JP2009302140A - Silicon epitaxial wafer, and manufacturing method therefor - Google Patents

Silicon epitaxial wafer, and manufacturing method therefor Download PDF

Info

Publication number
JP2009302140A
JP2009302140A JP2008151986A JP2008151986A JP2009302140A JP 2009302140 A JP2009302140 A JP 2009302140A JP 2008151986 A JP2008151986 A JP 2008151986A JP 2008151986 A JP2008151986 A JP 2008151986A JP 2009302140 A JP2009302140 A JP 2009302140A
Authority
JP
Japan
Prior art keywords
epitaxial layer
plane
less
measured
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008151986A
Other languages
Japanese (ja)
Inventor
Masayuki Ishibashi
昌幸 石橋
Toshinobu Miura
俊信 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008151986A priority Critical patent/JP2009302140A/en
Publication of JP2009302140A publication Critical patent/JP2009302140A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wafer excelling in haze level, even if the tilt angle of a ä110} plane is small. <P>SOLUTION: This manufacturing method of a silicon epitaxial wafer includes processes of: using a ä110} plane as a principal surface, and growing an epitaxial layer on a silicon single-crystal substrate in which the off-angle of the ä110} plane is smaller than 1°; and treating a surface of the epitaxial layer by a warm ammonium fluoride at 30-90°C to allow a light point defect LPD to be measured without influence due to haze, wherein the haze level (measured in an sp2, DWO mode) of the surface of the epitaxial layer is ≤0.18 ppm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリコンエピタキシャルウェーハ及びその製造方法に関するものである。   The present invention relates to a silicon epitaxial wafer and a method for manufacturing the same.

{110}面を主面とするシリコンウェーハを用いると、pMOSトランジスターにおいてキャリア移動度が{100}面を主面とするウェーハよりも高いことから、pMOSトランジスターを高速化できることが知られている。 It is known that when a silicon wafer having a {110} plane as a main surface is used, the pMOS transistor has a higher carrier mobility than a wafer having a {100} plane as a main surface, so that the speed of the pMOS transistor can be increased.

一方、エピタキシャルウェーハは、エピタキシャル層の欠陥が極めてすくないことから高性能デバイスの素材として用いられている。このため、{110}面を主面としたエピタキシャルウェーハは、MPU等の高性能デバイスの素材として優れた特性を示すことが予想される。 On the other hand, an epitaxial wafer is used as a material for a high-performance device because an epitaxial layer has very few defects. For this reason, an epitaxial wafer having a {110} plane as a main surface is expected to exhibit excellent characteristics as a material for high-performance devices such as MPU.

しかしながら、{110}面を主面としたエピタキシャルウェーハでは、エピタキシャル成長後、表面にヘイズ(Haze)と呼ばれる曇りが発生しやすく、業界で通常用いられているパーティクルカウンターによる輝点欠陥LPD(Light Point Defects)の測定さえ困難になり、ウェーハの品質保証ができない場合も生じる。 However, in an epitaxial wafer having a {110} plane as a main surface, after the epitaxial growth, fogging called haze is likely to occur on the surface, and bright spot defects LPD (Light Point Defects) by a particle counter usually used in the industry. ) Measurement becomes difficult, and wafer quality cannot be guaranteed.

この対策として、<100>軸方向へ、0.5度以上3度以下傾斜させたオフアングルを有するシリコン単結晶基板上にエピタキシャル成長させるとヘイズレベルが低下することが知られている(特許文献1)。 As a countermeasure, it is known that the haze level is lowered when epitaxial growth is performed on a silicon single crystal substrate having an off angle inclined by 0.5 degrees or more and 3 degrees or less in the <100> axis direction (Patent Document 1). ).

特開2005−39111号公報Japanese Patent Laid-Open No. 2005-39111

しかしながら、この方法では、{110}面が傾斜しているために、キャリアが傾斜した格子と衝突し、キャリアの移動度が低くなる懸念があり、また表面のヘイズレベルも十分とは言えないレベルであるという問題があった。 However, in this method, since the {110} plane is inclined, there is a concern that the carrier collides with the inclined lattice and the mobility of the carrier is lowered, and the haze level of the surface is not sufficient. There was a problem of being.

本発明が解決しようとする課題は、{110}面の傾斜角度が小さくてもヘイズレベルが良好なウェーハを提供することである。   The problem to be solved by the present invention is to provide a wafer having a good haze level even if the inclination angle of the {110} plane is small.

[1]第1発明に係るシリコンエピタキシャルウェーハの製造方法は、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を30℃〜90℃の温フッ化アンモニウム溶液で処理する工程と、を備えることを特徴とする。
[1] A method for producing a silicon epitaxial wafer according to the first invention includes a step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a main plane and an off angle of the {110} plane of less than 1 degree;
The surface of the epitaxial layer is 30 ° C. to 90 ° C. so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze. And a step of treating with a warm ammonium fluoride solution.

[2]第2発明に係るシリコンエピタキシャルウェーハの製造方法は、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下となるように、前記エピタキシャル層の表面を30℃〜90℃の温フッ化アンモニウム溶液で処理する工程と、を備えることを特徴とする。
[2] A method for producing a silicon epitaxial wafer according to the second invention includes a step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off angle of the {110} plane of less than 1 degree;
The surface of the epitaxial layer is heated to a temperature of 30 ° C. to 90 ° C. so that the mean square root RMS (measured in an area of 10 μm square by an atomic force microscope AFM) of the surface roughness of the epitaxial layer surface is 0.060 nm or less. And a step of treating with an ammonium fluoride solution.

[3]第3発明に係るシリコンエピタキシャルウェーハは、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を30℃〜90℃の温フッ化アンモニウム溶液で処理したことを特徴とする。
[3] A silicon epitaxial wafer according to the third aspect of the present invention has an epitaxial layer grown on a silicon single crystal substrate having a {110} plane as a principal plane and an off angle of the {110} plane of less than 1 degree.
The epitaxial layer surface has a haze level (measured in SP2, DWO mode) of 0.18 ppm or less, and the surface of the epitaxial layer is heated to 30 ° C. to 90 ° C. so that the bright spot defect LPD can be measured without the influence of haze. It is characterized by being treated with an ammonium fluoride solution.

[4]第4発明に係るシリコンエピタキシャルウェーハは、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を30℃〜90℃の温フッ化アンモニウム溶液で処理したことを特徴とする。
[4] The silicon epitaxial wafer according to the fourth aspect of the present invention has an epitaxial layer grown on a silicon single crystal substrate having a {110} plane as a principal plane and an off angle of the {110} plane of less than 1 degree.
The surface of the epitaxial layer is heated to a temperature of 30 ° C. to 90 ° C. so that the mean square root RMS (measured in a 10 μm square region by an atomic force microscope AFM) of the surface roughness of the epitaxial layer surface is 0.060 nm or less. It is characterized by being treated with an ammonium fluoride solution.

[5]第5発明に係るシリコンエピタキシャルウェーハの製造方法は、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を酸化したのち、その酸化膜をフッ酸および塩酸で除去する工程と、を備えたことを特徴とする。
[5] A method for producing a silicon epitaxial wafer according to a fifth aspect of the present invention includes a step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off angle of the {110} plane of less than 1 degree;
After oxidizing the surface of the epitaxial layer so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze, the oxidation is performed. And a step of removing the membrane with hydrofluoric acid and hydrochloric acid.

[6]第6発明に係るシリコンエピタキシャルウェーハの製造方法は、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を酸化したのち、その酸化膜をフッ酸および塩酸で除去する工程と、を備えることを特徴とする。
[6] A method for producing a silicon epitaxial wafer according to a sixth aspect of the present invention includes a step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a main plane and an off angle of the {110} plane of less than 1 degree;
After oxidizing the surface of the epitaxial layer so that the mean square root RMS of the surface roughness of the epitaxial layer surface (measured in an area of 10 μm square by an atomic force microscope AFM) is 0.060 nm or less, the oxide film Removing with hydrofluoric acid and hydrochloric acid.

[7]第7発明に係るシリコンエピタキシャルウェーハは、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を酸化したのち、その酸化膜をフッ酸および塩酸で除去したことを特徴とする。
[7] A silicon epitaxial wafer according to the seventh aspect of the present invention, after growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree,
After oxidizing the surface of the epitaxial layer so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze, the oxidation is performed. The membrane is removed with hydrofluoric acid and hydrochloric acid.

[8]第8発明に係るシリコンエピタキシャルウェーハは、シリコン単結晶の{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を酸化したのち、その酸化膜をフッ酸および塩酸で除去したことを特徴とする。
[8] A silicon epitaxial wafer according to the eighth invention is obtained by growing an epitaxial layer on a silicon single crystal substrate having a {110} plane of the silicon single crystal as a main surface and an off angle of the {110} plane of less than 1 degree. ,
After oxidizing the surface of the epitaxial layer so that the mean square root RMS of the surface roughness of the epitaxial layer surface (measured in an area of 10 μm square by an atomic force microscope AFM) is 0.060 nm or less, the oxide film Is removed with hydrofluoric acid and hydrochloric acid.

[9]第9発明に係るシリコンエピタキシャルウェーハの製造方法は、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を900℃越の温度で熱処理する工程と、を備えることを特徴とする。
[9] A method for producing a silicon epitaxial wafer according to the ninth invention includes a step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off angle of the {110} plane of less than 1 degree;
The surface of the epitaxial layer is at a temperature exceeding 900 ° C. so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze. And a heat treatment step.

[10]第10発明に係るシリコンエピタキシャルウェーハの製造方法は、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を900℃越の温度で熱処理する工程と、を備えることを特徴とする。
[10] A method for producing a silicon epitaxial wafer according to a tenth aspect of the present invention includes a step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off angle of the {110} plane of less than 1 degree;
The surface of the epitaxial layer is heat-treated at a temperature exceeding 900 ° C. so that the mean square root RMS (measured in an area of 10 μm square by an atomic force microscope AFM) of the surface roughness of the epitaxial layer is 0.060 nm or less. And a step of performing.

[11]第11発明に係るシリコンエピタキシャルウェーハは、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を900℃越の温度で熱処理したことを特徴とする。
[11] A silicon epitaxial wafer according to an eleventh aspect of the present invention, after growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off angle of the {110} plane of less than 1 degree,
The surface of the epitaxial layer is at a temperature exceeding 900 ° C. so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze. It is characterized by heat treatment.

[12]第12発明に係るシリコンエピタキシャルウェーハは、{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を900℃越の温度で熱処理したことを特徴とする。
[12] A silicon epitaxial wafer according to a twelfth aspect of the present invention is obtained by growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree.
The surface of the epitaxial layer is heat-treated at a temperature exceeding 900 ° C. so that the mean square root RMS (measured in an area of 10 μm square by an atomic force microscope AFM) of the surface roughness of the epitaxial layer is 0.060 nm or less. It is characterized by that.

本発明によれば、{110}面の傾斜角度が小さくヘイズレベルも良好なウェーハを得ることができる。   According to the present invention, a wafer having a small inclination angle of {110} plane and a good haze level can be obtained.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

《第1実施形態》
{110}面の傾斜角度が小さく、かつ従来技術よりもヘイズレベルが良好なウェーハを提供するという目的を、エピタキシャル成長を終えたウェーハに温フッ化アンモニウム溶液処理を行うことで実現した。
<< First Embodiment >>
The objective of providing a wafer with a small {110} plane tilt angle and a better haze level than the prior art was realized by performing a warm ammonium fluoride solution treatment on the epitaxially grown wafer.

実施例1
CZ法により、主軸方位が<110>で、直径305mmのp型シリコン単結晶インゴットを製造した。このインゴットを、直径300mmに外周研削後ノッチ加工し、電気比抵5〜10mΩcmのブロックを複数切り出した。このブロックを、ワイヤーソーを用い、{110}面の傾きが表1の傾斜方位<100>,<111>,<110>という3方位と、それぞれの傾斜方位に対するオフアングル0度〜10度となるようにスライスした。
Example 1 :
A p-type silicon single crystal ingot having a main axis orientation of <110> and a diameter of 305 mm was manufactured by the CZ method. This ingot was notched after grinding the outer periphery to a diameter of 300 mm, and a plurality of blocks having an electric specific resistance of 5 to 10 mΩcm were cut out. Using this wire, using a wire saw, the inclination of the {110} plane is the three orientations <100>, <111>, <110> in Table 1, and off-angles of 0 to 10 degrees with respect to the respective inclination orientations. Sliced to be.

このウェーハを、面取、ラッピング、仕上げ面取り、エッチング、両面研磨、テープ面取り、エッジの鏡面研磨、表面の片面研磨の順に加工して鏡面研磨ウェーハを得た。なお、工程間の洗浄処理の記述は省略するが、通常のウェーハ加工プロセスと同様に洗浄処理した。 This wafer was processed in the order of chamfering, lapping, finishing chamfering, etching, double-side polishing, tape chamfering, edge mirror polishing, and single-side polishing of the surface to obtain a mirror-polished wafer. In addition, although description of the cleaning process between processes was abbreviate | omitted, it cleaned like the normal wafer processing process.

その後、枚葉式エピタキシャル炉を用い厚み5μmのエピタキシャル膜を成長させ、30℃〜90℃の温フッ化アンモニウム溶液で処理を行った。 Thereafter, an epitaxial film having a thickness of 5 μm was grown using a single wafer type epitaxial furnace and treated with a warm ammonium fluoride solution at 30 ° C. to 90 ° C.

得られたエピタキシャルウェーハを、ケーエルエー・テンコール株式会社製の商品名:パターンなしウェーハ表面異物検査装置(モデル: Surfscan SP2)を用いて、DWOモード(Dark Field Wide Obliqueモード:暗視野・ワイド・斜め入射モード)で、エピタキシャル層表面のHazeレベルを検査した。また、AFM(原子間力顕微鏡)をもちいて、測定範囲10μm×10μmで、表面粗さを測定し、表面粗さのRMS(Root Mean Square:平均自乗根)を算出した。この結果を、表1に示す。 The obtained epitaxial wafer was subjected to DWO mode (Dark Field Wide Oblique mode: dark field, wide, oblique incidence) using a product name manufactured by KLA-Tencor Co., Ltd. Mode), the Haze level of the epitaxial layer surface was examined. Further, using AFM (atomic force microscope), the surface roughness was measured in a measurement range of 10 μm × 10 μm, and the RMS (Root Mean Square) of the surface roughness was calculated. The results are shown in Table 1.

Figure 2009302140
本実施形態のシリコンエピタキシャルウェーハは、SP2,DWOモードで測定したヘイズレベルが良好で、45nm以上の輝点欠陥LPDがヘイズの影響なく測定できるため、パーティクルカウンターによる本来のLPDの測定が可能になり、ウェーハの品質管理が確実にできるようになる。
Figure 2009302140
The silicon epitaxial wafer of this embodiment has a good haze level measured in the SP2 and DWO modes, and a bright spot defect LPD of 45 nm or more can be measured without the influence of haze, so that the original LPD can be measured by a particle counter. , Wafer quality control can be reliably performed.

また、オフアングルが小さく、キャリア移動度の面でも良好である。さらに温フッ化アンモニウム溶液を使用するため、通常のプロセスに用いられる洗浄槽を利用することもできる。 In addition, the off-angle is small and the carrier mobility is good. Further, since a warm ammonium fluoride solution is used, a cleaning tank used in a normal process can be used.

《第2実施形態》
{110}面の傾斜角度が小さく、かつ従来技術よりもヘイズレベルが良好なウェーハを提供するという目的を、エピタキシャル成長を終えたウェーハを酸化し、その酸化膜をHF:HCl=1:18〜20の混合比の酸で除去することで実現した。
<< Second Embodiment >>
For the purpose of providing a wafer having a small inclination angle of the {110} plane and a better haze level than the prior art, the wafer after epitaxial growth is oxidized, and the oxide film is HF: HCl = 1: 18-20. This was realized by removing with an acid having a mixing ratio of.

実施例2
CZ法により、主軸方位が<110>で、直径305mmのp型シリコン単結晶インゴットを製造した。このインゴットを、直径300mmに外周研削後ノッチ加工し、電気比抵5〜10mΩcmのブロックを複数切り出した。このブロックを、ワイヤーソーを用い、{110}面の傾きが表2の傾斜方位<100>,<111>,<110>という3方位と、それぞれの傾斜方位に対するオフアングル0度〜10度となるようにスライスした。
Example 2 :
A p-type silicon single crystal ingot having a main axis orientation of <110> and a diameter of 305 mm was manufactured by the CZ method. This ingot was notched after grinding the outer periphery to a diameter of 300 mm, and a plurality of blocks having an electric specific resistance of 5 to 10 mΩcm were cut out. Using this wire, using a wire saw, the inclination of the {110} plane has three orientations <100>, <111>, <110> in Table 2 and off-angles of 0 to 10 degrees with respect to the respective orientations. Sliced to be.

このウェーハを、面取、ラッピング、仕上げ面取り、エッチング、両面研磨、テープ面取り、エッジの鏡面研磨、表面の片面研磨の順に加工して鏡面研磨ウェーハを得た。なお、工程間の洗浄処理の記述は省略するが、通常のウェーハ加工プロセスと同様に洗浄処理した。 This wafer was processed in the order of chamfering, lapping, finishing chamfering, etching, double-side polishing, tape chamfering, edge mirror polishing, and single-side polishing of the surface to obtain a mirror-polished wafer. In addition, although description of the cleaning process between processes was abbreviate | omitted, it cleaned like the normal wafer processing process.

その後、枚葉式エピタキシャル炉を用い厚み5μmのエピタキシャル膜を成長させ、酸化し、その酸化膜をHF:HCl=1:18〜20の混合比の酸で除去した。 Thereafter, an epitaxial film having a thickness of 5 μm was grown using a single-wafer epitaxial furnace and oxidized, and the oxide film was removed with an acid having a mixing ratio of HF: HCl = 1: 18-20.

得られたエピタキシャルウェーハを、ケーエルエー・テンコール株式会社製の商品名:パターンなしウェーハ表面異物検査装置(モデル: Surfscan SP2)を用いて、DWOモード(Dark Field Wide Obliqueモード:暗視野・ワイド・斜め入射モード)で、エピタキシャル層表面のHazeレベルを検査した。また、AFM(原子間力顕微鏡)をもちいて、測定範囲10μm×10μmで、表面粗さを測定し、表面粗さのRMS(Root Mean Square:平均自乗根)を算出した。この結果を表2に示す。   The obtained epitaxial wafer was subjected to DWO mode (Dark Field Wide Oblique mode: dark field, wide, oblique incidence) using a product name manufactured by KLA-Tencor Co., Ltd. Mode), the Haze level of the epitaxial layer surface was examined. Further, using AFM (atomic force microscope), the surface roughness was measured in a measurement range of 10 μm × 10 μm, and the RMS (Root Mean Square) of the surface roughness was calculated. The results are shown in Table 2.

Figure 2009302140
本実施形態のシリコンエピタキシャルウェーハは、SP2,DWOモードで測定したヘイズレベルが良好で、45nm以上の輝点欠陥LPDがヘイズの影響なく測定できるため、パーティクルカウンターによる本来のLPDの測定が可能になり、ウェーハの品質管理が確実にできるようになる。
Figure 2009302140
The silicon epitaxial wafer of this embodiment has a good haze level measured in the SP2 and DWO modes, and a bright spot defect LPD of 45 nm or more can be measured without the influence of haze, so that the original LPD can be measured by a particle counter. , Wafer quality control can be reliably performed.

また、オフアングルが小さく、キャリア移動度の面でも良好である。また酸化膜はどのような酸化膜でもよく、オゾンによるもの、ウェーハ工程で通常使用される酸化炉等も活用できる。 In addition, the off-angle is small and the carrier mobility is good. The oxide film may be any oxide film, such as ozone, or an oxidation furnace ordinarily used in a wafer process.

《第3実施形態》
{110}面の傾斜角度が小さく、かつ従来技術よりもヘイズレベルが良好なウェーハを提供するという目的を、エピタキシャル成長を終えたウェーハに熱処理を行うことで実現した。
<< Third Embodiment >>
The object of providing a wafer having a small {110} plane inclination angle and a better haze level than the prior art has been realized by performing heat treatment on the epitaxially grown wafer.

実施例3
CZ法により、主軸方位が<110>で、直径305mmのp型シリコン単結晶インゴットを製造した。このインゴットを、直径300mmに外周研削後ノッチ加工し、電気比抵5〜10mΩcmのブロックを複数切り出した。このブロックを、ワイヤーソーを用い、{110}面の傾きが、上述した実施例1の表1の傾斜方位<100>,<111>,<110>という3方位と、それぞれの傾斜方位に対するオフアングル0度〜10度となるようにスライスした。
Example 3 :
A p-type silicon single crystal ingot having a main axis orientation of <110> and a diameter of 305 mm was manufactured by the CZ method. This ingot was notched after grinding the outer periphery to a diameter of 300 mm, and a plurality of blocks having an electric specific resistance of 5 to 10 mΩcm were cut out. Using this block, a wire saw is used, and the inclination of the {110} plane is off with respect to the three orientations <100>, <111>, <110> in Table 1 of Example 1 described above and the respective orientations. The slice was sliced so that the angle was 0 to 10 degrees.

このウェーハを、面取、ラッピング、仕上げ面取り、エッチング、両面研磨、テープ面取り、エッジの鏡面研磨、表面の片面研磨の順に加工して鏡面研磨ウェーハを得た。なお、工程間の洗浄処理の記述は省略するが、通常のウェーハ加工プロセスと同様に洗浄処理した。 This wafer was processed in the order of chamfering, lapping, finishing chamfering, etching, double-side polishing, tape chamfering, edge mirror polishing, and single-side polishing of the surface to obtain a mirror-polished wafer. In addition, although description of the cleaning process between processes was abbreviate | omitted, it cleaned like the normal wafer processing process.

その後、枚葉式エピタキシャル炉を用い厚み5μmのエピタキシャル膜を成長させ、900℃を越える温度にて熱処理を行った。 Thereafter, an epitaxial film having a thickness of 5 μm was grown using a single wafer epitaxial furnace, and heat treatment was performed at a temperature exceeding 900 ° C.

得られたエピタキシャルウェーハを、ケーエルエー・テンコール株式会社製の商品名:パターンなしウェーハ表面異物検査装置(モデル: Surfscan SP2)を用いて、DWOモード(Dark Field Wide Obliqueモード:暗視野・ワイド・斜め入射モード)で、エピタキシャル層表面のHazeレベルを検査した。また、AFM(原子間力顕微鏡)をもちいて、測定範囲10μm×10μmで、表面粗さを測定し、表面粗さのRMS(Root Mean Square:平均自乗根)を算出した。この結果を図1の上に示す。なお、比較例として上記熱処理を行わなかったエピタキシャルウェーハの表面粗さのRMSを下図に示す。   The obtained epitaxial wafer was subjected to DWO mode (Dark Field Wide Oblique mode: dark field, wide, oblique incidence) using a product name manufactured by KLA-Tencor Co., Ltd. Mode), the Haze level of the epitaxial layer surface was examined. Further, using AFM (atomic force microscope), the surface roughness was measured in a measurement range of 10 μm × 10 μm, and the RMS (Root Mean Square) of the surface roughness was calculated. The result is shown in the upper part of FIG. In addition, the RMS of the surface roughness of the epitaxial wafer which did not perform the said heat processing as a comparative example is shown in the following figure.

本実施形態のシリコンエピタキシャルウェーハは、SP2,DWOモードで測定したヘイズレベルが良好で、45nm以上の輝点欠陥LPDがヘイズの影響なく測定できるため、パーティクルカウンターによる本来のLPDの測定が可能になり、ウェーハの品質管理が確実にできるようになる。 The silicon epitaxial wafer of this embodiment has a good haze level measured in the SP2 and DWO modes, and a bright spot defect LPD of 45 nm or more can be measured without the influence of haze, so that the original LPD can be measured by a particle counter. , Wafer quality control can be reliably performed.

また、オフアングルが小さく、キャリア移動度の面でも良好である。 In addition, the off-angle is small and the carrier mobility is good.

また、熱処理はエピタキシャル成長を終えた成長装置(リアクター)内で行うなら工程への適用も容易である。また表面の熱処理であるので、ウェーハ表面を熱処理するフラッシュランプアニールFLA(FLASH LAMP ANEAL)やレーザスパイクアニールLSA(LASER SPIKE ANEAL)といった装置を使用する方法でも熱処理が可能である。 Further, if the heat treatment is performed in a growth apparatus (reactor) after the epitaxial growth, it can be easily applied to the process. Further, since the surface heat treatment is performed, the heat treatment can also be performed by a method using an apparatus such as a flash lamp annealing FLA (FLASH LAMP ANNAL) or a laser spike annealing LSA (LASER SPIKE ENEAL) for heat treating the wafer surface.

発明に係る第3実施形態の表面粗さを示す図である。It is a figure which shows the surface roughness of 3rd Embodiment which concerns on invention.

Claims (12)

{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を30℃〜90℃の温フッ化アンモニウム溶液で処理する工程と、を備えることを特徴とするシリコンエピタキシャルウェーハの製造方法。
A step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree;
The surface of the epitaxial layer is 30 ° C. to 90 ° C. so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze. And a step of treating with a warm ammonium fluoride solution.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下となるように、前記エピタキシャル層の表面を30℃〜90℃の温フッ化アンモニウム溶液で処理する工程と、を備えることを特徴とするシリコンエピタキシャルウェーハの製造方法。
A step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree;
The surface of the epitaxial layer is heated to a temperature of 30 ° C. to 90 ° C. so that the mean square root RMS (measured in an area of 10 μm square by an atomic force microscope AFM) of the surface roughness of the epitaxial layer surface is 0.060 nm or less. And a step of processing with an ammonium fluoride solution.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を30℃〜90℃の温フッ化アンモニウム溶液で処理したことを特徴とするシリコンエピタキシャルウェーハ。
After growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree,
The epitaxial layer surface has a haze level (measured in SP2, DWO mode) of 0.18 ppm or less, and the surface of the epitaxial layer is heated to 30 ° C. to 90 ° C. so that the bright spot defect LPD can be measured without the influence of haze. A silicon epitaxial wafer characterized by being treated with an ammonium fluoride solution.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を30℃〜90℃の温フッ化アンモニウム溶液で処理したことを特徴とするシリコンエピタキシャルウェーハ。
After growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree,
The surface of the epitaxial layer is heated to a temperature of 30 ° C. to 90 ° C. so that the mean square root RMS (measured in a 10 μm square region by an atomic force microscope AFM) of the surface roughness of the epitaxial layer surface is 0.060 nm or less. A silicon epitaxial wafer characterized by being treated with an ammonium fluoride solution.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を酸化したのち、その酸化膜をフッ酸および塩酸で除去する工程と、を備えたことを特徴とするシリコンエピタキシャルウェーハの製造方法。
A step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree;
After oxidizing the surface of the epitaxial layer so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze, the oxidation is performed. And a step of removing the film with hydrofluoric acid and hydrochloric acid.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を酸化したのち、その酸化膜をフッ酸および塩酸で除去する工程と、を備えることを特徴とするシリコンエピタキシャルウェーハの製造方法。
A step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree;
After oxidizing the surface of the epitaxial layer so that the mean square root RMS of the surface roughness of the epitaxial layer surface (measured in an area of 10 μm square by an atomic force microscope AFM) is 0.060 nm or less, the oxide film And a step of removing the substrate with hydrofluoric acid and hydrochloric acid.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を酸化したのち、その酸化膜をフッ酸および塩酸で除去したことを特徴とするシリコンエピタキシャルウェーハ。
After growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree,
After oxidizing the surface of the epitaxial layer so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze, the oxidation is performed. A silicon epitaxial wafer characterized in that the film is removed with hydrofluoric acid and hydrochloric acid.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を酸化したのち、その酸化膜をフッ酸および塩酸で除去したことを特徴とするシリコンエピタキシャルウェーハ。
After growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree,
After oxidizing the surface of the epitaxial layer so that the mean square root RMS of the surface roughness of the epitaxial layer surface (measured in an area of 10 μm square by an atomic force microscope AFM) is 0.060 nm or less, the oxide film A silicon epitaxial wafer characterized in that is removed with hydrofluoric acid and hydrochloric acid.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を900℃越の温度で熱処理する工程と、を備えることを特徴とするシリコンエピタキシャルウェーハの製造方法。
A step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree;
The surface of the epitaxial layer is at a temperature exceeding 900 ° C. so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze. And a step of heat-treating the silicon epitaxial wafer.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させる工程と、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を900℃越の温度で熱処理する工程と、を備えることを特徴とするシリコンエピタキシャルウェーハの製造方法。
A step of growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree;
The surface of the epitaxial layer is heat-treated at a temperature exceeding 900 ° C. so that the mean square root RMS (measured in an area of 10 μm square by an atomic force microscope AFM) of the surface roughness of the epitaxial layer is 0.060 nm or less. A process for producing a silicon epitaxial wafer comprising the steps of:
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面のヘイズレベル(SP2,DWOモードで測定)が0.18ppm以下であって、輝点欠陥LPDがヘイズの影響なく測定できるように、前記エピタキシャル層の表面を900℃越の温度で熱処理したことを特徴とするシリコンエピタキシャルウェーハ。
After growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree,
The surface of the epitaxial layer is at a temperature exceeding 900 ° C. so that the haze level (measured in SP2, DWO mode) of the epitaxial layer surface is 0.18 ppm or less and the bright spot defect LPD can be measured without the influence of haze. A silicon epitaxial wafer characterized by heat treatment.
{110}面を主面とし、{110}面のオフアングルが1度未満のシリコン単結晶基板にエピタキシャル層を成長させたのち、
前記エピタキシャル層表面の表面粗さの平均自乗根RMS(原子間力顕微鏡AFMにより10μm角の領域で測定)が0.060nm以下になるように、前記エピタキシャル層の表面を900℃越の温度で熱処理したことを特徴とするシリコンエピタキシャルウェーハ。
After growing an epitaxial layer on a silicon single crystal substrate having a {110} plane as a principal plane and an off-angle of the {110} plane being less than 1 degree,
The surface of the epitaxial layer is heat-treated at a temperature exceeding 900 ° C. so that the mean square root RMS (measured in an area of 10 μm square by an atomic force microscope AFM) of the surface roughness of the epitaxial layer is 0.060 nm or less. A silicon epitaxial wafer characterized by that.
JP2008151986A 2008-06-10 2008-06-10 Silicon epitaxial wafer, and manufacturing method therefor Pending JP2009302140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151986A JP2009302140A (en) 2008-06-10 2008-06-10 Silicon epitaxial wafer, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151986A JP2009302140A (en) 2008-06-10 2008-06-10 Silicon epitaxial wafer, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009302140A true JP2009302140A (en) 2009-12-24

Family

ID=41548765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151986A Pending JP2009302140A (en) 2008-06-10 2008-06-10 Silicon epitaxial wafer, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009302140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043892A (en) * 2010-08-17 2012-03-01 Shin Etsu Handotai Co Ltd Manufacturing method of silicon epitaxial wafer, and silicon epitaxial wafer
KR20210082252A (en) 2018-12-27 2021-07-02 가부시키가이샤 사무코 Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
KR20210082529A (en) 2018-12-27 2021-07-05 가부시키가이샤 사무코 Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043892A (en) * 2010-08-17 2012-03-01 Shin Etsu Handotai Co Ltd Manufacturing method of silicon epitaxial wafer, and silicon epitaxial wafer
KR20210082252A (en) 2018-12-27 2021-07-02 가부시키가이샤 사무코 Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
KR20210082529A (en) 2018-12-27 2021-07-05 가부시키가이샤 사무코 Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
DE112019006437T5 (en) 2018-12-27 2021-09-09 Sumco Corporation SILICON EPITAXIAL WAFER MANUFACTURING METHODS AND SILICON EPITAXIAL WAFER
DE112019006415T5 (en) 2018-12-27 2021-09-09 Sumco Corporation SILICON EPITAXIAL WAFER MANUFACTURING METHODS AND SILICON EPITAXIAL WAFER

Similar Documents

Publication Publication Date Title
JP5018066B2 (en) Method for manufacturing strained Si substrate
JP5212472B2 (en) Manufacturing method of silicon epitaxial wafer
JP2006270000A (en) PROCESS FOR PRODUCING STRAINED Si-SOI SUBSTRATE AND STRAINED Si-SOI SUBSTRATE PRODUCED BY THAT METHOD
JP2006004983A (en) Silicon wafer and manufacturing method thereof
JP2010034128A (en) Production method of wafer and wafer obtained by this method
JP4089354B2 (en) Epitaxial wafer and manufacturing method thereof
WO2018037755A1 (en) Silicon single crystal wafer production method, silicon epitaxial wafer production method, silicon single crystal wafer, and silicon epitaxial wafer
JP2009302140A (en) Silicon epitaxial wafer, and manufacturing method therefor
TWI680512B (en) Polishing method for silicon wafer, manufacturing method for silicon wafer, and silicon wafer
JP4700324B2 (en) Manufacturing method of semiconductor substrate
JP2004339003A (en) Silicon epitaxial wafer, and method for manufacturing silicon epitaxial wafer
JP4244411B2 (en) Manufacturing method of silicon epitaxial wafer
JP2012204369A (en) Manufacturing method for epitaxial wafer
JP5338559B2 (en) Manufacturing method of silicon epitaxial wafer
JP2007073594A (en) Method of manufacturing epitaxial silicon wafer
JP4603677B2 (en) Annealed wafer manufacturing method and annealed wafer
JP2002020200A (en) Method of producing epitaxial silicon wafer
JP2003068744A (en) Silicon wafer manufacturing method, silicon wafer, and soi wafer
JP7063259B2 (en) Manufacturing method of silicon epitaxial wafer
JP7103210B2 (en) Manufacturing method of silicon epitaxial wafer and silicon epitaxial wafer
JP2006245301A (en) Manufacturing method of silicon wafer
JP2008294256A (en) Production process of silicon single crystal wafer
JP5565012B2 (en) Epitaxial wafer evaluation method and epitaxial wafer manufacturing method
JP5211750B2 (en) Manufacturing method of single crystal silicon wafer
JP2009182233A (en) Washing method of annealed wafer