある。   Here, consider a case where the temperature difference ΔT decreases and the target evaporation temperature Te is increased from T1 to T2. In this case, as described above, by increasing the target evaporation temperature Te, high-efficiency operation is achieved, but since the sensible heat ratio SHF increases from 0.6 to 0.7, the latent heat capacity (dehumidification amount) decreases, The room humidity increases. Therefore, as described above, even if the target evaporation temperature Te is increased with a decrease in the temperature difference ΔT in order to improve the operation efficiency, the indoor humidity becomes the target indoor humidity RH_tgt by increasing the target evaporation temperature Te. It is necessary not to exceed it.

つまり、目標蒸発温度Teの上限(最大蒸発温度Te_max)を、目標室内湿度RH_tgtを達成できる範囲内とする必要があり、目標蒸発温度Teの上限を見極める必要がある。言い換えれば、目標蒸発温度Teが最大蒸発温度Te_max以下であれば、室内湿度を目標室内湿度RH_tgt内にすることができる。そして、上述したように、空気調和システムの目標蒸発温度Teを、最大蒸発温度Te_max以下の範囲で温度差ΔTに応じて制御することで、必要な除湿量の確保と高効率運転との両立を実現できるのである。また、換気については、換気装置11が空気調和装置1とは独立して必要換気量での換気を行っているため、本実施の形態の空気調和システムでは、除湿量確保と高効率運転のみならず、換気量の確保も可能となっている。   That is, the upper limit (maximum evaporation temperature Te_max) of the target evaporation temperature Te needs to be within a range where the target indoor humidity RH_tgt can be achieved, and the upper limit of the target evaporation temperature Te needs to be determined. In other words, if the target evaporation temperature Te is equal to or lower than the maximum evaporation temperature Te_max, the indoor humidity can be set within the target indoor humidity RH_tgt. As described above, the target evaporation temperature Te of the air conditioning system is controlled in accordance with the temperature difference ΔT within a range equal to or less than the maximum evaporation temperature Te_max, thereby ensuring both necessary dehumidification and high-efficiency operation. It can be realized. As for ventilation, since the ventilator 11 performs ventilation with the required ventilation amount independently of the air conditioning device 1, the air conditioning system of the present embodiment can only provide dehumidification and high-efficiency operation. It is also possible to secure ventilation.

図8は、最大蒸発温度Te_maxの設定方法を説明するための空気線図である。以下、最大蒸発温度Te_maxの設定にあたっての考え方についてまず説明する。
本実施の形態では、必要換気量を確保した上で冷凍サイクルを高効率制御を行うことを目的としており、最大蒸発温度Te_maxの設定にあたっては、冷房負荷を考慮しつつ、目標室内温度Ta_tgt及び目標室内湿度RH_tgtを達成できるように設定する。
FIG. 8 is an air diagram for explaining a method of setting the maximum evaporation temperature Te_max. Hereinafter, the concept for setting the maximum evaporation temperature Te_max will be described first.
In the present embodiment, the purpose is to perform high-efficiency control of the refrigeration cycle while ensuring the necessary ventilation, and when setting the maximum evaporation temperature Te_max, the target indoor temperature Ta_tgt and target Set so that indoor humidity RH_tgt can be achieved.

空調負荷とは、上述したように換気装置11から導入される外気からの熱負荷(=外気全熱負荷)と、室内で発生する熱負荷(=室内全熱負荷)と、建物壁面から進入する熱負荷(=貫流負荷)とがある。よって、この空調負荷における顕熱比SHFを求め、その顕熱比SHFを、潜熱負荷を処理できる最大の顕熱比SHFmaxとする。そして、図8の空気線図に示すように、顕熱比SHFmaxで決まる傾きの直線を目標室内温湿度から延ばし、その直線と飽和曲線とが交わった点を最大蒸発温度Te_maxとする。   As described above, the air conditioning load is a heat load from outside air introduced from the ventilator 11 (= outdoor total heat load), a heat load generated indoors (= indoor total heat load), and a building wall. There is a thermal load (= once-through load). Therefore, the sensible heat ratio SHF in this air conditioning load is obtained, and the sensible heat ratio SHF is set as the maximum sensible heat ratio SHFmax that can handle the latent heat load. Then, as shown in the air diagram of FIG. 8, a straight line having an inclination determined by the sensible heat ratio SHFmax is extended from the target room temperature and humidity, and a point where the straight line and the saturation curve intersect is defined as the maximum evaporation temperature Te_max.

このように最大蒸発温度Te_maxを決めることで、必要換気量を維持したまま、目標室内湿度Ta_tgt、RH_tgtを実現できる最大蒸発温度Te_maxを決定できる。そして、その最大蒸発温度Te_max以下に目標蒸発温度Teを設定して運転することで、繰り返しの説明となるが、潜熱負荷を十分処理でき、室内湿度を目標室内湿度RH_tgtに到達可能となって快適性が向上し、且つ、負荷に応じて目標蒸発温度Teを上昇させた高効率運転が可能となり、省エネ性が向上する。   By determining the maximum evaporation temperature Te_max in this way, it is possible to determine the maximum evaporation temperature Te_max that can achieve the target indoor humidity Ta_tgt and RH_tgt while maintaining the necessary ventilation. Then, by setting the target evaporation temperature Te below the maximum evaporation temperature Te_max and operating, the explanation will be repeated. However, the latent heat load can be sufficiently processed, and the indoor humidity can reach the target indoor humidity RH_tgt. The efficiency is improved, and a high-efficiency operation is possible in which the target evaporation temperature Te is increased according to the load, thereby improving the energy saving performance.

次に、最大蒸発温度Te_maxの具体的な算出方法について説明する。
最大蒸発温度Te_maxは、上述したように空調全熱負荷の顕熱比SHFmaxと、目標室内温度Ta_tgtと、目標室内湿度RH_tgtとから決定する。
Next, a specific method for calculating the maximum evaporation temperature Te_max will be described.
As described above, the maximum evaporation temperature Te_max is determined from the sensible heat ratio SHFmax of the air conditioning total heat load, the target indoor temperature Ta_tgt, and the target indoor humidity RH_tgt.

(SHFmaxの算出)
SHFmaxを算出するには、まず、外気全熱負荷Ql_o[kW]と、室内全熱負荷Ql_i[kW]と、貫流負荷Ql_k[kW]とを求める。
(Calculation of SHFmax)
In order to calculate SHFmax, first, an outdoor air total heat load Ql_o [kW], an indoor total heat load Ql_i [kW], and a once-through load Ql_k [kW] are obtained.

1.外気全熱負荷Ql_o
換気により外気が侵入することによる外気全熱負荷Ql_oは式(2)で表される。
1. Outside air total heat load Ql_o
The external heat total heat load Ql_o due to the intrusion of the external air by ventilation is expressed by Expression (2).

Ql_o=Va×ρa×(Ia_o−Ia_i)/3600 …(2)
ここで、
Va[m3/h] :換気装置11の換気風量
ρa[kg/m3]:空気の密度
Ia_i[kJ/kg] :Ta_i[℃]とRH_i[%]とから算出される室内空気エンタルピー
Ia_o[kJ/kg] :Ta_o[℃]とRH_o[%]とから算出される室外空気エンタルピー
RH_i[%] :室内湿度検出装置24の検出値
RH_o[%] :外気湿度検出装置22の検出値
Ql_o = Va * [rho] a * (Ia_o-Ia_i) / 3600 (2)
here,
Va [m 3 / h]: Ventilation air volume of the ventilator 11 ρa [kg / m 3 ]: Air density Ia_i [kJ / kg]: Indoor air enthalpy calculated from Ta_i [° C.] and RH_i [%] Ia_o [kJ / kg]: Outdoor air enthalpy calculated from Ta_o [° C.] and RH_o [%] RH_i [%]: Detection value of the indoor humidity detection device 24 RH_o [%]: Detection value of the outdoor air humidity detection device 22

2.外気顕熱負荷Ql_os
換気により外気が進入することによる外気顕熱負荷Ql_os[kW]は式(3)で表される。
Ql_os=Va×ρa×(Ta_o−Ta_i)/3600 …(3)
ここで、
Ta_o[℃] :外気温度検出装置21の検出値
Ta_i[℃] :室内温度検出装置23の検出値
2. Outside air sensible heat load Ql_os
An outside air sensible heat load Ql_os [kW] due to the entry of outside air by ventilation is expressed by Expression (3).
Ql_os = Va × ρa × (Ta_o−Ta_i) / 3600 (3)
here,
Ta_o [° C.]: Detection value of the outside air temperature detection device 21 Ta_i [° C.]: Detection value of the indoor temperature detection device 23

3.室内全熱負荷Ql_i、室内顕熱負荷Ql_is
室内全熱負荷Ql_iは、室内101の人体から発生する合計の全熱負荷Ql_mと、OA機器や照明機器等の発熱機器から発生する全熱負荷Ql_inpとの合計となる。室内の人体から発生する合計の全熱負荷Ql_m[kW]は式(4)で表される。例えば、ql_msは70[W/人]、ql_mlは50[W/人]である。
3. Indoor total heat load Ql_i, indoor sensible heat load Ql_is
The total indoor heat load Ql_i is the sum of the total total heat load Ql_m generated from the human body in the room 101 and the total heat load Ql_inp generated from the heat generating devices such as OA devices and lighting devices. The total total heat load Ql_m [kW] generated from the human body in the room is expressed by Expression (4). For example, ql_ms is 70 [W / person] and ql_ml is 50 [W / person].

Ql_m=(ql_ms+ql_ml)×N …(4)
ここで、
ql_ms[kW/人]:予め決められた一人当りの顕熱負荷
ql_ml[kW/人]:予め決められた一人当りの潜熱負荷
N(人):空気調和システム100にある在室人数検出装置34で検出された合計在室人数
Ql_m = (ql_ms + ql_ml) × N (4)
here,
ql_ms [kW / person]: Predetermined sensible heat load per person ql_ml [kW / person]: Predetermined latent heat load per person N (person): In-room occupancy detection device 34 in the air conditioning system 100 Total number of people detected in

また、室内の人体から発生する合計の顕熱負荷Ql_ms[kW]は式(5)で表される。   Further, the total sensible heat load Ql_ms [kW] generated from the human body in the room is expressed by Expression (5).

Ql_ms=ql_ms×N …(5)  Ql_ms = ql_ms × N (5)

また、室内の発熱機器からの発熱量は、設備により決まるものであるので、発熱機器による全熱負荷Ql_inp[kW]は、予め集中コントローラ102に入力しておくことができる。   Further, since the amount of heat generated from the indoor heat generating device is determined by the equipment, the total heat load Ql_inp [kW] by the heat generating device can be input to the centralized controller 102 in advance.

以上より、室内全熱負荷Ql_iは、式(6)で表される。   From the above, the indoor total heat load Ql_i is expressed by Expression (6).

Ql_i=Ql_m+Ql_inp …(6)  Ql_i = Ql_m + Ql_inp (6)

また、Ql_inp[kW]は顕熱のみのため、室内顕熱負荷Ql_is[kW]は、式(7)で表される。   Moreover, since Ql_inp [kW] is only sensible heat, the indoor sensible heat load Ql_is [kW] is expressed by Expression (7).

Ql_is=Ql_ms+Ql_inp …(7)  Ql_is = Ql_ms + Ql_inp (7)

4.貫流負荷Ql_K[kW]
貫流負荷Ql_Kは、壁からの侵入熱で決定されるので、壁の表面積A(m2)、壁の熱貫流率K(kW/(m2・K))、外気温度Ta_o[℃]、室内温度Ta_i[℃]を用いて式(8)で表される。なお、Ql_K[kW]は、顕熱のみである。
4). Through-flow load Ql_K [kW]
Since the through-flow load Ql_K is determined by the intrusion heat from the wall, the wall surface area A (m 2 ), the wall heat-through rate K (kW / (m 2 · K)), the outside air temperature Ta_o [° C.], the room It is expressed by equation (8) using the temperature Ta_i [° C.]. Ql_K [kW] is only sensible heat.

Ql_K=A×K×(Ta_o-Ta_i) …(8)  Ql_K = A * K * (Ta_o-Ta_i) (8)

以上により、外気顕熱負荷Ql_osと、室内顕熱負荷Ql_isと、貫流負荷Ql_Kとが算出され、これらの値により、空調全熱負荷の顕熱比SHFが式(9)により算出される。   As described above, the outdoor sensible heat load Ql_os, the indoor sensible heat load Ql_is, and the once-through load Ql_K are calculated, and the sensible heat ratio SHF of the air-conditioning total heat load is calculated by the equation (9).

SHF=(Ql_os+Ql_is+Ql_K)/(Ql_o+Ql_i+Ql_K)
…(9)
SHF = (Ql_os + Ql_is + Ql_K) / (Ql_o + Ql_i + Ql_K)
... (9)

このようにして算出された顕熱比SHFを、顕熱比SHFmaxとして決定する。そして、上述したように、SHFmaxで決まる傾きの直線を目標室内温湿度から延ばし、その直線と飽和曲線とが交わった点を最大蒸発温度Te_maxとする。   The sensible heat ratio SHF calculated in this way is determined as the sensible heat ratio SHFmax. Then, as described above, a straight line having an inclination determined by SHFmax is extended from the target indoor temperature and humidity, and a point where the straight line and the saturation curve intersect is defined as the maximum evaporation temperature Te_max.

図9は、本発明の一実施の形態の空気調和システムにおける制御フローを示す図である。
まず、目標室内温度Ta_tgtと目標室内湿度RH_tgtとを設定して冷房運転を開始する(S1)。そして、外気温度Ta_o、外気湿度RH_o、室内温度Ta_i及び室内湿度RH_iを検出し、更に在室人数Nを検出する(S2)。続いて、空調負荷(外気全熱負荷、外気顕熱負荷、室内全熱負荷、室内顕熱負荷、貫流負荷)を計算し、上記(9)式より顕熱比SHFmaxを計算する(S3)。そして、顕熱比SHFmaxと、目標室内温度Ta_tgt[℃]と、目標室内湿度RH_tgt[%]とから上述のようにして最大蒸発温度Te_maxを計算する(S4)。
FIG. 9 is a diagram showing a control flow in the air conditioning system according to the embodiment of the present invention.
First, the target indoor temperature Ta_tgt and the target indoor humidity RH_tgt are set, and the cooling operation is started (S1). Then, the outside air temperature Ta_o, the outside air humidity RH_o, the room temperature Ta_i, and the room humidity RH_i are detected, and the number N of people in the room is further detected (S2). Subsequently, the air conditioning load (outside air total heat load, outside air sensible heat load, indoor total heat load, indoor sensible heat load, through-flow load) is calculated, and the sensible heat ratio SHFmax is calculated from the above equation (9) (S3). Then, the maximum evaporation temperature Te_max is calculated as described above from the sensible heat ratio SHFmax, the target indoor temperature Ta_tgt [° C.], and the target indoor humidity RH_tgt [%] (S4).

そして、室内温度Ta_i[℃]と目標室内温度Ta_tgt[℃]との温度差ΔTから上記の式(1)により目標蒸発温度Teを計算し(S5)、蒸発器における蒸発温度が目標蒸発温度Teとなるように冷凍サイクルの制御(圧縮機2の回転数制御、膨張弁5の開度制御、送風機7,8の制御等)を行う(S6)。そして、外気温湿度や在室人数が変化したり、目標温湿度が変更されていないかを判定し(S7)、少なくとも一つが変化又は変更されていた場合、変化又は変更後の空調負荷に応じた運転制御となるように、S3に戻って再び負荷、SHFmaxの計算からやり直し、最大蒸発温度Te_maxを更新する(S4)。   Then, the target evaporation temperature Te is calculated from the temperature difference ΔT between the room temperature Ta_i [° C.] and the target room temperature Ta_tgt [° C.] by the above equation (1) (S5), and the evaporation temperature in the evaporator becomes the target evaporation temperature Te. Control of the refrigeration cycle (rotational speed control of the compressor 2, opening control of the expansion valve 5, control of the blowers 7 and 8, etc.) is performed so as to become (S6). Then, it is determined whether the outside air temperature / humidity or the number of people in the room has changed or the target temperature / humidity has not been changed (S7). Returning to S3, the load and SHFmax are calculated again, and the maximum evaporation temperature Te_max is updated so that the operation control is performed (S4).

ステップS7において外気温湿度、在室人数及び目標温湿度変更の何れも変化又は変更されていなければ、運転終了かどうか判断し(S8)、運転終了でない場合はS5に戻って、再び温度差ΔTを算出し、温度差ΔTから上記の式(1)により目標蒸発温度Teを計算する(S5)。このとき、冷凍サイクルの運転によって温度差ΔTが減少していれば、上述したように目標蒸発温度Teを、図5に従って現状より高い温度に設定する。なお、ステップS8において運転終了と判断されれば、運転を終了する(S9)。   If none of the outside air temperature humidity, the number of people in the room, and the target temperature / humidity change have been changed or changed in step S7, it is determined whether or not the operation has been completed (S8). And the target evaporation temperature Te is calculated from the temperature difference ΔT according to the above equation (1) (S5). At this time, if the temperature difference ΔT is decreased by the operation of the refrigeration cycle, the target evaporation temperature Te is set to a temperature higher than the current state according to FIG. 5 as described above. If it is determined in step S8 that the operation has been completed, the operation is terminated (S9).

以上説明したように本実施の形態によれば、空気調和装置1とは独立して換気装置11の風量制御を行って常に必要換気量を確保しているため、室内空気質を良好に保つことができる。そして、必要換気量を確保した上で、目標室内温度Ta_tgt及び目標室内湿度RH_tgtを実現できる最大蒸発温度Te_max以下の範囲で、目標蒸発温度Teを、室内温度Ta_iと目標室内温度Ta_tgtとの温度差ΔTに応じて変化させる制御を行うようにしたので、高効率に室内温湿度を目標値に近づけることが可能となり、快適性向上と高効率化の両立を実現できる。   As described above, according to the present embodiment, the air volume control of the ventilator 11 is performed independently of the air conditioner 1 to always ensure the necessary ventilation amount, so that the indoor air quality is kept good. Can do. Then, after ensuring the necessary ventilation, the target evaporating temperature Te is set to a temperature difference between the indoor temperature Ta_i and the target indoor temperature Ta_tgt within a range below the maximum evaporating temperature Te_max that can achieve the target indoor temperature Ta_tgt and the target indoor humidity RH_tgt. Since the control to change according to ΔT is performed, the indoor temperature and humidity can be brought close to the target value with high efficiency, and both improvement in comfort and high efficiency can be realized.

また、外気温湿度や在室人数の変化、目標温湿度の変更を検出し、その変化・変更に応じて顕熱比SHFmaxを計算し直して最大蒸発温度Te_maxを更新するようにしたので、常に、快適性及び省エネ性を維持した運転が可能となる。また、運転中、外気温湿度や在室人数の変化、目標温湿度の変更を繰り返しチェックするようにしたので、これらの変化・変更に素早く対応できる。   In addition, since changes in the outside air temperature humidity, the number of people in the room, and changes in the target temperature and humidity are detected, the maximum evaporation temperature Te_max is updated by recalculating the sensible heat ratio SHFmax according to the changes and changes. In addition, driving while maintaining comfort and energy saving is possible. In addition, during operation, changes in the outside temperature and humidity, the number of people in the room, and changes in the target temperature and humidity are repeatedly checked, so it is possible to quickly respond to these changes and changes.

また、室内顕熱負荷Ql_isと室内全熱負荷Ql_iの算出に、在室人数検出装置34で検出した在室人数を用いているため、現状に即した精度の高い算出が可能である。よって、結果的に快適性向上と高効率化に寄与できる。   In addition, since the occupant number detected by the occupant number detection device 34 is used to calculate the indoor sensible heat load Ql_is and the indoor total heat load Ql_i, it is possible to calculate with high accuracy according to the current situation. As a result, it is possible to contribute to improvement of comfort and high efficiency.

(変形処理1)
上記では、室内顕熱負荷Ql_isと室内全熱負荷Ql_iを、在室人数検出装置34で検出した在室人数を用いて求めているが、予め一定値として与えておいてもよい。この場合は、在室人数検出装置34は不要となり、顕熱比SHFを算出する上記(9)式において、室内顕熱負荷Ql_isと室内全熱負荷Ql_iとが一定値となる。この場合の制御フローは図10のようになる。
(Deformation process 1)
In the above description, the indoor sensible heat load Ql_is and the total indoor heat load Ql_i are obtained using the number of people in the room detected by the number of people in the room detection device 34, but may be given in advance as constant values. In this case, the occupancy detection device 34 is unnecessary, and in the above equation (9) for calculating the sensible heat ratio SHF, the indoor sensible heat load Ql_is and the indoor total heat load Ql_i are constant values. The control flow in this case is as shown in FIG.

図10は、ステップS2aとステップS7aの処理が図9と異なり、それ以外の処理は図9と同様である。すなわち、図10のステップS2aでは、在室人数の検出が省略され、また、ステップS7aでは、在室人数の変化の検出が省略される。よって、請求項1の室内負荷設定装置は、在室人数検出装置34の検出結果を用いて室内全熱負荷Ql_is及び室内顕熱負荷Ql_iを設定するものでもよいし、予め一定値として設定するものであってもよい。   FIG. 10 differs from FIG. 9 in the processing of step S2a and step S7a, and the other processing is the same as in FIG. That is, detection of the number of people in the room is omitted in step S2a in FIG. 10, and detection of a change in the number of people in the room is omitted in step S7a. Therefore, the indoor load setting device according to claim 1 may set the indoor total heat load Ql_is and the indoor sensible heat load Ql_i using the detection result of the occupant number detection device 34, or set in advance as a constant value. It may be.

このような処理とした場合も、上記と同様の作用効果を得ることができる。   Even if it is set as such a process, the effect similar to the above can be acquired.

(変形処理2)
目標室内温湿度に確実に到達するように、顕熱比SHFmaxを補正係数αを用いて補正し、図11に示すような制御フローとしてもよい。
(Deformation process 2)
The control flow as shown in FIG. 11 may be performed by correcting the sensible heat ratio SHFmax using the correction coefficient α so as to reliably reach the target indoor temperature and humidity.

まず、目標室内温度Ta_tgtと目標室内湿度RH_tgtとを設定して運転を開始し(S11)、補正係数αを初期値である1とする(S12)。そして、上記と同様に外気温度Ta_o、外気湿度RH_o、室内温度Ta_i及び室内湿度RH_iを検出し、更に在室人数Nを検出する(S13)。続いて、空調負荷(外気全熱負荷、外気顕熱負荷、室内全熱負荷、室内顕熱負荷、貫流負荷)を計算し、上記(9)式より顕熱比SHFを計算し、この顕熱比SHFに補正係数αを乗算した値を顕熱比SHFmaxとする(S14)。そして、顕熱比SHFmaxと、目標室内温度Ta_tgt[℃]と、目標室内湿度RH_tgt[%]とから最大蒸発温度Te_maxを計算する(S15)。   First, the target indoor temperature Ta_tgt and the target indoor humidity RH_tgt are set and the operation is started (S11), and the correction coefficient α is set to 1 which is an initial value (S12). In the same manner as described above, the outside air temperature Ta_o, the outside air humidity RH_o, the room temperature Ta_i, and the room humidity RH_i are detected, and the number N of people in the room is further detected (S13). Subsequently, the air conditioning load (outside air total heat load, outside air sensible heat load, indoor total heat load, indoor sensible heat load, flow through load) is calculated, and the sensible heat ratio SHF is calculated from the above equation (9). A value obtained by multiplying the ratio SHF by the correction coefficient α is defined as a sensible heat ratio SHFmax (S14). Then, the maximum evaporation temperature Te_max is calculated from the sensible heat ratio SHFmax, the target indoor temperature Ta_tgt [° C.], and the target indoor humidity RH_tgt [%] (S15).

そして、室内温度Ta_i[℃]と目標室内温度Ta_tgt[℃]との温度差ΔTから上記(1)式により目標蒸発温度Teを計算し(S16)、蒸発器における蒸発温度が目標蒸発温度Teとなるように冷凍サイクルの制御(圧縮機2の回転数制御、膨張弁5の開度制御、送風機の制御等)を行う(S17)。そして、外気温湿度や在室人数が変化したり、目標温湿度が変更されていないかを判定し(S18)、少なくとも一つが変化又は変更されていた場合、変化又は変更後の空調負荷に応じた運転制御となるよう、S14に戻って再び負荷、SHFmaxの計算からやり直し、最大蒸発温度Te_maxを更新する(S15)。   Then, the target evaporation temperature Te is calculated from the temperature difference ΔT between the room temperature Ta_i [° C.] and the target room temperature Ta_tgt [° C.] by the above equation (1) (S16), and the evaporation temperature in the evaporator is equal to the target evaporation temperature Te. Thus, control of the refrigeration cycle (rotational speed control of the compressor 2, opening control of the expansion valve 5, control of the blower, etc.) is performed (S17). Then, it is determined whether the outside air temperature humidity and the number of people in the room have changed or the target temperature and humidity have not been changed (S18). If at least one has been changed or changed, the air conditioning load after the change or the change is changed. Returning to S14, the load and SHFmax are calculated again, and the maximum evaporation temperature Te_max is updated so that the operation control is performed (S15).

外気温湿度、在室人数及び目標温湿度変更の何れも変化又は変更されていなければ、温度差ΔTが予め決められた値Tsetより小さいかを判定する。温度差ΔTがTset以上の場合はまだ室温が安定していないため、ステップS16に戻り、温度差ΔTに応じて目標蒸発温度Teを変更する運転を継続する。一方、温度差ΔTがTsetよりも小さい場合は室温安定域にあると判断し、次のステップS20に進む。なお、Tsetの値は例えば0.5である。   If none of the outside air temperature humidity, the number of people in the room, and the target temperature / humidity change is changed or changed, it is determined whether the temperature difference ΔT is smaller than a predetermined value Tset. If the temperature difference ΔT is equal to or greater than Tset, the room temperature is not yet stable, so the process returns to step S16 and the operation of changing the target evaporation temperature Te according to the temperature difference ΔT is continued. On the other hand, if the temperature difference ΔT is smaller than Tset, it is determined that the room temperature is stable, and the process proceeds to the next step S20. Note that the value of Tset is, for example, 0.5.

ステップS20では、目標室内湿度RH_tgtと室内湿度RH_iとの湿度差の絶対値が予め決められた値RHset(例えば「5」)よりも小さいか判定する。RHsetよりも小さい場合は、湿度が目標室内湿度RH_tgtに到達していると判断して、ステップS16に戻り、RHset以上の場合は、室温は目標に到達しているが、湿度が目標に到達していないため、続いて補正係数αを決定する処理に入る。   In step S20, it is determined whether the absolute value of the humidity difference between the target indoor humidity RH_tgt and the indoor humidity RH_i is smaller than a predetermined value RHset (eg, “5”). If it is smaller than RHset, it is determined that the humidity has reached the target indoor humidity RH_tgt, and the process returns to step S16. If it is equal to or higher than RHset, the room temperature has reached the target, but the humidity has reached the target. Therefore, the process proceeds to the process of determining the correction coefficient α.

すなわち、室内湿度RH_iと目標室内湿度RH_tgtとを比較し(S21)、室内湿度RH_iが目標室内湿度RH_tgtよりも小さい場合、室内湿度RH_iが下がり過ぎている。つまり、ステップS14で計算した顕熱比SHFmaxは、実際の顕熱比よりも小さいということになる。具体的に例えば図7の例で説明すると、実際の顕熱比が0.7であるにも関わらず、例えば0.6に設定されていた場合、顕熱比0.6のときの蒸発温度T1を最大蒸発温度Te_maxとして運転されていたことになる。すなわち、図12に示すように、顕熱比0.6のときの目標蒸発温度Teは、顕熱比が0.7の場合よりも総じて低い蒸発温度で運転されることになり、除湿量が多い状態で運転されることになる。よって、室内湿度RH_iが下がり過ぎているといった状態になる。   That is, the indoor humidity RH_i is compared with the target indoor humidity RH_tgt (S21). If the indoor humidity RH_i is smaller than the target indoor humidity RH_tgt, the indoor humidity RH_i is too low. That is, the sensible heat ratio SHFmax calculated in step S14 is smaller than the actual sensible heat ratio. Specifically, for example, in the example of FIG. 7, when the actual sensible heat ratio is 0.7 but is set to 0.6, for example, the evaporation temperature at the sensible heat ratio 0.6 The operation was performed with T1 as the maximum evaporation temperature Te_max. That is, as shown in FIG. 12, the target evaporation temperature Te when the sensible heat ratio is 0.6 is operated at a lower evaporation temperature than when the sensible heat ratio is 0.7, and the dehumidification amount is It will be driven in many states. Therefore, the indoor humidity RH_i is too low.

このような場合には、実際の顕熱比に近づけるべく、ある決められた値α1をαにプラスしてαを補正する(S22)。逆に、室内湿度RH_iが目標室内湿度RH_tgt以上の場合は、湿度が十分に下がっておらず、ステップS14で計算した顕熱比は、実際の顕熱比よりも大きいということになるため、顕熱比SHFmaxを小さくするためにαの値をある決められた値α1をマイナスして補正する(S23)。その後、ステップS24で運転終了かどうか判断し、運転終了でない場合は、ステップS16に戻り、再び外気温湿度検出、在室人数判断を行うという流れになる。このように補正係数αを設定して顕熱比SHFmaxを補正することで、より確実に目標温湿度に到達させることが可能となる。そして、ステップS24において、運転終了と判断されれば、運転を終了する(S25)。   In such a case, in order to approach the actual sensible heat ratio, α is corrected by adding α to a predetermined value α1 (S22). Conversely, when the indoor humidity RH_i is equal to or higher than the target indoor humidity RH_tgt, the humidity is not sufficiently lowered, and the sensible heat ratio calculated in step S14 is larger than the actual sensible heat ratio. In order to reduce the heat ratio SHFmax, the value of α is corrected by subtracting a predetermined value α1 (S23). Thereafter, in step S24, it is determined whether or not the operation has been completed. If the operation has not been completed, the process returns to step S16 to detect the outside air temperature and humidity and determine the number of people in the room again. Thus, by setting the correction coefficient α and correcting the sensible heat ratio SHFmax, it becomes possible to reach the target temperature and humidity more reliably. If it is determined in step S24 that the operation has been completed, the operation is terminated (S25).

このように室内温湿度をフィードバックすることで、より確実に設定温湿度に到達し、より広い範囲で快適性及び省エネ性を維持した運転が可能となる。なお、この変形処理2は、上記変形処理1と組みあわせることが可能であり、室内顕熱負荷Ql_isと室内全熱負荷Ql_iを予め一定値として与えておいてもよい。   Thus, by feeding back the indoor temperature and humidity, it is possible to reach the set temperature and humidity more reliably, and to perform operation while maintaining comfort and energy saving in a wider range. The deformation process 2 can be combined with the deformation process 1, and the indoor sensible heat load Ql_is and the indoor total heat load Ql_i may be given as constant values in advance.

また、上記実施の形態では、室内温度Ta_iを、換気装置11の室内温度検出装置23の検出値としたが、室内温度検出装置32の検出値Ta_rとしてもよい。室内温度検出装置32は室内101に複数あるため、何れかの室内温度検出装置32の検出値としてもよいし、全ての検出値を平均して用いるなどとしてもよい。   Moreover, in the said embodiment, although indoor temperature Ta_i was made into the detected value of the indoor temperature detection apparatus 23 of the ventilation apparatus 11, it is good also as detection value Ta_r of the indoor temperature detection apparatus 32. FIG. Since there are a plurality of room temperature detection devices 32 in the room 101, the detection values of any one of the room temperature detection devices 32 may be used, or all the detection values may be averaged and used.

また、換気装置11の構成は図2に示した構成に限られず、次の図13、図14に示す構成としてもよい。   Moreover, the structure of the ventilator 11 is not restricted to the structure shown in FIG. 2, It is good also as a structure shown in the following FIG. 13, FIG.

図13は、図1の換気装置の他の構成例1を示す図であり、(a)は正面図、(b)は断面図である。
図13に示すように、換気装置11内に、室内空気と室外空気との熱交換を行う第一の熱交換器41を更に備えた構成としてもよい。この場合、外気全熱負荷Ql_o、外気顕熱負荷Ql_osを算出する場合は、外気温度検出装置21の検出値及び外気湿度検出装置22の検出値をそのまま使用することはできない。このため、外気温度検出装置21の検出値と外気湿度検出装置22の検出値とに加えて更に、室内温度検出装置23の検出値と室内湿度検出装置24の検出値と第一の熱交換器41の特性とを用いて、室内に供給される空気の温湿度を予測し、その予測した温湿度を外気温湿度として用いて外気全熱負荷Ql_o及び外気顕熱負荷Ql_osを算出する。
FIGS. 13A and 13B are diagrams showing another configuration example 1 of the ventilation device of FIG. 1, in which FIG. 13A is a front view and FIG. 13B is a cross-sectional view.
As shown in FIG. 13, it is good also as a structure further provided in the ventilation apparatus 11 with the 1st heat exchanger 41 which performs heat exchange with indoor air and outdoor air. In this case, when calculating the outside air total heat load Ql_o and the outside air sensible heat load Ql_os, the detection value of the outside air temperature detection device 21 and the detection value of the outside air humidity detection device 22 cannot be used as they are. Therefore, in addition to the detection value of the outside air temperature detection device 21 and the detection value of the outside air humidity detection device 22, the detection value of the indoor temperature detection device 23, the detection value of the indoor humidity detection device 24, and the first heat exchanger 41 is used to predict the temperature and humidity of the air supplied to the room, and the predicted temperature and humidity are used as the outside air temperature and humidity to calculate the outside air total heat load Ql_o and the outside air sensible heat load Ql_os.

図14は、図1の換気装置の他の構成例2を示す図であり、(a)は正面図、(b)は断面図である。
図14に示すように、換気装置11内に、室内空気と室外空気との熱交換を行う第一の熱交換器41と、冷媒と空気との熱交換を行う第二の熱交換器42とを更に備えた構成としてもよい。第二の熱交換器42は、室外空気が第一の熱交換器41を通過した後の風路に設置され、第一の熱交換器41を通過後の室外空気と冷媒との熱交換を行う。第二の熱交換器42は、具体的には空気調和装置1の冷凍サイクルから分岐管を介して接続した構成とすることができる。
14A and 14B are diagrams showing another configuration example 2 of the ventilation device of FIG. 1, in which FIG. 14A is a front view and FIG. 14B is a cross-sectional view.
As shown in FIG. 14, in the ventilation apparatus 11, the 1st heat exchanger 41 which performs heat exchange with indoor air and outdoor air, and the 2nd heat exchanger 42 which performs heat exchange with a refrigerant | coolant and air, It is good also as a structure further provided. The second heat exchanger 42 is installed in the air passage after the outdoor air passes through the first heat exchanger 41, and performs heat exchange between the outdoor air and the refrigerant after passing through the first heat exchanger 41. Do. Specifically, the 2nd heat exchanger 42 can be set as the structure connected through the branch pipe from the refrigerating cycle of the air conditioning apparatus 1. FIG.

このように第一の熱交換器41に加えて第二の熱交換器42を設けた場合も、外気全熱負荷Ql_o及び外気顕熱負荷Ql_osを算出する場合は、外気温度検出装置21の検出値と外気湿度検出装置22の検出値とをそのまま使用することはできない。このため、外気温度検出装置21の検出値と外気湿度検出装置22の検出値とに加えて更に、室内温度検出装置23の検出値と、室内湿度検出装置24の検出値と、第一の熱交換器41の特性と、第二の熱交換器42の特性とを用いて、室内に供給される空気の温湿度を予測し、その予測した温湿度を外気温湿度として用いて外気全熱負荷Ql_o及び外気顕熱負荷Ql_osを算出する。   Even when the second heat exchanger 42 is provided in addition to the first heat exchanger 41 as described above, when the outside air total heat load Ql_o and the outside air sensible heat load Ql_os are calculated, the detection by the outside air temperature detection device 21 is performed. The value and the detection value of the outside air humidity detection device 22 cannot be used as they are. Therefore, in addition to the detection value of the outdoor air temperature detection device 21 and the detection value of the outdoor air humidity detection device 22, the detection value of the indoor temperature detection device 23, the detection value of the indoor humidity detection device 24, and the first heat Using the characteristics of the exchanger 41 and the characteristics of the second heat exchanger 42, the temperature and humidity of the air supplied to the room are predicted, and the predicted temperature and humidity are used as the outside air temperature and humidity, so that the outside air total heat load Ql_o and outside air sensible heat load Ql_os are calculated.

1 空気調和装置、2 圧縮機、3 四方弁、4 室外熱交換器、5 膨張弁、6 室内熱交換器、7 室外熱交換器用送風機、8 室内熱交換器用送風機、9 室内機、10 室外機、11 換気装置、12 伝送線、20 送風機、21 外気温度検出装置、22 外気湿度検出装置、23 室内温度検出装置、24 室内湿度検出装置、31 蒸発温度検出装置、32 室内温度検出装置、33 入力部、34 在室人数検出装置、41 第一の熱交換器、42 第二の熱交換器、100 空気調和システム、101 室内、102 集中コントローラ。   DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus, 2 compressor, 3 way valve, 4 outdoor heat exchanger, 5 expansion valve, 6 indoor heat exchanger, 7 outdoor heat exchanger blower, 8 indoor heat exchanger blower, 9 indoor unit, 10 outdoor unit , 11 Ventilation device, 12 Transmission line, 20 Blower, 21 Outside air temperature detection device, 22 Outside air humidity detection device, 23 Indoor temperature detection device, 24 Indoor humidity detection device, 31 Evaporation temperature detection device, 32 Indoor temperature detection device, 33 input Part 34 occupancy detection device 41 first heat exchanger 42 second heat exchanger 100 air conditioning system 101 indoor 102 centralized controller.

Claims (8)

圧縮機、室外熱交換器、膨張弁及び室内熱交換器が順次配管で接続されて冷房運転が可能な冷凍サイクルと、
室内環境に応じた必要換気量を確保するように風量制御され、室内空気と室外空気を入れ換えて換気を行う換気装置と、
室内の温度を検出する室内温度検出装置と、
室内の湿度を検出する室内湿度検出装置と、
外気の温度を検出する外気温度検出装置と、
外気の湿度を検出する外気湿度検出装置と、
目標の室内温湿度を設定する温湿度設定装置と、
室内全熱負荷及び室内顕熱負荷を設定する室内負荷設定装置と、
前記室内温度検出装置により検出された室内温度と前記温湿度設定装置に設定された目標室内温度との温度差が小さくなるに連れ、所定の蒸発温度範囲内で目標蒸発温度を上昇させる制御を行う制御装置とを備え、
前記制御装置は、
前記室内温度検出装置、前記室内湿度検出装置、前記外気温度検出装置及び前記外気湿度検出装置のそれぞれの検出値と、前記換気装置の換気風量とから、外気全熱負荷及び外気顕熱負荷を求め、
前記室内温度検出装置の検出値と、前記外気温度検出装置の検出値と、建物の壁の表面積と、前記壁の熱貫流率とから貫流負荷を求め、
前記外気全熱負荷と、前記外気顕熱負荷と、前記貫流負荷と、前記室内負荷設定装置により設定された前記室内全熱負荷及び前記室内顕熱負荷とから空調全熱負荷における空調顕熱負荷の比である顕熱比を算出し、
算出した顕熱比と、前記温湿度設定装置により設定された目標室内温湿度とに基づいて前記所定の蒸発温度範囲の最大値を決定し、
前記室内温度と前記目標室内温度との差が予め決められた値よりも小さくなった場合に、前記室内湿度検出装置で検出された検出値と前記目標室内湿度との差に応じて前記顕熱比を補正することを特徴とする空気調和システム。
A refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by piping to enable cooling operation;
A ventilation device that controls the air volume so as to ensure the necessary ventilation volume according to the indoor environment, ventilates the room air and the outdoor air, and performs ventilation.
An indoor temperature detecting device for detecting the indoor temperature;
An indoor humidity detection device for detecting indoor humidity;
An outside air temperature detecting device for detecting the outside air temperature;
An outside air humidity detecting device for detecting outside air humidity;
A temperature and humidity setting device for setting a target indoor temperature and humidity;
An indoor load setting device for setting the indoor total heat load and the indoor sensible heat load;
As the temperature difference between the room temperature detected by the room temperature detection device and the target room temperature set in the temperature / humidity setting device becomes smaller, control is performed to increase the target evaporation temperature within a predetermined evaporation temperature range. A control device,
The control device includes:
From the detected values of the indoor temperature detecting device, the indoor humidity detecting device, the outside air temperature detecting device and the outside air humidity detecting device, and the ventilation air volume of the ventilator, the outside air total heat load and the outside air sensible heat load are obtained. ,
Obtaining the through load from the detection value of the indoor temperature detection device, the detection value of the outside air temperature detection device, the surface area of the wall of the building, and the heat flow rate of the wall,
Air conditioning sensible heat load in the air conditioning total heat load from the outside air total heat load, the outside air sensible heat load, the once-through load, the indoor total heat load and the indoor sensible heat load set by the indoor load setting device Calculate the sensible heat ratio, which is the ratio of
Determining the maximum value of the predetermined evaporation temperature range based on the calculated sensible heat ratio and the target indoor temperature and humidity set by the temperature and humidity setting device ;
When the difference between the room temperature and the target room temperature is smaller than a predetermined value, the sensible heat is determined according to the difference between the detected value detected by the room humidity detection device and the target room humidity. An air conditioning system characterized by correcting the ratio .
前記室内湿度と前記目標室内湿度とを比較して前記室内湿度の方が低い場合、前記顕熱比を高くする方向に補正し、前記室内湿度の方が高い場合、前記顕熱比を低くする方向に補正することを特徴とする請求項記載の空気調和システム。 When the indoor humidity is lower than the target indoor humidity and the indoor humidity is lower, the sensible heat ratio is corrected to be increased, and when the indoor humidity is higher, the sensible heat ratio is decreased. The air conditioning system according to claim 1 , wherein the air conditioning system corrects the direction. 前記制御装置は、運転中に外気温度、外気湿度、目標室内温度又は目標室内湿度の何れかが変わった場合、前記顕熱比を算出し直して前記所定の蒸発温度範囲の最大値を更新することを特徴とする請求項1又は請求項2記載の空気調和システム。 The controller recalculates the sensible heat ratio and updates the maximum value of the predetermined evaporation temperature range when any of the outside air temperature, the outside air humidity, the target room temperature, or the target room humidity changes during operation. The air conditioning system according to claim 1 or 2 , characterized by the above. 前記室内負荷設定装置は、室内の在室人数を検出する在室人数検出装置を備え、前記在室人数検出装置で検出された在室人数を加味して前記室内全熱負荷と前記室内顕熱負荷とを設定することを特徴とする請求項1乃至請求項3の何れか一項に記載の空気調和システム。 The indoor load setting device includes a occupant number detecting device for detecting the occupant number in the room, and the total indoor heat load and the sensible heat in the room in consideration of the occupant number detected by the occupant number detecting device. air conditioning system according to any one of claims 1 to 3, characterized in that setting the load. 前記制御装置は、運転中に前記在室人数検出装置により検出された在室人数が変化した場合、前記顕熱比を算出し直して前記所定の蒸発温度範囲の最大値を更新することを特徴とする請求項記載の空気調和システム。 The controller recalculates the sensible heat ratio and updates the maximum value of the predetermined evaporation temperature range when the occupant number detected by the occupant number detector changes during operation. The air conditioning system according to claim 4 . 前記換気装置は、室外空気と室内空気との熱交換を行う第一の熱交換器を備え、
前記制御装置は、前記外気全熱負荷及び前記外気顕熱負荷を求めるに際し、前記第一の熱交換器の特性も加味することを特徴とする請求項1乃至請求項の何れか一項に記載の空気調和システム。
The ventilator includes a first heat exchanger that performs heat exchange between outdoor air and room air,
Wherein the controller, upon determining the outside air total heat load and the outside air sensible heat load, to any one of claims 1 to 5, characterized in that considering the characteristics of the first heat exchanger The air conditioning system described.
前記換気装置は、前記第一の熱交換器を通過後の室外空気と、前記冷凍サイクルを通過する冷媒とを熱交換する第二の熱交換器を更に備え、
前記制御装置は、前記外気全熱負荷及び前記外気顕熱負荷を求めるに際し、前記第二の熱交換器の特性も更に加味することを特徴とする請求項記載の空気調和システム。
The ventilator further includes a second heat exchanger that exchanges heat between outdoor air after passing through the first heat exchanger and refrigerant passing through the refrigeration cycle,
7. The air conditioning system according to claim 6 , wherein the control device further takes into account the characteristics of the second heat exchanger when determining the outside heat total heat load and the outside air sensible heat load.
冷房運転時に前記室内熱交換器が蒸発器、前記室外熱交換器が凝縮器となり、暖房運転時にその逆となるように流路を切換える四方弁を備えたことを特徴とする請求項1乃至請求項の何れか一項に記載の空気調和システム。 2. The four-way valve for switching the flow path so that the indoor heat exchanger becomes an evaporator during cooling operation and the outdoor heat exchanger becomes a condenser, and vice versa during heating operation. Item 8. The air conditioning system according to any one of Items 7 .
JP2011211507A 2011-09-27 2011-09-27 Air conditioning system Active JP5355649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211507A JP5355649B2 (en) 2011-09-27 2011-09-27 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211507A JP5355649B2 (en) 2011-09-27 2011-09-27 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2013072590A JP2013072590A (en) 2013-04-22
JP5355649B2 true JP5355649B2 (en) 2013-11-27

Family

ID=48477240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211507A Active JP5355649B2 (en) 2011-09-27 2011-09-27 Air conditioning system

Country Status (1)

Country Link
JP (1) JP5355649B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369589A (en) * 1989-08-04 1991-03-25 Hikari Gijutsu Kenkyu Kaihatsu Kk Method for growing crystal of semiconductor
JP6184158B2 (en) * 2013-04-25 2017-08-23 三菱電機株式会社 Refrigeration air conditioner
JP2014219153A (en) * 2013-05-08 2014-11-20 三菱電機株式会社 Ventilation air conditioner
GB2529329B (en) * 2013-05-14 2020-01-01 Mitsubishi Electric Corp Air conditioning system
WO2015162770A1 (en) * 2014-04-24 2015-10-29 三菱電機株式会社 Air-conditioning system
JP6135638B2 (en) * 2014-10-29 2017-05-31 ダイキン工業株式会社 Air conditioner
CN104359192B (en) * 2014-11-19 2016-12-07 山东建筑大学 The energy-conservation comfortable personalized control system of a kind of indoor environment based on data and method
JP2017044382A (en) * 2015-08-25 2017-03-02 ダイキン工業株式会社 Operation control device for air conditioner and air conditioner with the operation control device
JP2017044383A (en) * 2015-08-25 2017-03-02 ダイキン工業株式会社 Operation control device for air conditioner and air conditioner with the operation control device
JP2017072298A (en) * 2015-10-06 2017-04-13 ダイキン工業株式会社 Air conditioner
JP2017072299A (en) * 2015-10-06 2017-04-13 ダイキン工業株式会社 Air conditioner
CN107270477A (en) * 2017-06-17 2017-10-20 安徽南国机电科技发展有限公司 A kind of indoor temperature, humidity, cleanliness factor combined control system
JP7350504B2 (en) * 2019-04-19 2023-09-26 株式会社竹中工務店 air conditioning system
JP7350503B2 (en) * 2019-04-19 2023-09-26 株式会社竹中工務店 air conditioning system
CN113465130B (en) * 2021-07-09 2022-05-27 珠海格力电器股份有限公司 Control method and device of air conditioner and computer readable storage medium
JP7448827B2 (en) 2021-09-14 2024-03-13 ダイキン工業株式会社 air conditioning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953852A (en) * 1995-08-11 1997-02-25 Daikin Ind Ltd Air-conditioning device
JP2008304124A (en) * 2007-06-07 2008-12-18 Toshiba Corp Sensor system for measuring carbon dioxide concentration
JP5487857B2 (en) * 2009-09-30 2014-05-14 ダイキン工業株式会社 Air conditioning system
JP5070307B2 (en) * 2010-02-12 2012-11-14 株式会社E.I.エンジニアリング Basic unit calculation system, program for executing the system, and recording medium recording the program

Also Published As

Publication number Publication date
JP2013072590A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5355649B2 (en) Air conditioning system
JP5328951B2 (en) Air conditioning system
JP6567183B2 (en) Air conditioning system
JP5674572B2 (en) Air conditioner
US10088211B2 (en) Air-conditioning apparatus
JP6479210B2 (en) Air conditioning system and control method of air conditioning system
US20060032253A1 (en) Driving control method for central air conditioner
JP5487857B2 (en) Air conditioning system
JP2013139921A (en) Air-conditioning system for adjusting temperature and humidity
JP5984964B2 (en) Air conditioning system
JP5291396B2 (en) Control method of air conditioner and air conditioner
JP6250148B2 (en) Air conditioning system
JP2007315682A (en) Control method for water heat source heat pump unit system
WO2020003446A1 (en) Air conditioning device
WO2019193680A1 (en) Air conditioning system
JPWO2019193639A1 (en) Air conditioning system
JP2016138666A (en) Air conditioner
JP6009102B2 (en) Outside air processing machine and air conditioner
JP6538975B2 (en) Air conditioning system
JP7316759B2 (en) Air conditioner and air conditioning system
JP5673524B2 (en) Air conditioning system that adjusts temperature and humidity
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2015007484A (en) Air conditioning system
JP6049324B2 (en) Air conditioner
JP6938950B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250