JP2009519717A - 位相を固定した配列決定のための方法およびシステム - Google Patents

位相を固定した配列決定のための方法およびシステム Download PDF

Info

Publication number
JP2009519717A
JP2009519717A JP2008545988A JP2008545988A JP2009519717A JP 2009519717 A JP2009519717 A JP 2009519717A JP 2008545988 A JP2008545988 A JP 2008545988A JP 2008545988 A JP2008545988 A JP 2008545988A JP 2009519717 A JP2009519717 A JP 2009519717A
Authority
JP
Japan
Prior art keywords
light
analyte
nucleic acid
sample holder
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008545988A
Other languages
English (en)
Inventor
ティモシー ウォウデンバーグ,
メン タイン,
Original Assignee
アプレラ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アプレラ コーポレイション filed Critical アプレラ コーポレイション
Publication of JP2009519717A publication Critical patent/JP2009519717A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本開示の例示的実施形態に基づくシステムおよび方法は、標識されたヌクレオチド塩基溶液中の少なくとも1つの限定された単一分子検体を保持するように構成された試料ホルダーを利用する。各単一分子検体は、単一のテンプレート核酸分子、オリゴヌクレオチドプライマー、および/または単一の核酸重合酵素を有する。それぞれの限定された検体周辺に検出量を照射するには、少なくとも1つの光源が使用され、パルス線源が少なくとも1つの検出量に対してパルス放射線を送出する。検体における取り込み反応のタイミングは、パルス放射線によって制御され、試料ホルダーにおいて複数の検体が提供される場合は、パルス放射線を使用することで、検体の取り込み反応が位相固定され、同調させることができる。

Description

(分野)
本出願は、分子解析に関し、より具体的には単一分子の核酸配列決定に関する。
(導入部)
DNA配列決定は、特定のDNA断片のヌクレオチド配列の決定を可能にする。多くの従来のDNA配列決定法では、DNA配列決定反応の観測を容易にするためにフルオロフォアが使用される。塩基すなわちDNA分子の構成単位である4つのヌクレオチドまたはdNTPは、識別可能な蛍光色素で標識され、異なるヌクレオチドから放出される蛍光シグナルを使用して、これらの識別が可能となる。近年想定されたリアルタイムの単一分子の酵素による配列決定法において、dNTP塩基を、テンプレートの一本鎖DNA分子に結合する伸長オリゴヌクレオチドプライマーに1つずつ加える際に、単一ポリメラーゼ分子または酵素を観測する試みが行われている。参考として本明細書で援用される、Levene等の特許文献1を参照されたい。リアルタイムの単一分子の酵素によるDNA配列決定は、Fred Sangerが開発したジデオキシ配列決定法のような、純粋な配列の生成に複合サンプルの調製を必要とする従来のDNA配列決定法に比べると、費用が抑えられ得る。
Levene等(上掲)に記載の配列決定法では、酵素−テンプレート複合物が、いわゆるゼロモード導波路によって規定される検出量に限定される。この検出量は非常に小さく(約1ゼプトリットル)、自由に拡散する標識されたdNTPからの蛍光シグナルはほとんど見られず、また取り込まれたdNTPから放出される蛍光シグナルとは異なる。蛍光が検出量内および容量外の範囲にあるとき、時折検出量に到達するdNTPが、蛍光の瞬間的な(約1マイクロ秒)バーストとして観察され得る。したがって、顕著な持続期間(例えば約1ミリ秒)を示すあらゆる蛍光バーストが、結合したdNTPに由来すると見なされる。隣接する取り込まれた塩基の色素標識が新規取り込み反応の観測と干渉することを防ぐため、それぞれの取り込まれたdNTPの色素標識は、取り込みが観測された後にレーザー励起によって光漂白される。または、取り込み中、酵素によって開裂されるガンマリン酸基にdNTPが標識される。
米国特許出願公開第2003/0174992号明細書
この手法に関する問題は、酵素がdNTPに結合し得る箇所でかなりの期間にわたって誤った結合が発生すること、およびそこで取り込みが行われず中断されることが考慮されていない点にある。この誤った結合は、実際の取り込みよりも頻繁に起こる可能性がある。単純に酵素−テンプレート複合体から顕著に持続した蛍光バーストを記録することにより、誤った結合と実際の取り込みとは両者とも塩基の取り込みまたは塩基呼び込み反応として記録され、不正確な配列が得られる。したがって、リアルタイムの単一分子の酵素による配列決定の作業スキームが機能するには、誤った結合と実際の取り込みとの違いを識別できなければならない。
(要旨)
本開示内容は単一分子核酸配列決定法、核酸の再配列決定および/もしくは検出、ならびに/または、遺伝子発現を含む一塩基多型の特性解析(SNP解析)に関する装置、システム、および方法を提供する。
本開示内容の例示的実施形態に基づくシステムは、単一テンプレート核酸分子、オリゴヌクレオチドプライマー、および/または単一核酸重合酵素を有する単一分子検体をそれぞれ限定するための少なくとも1つの検出量を規定するために形成された構造を有する試料ホルダーを備える。本システムはさらに、試料ホルダーを照射するように構成された少なくとも1つの光源、少なくとも1つの検出量から発光を採取して検出するように構成された光学装置、およびパルス光信号または光パルスなどのパルス放射線を少なくとも1つの検出量に送出するためのパルス線源も備える。
本試料ホルダーは、標識されたヌクレオチド溶液を保持するように構成される。一部の実施形態において、各ヌクレオチドは蛍光色素で標識され、γリン酸基に結合した消光剤を有する。ヌクレオチドの実際の取り込みにより、γリン酸基が放出され、そこで消光剤は、蛍光色素からの蛍光発光を約20倍まで増加させ、塩基の取り込み反応を示すはっきりとした明確なシグナルを提供する。
他の実施形態において、各ヌクレオチドは、嵩張った標識で標識され、その結果、ヌクレオチドがテンプレート核酸分子に取り込まれる際に、嵩張った標識が実質的にその後のテンプレート分子における取り込みプロセスの速度を遅くする。この嵩張った標識は、光パルスの1種によって開裂可能な、光開裂能を有するリンカーによってヌクレオチドに結合し、光パルスを照射した後に嵩張った標識が除去され、隣接する塩基が直ちに取り込まれることを可能にする。以上より、検体の取り込み反応のタイミングは光パルスによって制御可能であり、試料ホルダー上に複数の検体が提供される場合、検体の取り込み反応は光パルスによって位相固定され、同調させることができる。
本教示のこれらおよび他の特徴を本明細書に記載する。
以下で説明する図面は単に例示を目的としたものであり、いかなる場合にも本教示の適用範囲を制限することを意図したものではないことを、当業者であれば理解するであろう。
(種々の実施形態の説明)
前述の要約および後述の種々の実施形態における説明は、典型的かつ説明的であるのみであって本教示を限定するものではないことが理解されるべきである。本出願において、特に他の明示がない限り単数の使用は複数を含むものとする。また、他に明示されない限り「または」の使用は「および/または」を意味するものとする。同様に、「含む(comprise)」、「含む(comprises)」、「含む(comprising)」、および「含む(including)」は、これによって制限されることを意図しない。
加えて、特定の実施形態、特に単一分子の核酸合成の解析に適した実施形態が本明細書で詳述されるが、本開示内容の装置、システム、および方法が、直接再配列決定、SNP検出、および遺伝子発現などを含むがこれに限定されない、単一分子の解析に関する他の用途に使用されている場合があることは理解されるべきである。
さらに、本出願中の図面は説明を目的とするものであり、図面の多くは対応するハードウェアまたは物理的実体に対し一定の縮尺比ではない。本出願中の図面における特徴の多くの部分は、説明を容易にするため、意図的に不均衡に描写されたものである。
図1は、本教示の例示的実施形態に従う単一分子のDNA解析に関するシステム100を示すブロック図である。図1で示すように、システム100は、試料ホルダー110、試料ホルダー110下の光学対物レンズ120、第一の光源130、任意の第二の光源140、検知器150、および第三の光源160を備える。一実施形態において、第一の光源130と第二の光源140の両者が提供される場合、それらは異なる波長のレーザー光源である。例えば第一の光源130が488nmのレーザー光源であり、第二の光源140が632.8nmのレーザー光源である場合がある。
光源130および140から試料ホルダー110へ光を導くため、システム100は、例えば光源130および140のそれぞれの前面にある減光(ND)フィルター132および142、NDフィルター132および142のそれぞれの前面にある偏光フィルター134および144、偏光フィルター134および144のそれぞれの前面にある広帯域(BB)ミラー136および146、BBミラー136と146との間にある狭通過帯域(NB)フィルター180、NBフィルター180の前面にあるビーム拡大器182、ビーム拡大器182の前面にあるウェッジミラー184、ならびにウェッジミラー184と対物レンズ120との間にあるSPミラー122を備える第一の光学アセンブリをさらに備える場合がある。
一実施形態において、第一光源130からのレーザー光はNDフィルター132を通過し、偏光フィルター134を通って偏光、例えば円偏光され、続いてBBミラー136によってNBフィルター180の方向へ反射される。第二の光源140が提供される場合、第二の光源140からのレーザー光はNDフィルター142を通過し、偏光フィルター144を通って偏光、例えば円偏光され、BBミラー146によってNBフィルター180の方向へ反射される。NBフィルター180は、第一光源130からのレーザー光の波長周辺の狭い波長帯域内の光を通過させ、狭い波長帯域外の光を反射するよう構成されている。したがって、第一光源130からの光はNBフィルター180を通過して、ビーム拡大器182の方向に向かう光線138となるはずであり、一方で第二の光源140からの光の大部分がNBフィルター180から反射されて光線148となり、ビーム拡大器182の方向に向かう光線138と合流する。ビームストップ149は、NBフィルター180で反射されなかった第二の光源からの光を採取するために提供される。
一実施形態において、ビーム拡大器180は、光線138と148とを最初のビーム幅の約10〜20倍に拡大するよう構成される。拡大された光線138および148は、続いてウェッジミラー184によってSPミラー122の方向に反射され、それからSPミラー122は、この光線を、対物レンズ120を通して励起光135として試料ホルダー110の方向に向けて反射する。一実施形態において、ウェッジミラー184は、光線138および148の高い割合(80%など)を反射し、一方、この光線の低い割合(10%など)を透過させる。ビームストップ186は、光線138および148の透過した部分を採取するために提供される。
試料ホルダー110からの蛍光シグナルを検出するために、システム100は、例えば、対物レンズ120、SPミラー122、ノッチフィルター152および154を備える第二の光学アセンブリを備える。試料ホルダーからの蛍光は、試料ホルダー110の表面から反射された励起光の一部とともに対物レンズ120によって採取されて光線128となり、この光線128は、SPミラー122によりウェッジミラー184に向かって反射される。ウェッジミラーは光線128の大部分を通過させ、一方で光線128のごく一部をBBミラー194に向かって反射するように構成され、BBミラー194は光線128のごく一部を、レンズ192を通して焦点電荷結合素子(CCD)190に向けて送出する。この光線128のごく一部(特に、ここには反射された励起光が含まれる)は、検出器150において蛍光のより良好な焦点を提供するために対物レンズ120および/または検出器150の較正に使用される。光線128の大部分は、ノッチフィルター152および154を通して検知器150に向けられる。ノッチフィルター152および154はそれぞれ、光線138または148のそれぞれの波長周辺の非常に狭い波長範囲をブロックするように構成されているため、反射された励起光、またはその励起光の大部分は検出器150に入射しない。
第三の光源160は、後述する目的のために、レーザー光または光パルスを発生するように構成される。非限定的な例として、第三の光源160は、355nmのレーザー光を発生するように構成された355nmの3倍波YAGレーザー光源であり、この355nmのレーザー光は、図面の平面に並行な光において電界方向に偏光されている。システム100は、例えば第三の光源160からの光線を、2つの成分(1つはPINダイオード170に向かう成分、もう1つは少なくとも1つのレンズ164の第一セットに向かう成分)に分割する、第三の光源の前面にある薄膜ビームスプリッター162を備える、第三の光学アセンブリを備える。シャッター166はレンズ164の前面に提供され、光パルスを選択するように構成される。選択された光パルス168は、少なくとも1つのレンズ172の第二セットを通過してミラー174の方向へ向かう。ミラー174は、選択された光パルス168の大部分を反射し、一方で各パルスのごく一部を通過させ、PINダイオード176によって採取させるように構成される。一例では、ミラー174は入射光の偏光の方向に依存した、関連する反射係数を有する355nmのP型ミラー(ミラー355nm P)であり、この反射係数は、光パルス168における電界の方向が、入射平面(入射光線およびミラーの法線によって形成される平面であり、したがって図面の平面に対して並行である)に対して並行である場合に、その最大値に達する。
反射した光パルス168は別のミラー178によってさらに反射され、ミラー122の方向へ光パルスを向ける。ミラー122は、光源130および140の波長を包含する反射波長の範囲(例えば450〜700nm)内の光を反射する一方、この例においては反射波長の範囲外である355nmの波長を有する光パルス168を通過させるように構成されている。したがって、光パルス168は対物レンズ120を通過して試料ホルダー110の方向へ向けられる。
説明を容易にするため、システム100の構成要素は図1において同じ平面上に描かれている。一例示的実施形態において、光源130および140、検出器150、レーザー光源160、ならびに、第一および第三の光学アセンブリを含む光学的構成要素の多くは、ブレッドボード上に配置され、一方で試料ホルダー110はブレッドボードの上部に設置され、対物レンズ120がブレッドボードと試料ホルダー110との間に設置される。そこで、第一、第二、および第三の光源からの光が、図面の面の外にあるミラー122および178によって試料ホルダーの方向へ向けられる。一例として、対物レンズ120は40倍の対物レンズであり、ミラー178は入射光の偏光の方向に依存した関連する反射係数を有する355nmのS型ミラーであり、この反射係数は、光パルス168における電界の方向が、入射面に対して垂直である場合にその最大値に達する。ミラー178もまた、BBミラーであり得る。
PINダイオード170は、薄膜162によって反射された光源160からの光パルスの一部を受け、光パルスのタイミングを決定する。タイミングの情報は、光パルス168の2つの隣接パルス間の時間間隔を制御するよう、光源160からの光パルスを選択するためにシャッター166によって使用される。PINダイオード176はシャッター166のタイミングが適切に制御されていることを検証するために使用される。
本教示の例示的実施形態において、試料ホルダー110は、少なくとも1つの寸法において光線138および148の波長より小さいサイズの空孔を有する。図2は、例示的実施形態に従う試料ホルダー110の上から見たブロック図である。図2で示すように例示的実施形態において、試料ホルダー110は対物レンズ120の視野220において、少なくとも1つの空間的に固定された単一分子検体210を保持するように構成されている。試料ホルダー110は、台215およびカバー218もさらに含む場合がある。カバー218と台215との間に空間(図示せず)が形成され、この空間が、検体210に反応物を供給する試料液体を保持する試料チャンバーとしての機能を果たす。種々の実施形態において、核酸配列決定法の用途において、各単一分子検体210は単一ポリメラーゼ分子と単一テンプレート核酸分子とを有する酵素−テンプレート複合物、またはオリゴヌクレオチドプライマーがテンプレートの一本鎖核酸分子に結合された酵素−テンプレート−プライマー複合物であり、そして試料液体は、蛍光標識されたヌクレオチドのフルオロフォア溶液を含む。試料ホルダー110はさらに、試料液体を試料チャンバーに注入するための注入孔230、および試料液体を試料チャンバーから排出するための排出孔240を備え得る。注入孔230および排出孔240は、より完全に試料液体を排出および洗い流すため、図2に示すように試料ホルダー110の対角線上にある2つの角の近くに配置されるのが好ましい。
図3で示すように、種々の実施形態において試料ホルダーの台215は、光線148および138、光パルス168、ならびにヌクレオチドからの蛍光発光を透過する材質で作られた基板320上に形成されたフィルム310を備える。フィルム310は、検体を収容するために空孔または穴330を形成するエッチングされたパターンを有する。一部の実施形態において、図3の断面図で示されるように、またLevene等による米国特許出願第2003/0174992号に記述されるように、この空孔330は円形である。具体的な、非限定的な例として、基板320は融解石英基板であり、フィルム310は、アルミニウムまたは別の金属材料などの光線148および138に不透明な物質で作られている。空孔330は、フィルム310をマスキングおよびプラズマエッチングすることによって形成され得る。各空孔330の直径は、光線138または光線148のいずれかの波長よりも実質的に小さく、深さは穴を通る励起光の透過を阻止するのに十分な大きさである。したがって、各空孔330は励起光に対してゼロモード導波路として作用し、基板側から導波路まで移動する励起光が、空孔330の底部周辺でわずかな観測量332のみを透過することが可能である。同時に、ゼロモード導波路もまた、導波路における観測量332中に固定された発光剤に由来するか、または導波路における観測量332を透過して拡散する発光を除く、試料ホルダー110中の試料液体から放出または散乱した光をブロックするように働く。
したがって、一部の実施形態において、取り込みヌクレオチドから発光した光の検出および解析を可能にするため、各検体210中のポリメラーゼおよび/またはテンプレート核酸分子はゼロモード導波路330の観測量332内に固定され、そのため取り込みヌクレオチドからの発光は空孔330を回避し、基板320を通過し、対物レンズ120によって採取することが可能になる。ゼロモード導波路での遺伝子定量に関する分子を固定する技法の一部は、Korlach等による米国特許出願第2003/0044781号(これは参考として本明細書で援用される)、同様に共有に係る仮出願代理人整理番号34746/US/MSS/JJZ(470438−164)(これもまた参考として本明細書で援用される)に詳述される。
本教示の代替的な実施形態において、試料ホルダー110は、試料ホルダー110上に検体210を限定するため少なくとも1つの観測量を規定するスロットまたはチャネルを備える。図4Aは、基板420の上にフィルム410が形成され、そしてフィルム410中に複数のチャネル430が形成された試料ホルダーの三次元図を示す。非限定的な例として、フィルム410はアルミニウムまたは別の金属材料などの励起光に対して不透明な物質で作られ、基板420は融解石英などの励起光が透過する物質で作られている。各チャネル430は、光線138または148のいずれかと関連する波長より小さい幅wを有する。空孔330の代わりにチャネル430が提供される場合、光線138および148は、好ましくは線形に偏光し、光波において電界ベクトルがチャネルの長さ方向に沿うように、偏光方向が定められる。したがって、各チャネル430における底部周辺のわずかな観測量432のみが図4Aに示されるような励起光に照射されるはずである。チャネル610は、従来の半導体加工または集積回路(IC)製造技術などのような、従来の技法を使用して形成することができる。
チャネル430が形成された試料ホルダー110は、ゼロモード導波路孔330が形成された試料ホルダーに勝る複数の利点を有する。蛍光発光は大きく偏光しないので、蛍光が波長未満の寸法の穴330から放出しようとするときと同様、チャネル430から放出しようとするときには減衰しないはずである。そこで、試料ホルダー110からのより多くの発光が対物レンズ120によって採取、検出され得、その結果、信号対雑音比が増加する。さらに、図4Bにおけるチャネル430の上から見た図に示されるように、テンプレート分子440がチャネルに対して平行に向いているとき、チャネル430はより大きなテンプレート分子440を収容し得る。これは、ポリメラーゼ450が照射された容量432を放出することなく、非常に長距離にわたってテンプレート440を下方に移動することを可能にする。このテンプレート分子は繋ぎとめることが可能であり、従って一箇所に滞留できるが、一方で、限定された前進性を有するポリメラーゼはテンプレートから剥がれ、別のポリメラーゼによって入れ替わる場合がある。このように、より長い長さの読み取りが達成でき、これにより、特に新規配列決定の間に、アセンブリプロセスが著しく簡潔になる。図4Bでチャネル430が両端401および402において閉じている状態が示されているが、試料ホルダー上の各チャネル430は、いずれかの端または両端が基板420の端まで延長することで開放状態にすることが可能である。
ポリメラーゼまたはテンプレート分子は、従来の光活性化可能なリンカーを使用して試料ホルダー110に結合させることができる。本教示の例示的実施形態において、1つ以上のポリメラーゼまたはテンプレート分子は試料ホルダー110に溶解可能な方法で結合させることができ、各テンプレート分子またはオリゴヌクレオチド分子は共有に係る仮出願代理人整理番号34746/US/MSS/JJZ(470438−164)(この文献は参考として本明細書で援用されるものとする)に記述されているように、チャネル430の底面に沿って伸展することが可能である。
検体210を試料ホルダー110に配置後、試料ホルダー110はシステム100に設置される。蛍光標識されたヌクレオチド類似体を含むフルオロフォア溶液は、試料ホルダー110に注がれる。ヌクレオチド類似体上の蛍光標識は、励起光による照明の際に、蛍光を発光する。本教示の例示的実施形態において、4つの異なるヌクレオチド類似体は、それぞれが独特な発光スペクトルを有する4つの異なる蛍光色素で標識される。4つの異なる蛍光色素はまた、それぞれが各スペクトルによる発光強度のピークに対応した4つの異なる周波数帯に関連付けられ得る。4つの異なる周波数帯域は以後、第一、第二、第三および第四の周波数帯として記述される。
各検体220から発光した光を観察するため、光源130および/または140からの励起光は試料ホルダー110の基板側の方向に向けられ、蛍光を発するヌクレオチドからのシグナルは対物レンズ120によって採取され、検知器150へ向けられる。参考として本明細書で援用される共有に係る仮特許出願代理人整理番号34746/US/MSS/JJZ(470438−164)で説明されるように、試料ホルダー110上の複数の検体220からの蛍光シグナルは実質的に同時に採取、検出され得る。上記で説明されたように、わずかな観測量332または430からの蛍光シグナルのみが観察でき、また各観測量がわずかであるので、検出器までの道筋を作る、自由に拡散する標識されたdNTPからの蛍光の発光は稀にしか起こらないはずであり、取り込まれたdNTPからの発光とは異なるはずである。以上から、著しい持続時間(例えば約1ミリ秒)の蛍光バーストは検体に結合したdNTPに由来するはずであり、これは観測量内に制限される。同じ検体における連続性の取り込み反応に伴う蛍光シグナル間の干渉を緩和または排除するため、取り込み反応の検出後に新規の取り込まれたヌクレオチド上の蛍光標識は漂白、開裂、または他の既知の技術による除去を行うことができる。光開裂可能なリンカーは、効果的かつ一貫した蛍光標識の除去を容易にするために利用される場合がある。
しかし、空間的に固定された検体からの蛍光バーストの持続時間は、ヌクレオチドが取り込みを行ったかどうかを判断するのに十分ではないことが示されている。複数の機序により、検出器150により検出される比較可能な持続時間の蛍光バーストが生成される可能性があると考えられるのには理由があり、これらの機序は有用な配列決定データを得るために区別されなければならない。ポリメラーゼ酵素は、すべての取り込まれたヌクレオチドに対するおよそ一定のタイミングでの整然とした処理において、テンプレート核酸分子に沿って一連の手順を通してカタカタと音を立てて進む機械としてよく視覚化される。しかし、この視覚化は真実とかけ離れている。
取り込みプロセスをモデル化するために、T7ポリメラーゼを含む酵素システムに対する7つの状態の数学的モデルが、文献から得た酵素レートを取り入れた酵素モデル化コンピュータプログラムを使用して構築された。Donlin,Maureen J.;Patel,Smita S.;およびJohnson,Kenneth A.;「Kinetic Partitioning between the Exonuclease and Polymerase Sites in DNA Error Correction」,Biochemistry(1991),30(2),538−46を参照されたい。同様に、Wong,Isaac;Patel,Smita S.;およびJohnson,Kenneth A.;「An Induced−Fit Kinetic Mechanism for DNA Replication Fidelity:Direct Measurement by Single−Turnover Kinetics」,Biochemistry(1991),30(2),526−37も参照されたい。
図5で示すように、7つの状態は以下の状態1〜7までを含む。状態1はモデル化した取り込み反応前後の酵素−テンプレート−プライマー複合物を表し、状態2〜5はいわゆる「オン」状態であり、酵素−テンプレート−プライマー複合物に結合したモデル化した蛍光標識ヌクレオチドの種々の状態を表し、状態6〜7は、「オン」状態からの出口を追跡する目的でモデルに挿入された擬似状態である。状態図で時計回りに進む変化は、取り込みに向かうモデル化された正反応であり、反時計回りに進む変化は、分離に向かうモデル化された逆反応である。状態1から状態2への変化は、二分子反応である。この反応に関する擬似的一次反応速度定数は、フルオロフォア溶液中の遊離したdNTP濃度に比例しており、これは例として100μMであると推定される。状態2から状態3への変化は酵素中の立体構造変化を含み、また正反応に対する律速段階である。状態3から状態4への変化は、dNTP塩基の共有結合生成およびピロリン酸基の開裂である。この変化は可逆的であり、ピロリン酸基を遊離しない。状態4から状態5への変化により、酵素の立体構造変化が起こる。状態5から出て状態7へと向かう変化によりピロリン酸基の遊離が起こり、これは周囲のピロリン酸濃度がゼロまたはほとんどゼロであることから不可逆的変化である。
状態2から出る変化が、状態1または状態3においてのみ起こり得るように酵素システムが限定される一方、このプロセスを通った軌道における統計値は驚くべきものである。公表された速度論的データを用いてモデル化した後、「オン」状態におけるdNTPの平均保持時間は、dNTPが結局中へ取り込まれるかまたは酵素−テンプレート複合物から分離されるかに関わらず、およそ同じであることが示されている。この結果は、生産的な「オン」状態から時計回りで出口に達するには、ほとんどの場合、非生産的な反時計回りで出口に達するよりも時間がかかるという、従来の考えと正反対である。例えば、閾値時間を2.1ミリ秒に設定し、dNTPがテンプレートに取り込まれたときに「オン」状態をこの閾値よりも長く維持し、dNTPがテンプレートから分離したときに「オン」状態をこの閾値よりも短く維持するとした想定において、以下で考察される上記の7状態のモデルを使用したシミュレーション結果は、その時間の55%しか正確でない配列決定データを得ることを示唆している。
図6は、1マイクロ秒のタイムスライスで1000秒のシミュレーションを実行した結果を示す。このシミュレーションの結果は、横軸上にマイクロ秒で記されたオン状態のdNTPにおける経過時間と、縦軸に記された酵素−テンプレート複合物に取り込まれる(トレース620)、または酵素−テンプレート複合物から分離する(トレース610)dNTPの頻度または確率に関する対数により、ヒストグラムトレース610および620としてここに示される。トレース610は非生産的な反応(色素結合後に分離する)に関するものであり、トレース620は生産的な反応(色素結合後に取り込む)に関するものである。
図7は、マイクロ秒における閾値時間の関数としての塩基呼び込み精度を示し、塩基呼び込み効率に関するトレース710、エラー率に関するトレース720、および精度率に関するトレース730を含む。例として、選択された閾値時間Tに関して塩基呼び込み効率BEは、実際の取り込みの発生に少なくともその長さの時間を要する確率として定義され、以下のように数学的に表すことができる。
Figure 2009519717
式中、PE(t)は、「オン」状態で時間tの期間を経過した後にdNTPが取り込まれる確率(トレース620)を表し、Tmaxは既定の最大時間であり、一例では、25000マイクロ秒に設定される。言い換えれば、BE(T)は、閾値時間Tと同じ時間から既定の最大時間Tmaxまでのトレース620下の第一の基準化面積と等しい。したがって、取り込まれたdNTPの全てが「オン」状態で0マイクロ秒より長く経過するので、0マイクロ秒の閾値時間に関して、塩基呼び込み効率は1である。
同様に、トレース720に対するエラー率ER(T)は、「オン」状態で最小時間Tを経過した全dNTPを取り込まれたものとして考慮することによるエラーの割合であり、一例では、閾値時間と同じ時間から既定の最大時間までのトレース610下の第二の基準化面積を、第一および第二の基準化面積の合計で割ったものとして計算される。数学的に表すと、以下の通りとなる。
Figure 2009519717
式中、UE(t)は、「オン」状態で時間tの期間が経過した後に、dNTPが標的から分離した確率(トレース610)を表す。
トレース730に対する精度率AR(T)は、「オン」状態において、最小時間Tを経過した全dNTPを取り込まれたdNTPとして考慮することにより得られた配列決定データの精度を表す。AR(T)は、エラー率ER(T)と塩基呼び込み精度BE(T)の両者に依存するはずである。一例では、精度率AR(T)は、図7においてトレース730でプロットされるように、以下の通り計算され:
AR(T)=BE(t)[1−ER(T)]、
図7のトレース730で示すように、閾値時間を使用してdNTPが取り込まれたかどうかを判断することによって得た、最良の配列決定データの精度は、閾値時間が2.1ミリ秒に設定された時に起こるが、この最良の精度は約55%未満である。
必要なのは、取り込みを明白に示すシグナルである。この領域において、酵素の高次構造が直接モニターできるFRET標識されたポリメラーゼ酵素の考案に関して、Susan Harding(Visigen)により一定の成果が上げられた。それにもかかわらず、たとえそれが完全に作用したとしても、このスキームはこの問題に対し、未だ確実性をもたらさないと考えられる。このスキームが、酵素構造の十分良質な信号対雑音比を提供するように作成されたのではないかとの、いくつかの正当な理由に基づいた疑惑も存在する。
上記で考察された曖昧さの問題を解決するため、図8Aおよび図8Bで示すように、本教示の一実施形態において、フルオロフォア溶液中のヌクレオチドまたはdNTP 810は、蛍光レポーター820および消光剤830で二重標識されている。dNTP 810が酵素−テンプレート−プライマー複合物801中に取り込まれる際に遊離するように、消光剤830はdNTP 810のγリン酸基に結合する。周囲の遊離したピロリン酸濃度がほぼゼロであるので、このプロセスは不可逆的である。蛍光レポーターはヌクレオチドに結合して、このように取り込み後に滞留する。したがって、取り込みの不可逆プロセスが消光剤830を遊離するとき、dNTP 810から蛍光において約20倍の増加が見られ得、塩基が取り込まれたという明確なシグナルを提供する。二重に標識されたdNTPの例は、図9Aで示される。取り込みプロセスの検出後、塩基のその後の追加の検出が、現存するレポーターが接近することによる影響を受けないよう、レポーター820は次の取り込み反応の前に除去されるか、光漂白されるべきである。
一部の実施形態において、図8Aに示すように、蛍光レポーター820は光開裂可能なリンカー(PCL)815を介してdNTP 810に結合する。PCL色素−消光剤dNTPの例を、図9Bに示す。図9Bで1つが示されているもののような、光開裂可能なリンカー815は、取り込みプロセス後に光照射することにより、レポーター820の容易な除去を可能にする。
本教示の更なる実施形態において、図1および図10A〜10Cに示すように、各塩基の取り込みにつき一パルスの取り込みサイクルを位相固定するため、光パルス168のような外部のシグナルが使用される。図10Aで示すように、dNTP 810は、光パルス168の1つのような外部のシグナルによって開裂可能なリンカー1012を通してdNTP 810に結合した、比較的嵩張ったレポーター1010をそれぞれ有するように改変されている。ポリメラーゼがdNTP 810を取り込むことにより、プライマー−テンプレート複合物801を伸長する際に、新しく取り込まれたdNTP 810のそれぞれにおけるレポーターは、その後に続く取り込みをブロックする障壁または障害として作用する(図10B)。光パルス168などの外部シグナルが、光開裂可能なリンク1012に命中した場合、レポーターは次の取り込みを可能にするために除去され得る(図10C)。一度、標識が切断されると、標識は、酵素−テンプレート−プライマー複合物から急速に離れて拡散し、検出量332または432の外に出る。酵素−テンプレート−プライマー複合物は、妨害する標識が現時点で存在しないため、急速に次の塩基を取り込むことが可能となる。
パルスのタイミングは重要である。各パルスは、取り込みが起こったことを示すため、標識された塩基810からのシグナルが、充分長く(20または25ミリ秒以上など)存在した後に到達するべきである。一例として、光パルス168が外部シグナルとして使用され、シャッター166が隣接するパルス間の時間分割Δtを制御するために調節され得る。したがって、シグナルが与えられるまで塩基に結合したままの、比較的嵩張った標識を使用することにより、単一分子の酵素処理のタイミングは、結果は多少曖昧であるが、各光パルス168につき、1つまたは0のいずれかの塩基が加えられるように制御され得る。
上記のように、標識1010は2つの目的を果たす:1)標識1010が、dNTPが酵素−テンプレート−プライマー複合物に結合することを示す;2)標識1010が、次の塩基の取り込みを著しく妨げる。従来の標識およびリンカーの多くのタイプが、標識1010およびリンカー1012として使用され得る。結果を最適にするためには、リンカー1012が開裂する際に、dNTPが次の塩基の迅速な取り込みを可能にするように標識1010およびリンカー1012が選択されるべきである。一例として、レポーター820と、図9Bで示されるPCL色素−消光剤dNTP 800中の光開裂可能なリンカー815の一部または全部とは、一緒になって、嵩張ったレポーター1010およびリンカー1012として機能し得る。dNTP 810が、ポリメラーゼによって伸長中のDNA鎖1020に取り込まれた後、図11Aおよび図11Bで示すように、リンカー1012はUV照射によって開裂され得る。この例では、光放出による嵩張ったレポーター1010の除去の際に、中性の帯電していない官能基である、より小さいヒドロキシアリル置換基が与えられる。これは、ポリメラーゼによる別のdNTPの迅速な取り込みを可能にする。嵩張ったレポーター1010が除去されない場合、別のdNTPの取り込みが妨げられる。
上述の位相固定技法は、多くの例が存在する従来技術の段階的酵素配列決定とは異なる。H.Ruparel et al.,「Design and Synthesis of a 3’−O−allyl Photocleavable Fluorescent Nucleotide as a Reversible Terminator for DNA Sequencing by Synthesis」,PNAS,April 26,2005,vol.102,no.17,5932−5937を参照されたい。先行技術の酵素配列決定の基本的な制限は、最後の塩基が観察できるように、各塩基の添加ごとに停止されなければならないことである。多くの場合、先に取り込まれた塩基が観察され、阻害剤が除去されるまで後に続く塩基を加えることができないように、3’のヒドロキシル基を改変する、または保護する可逆的な阻害剤を使用して行われる。これは理論的には良い考えであるが、阻害または阻害の除去のいずれかが100%有効ではないので、実際の成績は極めて悪い。単一分子酵素配列決定の場合、阻害の失敗は読み込みエラーを起こし、阻害の除去の失敗は読み込みの停止を起こすはずである。ひとまとめにした場合、阻害または阻害の除去における失敗は、一試料内のポピュレーションの位相緩和(dephase)に影響を与えるはずである。一般に、先行技術の酵素配列決定において、阻害剤の効率がわずかにでも完全に満たなければ、全体的な影響として読み込みの長さが短くなり(通常は5〜25の塩基)、結果の信頼性の低下につながる。
対照的に、本教示の実施形態において阻害剤は使用されない。代わりに、後に続く塩基の付加を妨げないが、障害物1010が除去されるまではその付加の抑制のみを行う障害物1010が使用される。障害物1010が除去されない場合、後に続く塩基の付加は、いずれにしてもより緩徐な速度で起こる。
リアルタイムの単一分子の酵素によるDNA配列決定は、従来のDNA配列決定技法より高速で、より高いハイスループットを有し、さらに読み込み長さが長い可能性がある。スループットを更に高めるため、共有に係る仮出願代理人整理番号34746/US/MSS/JJZ(470438−164)(これは参考として本明細書で援用される)に記載されるように、複数の検体210は実質的に同時に観察され得る。1ミリ秒未満の時間フレーム内で多数の検体210のイメージを得ることは、特に複数の検体における取り込み反応が非同調的に起こる場合、多くの検出システムに対して難題を持ちかける可能性がある。例えば、電荷結合素子(CCD)が検出器150で使用される場合、多くは1KHzを超えるフレームレートが必要とされるが、これは達成が困難である。阻害剤1010でヌクレオチドを標識し、光パルス168を使用して複数の検体における取り込み反応のタイミングを制御することにより、複数の検体からの取り込みを示す蛍光バーストは、光パルス168に同調する。その結果、多数の単一分子検体からの取り込み反応を観察するために、より単純な光−機械システムが必要となる。
要約すると、本教示は、標的核酸分子を配列決定する装置を包含する。本装置は、蛍光標識されたヌクレオチド塩基を含む溶液を保持し、それぞれが単一標的核酸分子と単一核酸重合酵素とを含む、少なくとも1つの単一分子検体を分離し、限定するよう構成された試料ホルダーを備える。本装置は、試料ホルダーに向けて励起光を放出するように構成された少なくとも1つの第一光源もさらに備える。励起光は、それぞれの限定された検体周辺を少容量で照射する。本装置は、少なくとも1つの検体で起こる取り込み反応のタイミングを制御するために、光パルスを放出するよう構成された第二の光源もさらに備える。
例示的実施形態において、第二の光源は、隣接する光パルスの時間分割を制御するように構成されているシャッターを備える。この時間分割は光パルスが、少なくとも1つの検体で新たに取り込まれたヌクレオチドが、規定の時間より長く蛍光発光した後に、少なくとも1つの検体に向けられるように制御される。規定の時間は、約20〜25ミリ秒であってよい。
例示的実施形態において、ヌクレオチドが標的核酸分子に取り込まれたとき、後に続く取り込み反応が、嵩張った標識が除去されるまでその存在によって抑制されるように、ヌクレオチド塩基はそれぞれが嵩張った標識で標識される。この嵩張った標識としては、光開裂可能なリンカーおよび蛍光色素が挙げられ得る。
さらなる実施形態において、取り込み反応のタイミングは、光パルスごとに各検体において1または0のヌクレオチド塩基が取り込まれるように制御される。試料ホルダーは、複数の単一分子検体を限定し、分離するように構成され、光パルスは複数の検体での取り込み反応に同調する。各検体としては、ヌクレオチド、蛍光標識、およびヌクレオチドと蛍光標識との間の光開列可能なリンカーを含む、標識されたヌクレオチドが挙げられる。光開裂可能なリンカーは、ヌクレオチドが取り込まれた後にリンカーと標識を光によって開裂できるようにするように、そして開裂後に次の取り込み反応が起こるようにするように選択される。標識されたヌクレオチドは、ヌクレオチドのγリン酸基に結合した消光剤もさらに含む場合がある。
本教示はさらに、標的核酸分子を配列決定する方法であって、蛍光標識されたヌクレオチド塩基を含む溶液中において少なくとも1つの限定された単一分子検体を提供する工程であって、各単一分子検体が、単一の標的核酸分子および単一の核酸重合酵素を含む、工程;少なくとも1つの光源から少なくとも1つの検体へ励起光を向ける工程であって、励起光が各検体周辺に小容量を照射する、工程;ならびに、少なくとも1つの検体に一連の光パルスを投影して、少なくとも1つの検体で起こる取り込み反応のタイミングを制御する工程、を包含する方法も提供する。
例示的実施形態において、上記投影の工程は、隣接する光パルスの時間分割を制御するシャッターの使用を含む。さらなる実施形態において、時間分割は、少なくとも1つの検体で新たに取り込まれたヌクレオチドが規定の時間より長く蛍光発光した後に、光パルスが少なくとも1つの検体に向けられるように制御される。規定の時間は、約20〜25ミリ秒であってよい。
例示的実施形態において、光パルスは紫外線であり、励起光は円偏光である。
例示的実施形態において、上記提供する工程は、ヌクレオチドが標的核酸分子に取り込まれたとき、後に続く取り込み反応が嵩張った標識の存在によって抑制されるように、嵩張った標識でヌクレオチド塩基を標識する工程を包含する。さらなる実施形態において、嵩張った標識が光パルスの1つによって開裂できるよう、嵩張った標識は、光開裂可能なリンカーによってヌクレオチドと一体になっている。
例示的実施形態において、上記投影の工程は、光パルスごとに各検体で1つのヌクレオチド塩基が取り込まれるよう光パルスのタイミングを制御する工程を包含し、上記提供する工程は、光パルスが複数の検体での取り込み反応に同調するように限定され、分離された、複数の単一分子検体を提供する工程を包含する。
本教示の具体的な実施形態の前述の説明は、例示と説明を目的としたものであることが示されている。これらは網羅的なものではなく、開示した正確な形態に本教示を制限することを目的としたものではなく、上記の教示に照らして多くの改変や変更が可能であることが明らかである。これらの実施形態は、本教示の原理およびその実用的な用途を最もよく説明し、それによって他の当業者が、企図する特定の用途に適するように本教示ならびに種々の改変を伴った種々の実施形態を最善の形で使用できるように、選択および説明している。本教示の適用範囲は、本明細書に添付の特許請求の範囲およびそれに相当するものによって定義されることが意図される。
図1は、本教示の例示的実施形態に従う、単一分子解析システムの配置図である。 図2は、上記システムの試料ホルダーの上面図である。 図3は、上記試料ホルダーの一部の断面図である。 図4Aは、本教示のさらなる実施形態に従う試料ホルダーの一部の三次元図である。図4Bは、本教示の例示的実施形態に従う試料ホルダーのチャネルに沿ったDNA配列決定プロセスを示す図である。 図5は、T7ポリメラーゼにおける7つの状態の数学的モデルを示す状態図である。 図6および図7は、上記7つの状態の数学的モデルを使用したシミュレーション結果のグラフである。 図6および図7は、上記7つの状態の数学的モデルを使用したシミュレーション結果のグラフである。 図8Aおよび図8Bは、レポーターで標識され、ヌクレオチド中のγリン酸基に消光剤が結合したヌクレオチドの取り込みを示す代表的な図である。 図9Aおよび図9Bは、標識されたヌクレオチドの例示的な化学構造の図である。 図10A〜図10Cは、嵩張ったレポーターが結合したヌクレオチドの取り込みと、ヌクレオチドの取り込み後の光による嵩張ったレポーターの開裂とを示す代表的な図である。 図11Aおよび11Bは、例示的な嵩張ったレポーターが結合したヌクレオチドの取り込みと、ヌクレオチドの取り込み後の光による嵩張ったレポーターの開裂とを示す図である。

Claims (2)

  1. 標的核酸分子を配列決定するための装置であって、蛍光標識されたヌクレオチド塩基を含む溶液を保持し、それぞれが単一標的核酸分子および単一核酸重合酵素を含む少なくとも1つの単一分子検体を分離および限定するように構成された試料ホルダー;前記試料ホルダーに向ける励起光を生成するように構成された少なくとも1つの第一の光源であって、前記励起光がそれぞれの限定された検体周辺に少量を照射する、光源;ならびに、光パルスを生成して、少なくとも1つの検体で起こる取り込み反応のタイミングを制御するように構成された第二の光源、を備える、装置。
  2. 標的核酸分子を配列決定する方法であって、蛍光標識されたヌクレオチド塩基を含む溶液中の少なくとも1つの限定された単一分子検体を提供する工程であって、それぞれの単一分子検体が、単一の標的核酸分子および単一の核酸重合酵素を含む、工程;少なくとも1つの光源から少なくとも1つの検体に励起光を向ける工程であって、前記励起光が各検体周辺に少量を照射する、工程;ならびに、少なくとも1つの検体に向けて一連の光パルスを投影して、少なくとも1つの検体で起こる取り込み反応のタイミングを制御する工程、を含む、方法。
JP2008545988A 2005-12-16 2006-12-15 位相を固定した配列決定のための方法およびシステム Pending JP2009519717A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75124405P 2005-12-16 2005-12-16
PCT/US2006/062156 WO2007070869A2 (en) 2005-12-16 2006-12-15 Method and system for phase-locked sequencing

Publications (1)

Publication Number Publication Date
JP2009519717A true JP2009519717A (ja) 2009-05-21

Family

ID=38163648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008545988A Pending JP2009519717A (ja) 2005-12-16 2006-12-15 位相を固定した配列決定のための方法およびシステム

Country Status (4)

Country Link
US (1) US20070154921A1 (ja)
EP (1) EP1963851A4 (ja)
JP (1) JP2009519717A (ja)
WO (1) WO2007070869A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525111A (ja) * 2008-06-16 2011-09-15 ピーエルシー ダイアグノスティクス, インコーポレイテッド フェーズ合成による核酸配列決定システム及び方法
JP2019522463A (ja) * 2016-05-16 2019-08-15 ナノストリング テクノロジーズ,インコーポレイティド サンプル中の標的核酸を検出する方法
US11821026B2 (en) 2016-11-21 2023-11-21 Nanostring Technologies, Inc. Chemical compositions and methods of using same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100971A3 (en) * 2000-07-07 2009-11-25 Visigen Biotechnologies, Inc. Real-time sequence determination
US20070172866A1 (en) * 2000-07-07 2007-07-26 Susan Hardin Methods for sequence determination using depolymerizing agent
WO2002044425A2 (en) 2000-12-01 2002-06-06 Visigen Biotechnologies, Inc. Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity
WO2007072415A2 (en) * 2005-12-22 2007-06-28 Koninklijke Philips Electronics N.V. Luminescence sensor operating in reflection mode
US9423397B2 (en) 2006-03-10 2016-08-23 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
US9976192B2 (en) 2006-03-10 2018-05-22 Ldip, Llc Waveguide-based detection system with scanning light source
US8288157B2 (en) 2007-09-12 2012-10-16 Plc Diagnostics, Inc. Waveguide-based optical scanning systems
US7951583B2 (en) 2006-03-10 2011-05-31 Plc Diagnostics, Inc. Optical scanning system
US9528939B2 (en) 2006-03-10 2016-12-27 Indx Lifecare, Inc. Waveguide-based optical scanning systems
AU2010241641B2 (en) 2009-04-29 2015-05-14 Ldip, Llc Waveguide-based detection system with scanning light source
US10018566B2 (en) 2014-02-28 2018-07-10 Ldip, Llc Partially encapsulated waveguide based sensing chips, systems and methods of use
WO2016138427A1 (en) 2015-02-27 2016-09-01 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021212A1 (en) * 2001-08-28 2003-03-13 Baylor College Of Medicine Pulsed-multiline excitation for color-blind fluorescence detection
WO2005084367A2 (en) * 2004-03-03 2005-09-15 The Trustees Of Columbia University In The City Of New York Photocleavable fluorescent nucleotides for dna sequencing on chip constructed by site-specific coupling chemistry
JP2008520975A (ja) * 2004-11-16 2008-06-19 ヘリコス バイオサイエンシーズ コーポレイション Tirf単分子分析および核酸を配列決定する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232075B1 (en) * 1998-12-14 2001-05-15 Li-Cor, Inc. Heterogeneous assay for pyrophosphate detection
US7056661B2 (en) * 1999-05-19 2006-06-06 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
US6917726B2 (en) * 2001-09-27 2005-07-12 Cornell Research Foundation, Inc. Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes
CA2425112C (en) * 2000-10-06 2011-09-27 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding dna and rna
CA2482767A1 (en) * 2002-04-22 2003-10-30 Joseph F. Lawler, Jr. Reagents for monitoring nuclei acid amplification and methods of using same
US7169560B2 (en) * 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US7315019B2 (en) * 2004-09-17 2008-01-01 Pacific Biosciences Of California, Inc. Arrays of optical confinements and uses thereof
AU2006211150A1 (en) * 2005-01-31 2006-08-10 Pacific Biosciences Of California, Inc. Use of reversible extension terminator in nucleic acid sequencing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021212A1 (en) * 2001-08-28 2003-03-13 Baylor College Of Medicine Pulsed-multiline excitation for color-blind fluorescence detection
WO2005084367A2 (en) * 2004-03-03 2005-09-15 The Trustees Of Columbia University In The City Of New York Photocleavable fluorescent nucleotides for dna sequencing on chip constructed by site-specific coupling chemistry
JP2008520975A (ja) * 2004-11-16 2008-06-19 ヘリコス バイオサイエンシーズ コーポレイション Tirf単分子分析および核酸を配列決定する方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PROC.NATL.ACAD.SCI.USA.,VOL.102,NO.15(2005.APR.)P.5346-5351, JPN6011007430, ISSN: 0001847031 *
PROC.NATL.ACAD.SCI.USA.,VOL.102,NO.17(2005.APR.)P.5926-5931, JPN6011007432, ISSN: 0001847032 *
PROC.NATL.ACAD.SCI.USA.,VOL.102,NO.17(2005.APR.)P.5932-5937, JPN6011007434, ISSN: 0001847033 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525111A (ja) * 2008-06-16 2011-09-15 ピーエルシー ダイアグノスティクス, インコーポレイテッド フェーズ合成による核酸配列決定システム及び方法
JP2019522463A (ja) * 2016-05-16 2019-08-15 ナノストリング テクノロジーズ,インコーポレイティド サンプル中の標的核酸を検出する方法
US11821026B2 (en) 2016-11-21 2023-11-21 Nanostring Technologies, Inc. Chemical compositions and methods of using same

Also Published As

Publication number Publication date
EP1963851A2 (en) 2008-09-03
WO2007070869A2 (en) 2007-06-21
US20070154921A1 (en) 2007-07-05
WO2007070869A3 (en) 2008-02-28
EP1963851A4 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP2009519717A (ja) 位相を固定した配列決定のための方法およびシステム
US11214830B2 (en) Intermittent detection during analytical reactions
JP7339302B2 (ja) 時間分解発光を使用して核酸の配列を決定するための方法
EP2331935B1 (en) Intermittent detection during analytical reactions
US6140048A (en) System for distinguishing fluorescent molecule groups by time resolved fluorescence measurement
US20100075327A1 (en) Intermittent detection during analytical reactions
JP2008520975A (ja) Tirf単分子分析および核酸を配列決定する方法
US8518643B2 (en) Method to improve single molecule analyses
Takezaki et al. Relaxation of nitrobenzene from the excited singlet state
EP2812698B1 (en) Dual-acceptor time-resolved-fret
EP2669663B1 (en) Method for identifying polymorphism of nucleic acid molecules
BR112014016846B1 (pt) Dispositivo para o controle óptico de uma reação em etapas iterativa para determinar uma sequência de um ácido nucleico por síntese e método para o controle óptico de uma reação em etapas iterativa para determinar uma sequência de um ácido nucleico por síntese
US8841633B2 (en) Method and apparatus for detecting pharmaceuticals in a sample
JP2022512096A (ja) サンプルウェル作製技法および集積センサデバイス用の構造
Corin et al. Triplet-state detection of labeled proteins using fluorescence recovery spectroscopy
CN112639128A (zh) 利用光可切换标记进行核酸测序的方法和组合物
US7851152B2 (en) Fluorescent base analogues' usage in the characterization of nucleic acid molecules and their interactions
Mohammadi-Kambs DNA molecular recognition specificity: pairwise and in competition
JP5946168B2 (ja) 標的核酸分子の検出方法
Kurz Characterization and Application of Photon-Statistics in Single-Molecule Measurements for Quantitative Studies of Fluorescently Labeled Samples
US6077670A (en) Fluorescent material labeled-probe and method for detecting hybridization

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110509

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110609

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111019