JP2009515113A - 4気筒エンジンを備える自動車パワートレーン - Google Patents

4気筒エンジンを備える自動車パワートレーン Download PDF

Info

Publication number
JP2009515113A
JP2009515113A JP2008539224A JP2008539224A JP2009515113A JP 2009515113 A JP2009515113 A JP 2009515113A JP 2008539224 A JP2008539224 A JP 2008539224A JP 2008539224 A JP2008539224 A JP 2008539224A JP 2009515113 A JP2009515113 A JP 2009515113A
Authority
JP
Japan
Prior art keywords
energy storage
storage device
torque
energy
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008539224A
Other languages
English (en)
Inventor
デグラー マリオ
マイエンシャイン シュテファン
ロクスターマン ヤン
クラウゼ トルステン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Buehl Verwaltungs GmbH
Original Assignee
LuK Lamellen und Kupplungsbau Beteiligungs KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LuK Lamellen und Kupplungsbau Beteiligungs KG filed Critical LuK Lamellen und Kupplungsbau Beteiligungs KG
Publication of JP2009515113A publication Critical patent/JP2009515113A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/1236Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/12366Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H2045/007Combinations of fluid gearings for conveying rotary motion with couplings or clutches comprising a damper between turbine of the fluid gearing and the mechanical gearing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0247Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means having a turbine with hydrodynamic damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0284Multiple disk type lock-up clutch

Abstract

本発明は、4気筒エンジンとして構成される内燃機関(266)と、2つのエネルギ蓄え装置(272,276)からなるトーショナルバイブレーションダンパとコンバータロックアップクラッチ(268)とを備えるハイドロダイナミック式のトルクコンバータ装置とを備える自動車パワートレーンに関する。タービンホイール(274)は、両エネルギ蓄え装置(272,276)間に配置されている。請求項1の特徴部によれば、以下のパラメータに関する値範囲もしくは比範囲が特許請求される。すなわち、最大のエンジントルクMmot,max(266)、ばね定数c(272)、質量慣性モーメントJ(274)、ばね定数c(276)、質量慣性モーメントJ(278)および伝動装置入力軸のばね定数cGEW(280)。明細書の記載によれば、大きな質量慣性モーメントJが両エネルギ蓄え装置(272,276)間に設けられ、できるだけ小さな質量がトーショナルバイブレーションダンパと伝動装置入力軸との間に設けられるべきである。図5は、コンバータロックアップクラッチ(268)の閉鎖時のばね・質量・等価回路図を示す。

Description

本発明は、4気筒エンジンとして構成される内燃機関を備える自動車パワートレーンであって、コンバータロックアップクラッチと、トーショナルバイブレーションダンパと、ポンプホイール、タービンホイールならびにガイドホイールにより形成されるコンバータトーラスとを有するトルクコンバータ装置を有しており、さらに前記トーショナルバイブレーションダンパが、第1のエネルギ蓄え装置ならびに第2のエネルギ蓄え装置を有しており、該第1のエネルギ蓄え装置と該第2のエネルギ蓄え装置との間に、これらの両エネルギ蓄え装置に直列に接続される第1の構成部材が設けられており、前記タービンホイールが、前記第1の構成部材に相対回動不能に結合されている外側のタービンシェルを有する形式のものに関する。
ドイツ連邦共和国特許出願公開第10358901号明細書から公知のトルクコンバータ装置は、コンバータロックアップクラッチと、トーショナルバイブレーションダンパと、ポンプホイール、タービンホイールならびにガイドホイールにより形成されるコンバータトーラスとを有し、自動車パワートレーン用に指定されている。ドイツ連邦共和国特許出願公開第10358901号明細書の図1、4、5に記載される構成では、さらに、トーショナルバイブレーションダンパの第1のエネルギ蓄え装置と第2のエネルギ蓄え装置との間に、これらの両エネルギ蓄え装置に直列に接続される第1の構成部材が設けられている。第1の構成部材は、タービンホイールの外側のタービンシェルに相対回動不能に結合されている。
本発明の課題は、4気筒エンジンおよびトルクコンバータ装置を備える自動車パワートレーンを、これがその振動特性もしくはねじり振動特性に関して、心地よい走行快適性を提供すべき自動車のために良好に適しているように構成することである。
本発明により、特に、請求項1または請求項7に記載される自動車パワートレーンが提案される。有利な構成は、従属請求項の対象である。請求項1に係る自動車パワートレーンは、4気筒エンジンとして構成され最大のエンジントルクMmot,maxを有する内燃機関と、エンジン出力軸もしくはクランク軸と、伝動装置入力軸と、前記エンジン出力軸もしくはクランク軸に特に相対回動不能に連結されているコンバータケーシングを備えるトルクコンバータ装置とを有しており、該トルクコンバータ装置が、コンバータロックアップクラッチと、トーショナルバイブレーションダンパと、ポンプホイール、タービンホイールならびにガイドホイールにより形成されるコンバータトーラスとを有しており、さらに前記トーショナルバイブレーションダンパが、単数または複数の第1のエネルギ蓄え器を備える第1のエネルギ蓄え装置と、単数または複数の第2のエネルギ蓄え器を備え前記第1のエネルギ蓄え装置に直列に接続されている第2のエネルギ蓄え装置とを有しており、該第1のエネルギ蓄え装置と該第2のエネルギ蓄え装置との間に、これらの両エネルギ蓄え装置に直列に接続される第1の構成部材が設けられており、前記タービンホイールが、前記第1の構成部材に相対回動不能に結合されている外側のタービンシェルを有しており、さらに前記トルクコンバータ装置が、特にトルクコンバータ装置に隣接する伝動装置入力軸に特に相対回動不能に連結され前記第2のエネルギ蓄え装置および前記伝動装置入力軸に直列に接続されている第3の構成部材を有しており、その結果、前記第2のエネルギ蓄え装置から前記第3の構成部材を介してトルクが前記伝動装置入力軸に伝達可能であり、前記第1の構成部材を介したトルクの伝達時に、該第1の構成部材を介して伝達されるトルクの変化に、第1の質量慣性モーメントJが反対作用し、かつ前記第3の構成部材を介したトルクの伝達時に、該第3の構成部材を介して伝達されるトルクの変化に、第2の質量慣性モーメントJが反対作用する形式のものにおいて、第1のエネルギ蓄え装置のばね定数c[単位Nm/゜]が、内燃機関の最大のエンジントルクMmot,max[単位Nm]とファクタ0.014[1/゜]の積より大きいか等しく、かつ内燃機関の最大のエンジントルクMmot,max[単位Nm]とファクタ0.068[1/゜]の積より小さいか等しく、かつ第2のエネルギ蓄え装置のばね定数c[単位Nm/゜]が、内燃機関の最大のエンジントルクMmot,max[単位Nm]とファクタ0.035[1/゜]の積より大きいか等しく、かつ内燃機関の最大のエンジントルクMmot,max[単位Nm]とファクタ0.158[1/゜]の積より小さいか等しく、かつ
第1のエネルギ蓄え装置のばね定数c[単位Nm/rad]と第2のエネルギ蓄え装置のばね定数c[単位Nm/rad]の和と、第1の質量慣性モーメントJ[単位kg]から形成される商が、14037Nm/(radkg)より大きいか等しく、かつ49348Nm/(radkg)より小さいか等しく、かつ
第2のエネルギ蓄え装置のばね定数c[単位1/rad]と伝動装置入力軸のばね定数cGEW[単位1/rad]の和と、第2の質量慣性モーメントJ[単位kg]から形成される商が、1403677Nm/(radkg)より大きいか等しく、かつ5614708Nm/(radkg)より小さいか等しいことを特徴とする。本発明の有利な構成では、前記伝動装置入力軸のばね定数cGEWが、100Nm/゜〜350Nm/゜の範囲にある。本発明の別の有利な構成では、前記第1のエネルギ蓄え装置が、前記トーショナルバイブレーションダンパの回転軸線の周方向に関して、周方向に間隔を置いて並列に接続される複数の第1のエネルギ蓄え器を有する。本発明のさらに別の有利な構成では、前記第1のエネルギ蓄え器が、コイルばねもしくは弧状ばねである。本発明のさらに別の有利な構成では、前記第2のエネルギ蓄え装置が、前記トーショナルバイブレーションダンパの回転軸線の周方向に関して、周方向に間隔を置いて並列に接続される複数の第2のエネルギ蓄え器を有する。本発明のさらに別の有利な構成では、前記第2のエネルギ蓄え器が、コイルばねもしくは真っ直ぐなばねもしくは圧縮ばねである。請求項7に係る自動車パワートレーンは、4気筒エンジンとして構成され最大のエンジントルクMmot,maxを有する内燃機関と、トルクコンバータ装置とを有しており、該トルクコンバータ装置が、コンバータロックアップクラッチと、トーショナルバイブレーションダンパと、ポンプホイール、タービンホイールならびにガイドホイールにより形成されるコンバータトーラスとを有しており、さらに前記トーショナルバイブレーションダンパが、単数または複数の第1のエネルギ蓄え器を備える第1のエネルギ蓄え装置と、単数または複数の第2のエネルギ蓄え器を備え前記第1のエネルギ蓄え装置に直列に接続されている第2のエネルギ蓄え装置とを有しており、該第1のエネルギ蓄え装置と該第2のエネルギ蓄え装置との間に、これらの両エネルギ蓄え装置に直列に接続され特に金属薄板として構成される第1の構成部材が設けられており、前記タービンホイールが、外側のタービンシェルを有しており、該外側のタービンシェルが、前記第1の構成部材に、特に金属薄板として構成される連行部材を介して相対回動不能に結合されている形式の、特に請求項1から6までのいずれか1項記載の自動車パワートレーンにおいて、第1の構成部材および/または連行部材が、付加質量の形成のためにもしくはエネルギ蓄え装置間で作用する大きな質量慣性モーメントJの形成のために、第1の構成部材および/または連行部材を介したトルク伝達のために必要であるよりも、明らかに肉厚に、特に少なくとも2倍肉厚に、または少なくとも3倍肉厚に、または少なくとも5倍肉厚に、または少なくとも10倍肉厚に、または少なくとも20倍肉厚に、かつ/または明らかに剛性的もしくは堅固に、特に少なくとも2倍剛性的に、または少なくとも3倍剛性的に、または少なくとも5倍剛性的に、または少なくとも10倍剛性的に、または少なくとも20倍剛性的に形成されていることを特徴とする。
つまり、特に、4気筒エンジン、もしくは4気筒エンジンとして構成される内燃機関を有する自動車パワートレーンが提案されている。この内燃機関もしくはこの4気筒エンジンは、最大のエンジントルクMmot,maxを有する。自動車パワートレーンはさらに、エンジン出力軸もしくはクランク軸ならびに伝動装置入力軸を有する。さらに自動車パワートレーンは、トルクコンバータ装置を有する。このトルクコンバータ装置は、エンジン出力軸もしくはクランク軸に有利には相対回動不能に連結されているコンバータケーシングを有する。さらにトルクコンバータ装置は、コンバータロックアップクラッチと、トーショナルバイブレーションダンパと、ポンプホイール、タービンホイールならびにガイドホイールにより形成されるコンバータトーラスとを有する。このトーショナルバイブレーションダンパは、第1のエネルギ蓄え装置と、この第1のエネルギ蓄え装置に直列に接続される第2のエネルギ蓄え装置とを有する。第1のエネルギ蓄え装置は、単数または複数の第1のエネルギ蓄え器を有する、もしくは単数または複数の第1のエネルギ蓄え器により形成され、かつ第2のエネルギ蓄え装置は、単数または複数の第2のエネルギ蓄え器を有する、もしくは単数または複数の第2のエネルギ蓄え器により形成される。この第1のエネルギ蓄え装置と第2のエネルギ蓄え装置との間には、これらの両エネルギ蓄え装置に直列に接続される第1の構成部材が設けられている。このことは特に、第1のエネルギ蓄え装置からこの第1の構成部材を介してトルクが第2のエネルギ蓄え装置に伝達されるようになっている。
補足すると、この出願前に頒布された刊行物では、ここで「コンバータトーラス」と呼ばれる装置が一部では「(ハイドロダイナミック式のトルク)コンバータ」と呼ばれる。しかし、「(ハイドロダイナミック式のトルク)コンバータ」という概念は、この出願前に頒布された刊行物では一部、トーショナルバイブレーションダンパと、コンバータロックアップクラッチと、ポンプホイール、タービンホイールならびにガイドホイールにより形成される装置もしくは本発明の開示の用語で言えばコンバータトーラスとを有する装置のためにも使用される。この背景から、本発明の開示では、より良好な識別のために、「(ハイドロダイナミック式の)トルクコンバータ装置」および「コンバータトーラス」という概念を使用する。
タービンホイールは、第1の構成部材に相対回動不能に結合されている外側のタービンシェルを有する。さらにトルクコンバータ装置は、特にトルクコンバータ装置に隣接する伝動装置入力軸に有利には相対回動不能に連結されている第3の構成部材を有する。例えば、第3の構成部材が直接伝動装置入力軸に特に相対回動不能に連結されていることができる。しかし、第3の構成部材が、単数または複数の介在する構成部材を介して伝動装置入力軸に特に相対回動不能に連結されていてもよい。第3の構成部材は、第2のエネルギ蓄え装置および伝動装置入力軸に直列に接続されている。その結果、第2のエネルギ蓄え装置からトルクが第3の構成部材を介して伝動装置入力軸に伝達され得る。つまり、第3の構成部材は、特に、第2のエネルギ蓄え装置と伝動装置入力軸との間に配置されている。
第1の構成部材を介したトルクの伝達時、第1の構成部材を介して伝達されるトルクの変化に、第1の質量慣性モーメントが反対作用する。つまり、第1の質量慣性モーメントは、特に、第1の構成部材の質量慣性モーメントと、それぞれの質量慣性モーメントが第1の構成部材を介したトルクの伝達時に(やはり)、第1の構成部材を介して伝達されるトルクの変化に反対作用するように第1の構成部材に連結されている、場合によっては存在する単数または複数の別の構成部材の質量慣性モーメントとからなる。第1の構成部材と別の構成部材との連結は例えば、特にトーショナルバイブレーションダンパの回転軸線を中心とした回動に関して、相対回動不能な連結であることができる。第1の質量慣性モーメントが第1の構成部材を介したトルクの伝達時に、第1の構成部材を介して伝達されるトルクの変化に反対作用することは前に言及した。特筆すべきは、特に、トルクが第1の構成部材を介して伝達されないとき、第1の質量慣性モーメントが第1の構成部材を介したトルクの伝達に反対作用するようにもなっていることである。第1の構成部材は有利にはフランジまたは金属薄板である。その際、特に有利には、外側のタービンシェルおよび/または内側のタービンシェルおよび/またはタービンホイールもしくはタービンのブレードもしくは翼が、その質量慣性モーメントが第1の質量慣性モーメントに加入、厳密に言えば特にそれぞれ複数の加数のうちの1つの加数として加入するように第1の構成部材に連結されている1つの構成部材であるか、または複数の構成部材からなる1つの構成部材である。
第3の構成部材を介したトルクの伝達時、第3の構成部材を介して伝達されるトルクの変化に、第2の質量慣性モーメントが反対作用する。つまり、第2の質量慣性モーメントは、特に、第3の構成部材の質量慣性モーメントと、それぞれの質量慣性モーメントが第3の構成部材を介したトルクの伝達時に(やはり)、第3の構成部材を介して伝達されるトルクの変化に反対作用するように第3の構成部材に連結されている、場合によっては存在する単数または複数の別の構成部材の質量慣性モーメントとからなる。第3の構成部材と別の構成部材との連結は例えば、特にトーショナルバイブレーションダンパの回転軸線を中心とした回動に関して、相対回動不能な連結であることができる。第2の質量慣性モーメントが第3の構成部材を介したトルクの伝達時に、第3の構成部材を介して伝達されるトルクの変化に反対作用することは前に言及した。特筆すべきは、特に、トルクが第3の構成部材を介して伝達されないとき、第2の質量慣性モーメントが第3の構成部材を介したトルクの伝達に反対作用するようにもなっていることである。
自動車パワートレーンもしくはトルクコンバータ装置もしくはトーショナルバイブレーションダンパもしくは第1のエネルギ蓄え装置は、第1のエネルギ蓄え装置のばね定数[単位Nm/゜]が、4気筒エンジンの最大のエンジントルク[単位Nm]とファクタ0.014[1/゜]の積より大きいか等しく、かつ4気筒エンジンの最大のエンジントルク[単位Nm]とファクタ0.068[1/゜]の積より小さいか等しいように構成されている。つまり、式で表現すれば、(Mmot,max[Nm]0.0141/°)≦c≦(Mmot,max[Nm]0.0681/°)が成立する。ただし、Mmot,max[Nm]は、パワートレーンの内燃機関もしくは4気筒エンジンの、「ニュートン毎メートル(Nm)」の単位で表される最大のエンジントルクであり、cは、第1のエネルギ蓄え装置の、「度で除したニュートン毎メートル(Nm/°)」の単位で表されるばね定数である。
さらに、自動車パワートレーンもしくはトルクコンバータ装置もしくはトーショナルバイブレーションダンパもしくは第2のエネルギ蓄え装置は、第2のエネルギ蓄え装置のばね定数[単位Nm/゜]が、4気筒エンジンの最大のエンジントルク[単位Nm]とファクタ0.035[1/゜]の積より大きいか等しく、かつ4気筒エンジンの最大のエンジントルク[単位Nm]とファクタ0.158[1/゜]の積より小さいか等しいように構成されている。つまり、式で表現すれば、(Mmot,max[Nm]0.0351/°)≦c≦(Mmot,max[Nm]0.1581/°)が成立する。ただし、Mmot,max[Nm]は、パワートレーンの内燃機関もしくは4気筒エンジンの、「ニュートン毎メートル(Nm)」の単位で表される最大のエンジントルクであり、cは、第2のエネルギ蓄え装置の、「度で除したニュートン毎メートル(Nm/°)」の単位で表されるばね定数である。
さらに、自動車パワートレーンもしくはトルクコンバータ装置もしくはトーショナルバイブレーションダンパは、第1のエネルギ蓄え装置のばね定数[単位Nm/rad]と第2のエネルギ蓄え装置のばね定数[単位Nm/rad]の和と、第1の質量慣性モーメント[単位kg]から形成される商が、14037Nm/(radkg)より大きいか等しく、かつ49348Nm/(radkg)より小さいか等しいように構成されている。つまり、式で表現すれば、14037Nm/(radkg)≦(c+c)/J≦49348Nm/(radkg)である。ただし、cは、第1のエネルギ蓄え装置のばね定数[単位Nm/rad]であり、cは、第2のエネルギ蓄え装置のばね定数[単位Nm/rad]であり、Jは、第1の質量慣性モーメント[単位kg]である。「rad」により、周知のように、弧度法が示される。
さらに、自動車パワートレーンもしくはトルクコンバータ装置もしくはトーショナルバイブレーションダンパもしくは伝動装置入力軸は、第2のエネルギ蓄え装置のばね定数[単位Nm/rad]と伝動装置入力軸のばね定数[単位Nm/rad]の和と、第2の質量慣性モーメント[単位kg]から形成される商が、1403677Nm/(radkg)より大きいか等しく、かつ5614708Nm/(radkg)より小さいか等しいように構成されている。つまり、式で表現すれば、1403677Nm/(radkg)≦(c+cGEW)/J≦5614708Nm/(radkg)である。ただし、cは、第2のエネルギ蓄え装置のばね定数[単位Nm/rad]であり、cGEWは、伝動装置入力軸のばね定数[単位Nm/rad]であり、Jは、第2の質量慣性モーメント[単位kg]である。
有利な構成では、伝動装置入力軸が、そのばね定数が100Nm/゜より大きいか等しく、かつ350Nm/゜より小さいか等しいように構成されている。つまり、式で表現すれば、有利には100Nm/゜≦cGEW≦350Nm/゜が成立する。ただし、cGEWは、伝動装置入力軸のばね定数[単位Nm/゜]である。特に、120Nm/゜≦cGEW≦300Nm/゜が成立し、別の有利な構成では、120Nm/゜≦cGEW≦210Nm/゜が成立し、さらに別の有利な構成では、130Nm/゜≦cGEW≦150Nm/゜が成立する。特に有利には、伝動装置入力軸のばね定数cGEWがほぼ140Nm/゜の範囲にあるか、または140Nm/゜である。伝動装置入力軸のばね定数cGEWのこれらの値は、特にねじり負荷、もしくは伝動装置入力軸の中心の長手方向軸線を中心としたねじり負荷に関する。もしくはこの伝動装置入力軸のばね定数cGEWは、この伝動装置入力軸の、ねじり負荷時、もしくは伝動装置入力軸の中心の長手方向軸線を中心としたねじり負荷時に作用するもしくは与えられているもしくは現れるばね定数である。伝動装置入力軸は回転可能に、厳密に言えばその中心の長手方向軸線もしくは回転軸線を中心として回転可能に支承されている。
特に、トーショナルバイブレーションダンパが(このトーショナルバイブレーションダンパの)回転軸線を中心として回動可能である。トーショナルバイブレーションダンパの回転軸線は、有利な構成では、伝動装置入力軸の回転軸線に一致する。
有利には、例えば金属薄板もしくはフランジとして構成されている第2の構成部材が設けられており、第2の構成部材は、第1のエネルギ蓄え装置および第1の構成部材に直列に接続されている。その際、特に、第1のエネルギ蓄え装置がこの第2の構成部材と第1の構成部材との間に配置されており、その結果、第2の構成部材からトルクが第1のエネルギ蓄え装置を介して第1の構成部材に伝達可能である。その際、この第2の構成部材は、有利にはコンバータロックアップクラッチと第1のエネルギ蓄え装置との間に設けられており、その結果、コンバータロックアップクラッチの閉鎖時、コンバータロックアップクラッチを介して伝達されるトルクは、第2の構成部材を介して第1のエネルギ蓄え装置に伝達され得る。コンバータロックアップクラッチはコンバータケーシングに相対回動不能もしくは固定的に結合されていることができ、その結果、コンバータロックアップクラッチの閉鎖時、トルクは、このコンバータケーシングからコンバータロックアップクラッチを介して伝達され得る。コンバータロックアップクラッチは例えば多板クラッチとして構成されていることができる。その際、多板クラッチは、押付け部材、もしくは例えば軸方向で可動に配置され、例えば液圧式に負荷可能なピストンを有することができ、これにより多板クラッチは閉鎖され得る。その際、例えば、第2の構成部材が多板クラッチの押付け部材もしくはピストンであるか、またはこの押付け部材もしくはピストンに相対回動不能に結合されていることができる。
第1の構成部材は有利な構成では金属薄板もしくはフランジである。第3の構成部材は有利な構成では金属薄板もしくはフランジである。第3の構成部材は例えばボスを形成するか、またはボスに相対回動不能に連結されていることができる。このボスは例えば相対回動不能に伝動装置入力軸に連結されている、もしくは伝動装置入力軸に相対回動不能に係合することができる。
有利には、第2の構成部材またはこの第2の構成部材に相対回動不能に連結される構成部材が、第1のエネルギ蓄え装置の入力部を形成する。特に、この第2の構成部材またはこの第2の構成部材に相対回動不能に連結される構成部材が、厳密に言えば特に第一のエネルギ蓄え装置の入力側で、第1のエネルギ蓄え装置の第1のエネルギ蓄え器に係入する、もしくは第1のエネルギ蓄え装置の(第1の)端面に係合することができる。さらに、特に、第1の構成部材もしくはこの第1の構成部材に相対回動不能に結合される構成部材が、厳密に言えば特に第1のエネルギ蓄え装置の出力側で、第1のエネルギ蓄え装置の第1のエネルギ蓄え器に係入する、もしくは第1のエネルギ蓄え装置の第1のエネルギ蓄え器の(第2の、つまり第1の端面とは別の)端面に係合する。さらに、特に、この第1の構成部材もしくは(場合によっては別の)この第1の構成部材に相対回動不能に結合される構成部材が、厳密に言えば特に第2のエネルギ蓄え装置の入力側で、第2のエネルギ蓄え装置の第2のエネルギ蓄え器に係入する、もしくは第2のエネルギ蓄え装置の第2のエネルギ蓄え器の(第1の)端面に係合する。さらに、特に、第3の構成部材もしくはこの第3の構成部材に相対回動不能に結合される構成部材が、厳密に言えば特に第2のエネルギ蓄え装置の出力側で、第2のエネルギ蓄え装置の第2のエネルギ蓄え器に係入する、もしくは第2のエネルギ蓄え装置の(第2の、つまり第1の端面とは別の)端面に係合する。
有利な構成では、第1のエネルギ蓄え装置が、複数の第1のエネルギ蓄え器を有するか、または複数の第1のエネルギ蓄え器からなる。第1のエネルギ蓄え器は、有利な構成では、コイルばねもしくは弧状ばねである。すべてのこれらの第1のエネルギ蓄え器は並列に接続されていることができる。別の構成では、複数の第1のエネルギ蓄え器もしくはすべての第1のエネルギ蓄え器が、トーショナルバイブレーションダンパの回転軸線の周方向に関して、周方向で分配されてもしくは間隔を置いて配置されている。しかし、複数の第1のエネルギ蓄え器が、トーショナルバイブレーションダンパの回転軸線の周方向に関して、周方向で分配されてもしくは間隔を置いて配置されており、周方向で分配されてもしくは間隔を置いて配置された第1のエネルギ蓄え器が、弧状ばねもしくはコイルばねとして構成されており、その内部にそれぞれ単数または複数の別の第1のエネルギ蓄え器を受容するようになっていてもよい。後に挙げた構成では、第1のエネルギ蓄え装置の負荷が非負荷の状態から上昇していくとき、最初に、内部に単数または複数の別の第1のエネルギ蓄え器を受容する第1のエネルギ蓄え器だけがエネルギを蓄え、この内部に受容された第1のエネルギ蓄え器は、第1のエネルギ蓄え装置の負荷が所定の限界負荷もしくは所定の限界トルクを上回ったときに初めてエネルギを蓄えるようにすることもできるし、またその逆も可である。
有利な構成では、第2のエネルギ蓄え装置が、複数の第2のエネルギ蓄え器を有するか、または複数の第2のエネルギ蓄え器からなる。第2のエネルギ蓄え器は、有利な構成では、コイルばねもしくは圧縮ばねもしくは真っ直ぐなばねである。すべてのこれらの第2のエネルギ蓄え器は並列に接続されていることができる。別の構成では、複数の第2のエネルギ蓄え器もしくはすべての第2のエネルギ蓄え器が、トーショナルバイブレーションダンパの回転軸線の周方向に関して、周方向で分配されてもしくは間隔を置いて配置されている。しかし、複数の第2のエネルギ蓄え器が、トーショナルバイブレーションダンパの回転軸線の周方向に関して、周方向で分配されてもしくは間隔を置いて配置されており、周方向で分配されてもしくは間隔を置いて配置された第2のエネルギ蓄え器が、圧縮ばねもしくは真っ直ぐなばねもしくはコイルばねとして構成されており、その内部にそれぞれ単数または複数の別の第2のエネルギ蓄え器を受容するようになっていてもよい。後に挙げた構成では、第2のエネルギ蓄え装置の負荷が非負荷の状態から上昇していくとき、最初に、内部に単数または複数の別の第2のエネルギ蓄え器を受容する第2のエネルギ蓄え器だけがエネルギを蓄え、この内部に受容された第2のエネルギ蓄え器は、第2のエネルギ蓄え装置の負荷が所定の限界負荷もしくは所定の限界トルクを上回ったときに初めてエネルギを蓄えるようにすることもできるし、またその逆も可である。
有利には、第1のエネルギ蓄え器もしくは第1のエネルギ蓄え装置は、第2のエネルギ蓄え器もしくは第2のエネルギ蓄え装置の半径方向外側に配置されている。このことは特に、トーショナルバイブレーションダンパの回転軸線の半径方向に関する。
第1のエネルギ蓄え装置のばね定数は特に、この第1のエネルギ蓄え装置のトルク負荷時、厳密に言えば特にトーショナルバイブレーションダンパの回転軸線を中心として第1のエネルギ蓄え装置に作用するトルク負荷時に作用するもしくは与えられているもしくは現れるばね定数もしくは等価ばね定数である。第1のエネルギ蓄え装置のばね定数は特に、第1のエネルギ蓄え器のばね定数ならびにその配置もしくはその接続により決定されている。つまり、第1のエネルギ蓄え装置のばね定数は特に、第1のエネルギ蓄え器のばね定数ならびにその配置もしくはその接続により決定されている等価ばね定数である。言及したように、第1のエネルギ蓄え器は有利な構成では並列に接続されている。しかし、例えば、第1のエネルギ蓄え器が、基本的には並列接続を形成するように接続され、この並列接続の、これにより形成される平行な分枝内に、第1のエネルギ蓄え器が直列に接続されるようになっていてもよい。
第2のエネルギ蓄え装置のばね定数は特に、この第2のエネルギ蓄え装置のトルク負荷時、厳密に言えば特にトーショナルバイブレーションダンパの回転軸線を中心として第2のエネルギ蓄え装置に作用するトルク負荷時に作用するもしくは与えられているもしくは現れるばね定数もしくは等価ばね定数である。第2のエネルギ蓄え装置のばね定数は特に、第2のエネルギ蓄え器のばね定数ならびにその配置もしくはその接続により決定されている。つまり、第2のエネルギ蓄え装置のばね定数は特に、第2のエネルギ蓄え器のばね定数ならびにその配置もしくはその接続により決定されている等価ばね定数である。言及したように、第2のエネルギ蓄え器は有利な構成では並列に接続されている。しかし、例えば、第2のエネルギ蓄え器が、基本的には並列接続を形成するように接続され、この並列接続の平行な分枝内に、第2のエネルギ蓄え器が直列に接続されるようになっていてもよい。
第1の質量慣性モーメントは特にトーショナルバイブレーションダンパの回転軸線に関する。第1の構成部材は例えば金属薄板である。外側のタービンシェルが第1の構成部材に単数または複数の連行部材により相対回動不能に結合されていることができる。その際、特に、そのような単数または複数の連行部材の質量慣性モーメントが、第1の質量慣性モーメントを(共同)決定する、厳密に言えば特に加数として(共同)決定する。特に、構成部材の質量慣性モーメント、特に第1の構成部材またはトルクを第1のエネルギ蓄え装置の第1のエネルギ蓄え器から第2のエネルギ蓄え装置の第2のエネルギ蓄え器に伝達するもしくは第1のエネルギ蓄え装置の第1のエネルギ蓄え器と第2のエネルギ蓄え装置の第2のエネルギ蓄え器との間に接続されている構成部材の質量慣性モーメントが、第1の質量慣性モーメントを決定するもしくは共同決定する。前記質量慣性モーメントはそれぞれ特にトーショナルバイブレーションダンパの回転軸線に関する。
第2の質量慣性モーメントは特にトーショナルバイブレーションダンパの回転軸線に関する。第3の構成部材は例えば金属薄板である。
有利には、自動車パワートレーンもしくはトルクコンバータ装置もしくはトーショナルバイブレーションダンパもしくは第1のエネルギ蓄え装置は、(Mmot,max[Nm]0.021/゜)≦c≦(Mmot,max[Nm]0.061/゜)が成立するか、または(Mmot,max[Nm]0.031/゜)≦c≦(Mmot,max[Nm]0.051/゜)が成立するように構成されている。
有利には、自動車パワートレーンもしくはトルクコンバータ装置もしくはトーショナルバイブレーションダンパもしくは第2のエネルギ蓄え装置は、(Mmot,max[Nm]0.041/゜)≦c≦(Mmot,max[Nm]0.151/゜)が成立するか、または(Mmot,max[Nm]0.051/゜)≦c≦(Mmot,max[Nm]0.131/゜)が成立するか、または(Mmot,max[Nm]0.061/゜)≦c≦(Mmot,max[Nm]0.11/゜)が成立するように構成されている。
有利には、自動車パワートレーンもしくはトルクコンバータ装置もしくはトーショナルバイブレーションダンパは、
17000Nm/(radkg)≦(c+c)/J≦46000Nm/(radkg)が成立するか、または
20000Nm/(radkg)≦(c+c)/J≦43000Nm/(radkg)が成立するか、または
23000Nm/(radkg)≦(c+c)/J≦40000Nm/(radkg)が成立する
ように構成されている。
有利には、自動車パワートレーンもしくはトルクコンバータ装置もしくはトーショナルバイブレーションダンパもしくは伝動装置入力軸は、
1800000Nm/(radkg)≦(c+cGEW)/J≦5200000Nm/(radkg)が成立するか、または
2200000Nm/(radkg)≦(c+cGEW)/J≦4800000Nm/(radkg)が成立するか、または
2400000Nm/(radkg)≦(c+cGEW)/J≦4400000Nm/(radkg)が成立するか、または
2800000Nm/(radkg)≦(c+cGEW)/J≦4000000Nm/(radkg)が成立する
ように構成されている。
以下に、例示的な本発明による構成について図面を参照しながら説明する。図中、
図1は、一例としての本発明による自動車パワートレーンの概略図を示し、
図2は、一例としての第1のハイドロダイナミック式のトルクコンバータ装置を備える一例としての本発明による自動車パワートレーンの一区分を示し、
図3は、一例としての第2のハイドロダイナミック式のトルクコンバータ装置を備える一例としての本発明による自動車パワートレーンの一区分を示し、
図4は、一例としての第3のハイドロダイナミック式のトルクコンバータ装置を備える一例としての本発明による自動車パワートレーンの一区分を示し、かつ
図5は、コンバータロックアップクラッチが閉鎖されている状態の、一例としての本発明による自動車パワートレーンの一区分のばね・(回転)質量・等価回路図を示す。
図1は、一例としての本発明による自動車パワートレーン2を概略図で示す。自動車パワートレーン2は、内燃機関250を有し、内燃機関250により回転駆動され得る駆動軸もしくはエンジン出力軸もしくはクランク軸18を有する。内燃機関250は正確には4つのシリンダ252を有する、もしくは4気筒エンジン250である。4気筒エンジン250は、最大のエンジントルクMmot,maxを有する、もしくは最大で、この最大のエンジントルクMmot,maxに相当するトルクをパワートレーン2に導入し得る。
自動車パワートレーン2は、図2〜図4を参照しながら説明するいずれか1つの構成に応じて形成されているトルクコンバータ装置1を有する。
さらに自動車パワートレーン2は、例えばオートマチックトランスミッションである伝動装置254を有する。さらに自動車パワートレーン2は、伝動装置出力軸256、ディファレンシャル258ならびに単数または複数の駆動車軸260を有することができる。さらに自動車パワートレーン2は、トルクコンバータ装置1と伝動装置254との間に伝動装置入力軸66を有する。トルクコンバータ装置1、もしくはこのトルクコンバータ装置1の構成部材、例えばボス64は、この伝動装置入力軸66に相対回動不能に結合されている。エンジン出力軸もしくはクランク軸18は、相対回動不能にこのトルクコンバータ装置1のコンバータケーシング16に連結されている。つまり、トルクは駆動軸もしくはエンジン出力軸もしくはクランク軸18からトルクコンバータ装置1を介して伝動装置入力軸66に伝達され得る。
図2〜図4は、種々異なる、例としてのハイドロダイナミック式のトルクコンバータ装置1を示す。これらのトルクコンバータ装置1は、一例としての本発明による自動車パワートレーン2もしくは図1に示す自動車パワートレーン2に設けられていることができる。
図2〜図4に示す構成は、一例としての本発明による自動車パワートレーン2の構成部分である。一例としての本発明による自動車パワートレーン2は、図2〜図4には示さない4気筒エンジン250を有する、もしくは4気筒エンジンとして構成され、これにより4つのシリンダ252を有する図2〜図4には示さない内燃機関250を有する。ハイドロダイナミック式のトルクコンバータ装置1は、トーショナルバイブレーションダンパ10と、ポンプホイール20、タービンホイール24ならびにガイドホイール22により形成されるコンバータトーラス12と、コンバータロックアップクラッチ14とを有する。
トーショナルバイブレーションダンパ10、コンバータトーラス12ならびにコンバータロックアップクラッチ14は、コンバータケーシング16内に収容されている。コンバータケーシング16は実質的に相対回動不能に、特に内燃機関のクランク軸もしくはエンジン出力軸である駆動軸18に結合されている。
コンバータトーラス12は、言及したように、自体公知の形式で協働するポンプもしくはポンプホイール20と、ステータもしくはガイドホイール22と、タービンもしくはタービンホイール24とを有する。自体公知の形式で、コンバータトーラス12は、オイル収容もしくはオイル通流のために設けられているコンバータトーラス内室もしくはトーラス内部28を有する。タービンホイール24は、外側のタービンシェル26を有しており、外側のタービンシェル26は、直接トーラス内部28に境を接し、トーラス内部28の画定のために設けられる壁区分30を形成する。さらにタービンホイール24は、自体公知の形式で内側のタービンシェル262ならびに(タービン)ブレードを有する。直接トーラス内部28に境を接する壁区分30には、外側のタービンシェル26の延長部32が接続する。この延長部32は、真っ直ぐなもしくは環状に構成された区分34を有する。延長部32のこの真っ直ぐなもしくは環状に構成された区分34は、例えば、トーショナルバイブレーションダンパ10の回転軸線36の半径方向で実質的に真っ直ぐであり、かつ、特に環状の区分として、回転軸線36に対して垂直な平面内に位置する、もしくはこの平面を形成するようになっていることができる。
ねじり振動減衰器とも呼ばれるトーショナルバイブレーションダンパ10は、第1のエネルギ蓄え装置38ならびに第2のエネルギ蓄え装置40を有する。第1のエネルギ蓄え装置38および/または第2のエネルギ蓄え装置40は、特にばね装置である。
図2〜図4に示す実施例では、第1のエネルギ蓄え装置38が、回転軸線36を中心とした周方向で、複数の、特に互いに間隔を置いて配置された第1のエネルギ蓄え器42、例えばコイルばねもしくは弧状ばねを有する、もしくはこれらから形成されるようになっている。すべての第1のエネルギ蓄え器42は同一に構成されていることができる。それぞれ異なって構成された第1のエネルギ蓄え器42が設けられていてもよい。
第1のエネルギ蓄え装置38のばね定数c[単位Nm/°]は、4気筒エンジン250の最大のエンジントルクMmot,max[単位Nm]とファクタ0.014[1/°]の積より大きいか等しく、かつ4気筒エンジン250の最大のエンジントルク[単位Nm]とファクタ0.068[1/°]の積より小さいか等しい。つまり、(Mmot,max[Nm]0.0141/°)≦c≦(Mmot,max[Nm]0.0681/°)が成立する。ただし、Mmot,max[Nm]は、パワートレーン2の内燃機関もしくは4気筒エンジン250の、「ニュートン毎メートル(Nm)」の単位で表される最大のエンジントルクであり、cは、第1のエネルギ蓄え装置38の、「度で除したニュートン毎メートル(Nm/°)」の単位で表されるばね定数である。しかし、提示した値もしくは範囲は、例えば、この開示の別の箇所に記載されるようなものであってもよい。
第2のエネルギ蓄え装置40は、複数の、例えばそれぞれコイルばねもしくは圧縮ばねもしくは真っ直ぐなばねとして構成された第2のエネルギ蓄え器44を有する、もしくはこれらから形成される。その際、極めて有利な構成では、複数の第2のエネルギ蓄え器44が周方向で、回転軸線36の周方向に関して、互いに間隔を置いて配置されている。第2のエネルギ蓄え器44は、それぞれ同一に構成されていることができるが、それぞれ異なって構成されていてもよい。
第2のエネルギ蓄え装置40のばね定数c[単位Nm/°]は、4気筒エンジン250の最大のエンジントルクMmot,max[単位Nm]とファクタ0.035[1/°]の積より大きいか等しく、かつ4気筒エンジン250の最大のエンジントルクMmot,max[単位Nm]とファクタ0.158[1/°]の積より小さいか等しい。つまり、(Mmot,max[Nm]0.0351/°)≦c≦(Mmot,max[Nm]0.1581/°)が成立する。ただし、Mmot,max[Nm]は、パワートレーン2の内燃機関もしくは4気筒エンジン250の、「ニュートン毎メートル(Nm)」の単位で表される最大のエンジントルクであり、cは、第2のエネルギ蓄え装置の、「度で除したニュートン毎メートル(Nm/°)」の単位で表されるばね定数である。しかし、提示した値もしくは範囲は、例えば、この開示の別の箇所に記載されるようなものであってもよい。
図2〜図4に示す実施例では、第2のエネルギ蓄え装置40が、回転軸線36の半径方向に関して、第1のエネルギ蓄え装置38の半径方向内側に配置されている。第1のエネルギ蓄え装置38ならびに第2のエネルギ蓄え装置40は、直列に接続されている。トーショナルバイブレーションダンパ10は、第1のエネルギ蓄え装置38と第2のエネルギ蓄え装置40との間に配置されているもしくはエネルギ蓄え装置38,40に直列に接続されている第1の構成部材46を有する。つまり、特に、例えばコンバータロックアップクラッチ14の閉鎖時、トルクが第1のエネルギ蓄え装置38から第1の構成部材46を介して第2のエネルギ蓄え装置40に伝達可能であるようになっている。第1の構成部材46は中間部材46とも呼ばれ、この呼称は以下でも使用される。
図2〜図4に示す実施例では、外側のタービンシェル26がこの中間部材46に結合されており、負荷、特にトルクおよび/または力が外側のタービンシェル26から中間部材46に伝達可能であるようになっている。
外側のタービンシェル26と中間部材46との間には、もしくは外側のタービンシェル26と中間部材46との間の負荷伝達経路、特にトルク伝達経路もしくは力伝達経路内には、連行部材50が設けられている。延長部32が中間部材46および/または連行部材50を形成する、もしくはその機能を請け負うようになっていてもよい。連行部材50が、エネルギ蓄え装置38,40間のトルク伝達経路内に直列に接続されている第1の構成部材もしくは中間部材を形成するようになっていてもよい。さらに、負荷もしくはトルクが外側のタービンシェル26から中間部材46に伝達可能である負荷伝達区間48に沿って、少なくとも1つの結合手段52,56もしくは54が設けられている。このような結合手段52,56もしくは54は、例えば差込結合部またはリベットもしくはピン結合部(図2〜図4中の符号56参照)または溶接結合部(図2〜図4中の符号52参照)またはこれに類するものであることができる。特筆すべきは、図4に、溶接結合部52が設けられている箇所に付加的に、択一的な構成可能性を示すべく、リベットもしくはピン結合部54が記入されていることである。このことは、上述の結合手段が異なる形式で構成されていてもよいし、異なる組み合わせが選択されていてもよいことを明らかにすべきものである。相応の結合手段52,54,56により、負荷が外側のタービンシェル26から中間部材46に伝達可能な前記負荷伝達区間48の、それぞれ隣接する構成部材が、互いに連結されている。例えば、図2〜図4に示す構成では、外側のタービンシェル26の延長部32が連行部材50に、それぞれ、溶接結合部として構成された結合手段52(図4では択一的にリベットもしくはピン結合部であることができる。)を介して相対回動不能に連結されており、この連行部材50が中間部材46に、それぞれ、リベットもしくはピン結合部として構成された結合手段56を介して相対回動不能に連結されている。
外側のタービンシェル26と中間部材46との間の負荷伝達区間48に沿って隣接する構成部材(例えば延長部32と連行部材50もしくは連行部材50と中間部材46)を結合するすべての結合手段52,54,56は、外側のタービンシェル26の、直接トーラス内部28に境を接する壁区分30から間隔を置いている。このことは、少なくとも実施例で、可能な結合手段の帯域を拡大することを可能にする。例えば、溶接法として、薄板溶接またはマグ溶接またはレーザ溶接またはスポット溶接だけでなく、例えば摩擦溶接を使用することも可能である。
第1のエネルギ蓄え装置38、第2のエネルギ蓄え装置40ならびにこれらの両エネルギ蓄え装置38,40間に設けられる中間部材46には、第2の構成部材60ならびに第3の構成部材62が直列に接続されている。第2の構成部材60は、第1のエネルギ蓄え装置38の入力部を形成し、第3の構成部材62は、第2のエネルギ蓄え装置40の出力部を形成する。これにより、第2の構成部材60から第1のエネルギ蓄え装置38に導入される負荷もしくはトルクは、この第1のエネルギ蓄え装置38の出力側で、中間部材46および第2のエネルギ蓄え装置40を介して、第3の構成部材62に伝達され得る。
第3の構成部材62は、相対回動不能な結合部の形成下で、ボス64に係合する。ボス64はさらに、例えば自動車伝動装置の伝動装置入力軸66である、トルクコンバータ装置1の出力軸66に相対回動不能に連結されている。しかし択一的には、例えば、第3の構成部材62がボス64を形成してもよい。外側のタービンシェル26は、支持区分68により半径方向でボス64に支持される。特に半径方向でボス64に支持される支持区分68は、実質的にスリーブ状に構成されている。
特筆すべきは、支持区分68による外側のタービンシェル26の前記半径方向の支持が、ここを介して外側のタービンシェル26に作用する支持力が第1のエネルギ蓄え装置38もしくは第2のエネルギ蓄え装置40を介しては支持区分68から外側のタービンシェル26に導入されないようになっていることである。支持区分68はボス64に対して回動可能である。ボス64と支持区分68との間には、滑り軸受もしくは滑り軸受ブシュまたは転がり軸受またはこれに類するものが、半径方向の支持のために設けられていることができる。さらに、相応の軸受が軸方向の支持のために設けられていることができる。既に上で言及した、外側のタービンシェル26と中間部材46との間の結合は、外側のタービンシェル26から中間部材46に伝達可能なトルクが、対応する負荷伝達区間48に沿ってエネルギ蓄え装置38,40の1つが設けられていることなく、外側のタービンシェル26からこの中間部材46に伝達され得るようになっている。つまり、外側のタービンシェル26から中間部材46への(負荷伝達区間48を介した)このトルク伝達は、特に、実質的にリジットな結合により実施され得る。
図2〜図4に示す実施例では、外側のタービンシェル26と中間部材46との間の負荷伝達区間もしくは力伝達区間もしくはトルク伝達区間48に沿って、それぞれ2つの結合手段、厳密に言えば第1の結合手段52もしくは54ならびに第2の結合手段56が設けられている。特筆すべきは、回転軸線36の周方向に関して、周方向で複数の分配配置された第1の結合手段52もしくは第2の結合手段56が設けられていることができる、もしくは有利には設けられていることである。単数もしくは複数の第1の結合手段52もしくは54(以下、簡単化のために第1の結合手段52を単数で表記する。)は、特に相対回動不能に、延長部32を連行部材50に結合し、単数もしくは複数の第2の結合手段56(以下、簡単化のために第2の結合手段56を単数で表記する。)は、特に相対回動不能に、連行部材50を中間部材46に結合する。
図2〜図4に示すように、スリーブ状の支持領域68は例えば、連行部材50の、回転軸線36の半径方向に関して、半径方向内側にある区分であることができる。
コンバータロックアップクラッチ14は、図2〜図4に示す構成では、それぞれ多板クラッチとして形成されており、第1のプレート74を相対回動不能に受容する第1のプレートキャリア72と、第2のプレート78を相対回動不能に受容する第2のプレートキャリア76とを有する。多板クラッチ14の開放時、第1のプレートキャリア72は、第2のプレートキャリア76に対して相対運動可能であり、厳密に言えば、第1のプレートキャリア72は、第2のプレートキャリア76に対して相対回動可能である。第2のプレートキャリア76はここでは、軸線36の半径方向に関して、第1のプレートキャリア72の半径方向内側に配置されている。しかし、この配置は逆であってもよい。第1のプレートキャリア72は固定的にコンバータケーシング16に結合されている。多板クラッチ14はその操作のために、軸方向で摺動可能に配置され、多板クラッチ14の操作のために例えば液圧式に負荷され得るピストン80を有する。ピストン80は、固定的にもしくは相対回動不能に第2のプレートキャリア76に結合されている。このことは例えば、溶接結合により行われることができる。第1のプレート74および第2のプレート78は、回転軸線36の長手方向で見て交番する。第1のプレート74および第2のプレート78により形成されるプレートセット79をピストン80により負荷すると、このプレートセット79は、プレートセット79の、ピストン80に対向して位置する側で、コンバータケーシング16の内面の一区分に支持される。隣接するプレート74,78の間ならびにプレートセット79の両端面には、摩擦ライニング81が設けられている。摩擦ライニング81は例えばプレート74および/またはプレート78に保持されている。プレートセット79の端面に設けられている摩擦ライニング81は、一方の側および/または他方の側で、コンバータケーシング16の内面もしくはピストン80に保持されていてもよい。
図2および図3に示す実施例では、ピストン80は第2の構成部材60、つまり第1のエネルギ蓄え装置38の入力部とワンピースに形成されている。図4に示す実施例では、ピストン80は相対回動不能にもしくは固定的に第2の構成部材60もしくは第1のエネルギ蓄え装置38の入力部に結合されている。その際、この固定的な結合はここでは例えば溶接により行われている。原則的には、相対回動不能な結合は、別の形式で行われてもよい。図2および図3に示す実施例では、択一的な構成では、ピストン80および第1のエネルギ蓄え装置38の入力部60が、別個の、互いに例えば溶接またはリベットまたはピンを介して固定的もしくは相対回動不能に結合された部材として形成されていてもよい。図4に示す実施例では、この(固定的もしくは相対回動不能な)結合を形成するために、溶接結合の代わりに、別の適当な結合、例えばピン結合またはリベット結合または差込結合が、ピストン80と入力部60との間に設けられていてもよいし、択一的には、ピストン80が入力部60とワンピースに1つの部材から製作されていてもよい。
ピストン80もしくは第2の構成部材60、第1の構成部材もしくは中間部材46、連行部材50ならびに第3の構成部材62は、それぞれ金属薄板により形成される。第2の構成部材60は特にフランジである。第1の構成部材46は特にフランジである。第3の構成部材62は特にフランジである。
図3に示す実施例では、連行部材50の金属薄板厚さが、ピストン80もしくは第1のエネルギ蓄え装置38の入力部60の金属薄板厚さより大きい。さらに、図2〜図4に示す実施例では、連行部材50の質量慣性モーメントが、ピストン80もしくは入力部60もしくはこれらの部材60,80からなるユニットの質量慣性モーメントより大きくなっていることができる。
第1のエネルギ蓄え器42のために、それぞれ一種のケーシング82が形成されている。ケーシング82は、回転軸線36の半径方向ならびに軸方向に関して、少なくとも部分的に軸方向の両側ならびに半径方向外側でそれぞれの第1のエネルギ蓄え器42を取り巻いて延在している。図2〜図4に示す実施形態では、このケーシング82が連行部材50に配置されている。大抵の使用事例で、連行部材50もしくは外側のタービンシェル26に相対回動不能に配置することは、振動技術的な観点で、例えば第2の構成部材60に相対回動不能に配置するより有利である。ケーシング82はここでは、例えば溶接されているカバー264を有する。
図4に示す実施例では、第1のエネルギ蓄え器42が、それぞれ、摩擦減少のために、転動体、例えば球またはころを有し、転がりシュー(Rollschuh)84とも呼ばれ得る装置84を介して、前記ケーシング82に支持されることができる。このような装置84は図2および図3には示されていないが、この種の、転動体、例えば球またはころを有する装置84を、第1のエネルギ蓄え器42の支持もしくは摩擦の減少のために、図2および図3に示す構成でも適当な形式で設けることができる。しかし、図2および図3によれば、その代わりにここでは、滑りシェル(Gleitschale)もしくは滑りシュー(Gleitschuh)94が、そのような転がりシュー84の代わりに第1のエネルギ蓄え器42の低摩擦の支持のために設けられている。
さらに、図2〜図4に示す構成では、第2のエネルギ蓄え装置40のための第2の回動角制限装置92が設けられている。第2の回動角制限装置92により、第2のエネルギ蓄え装置40の最大の回動角もしくは第2のエネルギ蓄え装置40の入力部の、第2のエネルギ蓄え装置40の出力部に対する最大の相対回動角は制限されている。このことはここでは、第2のエネルギ蓄え装置40の最大の回動角が、この第2の回動角制限装置92により制限されており、特にばねである第2のエネルギ蓄え器44が相応に高いトルク負荷時にブロック化してしまうことが阻止されるようになっている。第2の回動角制限装置92は、図2〜図4に示すように、例えば、連行部材50および中間部材46が、特に結合手段56の構成部材であるピンを介して相対回動不能に結合されており、このピンが、第2のエネルギ蓄え装置40の出力部もしくは第3の構成部材62に設けられている長穴を貫いて延在するようになっている。図面には示していないが、第1のエネルギ蓄え装置38のための第1の回動角制限装置が設けられていてもよい。第1の回動角制限装置により、第1のエネルギ蓄え装置38の最大の回動角は、第1の、特にそれぞればねとして構成されるエネルギ蓄え器42のブロック化が阻止されるように制限されている。特に、有利にはそうであるように、第2のエネルギ蓄え器44が真っ直ぐな(圧縮)ばねであり、かつ第1のエネルギ蓄え器42が弧状ばねであるとき、図2〜図4に示すように、第2のエネルギ蓄え装置40のための第2の回動角制限装置だけが設けられていることができる。それというのも、この種の構成では、ブロック化したときに損傷する危険は、真っ直ぐなばねよりも弧状ばねにおけるほうが低く、かつ付加的な第1の回動角制限装置は、部品点数もしくは製作コストを高めることになるからである。
特に有利な構成では、図2〜図4に示す構成では、第1のエネルギ蓄え装置38の回動角が最大の第1の回動角に制限されており、第2のエネルギ蓄え装置40の回動角が最大の第2の回動角に制限されている。その際、第1のエネルギ蓄え装置38は、第1の限界トルクが第1のエネルギ蓄え装置38にかかったときにその最大の第1の回動角に到達し、第2のエネルギ蓄え装置40は、第2の限界トルクが第2のエネルギ蓄え装置40にかかったときにその最大の第2の回動角に到達する。その際、この第1の限界トルクはこの第2の限界トルクより小さい。このことは特に、両エネルギ蓄え装置38,40の適当な調整もしくは両エネルギ蓄え装置38,40のエネルギ蓄え器42,44の適当な調整、場合によってはもしくは特に第1および/または第2の回動角制限装置を含めたこれらの調整によって達成され得る。第1のエネルギ蓄え器42が第1の限界トルク時にブロック化し、その結果、第1のエネルギ蓄え装置38がその最大の第1の回動角に到達し、かつ第2のエネルギ蓄え装置40のための第2の回動角制限装置により、第2のエネルギ蓄え装置40が第2の限界トルク時にその最大の第2の回動角に到達することができる。その際、この最大の第2の回動角は、第2の回動角制限装置が当接位置に到達すると達成される。
こうして、特に部分負荷運転のための良好な調整が達成され得る。
補足すると、第1のエネルギ蓄え装置38もしくは第2のエネルギ蓄え装置40の回動角は、同じことは最大の第1の回動角もしくは最大の第2の回動角にも言えることであるが、厳密に言えば、該当するエネルギ蓄え装置38もしくは40に入出力側でトルク伝達のためにそれぞれ直接隣接する構成部材間の、負荷されていない静止位置に対して与えられている、トーショナルバイブレーションダンパ10の回転軸線36の周方向に関する相対回動角である。特に言及したような形式でそれぞれの最大の第1の回動角もしくは第2の回動角により制限されているこの回動角は、特に、該当するエネルギ蓄え装置38もしくは40のエネルギ蓄え器42もしくは44がエネルギを受容する、もしくは蓄えたエネルギを放出することにより変化し得る。
コンバータケーシング16内のコンバータトーラス12の内外には特にオイルが存在する。
図2〜図4に示す構成では、ピストン80もしくは第2の構成部材もしくは第1のエネルギ蓄え装置38の入力部60が、複数の、周方向で分配配置された舌片86を形成する。舌片86はそれぞれ1つの非自由端88ならびに自由端90を有しており、それぞれの第1のエネルギ蓄え器42の入力側の端面の負荷のために設けられている。非自由端88はその際、回転軸線36の半径方向に関して、これらのそれぞれの舌片86の自由端90の半径方向内側に配置されている。
図2〜図4に示すように、トーショナルバイブレーションダンパ10の軸線36の半径方向に関して、連行部材50の半径方向の広がりは、単数もしくは複数の第1のエネルギ蓄え器42と、単数もしくは複数の第2のエネルギ蓄え器44との半径方向の間隔の中間よりも大きくなっていることができる。
図2〜図4に示す構成ではそれぞれ、伝動装置入力軸66が、そのばね定数cGEWが100Nm/°〜350Nm/°の範囲にあるように構成されている。しかし、提示した値もしくは範囲は、例えば、この開示の別の箇所に記載されるようなものであってもよい。伝動装置入力軸66のばね定数cGEWは、特に、伝動装置入力軸66がその中心の長手方向軸線周りにねじり負荷されたときに生じるばね定数である。
第1の構成部材46を介したトルクの伝達時、第1の構成部材46を介して伝達されるこのトルクの変化に、第1の質量慣性モーメントJが反対作用する。第3の構成部材62を介したトルクの伝達時、第3の構成部材62を介して伝達されるこのトルクの変化に、第2の質量慣性モーメントJが反対作用する。
図2〜図4に示す構成では、それぞれ、自動車パワートレーン2もしくはトルクコンバータ装置1もしくはトーショナルバイブレーションダンパ10が、第1のエネルギ蓄え装置38のばね定数c[単位Nm/rad]と第2のエネルギ蓄え装置40のばね定数c[単位Nm/rad]の和(c+c)と、第1の質量慣性モーメントJ[単位kg]から形成される商が、14037Nm/(radkg)より大きいか等しく、かつ49348Nm/(radkg)より小さいか等しいように構成されている。つまり、式で表現すれば、14037Nm/(radkg)≦(c+c)/J≦49348Nm/(radkg)である。ただし、cは、第1のエネルギ蓄え装置38のばね定数[単位Nm/rad]であり、cは、第2のエネルギ蓄え装置40のばね定数[単位Nm/rad]であり、Jは、第1の質量慣性モーメント[単位kg]である。しかし、提示した値もしくは範囲は、例えば、この開示の別の箇所に記載されるようなものであってもよい。
さらに、図2〜図4に示す構成では、それぞれ、自動車パワートレーン2もしくはトルクコンバータ装置1もしくはトーショナルバイブレーションダンパ10が、第2のエネルギ蓄え装置40のばね定数c[単位Nm/rad]と伝動装置入力軸66のばね定数cGEW[単位Nm/rad]の和(c+cGEW)と、第2の質量慣性モーメントJ[単位kg]から形成される商が、1403677Nm/(radkg)より大きいか等しく、かつ5614708Nm/(radkg)より小さいか等しいように構成されている。つまり、式で表現すれば、1403677Nm/(radkg)≦(c+cGEW)/J≦5614708Nm/(radkg)である。ただし、cは、第2のエネルギ蓄え装置40のばね定数[単位Nm/rad]であり、cGEWは、伝動装置入力軸66のばね定数[単位Nm/rad]であり、Jは、第2の質量慣性モーメント[単位kg]である。しかし、提示した値もしくは範囲は、例えば、この開示の別の箇所に記載されるようなものであってもよい。
図2〜図4に示す構成では、特に、第1の質量慣性モーメントJが、実質的に以下の構成部材の質量慣性モーメント、すなわち、延長部32を備える外側のタービンシェル26、内側のタービンシェル262、タービンブレードもしくはタービンもしくはタービンホイール24の翼、ケーシング82およびケーシングカバー264を備える連行部材50、第1の構成部材46、単数もしくは複数の第1の結合手段52もしくは54、単数もしくは複数の第2の結合手段56、単数もしくは複数の滑りシェル94もしくは転がりシュー84、場合によっては持ち分に応じて弧状ばね42、場合によっては持ち分に応じて圧縮ばね44、場合によっては持ち分に応じてオイルもしくは単数もしくは複数の弧状ばね通路内にあるオイル、ならびに場合によっては持ち分に応じてオイルもしくはタービンに関するもしくはタービン内にあるオイルの質量慣性モーメントからなることができる。その際、質量慣性モーメントは特に回転軸線36に関する。
さらに、図2〜図4に示す構成では、特に、第2の質量慣性モーメントJが、実質的に以下の構成部材の質量慣性モーメント、すなわち、フランジもしくは第3の構成部材62、フランジ62と一体的に形成されていてもよいボス64、場合によっては持ち分に応じて伝動装置入力軸66、場合によっては持ち分に応じて圧縮ばね44、場合によっては適切なヒステリシスのための図示しない皿ばね、場合によっては軸リテーナリングおよび/またはシールエレメントの質量慣性モーメントからなることができる。
図5は、一例としての本発明による自動車パワートレーン2の一部もしくは図2または図3または図4に示した構成を備える図1に示した構成の、コンバータロックアップクラッチが閉鎖されている状態のばね・(回転)質量・等価回路図を示す。
この系は、特に理想的に見て、第1のエンジン側の(回転)質量266と、クラッチ268と、第1のばね272の入力側でクラッチ268と第1のばね272との間に接続される(第2の)(回転)質量270と、既に言及した第1のばね272と、第1のばね272と第2のばね276との間に接続される(第3の)(回転)質量274と、既に言及した第2のばね276と、第2のばね276と第3のばね280との間に接続される(第4の)(回転)質量278と、既に言及した第3のばね280との直列接続と見なされ得る。
その際、第1のばね272と、(第3の)(回転)質量274と、第2のばね276と、(第4の)(回転)質量278と、(第3の)ばね280との直列接続により形成される区分は、特に理想的に見て、第1のエネルギ蓄え装置38、第1のエネルギ蓄え装置38と第2のエネルギ蓄え装置40との接続、第2のエネルギ蓄え装置40、第2のエネルギ蓄え装置40と伝動装置入力軸66との接続ならびに伝動装置入力軸66のためのばね・(回転)質量・等価回路図を形成する。
以下、さらに、一部は繰り返しとなるが、前に図面を参照しながら説明した一例としての本発明による構成の例示的な変化形もしくは少なくとも本発明の変化形において提供されていることができるもしくは提供されている利点および効果について述べる。
しばしば、僅かなまたはそれどころか最小の燃料消費もしくはCO排出を達成するために、ロックアップクラッチが完全に閉鎖されたときの、良好なまたはそれどころか最良の絶縁特性が要求される。その際、望ましくは、この課題が、内燃機関が主に運転される確定された部分負荷領域内で達成される。良好な騒音快適性および振動快適性のために必要な絶縁は、稀に発生する高い負荷時および全負荷時、付加的にスリップするロックアップクラッチにより達成され得る。
トーションダンパもしくはエネルギ蓄え装置38,40を備えるトルクコンバータ装置1もしくはトルクコンバータ1は、車両のエンジン250およびパワートレーン2と共にねじり振動系をなす。このねじり振動系の固有形は、内燃機関250の回転均等性のために励起される。系の各固有形は所属の固有振動数を有する。この固有振動数が内燃機関250の回転周波数と重畳すると、系は共振状態で、すなわち最大の振幅で振動する。しばしば、高い振幅は回避されるのが合理的である。それというのも、高い振幅は、好ましくない振動および騒音として認識可能となり得るからである。系の固有振動数は、系内のねじり剛性および回転質量に依存する。それゆえ、ばね案内する部材は特に、一方では、トーションダンパもしくはエネルギ蓄え装置38,40間に大きな質量が生じるもしくは大きな質量慣性モーメントが生じるように構成されている。他方、ロックアップクラッチ14とトーションダンパ10との間のばね案内する部材およびトーションダンパと伝動装置入力軸との間のばね案内する部材は、ここではできるだけ小さな質量が生じるように構成されている。これにより、系の固有振動数は、内燃機関250の運転領域で僅かに励起される。ダンパの支持に基づく絶縁は、一次側と二次側との間で行われる(=>高められた質量慣性モーメントに対するタービン)。
ダブルダンパもしくはトーショナルバイブレーションダンパ10の配置により、クラッチの閉鎖時、外側に位置するダンパもしくは第1のエネルギ蓄え装置38ならびに直列に接続された内側に位置するダンパもしくは第2のエネルギ蓄え装置40の低から中の剛性により、改善された絶縁が低回転数時に達成される。
より高い回転数時、高められた摩擦は、外側に位置するダンパもしくは第1のエネルギ蓄え装置38の剛性の上昇に至り得る。このとき、直列に接続された内側に位置するダンパもしくは第2のエネルギ蓄え装置40は、(特に摩擦フリーに)上側の回転数領域におけるより好都合な振動特性に至る。
ダブルダンパもしくはトーショナルバイブレーションダンパ10の明らかな改善は、特別に部分負荷領域(低トルク)のためにトーションダンパもしくはエネルギ蓄え装置を設計することにより行われる。その結果、この領域で、トーションダンパもしくはエネルギ蓄え装置の極めて低いばね剛性が実現可能である。これにより、弾性的なエレメントからケーシング(シェル)への作用する変向力は僅かになり、さらに、ばねエレメントの質量は僅かになり、これにより(減じられた遠心力により)、ケーシング(シェル)に対する僅かな摩擦を形成する。これにより絶縁は改善される。この手段により、タービンに対するコンバータケーシングの適当なデュアルマスはずみ特性が達成される。
滑り支承もしくは転動体支承(滑りシュー/球循環シューもしくは転がりシュー)の使用により、外側に位置する弾性的なエレメントもしくは第1のエネルギ蓄え器42の摩擦は回転数全域にわたって減じられる。これにより、直列に接続された内側に位置するダンパもしくは第2のエネルギ蓄え装置40との組み合わせで、絶縁のさらなる改善が生じる。
一例としての本発明による自動車パワートレーンの概略図である。 一例としての第1のハイドロダイナミック式のトルクコンバータ装置を備える一例としての本発明による自動車パワートレーンの一区分を示す図である。 一例としての第2のハイドロダイナミック式のトルクコンバータ装置を備える一例としての本発明による自動車パワートレーンの一区分を示す図である。 一例としての第3のハイドロダイナミック式のトルクコンバータ装置を備える一例としての本発明による自動車パワートレーンの一区分を示す図である。 コンバータロックアップクラッチが閉鎖されている状態の、一例としての本発明による自動車パワートレーンの一区分のばね・(回転)質量・等価回路図を示す図である。
符号の説明
1 ハイドロダイナミック式のトルクコンバータ装置
2 自動車パワートレーン
10 トーショナルバイブレーションダンパ
12 コンバータトーラス
14 コンバータロックアップクラッチ
16 コンバータケーシング
18 駆動軸、例えば内燃機関のエンジン出力軸
20 ポンプもしくはポンプホイール
22 ガイドホイール
24 タービンもしくはタービンホイール
26 外側のタービンシェル
28 トーラス内部
30 26の壁区分
32 26の30に設けられた延長部
34 32の真っ直ぐな区分もしくは32の円環形の区分
36 10の回転軸線
38 第1のエネルギ蓄え装置
40 第2のエネルギ蓄え装置
42 第1のエネルギ蓄え器
44 第2のエネルギ蓄え器
46 10の第1の構成部材
48 負荷伝達区間
50 連行部材
52 48内の32と50との間の結合手段もしくは溶接結合部
54 48内の32と50との間の結合手段もしくはピンもしくはリベット結合部
56 48内の50と46との間の結合手段もしくはピンもしくはリベット結合部
60 第2の構成部材
62 第3の構成部材
64 ボス
66 出力軸、伝動装置入力軸
68 支持区分
72 14の第1のプレートキャリア
74 14の第1のプレート
76 14の第2のプレートキャリア
78 14の第2のプレート
79 14のプレートセット
80 14の操作のためのピストン
81 14の摩擦ライニング
82 ケーシング
84 転がりシュー
86 舌片
88 82の非自由端
90 82の自由端
92 40の第2の回動角制限装置
94 滑りシュー
250 内燃機関、4気筒エンジン
252 250のシリンダ
254 伝動装置
256 伝動装置出力軸
258 ディファレンシャル
260 駆動車軸
262 内側のタービンシェル
264 カバー
266 エンジン側の(回転質量)、第1の(回転)質量
268 クラッチ
270 接続の(回転)質量、第2の(回転)質量
272 第1のばね
274 272と276との間の接続の(回転)質量、第3の(回転)質量
276 第2のばね
278 276と280との間の接続の(回転)質量、第4の(回転)質量
280 第3のばね

Claims (7)

  1. 自動車パワートレーンであって、4気筒エンジンとして構成され最大のエンジントルクMmot,maxを有する内燃機関(250)と、エンジン出力軸もしくはクランク軸(18)と、伝動装置入力軸(66)と、前記エンジン出力軸もしくはクランク軸(18)に特に相対回動不能に連結されているコンバータケーシング(16)を備えるトルクコンバータ装置(1)とを有しており、該トルクコンバータ装置(1)が、コンバータロックアップクラッチ(14)と、トーショナルバイブレーションダンパ(10)と、ポンプホイール(20)、タービンホイール(24)ならびにガイドホイール(22)により形成されるコンバータトーラス(12)とを有しており、さらに前記トーショナルバイブレーションダンパ(10)が、単数または複数の第1のエネルギ蓄え器(42)を備える第1のエネルギ蓄え装置(38)と、単数または複数の第2のエネルギ蓄え器(44)を備え前記第1のエネルギ蓄え装置(38)に直列に接続されている第2のエネルギ蓄え装置(40)とを有しており、該第1のエネルギ蓄え装置(38)と該第2のエネルギ蓄え装置(40)との間に、これらの両エネルギ蓄え装置(38,40)に直列に接続される第1の構成部材(46)が設けられており、前記タービンホイール(24)が、前記第1の構成部材(46)に相対回動不能に結合されている外側のタービンシェル(26)を有しており、さらに前記トルクコンバータ装置(1)が、特にトルクコンバータ装置(1)に隣接する伝動装置入力軸(66)に特に相対回動不能に連結され前記第2のエネルギ蓄え装置(40)および前記伝動装置入力軸(66)に直列に接続されている第3の構成部材(62)を有しており、その結果、前記第2のエネルギ蓄え装置(40)から前記第3の構成部材(62)を介してトルクが前記伝動装置入力軸(66)に伝達可能であり、前記第1の構成部材(46)を介したトルクの伝達時に、該第1の構成部材(46)を介して伝達されるトルクの変化に、第1の質量慣性モーメントJが反対作用し、かつ前記第3の構成部材(62)を介したトルクの伝達時に、該第3の構成部材(62)を介して伝達されるトルクの変化に、第2の質量慣性モーメントJが反対作用する形式のものにおいて、
    第1のエネルギ蓄え装置(38)のばね定数c[単位Nm/゜]が、内燃機関(250)の最大のエンジントルクMmot,max[単位Nm]とファクタ0.014[1/゜]の積より大きいか等しく、かつ内燃機関(250)の最大のエンジントルクMmot,max[単位Nm]とファクタ0.068[1/゜]の積より小さいか等しく、かつ
    第2のエネルギ蓄え装置(40)のばね定数c[単位Nm/゜]が、内燃機関(250)の最大のエンジントルクMmot,max[単位Nm]とファクタ0.035[1/゜]の積より大きいか等しく、かつ内燃機関(250)の最大のエンジントルクMmot,max[単位Nm]とファクタ0.158[1/゜]の積より小さいか等しく、かつ
    第1のエネルギ蓄え装置(38)のばね定数c[単位Nm/rad]と第2のエネルギ蓄え装置(40)のばね定数c[単位Nm/rad]の和と、第1の質量慣性モーメントJ[単位kg]から形成される商が、14037Nm/(radkg)より大きいか等しく、かつ49348Nm/(radkg)より小さいか等しく、かつ
    第2のエネルギ蓄え装置(40)のばね定数c[単位1/rad]と伝動装置入力軸(66)のばね定数cGEW[単位1/rad]の和と、第2の質量慣性モーメントJ[単位kg]から形成される商が、1403677Nm/(radkg)より大きいか等しく、かつ5614708Nm/(radkg)より小さいか等しい
    ことを特徴とする、4気筒エンジンを備える自動車パワートレーン。
  2. 前記伝動装置入力軸(66)のばね定数cGEWが、100Nm/゜〜350Nm/゜の範囲にある、請求項1記載の自動車パワートレーン。
  3. 前記第1のエネルギ蓄え装置(38)が、前記トーショナルバイブレーションダンパ(10)の回転軸線(36)の周方向に関して、周方向に間隔を置いて並列に接続される複数の第1のエネルギ蓄え器(42)を有する、請求項1または2記載の自動車パワートレーン。
  4. 前記第1のエネルギ蓄え器(42)が、コイルばねもしくは弧状ばねである、請求項1から3までのいずれか1項記載の自動車パワートレーン。
  5. 前記第2のエネルギ蓄え装置(40)が、前記トーショナルバイブレーションダンパ(10)の回転軸線(36)の周方向に関して、周方向に間隔を置いて並列に接続される複数の第2のエネルギ蓄え器(44)を有する、請求項1から4までのいずれか1項記載の自動車パワートレーン。
  6. 前記第2のエネルギ蓄え器(44)が、コイルばねもしくは真っ直ぐなばねもしくは圧縮ばねである、請求項1から5までのいずれか1項記載の自動車パワートレーン。
  7. 自動車パワートレーンであって、4気筒エンジンとして構成され最大のエンジントルクMmot,maxを有する内燃機関(250)と、トルクコンバータ装置(1)とを有しており、該トルクコンバータ装置(1)が、コンバータロックアップクラッチ(14)と、トーショナルバイブレーションダンパ(10)と、ポンプホイール(20)、タービンホイール(24)ならびにガイドホイール(22)により形成されるコンバータトーラス(12)とを有しており、さらに前記トーショナルバイブレーションダンパ(10)が、単数または複数の第1のエネルギ蓄え器(42)を備える第1のエネルギ蓄え装置(38)と、単数または複数の第2のエネルギ蓄え器(44)を備え前記第1のエネルギ蓄え装置(38)に直列に接続されている第2のエネルギ蓄え装置(40)とを有しており、該第1のエネルギ蓄え装置(38)と該第2のエネルギ蓄え装置(40)との間に、これらの両エネルギ蓄え装置(38,40)に直列に接続され特に金属薄板として構成される第1の構成部材(46)が設けられており、前記タービンホイール(24)が、外側のタービンシェル(26)を有しており、該外側のタービンシェル(26)が、前記第1の構成部材(46)に、特に金属薄板として構成される連行部材(50)を介して相対回動不能に結合されている形式の、特に請求項1から6までのいずれか1項記載の自動車パワートレーンにおいて、
    第1の構成部材(46)および/または連行部材(50)が、付加質量の形成のためにもしくはエネルギ蓄え装置(38,40)間で作用する大きな質量慣性モーメントJの形成のために、第1の構成部材(46)および/または連行部材(50)を介したトルク伝達のために必要であるよりも、明らかに肉厚に、特に少なくとも2倍肉厚に、または少なくとも3倍肉厚に、または少なくとも5倍肉厚に、または少なくとも10倍肉厚に、または少なくとも20倍肉厚に、かつ/または明らかに剛性的に、特に少なくとも2倍剛性的に、または少なくとも3倍剛性的に、または少なくとも5倍剛性的に、または少なくとも10倍剛性的に、または少なくとも20倍剛性的に形成されている
    ことを特徴とする、4気筒エンジンを備える自動車パワートレーン。
JP2008539224A 2005-11-10 2006-10-16 4気筒エンジンを備える自動車パワートレーン Pending JP2009515113A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005053605 2005-11-10
PCT/DE2006/001816 WO2007054050A1 (de) 2005-11-10 2006-10-16 Kraftfahrzeug-antriebsstrang mit einem 4-zylinder-motor

Publications (1)

Publication Number Publication Date
JP2009515113A true JP2009515113A (ja) 2009-04-09

Family

ID=37775327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008539224A Pending JP2009515113A (ja) 2005-11-10 2006-10-16 4気筒エンジンを備える自動車パワートレーン

Country Status (7)

Country Link
US (1) US20090156317A1 (ja)
EP (1) EP1948974A1 (ja)
JP (1) JP2009515113A (ja)
KR (1) KR20080065648A (ja)
CN (1) CN101305211A (ja)
DE (1) DE112006002801A5 (ja)
WO (1) WO2007054050A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038059A1 (ja) * 2021-09-07 2023-03-16 株式会社アイシン 発進装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188167B2 (en) 2006-02-22 2015-11-17 Schaeffler Technologies AG & Co. KG Clutch housing with lever spring retention slots and method of installing a lever spring
WO2008040282A1 (de) * 2006-09-28 2008-04-10 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebsstrang
DE102008054413B4 (de) * 2008-12-09 2021-01-14 Zf Friedrichshafen Ag Torsionsschwingungsdämpferanordnung
SG10201605780QA (en) 2009-03-19 2016-09-29 Emd Millipore Corp Removal of microorganisms from fluid samples using nanofiber filtration media
US8435123B2 (en) * 2010-02-05 2013-05-07 GM Global Technology Operations LLC Vibration absorber
EP2603611B1 (en) 2010-08-10 2019-12-18 EMD Millipore Corporation Method for retrovirus removal
CN102575744B (zh) * 2010-10-15 2014-01-22 丰田自动车株式会社 振动衰减装置
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
US8828920B2 (en) 2011-06-23 2014-09-09 The Procter & Gamble Company Product for pre-treatment and laundering of stained fabric
DE102012206244A1 (de) * 2012-04-17 2013-10-31 Zf Friedrichshafen Ag ZMS ein- und zweireihig mit mehreren sekundären Abtrieben
US9995380B2 (en) 2013-05-27 2018-06-12 Schaeffler Technologies AG & Co. KG Hydrodynamic starting element having a pump wheel which can be rotated relative to a housing
KR20170113638A (ko) 2015-04-17 2017-10-12 이엠디 밀리포어 코포레이션 접선방향 유동 여과 모드에서 작동되는 나노섬유 한외여과막을 사용하여 샘플에서 목적하는 생물학적 물질을 정제하는 방법
US9481360B1 (en) * 2015-06-01 2016-11-01 Ford Global Technologies, Llc Vehicle driveline damper oscillation control
FR3039869B1 (fr) * 2015-08-03 2017-07-28 Valeo Embrayages Procede de dimensionnement d'un amortisseur d'oscillations de torsion d'un groupe motopropulseur de vehicule

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504847B4 (de) * 1994-02-23 2006-04-27 Luk Gs Verwaltungs Kg Überwachungsverfahren für ein Drehmoment-Übertragungssystem eines Kraftfahrzeugs
EP0732527B1 (en) * 1995-03-17 2002-06-12 Toyota Jidosha Kabushiki Kaisha Hydrokinetic torque converter with lock-up clutch and internal vibration damping
DE10362274C5 (de) 2003-04-05 2018-03-01 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
JP2004308904A (ja) * 2003-04-05 2004-11-04 Zf Sachs Ag 捩り振動ダンパ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038059A1 (ja) * 2021-09-07 2023-03-16 株式会社アイシン 発進装置

Also Published As

Publication number Publication date
US20090156317A1 (en) 2009-06-18
EP1948974A1 (de) 2008-07-30
CN101305211A (zh) 2008-11-12
WO2007054050A1 (de) 2007-05-18
KR20080065648A (ko) 2008-07-14
DE112006002801A5 (de) 2008-09-04

Similar Documents

Publication Publication Date Title
JP2009515113A (ja) 4気筒エンジンを備える自動車パワートレーン
JP2009515115A (ja) 8気筒エンジンを備える自動車パワートレーン
US8479901B2 (en) Hydrodynamic torque converter
JP5595390B2 (ja) 流体力学式のトルクコンバータ
US8839924B2 (en) Fluid transmission apparatus
JP2009515119A (ja) 3気筒エンジンを備える自動車パワートレーン
JP5283095B2 (ja) 遠心力振り子を備えるトーショナルバイブレーションダンパ
US8135525B2 (en) Torque converter with turbine mass absorber
US7648009B2 (en) Torsional vibration damper
JP2009515121A (ja) トーショナルバイブレーションダンパならびに自動車パワートレーンのためのハイドロダイナミック式のトルクコンバータ装置
US8042667B2 (en) Hydrodynamic torque converter device for an automotive drive train
US9797470B2 (en) Torsional vibration damper and torsional vibration damping method
US8579093B2 (en) Hydrodynamic torque converter
US20090107790A1 (en) Hydrodynamic Torque Converter Device for an Automotive Drive Train
US20150276013A1 (en) Damper
JP2009515118A (ja) 5気筒エンジンを備える自動車パワートレーン
US8020680B2 (en) Hydrodynamic torque converter device for an automotive drive train
US20080006502A1 (en) Clutch arrangement for the drive train of a vehicle
JP2009515110A (ja) 6気筒エンジンを備える自動車パワートレーン
US20180010675A1 (en) Damper of torque converter for vehicle
US20120329563A1 (en) Force transmission flange for a torque transmission device or a damper device, and torque transmission device or damper device
CN114599899A (zh) 扭矩传递装置和传动系
JPH11141617A (ja) ダンパ装置
US20180320755A1 (en) Damper device
JP2022541226A (ja) 車両トルクコンバータ