JP2009295872A - Method for manufacturing printed circuit board, and printed circuit board - Google Patents

Method for manufacturing printed circuit board, and printed circuit board Download PDF

Info

Publication number
JP2009295872A
JP2009295872A JP2008149549A JP2008149549A JP2009295872A JP 2009295872 A JP2009295872 A JP 2009295872A JP 2008149549 A JP2008149549 A JP 2008149549A JP 2008149549 A JP2008149549 A JP 2008149549A JP 2009295872 A JP2009295872 A JP 2009295872A
Authority
JP
Japan
Prior art keywords
electroless plating
resin material
insulating resin
deposited
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008149549A
Other languages
Japanese (ja)
Inventor
Kanji Shimoosako
寛司 下大迫
Taku Ito
卓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008149549A priority Critical patent/JP2009295872A/en
Publication of JP2009295872A publication Critical patent/JP2009295872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a printed circuit board which has excellent fine wiring formation property and insulation reliability. <P>SOLUTION: The method for manufacturing the printed circuit board at least includes processes of: (A) forming a groove 4 by irradiating a part where nonelectrolytic plating 2 of an insulating resin material 1 is to be deposited with a laser beam, using the insulating resin material 1 in which nonelectrolytic plating is not deposited at least before the laser beam is irradiated and the nonelectrolytic plating 2 is deposited only at a part where the laser beam is irradiated; and (B) forming the nonelectrolytic plating 2 in the groove 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

プリント配線板の製造方法、及びプリント配線板に関する。   The present invention relates to a printed wiring board manufacturing method and a printed wiring board.

近年、電子機器の高性能化、高機能化、小型化が急速に進んでおり、これに伴って電子機器に用いられる電子部品に対しても小型化、軽量化の要請が高まっている。上記要請を受け、半導体素子パッケージ方法やそれらを実装する配線板にも、より高密度、高機能、かつ高性能なものが求められるようになっている。   2. Description of the Related Art In recent years, electronic devices have been rapidly improved in performance, function, and size, and accordingly, there is an increasing demand for downsizing and weight reduction of electronic components used in electronic devices. In response to the above requirements, semiconductor device packaging methods and wiring boards on which they are mounted are required to have higher density, higher functionality, and higher performance.

ところで、このような配線板(プリント配線板)を得る方法としては、フルアディティブプリント配線板を挙げることができる。   By the way, as a method of obtaining such a wiring board (printed wiring board), a full additive printed wiring board can be mentioned.

従来のフルアディティブプリント配線板の製造方法としては、無電解めっき触媒を含有するガラスエポキシ基板上に無電解めっき触媒を含有した接着剤層を塗布形成し、積層体を得る。次いで、該積層体に選択的にスルーホールを形成する。 次いで、デスミア除去を行い、その後スルーホール内に無電解銅めっき触媒を付与し、スクリーン印刷法により永久レジスト層を塗布形成する。次いで、該永久レジストを露光、現像等の方法によりパターニングを施し、さらに無電解めっきを施すことにより、所望の箇所に配線を得る、という方法を挙げることができる(例えば、特許文献1参照)。尚、無電解めっきのみにより厚膜の配線層を形成する手法がフルアディティブ工法と呼ばれており、サブトラクティブ工法、セミアディティブ工法、と区別される。   As a conventional method for producing a full additive printed wiring board, an adhesive layer containing an electroless plating catalyst is applied and formed on a glass epoxy substrate containing an electroless plating catalyst to obtain a laminate. Next, through holes are selectively formed in the laminate. Next, desmear removal is performed, after which an electroless copper plating catalyst is applied in the through hole, and a permanent resist layer is applied and formed by a screen printing method. Next, there is a method in which the permanent resist is patterned by a method such as exposure and development, and further electroless plating is performed to obtain a wiring at a desired location (see, for example, Patent Document 1). A method of forming a thick wiring layer only by electroless plating is called a full additive method, and is distinguished from a subtractive method and a semi-additive method.

しかしながら、上記の製造方法においては、活性を保持した無電解めっき触媒が絶縁樹脂全面に含有されているという理由から、特に微細配線においては、無電解めっき触媒が存在する箇所での異常析出により配線同士が導通してしまい、絶縁信頼性が低下するという問題が生じていた。
特開平11―40923号公報
However, in the above manufacturing method, because the electroless plating catalyst that retains the activity is contained in the entire surface of the insulating resin, the wiring is caused by abnormal deposition at the location where the electroless plating catalyst exists, particularly in the case of fine wiring. There is a problem in that they are electrically connected to each other and the insulation reliability is lowered.
Japanese Patent Laid-Open No. 11-40923

本発明は、上記の課題に鑑みてなされたものであって、その目的は、絶縁信頼性が高いプリント配線板の製造方法、及びプリント配線板を提供することにある。   This invention is made | formed in view of said subject, The objective is to provide the manufacturing method of a printed wiring board with high insulation reliability, and a printed wiring board.

本発明者らは、上記の課題に鑑み鋭意検討した結果、レーザー照射される前は無電解めっきが析出しない絶縁樹脂材料であって、かつ、レーザー照射された箇所のみ無電解めっきが析出する、絶縁樹脂材料を用いたプリント配線板の製造方法により上記課題を解決できることを見出し、本発明を完成させるに至った。   As a result of intensive studies in view of the above-mentioned problems, the present inventors are an insulating resin material in which electroless plating does not deposit before laser irradiation, and the electroless plating is deposited only in the laser irradiated portion. It has been found that the above problems can be solved by a method for producing a printed wiring board using an insulating resin material, and the present invention has been completed.

即ち、本発明は、少なくともレーザー照射される前は無電解めっきが析出しない絶縁樹脂材料であって、かつ、レーザー照射された箇所のみ無電解めっきが析出する、絶縁樹脂材料を用いて、少なくとも、A)前記絶縁樹脂材料の無電解めっきを析出させる箇所に、レーザーを照射して溝を形成する工程、B)前記溝に無電解めっきを形成する工程を含むことを特徴とするプリント配線板の製造方法に関する。   That is, the present invention is an insulating resin material in which electroless plating does not deposit at least before laser irradiation, and at least using an insulating resin material in which electroless plating is deposited only at a position irradiated with laser, A) A step of forming a groove by irradiating a laser at a portion where the electroless plating of the insulating resin material is deposited, and B) a step of forming an electroless plating in the groove. It relates to a manufacturing method.

また、上記プリント配線板の製造方法は、上記B)工程において、溝を形成した上記絶縁樹脂材料に無電解めっき処理を行った際に、溝以外の無電解めっきが析出しない絶縁樹脂材料が露出している部分には、無電解めっきが析出せず、上記溝部分には、無電解めっきが析出することを特徴とする。   Further, in the method of manufacturing the printed wiring board, when the electroless plating treatment is performed on the insulating resin material in which the groove is formed in the step B), the insulating resin material from which the electroless plating other than the groove is not exposed is exposed. The electroless plating is not deposited on the portion that is being formed, and the electroless plating is deposited on the groove portion.

さらに上記プリント配線板の製造方法は、C)デスミア工程を含むことが好ましい。
その場合は、A)、C)、B)の順に加工することが好ましい。
Furthermore, it is preferable that the manufacturing method of the said printed wiring board includes a C) desmear process.
In that case, it is preferable to process in the order of A), C) and B).

さらにD)スルーホールを形成する工程を含むことが好ましく、その場合、A)、D)、C)、B)の順に加工する、若しくはD)、A)、C)、B)の順に加工することが好ましい。   Furthermore, it is preferable to include a step of forming D) a through hole. In that case, processing is performed in the order of A), D), C), and B), or processing is performed in the order of D), A), C), and B). It is preferable.

また、本発明は、上記プリント配線板の製造方法により得られるプリント配線板に関する。   Moreover, this invention relates to the printed wiring board obtained by the manufacturing method of the said printed wiring board.

本発明に係るプリント配線板の製造方法により、微細配線形成性、絶縁信頼性に優れたプリント配線板を製造することができる。   By the method for manufacturing a printed wiring board according to the present invention, a printed wiring board having excellent fine wiring formability and insulation reliability can be manufactured.

本発明の実施の形態について、以下に説明する。   Embodiments of the present invention will be described below.

(絶縁樹脂材料の構成と形態)
本発明に用いる絶縁樹脂材料は、少なくともレーザー照射される前は無電解めっきが析出しない絶縁樹脂材料であって、かつ、レーザー照射された箇所のみ無電解めっきが析出することを特徴とする。よって、絶縁樹脂材料そのものは、無電解めっきが析出しない絶縁樹脂材料であることを特徴とする。本発明に係る絶縁樹脂材料の形態は、特に限定はなく、塊状、フィルム状、溶液などの形態を挙げることができる。従って、例えば本発明に用いる絶縁樹脂材料がフィルム状である場合、無電解めっきが析出しない絶縁樹脂材料の単層フィルムという構成、形態となる。
(Configuration and form of insulating resin material)
The insulating resin material used in the present invention is an insulating resin material that does not deposit electroless plating at least before being irradiated with laser, and is characterized in that electroless plating is deposited only at a portion irradiated with laser. Therefore, the insulating resin material itself is an insulating resin material that does not deposit electroless plating. The form of the insulating resin material according to the present invention is not particularly limited, and examples thereof include lumps, films, solutions, and the like. Therefore, for example, when the insulating resin material used in the present invention is in the form of a film, it has a configuration and form of a single layer film of an insulating resin material in which electroless plating does not deposit.

ここで、無電解めっきが析出しない絶縁樹脂材料について説明する。   Here, the insulating resin material on which electroless plating is not deposited will be described.

本発明において、無電解めっきが析出しないとは、無電解めっきが析出する箇所に無電解めっきがaμmの厚みだけ析出するときに、a×(1/7)μm以下の厚みだけ析出すること、と定義される。例えば、無電解めっきが析出する箇所に、7μmの厚みだけ無電解めっきが析出する際に、無電解めっきが析出しない絶縁樹脂材料には1μm以下の厚みだけ無電解めっきが析出する。ここで、a×(1/7)μm以下の厚みだけ析出した無電解めっき層は、酸性水溶液でのソフトエッチング等の公知の方法により除去することができる。従って、最終的には、無電解めっきが析出しない絶縁樹脂材料上には実質的に無電解めっきは形成されていないことになり、電気絶縁性を保つことができる。勿論、無電解めっきが析出しない絶縁樹脂材料上に実質的に無電解めっきが析出していない場合は、ソフトエッチング等を行う必要はない。   In the present invention, electroless plating does not deposit means that when electroless plating is deposited to a thickness of a μm at a location where electroless plating is deposited, a thickness of a × (1/7) μm or less is deposited. Is defined. For example, when the electroless plating is deposited by a thickness of 7 μm at a location where the electroless plating is deposited, the electroless plating is deposited by a thickness of 1 μm or less on the insulating resin material where the electroless plating is not deposited. Here, the electroless plating layer deposited by a thickness of a × (1/7) μm or less can be removed by a known method such as soft etching with an acidic aqueous solution. Therefore, in the end, the electroless plating is not substantially formed on the insulating resin material on which the electroless plating does not deposit, and the electrical insulation can be maintained. Of course, when the electroless plating is not substantially deposited on the insulating resin material on which the electroless plating is not deposited, it is not necessary to perform soft etching or the like.

ここで、ソフトエッチング等の方法で無電解めっき層を除去する際は、無電解めっき層が析出する箇所の無電解めっき層も除去される。従って、無電解めっきが析出しない絶縁樹脂材料上にa×(1/7)μm以上の厚みが形成されると、得られる配線の形状に異常をきたしたり、配線厚みが設計よりも変わる等の問題が生じる。   Here, when the electroless plating layer is removed by a method such as soft etching, the electroless plating layer where the electroless plating layer is deposited is also removed. Therefore, if a thickness of a × (1/7) μm or more is formed on an insulating resin material on which electroless plating does not deposit, the shape of the resulting wiring may be abnormal, or the wiring thickness may vary from the design. Problems arise.

本発明に係る無電解めっきが析出しない絶縁樹脂材料は、無電解めっき触媒が付与されないために無電解めっきが析出しない絶縁樹脂材料であってもよく、無電解めっき触媒は付与されているが、触媒活性を示さないため無電解めっきが析出しない絶縁樹脂材料であってもよく、無電解めっき触媒は付与されているが、触媒活性が低いため、電解めっきが析出する箇所に無電解めっきがaμmの厚みだけ析出するときに、a×(1/7)μm以下の厚みだけ析出する絶縁樹脂材料であってもよい。   The insulating resin material on which the electroless plating according to the present invention is not deposited may be an insulating resin material on which the electroless plating is not deposited because the electroless plating catalyst is not imparted, and the electroless plating catalyst is imparted, An insulating resin material that does not deposit electroless plating because it does not exhibit catalytic activity may be used, and an electroless plating catalyst is provided. However, since the catalytic activity is low, the electroless plating is a μm at the location where electrolytic plating is deposited. May be an insulating resin material that deposits by a thickness of a × (1/7) μm or less.

上記無電解めっき触媒が付与されないためには、無電解めっき触媒と無電解めっきが析出しない絶縁樹脂材料表面とが相互作用しないような状態であればよい。例えば、無電解めっき触媒がアミノ基と相互作用して吸着するという特徴を有している場合、絶縁樹脂材料表面にアミノ基を導入しないようにせしめることで無電解めっき触媒の付与を阻害することができる。   In order to prevent the electroless plating catalyst from being applied, the electroless plating catalyst and the surface of the insulating resin material on which the electroless plating is not deposited may be in a state where they do not interact with each other. For example, if the electroless plating catalyst has a feature that it interacts with and adsorbs amino groups, it prevents the application of the electroless plating catalyst by preventing the amino groups from being introduced into the surface of the insulating resin material. Can do.

また、無電解めっきが析出しない絶縁樹脂材料表面の触媒濃度が、XPS分析により算出した原子濃度で0.2%以下であれば、無電解めっきが析出しない傾向にあるため好ましい。0.2%より触媒濃度が高いと、無電解めっきが析出しやすい状態となる。   Moreover, it is preferable if the catalyst concentration on the surface of the insulating resin material on which electroless plating is not deposited is 0.2% or less in terms of the atomic concentration calculated by XPS analysis, because electroless plating tends not to be deposited. When the catalyst concentration is higher than 0.2%, the electroless plating is likely to be deposited.

上記無電解めっき触媒は付与されているが、触媒活性を示さないためには、無電解めっきが析出しない絶縁樹脂材料中に、無電解めっき触媒に対して触媒毒を示す化合物を添加しておき、表面に露出せしめれば良い。例えば、無電解めっき触媒がリン系化合物との相互作用により触媒活性を失う場合、樹脂層にリン系化合物を添加する方法により無電解めっき触媒の触媒活性を失活させることができる。   Although the above electroless plating catalyst is provided, in order not to show catalytic activity, a compound showing a catalyst poison with respect to the electroless plating catalyst is added to the insulating resin material where electroless plating does not deposit. It can be exposed to the surface. For example, when the electroless plating catalyst loses catalytic activity due to interaction with the phosphorus compound, the catalytic activity of the electroless plating catalyst can be deactivated by a method of adding a phosphorus compound to the resin layer.

また、例えば、無電解めっき触媒、特には無電解銅めっき触媒として一般的に用いられるパラジウム触媒を用いる場合は、パラジウムは硫黄を有する化合物、クロムを有する化合物により被毒されるため、これらの化合物を添加しておく方法により無電解めっき触媒の触媒活性を失活させることができる。   In addition, for example, when using an electroless plating catalyst, particularly a palladium catalyst generally used as an electroless copper plating catalyst, palladium is poisoned by a compound having sulfur and a compound having chromium. The catalytic activity of the electroless plating catalyst can be deactivated by the method of adding the catalyst.

また、パラジウムは、オキシム構造を有する化合物によっても被毒されることを発明者らは発見した。これは、オキシム構造を有する化合物とパラジウムとが錯体を形成するためと考えられる。オキシム構造を有する化合物としては、1,2−オクタンジオン−,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(0−アセチルオキシム)、等を挙げることができる。オキシム構造を有する化合物についても上記と同様の方法により無電解めっき触媒の触媒活性を失活させることができる。   The inventors have also discovered that palladium is poisoned by compounds having an oxime structure. This is considered because the compound having an oxime structure and palladium form a complex. Examples of the compound having an oxime structure include 1,2-octanedione-, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2- Methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime), and the like. For the compound having an oxime structure, the catalytic activity of the electroless plating catalyst can be deactivated by the same method as described above.

次に、本発明の絶縁樹脂材料は、少なくともレーザー照射された箇所にのみ無電解めっきが析出するという特徴を有する。この点に関して説明する。   Next, the insulating resin material of the present invention is characterized in that electroless plating is deposited only at least at a location irradiated with a laser. This point will be described.

本発明の絶縁樹脂材料をレーザー照射することにより、レーザー照射を受けた箇所のみ樹脂を除去して、溝を作製する。この際、溝形成された箇所の表面がレーザー照射による化学的な改質、あるいは物理的な改質のいずれか、あるいは両者を利用して無電解めっきが形成されるようにすれば良い。   By irradiating the insulating resin material of the present invention with a laser, the resin is removed only at the place where the laser irradiation has been performed, and a groove is formed. At this time, the surface of the grooved portion may be formed by electroless plating by utilizing either chemical modification by laser irradiation, physical modification, or both.

化学的な改質について説明する。上述したように、無電解めっきが析出するためには、無電解めっき触媒が付与される必要がある。レーザー照射による化学的な改質として、発明者らは次の2つのメカニズムを推定している。   The chemical modification will be described. As described above, in order to deposit electroless plating, an electroless plating catalyst needs to be applied. The inventors have estimated the following two mechanisms as chemical modification by laser irradiation.

1つは、レーザー照射による樹脂及び添加している化合物の熱分解である。例えば、無電解めっきが析出しない絶縁樹脂材料中に、無電解めっき触媒を不活性化する化合物を添加している場合、レーザー照射することにより上記化合物が熱分解し、触媒を不活性化する効果を失活することで、無電解めっき触媒が付与され、無電解めっきが析出するようになると考えられる。   One is thermal decomposition of the resin and the added compound by laser irradiation. For example, when a compound that inactivates an electroless plating catalyst is added to an insulating resin material that does not deposit electroless plating, the above-mentioned compound is thermally decomposed by laser irradiation to inactivate the catalyst. By deactivating, it is considered that an electroless plating catalyst is provided and electroless plating is deposited.

また、もう1つは、レーザー照射による官能基の生成である。例えば、無電解めっきが析出しない絶縁樹脂材料をレーザー照射することにより、照射した箇所にのみ特定の官能基が生成し、この官能基と無電解めっき触媒とが相互作用し、触媒付与されることで無電解めっきが析出するようになると考えられる。   The other is generation of functional groups by laser irradiation. For example, by irradiating an insulating resin material that does not deposit electroless plating with a laser, a specific functional group is generated only at the irradiated location, and this functional group interacts with the electroless plating catalyst to give a catalyst. It is thought that electroless plating starts to deposit.

次に物理的な改質について説明する。レーザー照射による物理的な改質として、発明者らは次のメカニズムを推定している。すなわち、レーザー照射箇所には表面凹凸が形成される。表面凹凸が形成されることにより凹凸中に無電解めっき触媒が物理的に付与され、無電解めっきが析出するようになると考えられる。   Next, physical modification will be described. The inventors have estimated the following mechanism as a physical modification by laser irradiation. That is, surface irregularities are formed at the laser irradiation location. It is considered that the electroless plating catalyst is physically imparted in the unevenness by forming the surface unevenness, and the electroless plating is deposited.

以上、本発明の絶縁樹脂材料において、少なくともレーザー照射された箇所にのみ無電解めっきが析出する点に関して説明したが、このような条件を満たし、且つ得られるプリント配線板の絶縁性や耐熱性などの観点も考慮すると、本発明に係る絶縁樹脂材料としては、エポキシ樹脂および/またはポリイミド樹脂を含有することが好ましい。また、レーザー照射した箇所の無電解めっきとの接着性の観点から、エポキシ樹脂および/または熱可塑性のポリイミド樹脂を含有することが特に好ましい。   As described above, in the insulating resin material of the present invention, the point that the electroless plating is deposited only at least at the place irradiated with the laser has been described, but such conditions are satisfied and the insulating property and heat resistance of the obtained printed wiring board are obtained. In view of this aspect, the insulating resin material according to the present invention preferably contains an epoxy resin and / or a polyimide resin. Moreover, it is especially preferable to contain an epoxy resin and / or a thermoplastic polyimide resin from an adhesive viewpoint with the electroless plating of the location irradiated with the laser.

また、本発明の絶縁樹脂材料には、機械特性の向上や難燃性を付与する等の目的で、熱可塑性樹脂、熱硬化性樹脂、フィラー、難燃剤、等を適宜添加しても良い。   In addition, a thermoplastic resin, a thermosetting resin, a filler, a flame retardant, and the like may be appropriately added to the insulating resin material of the present invention for the purpose of improving mechanical properties and imparting flame retardancy.

本発明の絶縁樹脂材料の厚みは特に制限はないが、1nm以上であることが好ましい。1nmよりも薄い場合は該絶縁樹脂材料を用いたプリント配線板の製造が困難となる。   The thickness of the insulating resin material of the present invention is not particularly limited, but is preferably 1 nm or more. If the thickness is less than 1 nm, it is difficult to produce a printed wiring board using the insulating resin material.

(積層)
本発明のプリント配線板の製造方法においては、絶縁樹脂材料を基材に積層する工程を含んでも良い。積層する方法としては、用いる材料の形態に依り、絶縁樹脂材料がフィルム状の場合は、熱プレス処理、ラミネート処理(熱ラミネート処理)、熱ロールラミネート処理等によって行えばよく、特に限定されるものではない。また、絶縁樹脂材料が溶液の場合は、コンマコーター、バーコーター、スピンコーター、等の既知の方法により絶縁樹脂層を形成することができる。尚、本発明における基材とは、PETフィルム、ポリイミドフィルム等の各種フィルム材料、ガラスエポキシ基板、セラミック基板、等の各種基板等、を指し、これら材料には配線が形成されていても良い。
(Laminated)
In the manufacturing method of the printed wiring board of this invention, you may include the process of laminating | stacking an insulating resin material on a base material. The method of lamination depends on the form of the material used, and when the insulating resin material is in the form of a film, it may be performed by hot pressing, laminating (thermal laminating), hot roll laminating, etc., and is particularly limited. is not. When the insulating resin material is a solution, the insulating resin layer can be formed by a known method such as a comma coater, a bar coater, or a spin coater. In addition, the base material in this invention refers to various film materials, such as PET film and a polyimide film, various substrates, such as a glass epoxy board | substrate and a ceramic board | substrate, etc., The wiring may be formed in these materials.

(レーザーを照射してを形成する工程)
本発明のプリント配線板の製造方法は、少なくともレーザー照射される前は無電解めっきが析出しない絶縁樹脂材料であって、かつ、レーザー照射された箇所のみ無電解めっきが析出する、絶縁樹脂材料を用いて、少なくとも、A)前記絶縁樹脂材料の無電解めっきを析出させる箇所に、レーザーを照射して溝を形成する工程を含む。本発明においては、溝は絶縁樹脂材料を貫通させないように形成することが必須である。
(Process to form by irradiating with laser)
The method for producing a printed wiring board of the present invention is an insulating resin material in which electroless plating is not deposited at least before being irradiated with a laser, and the electroless plating is deposited only in a portion irradiated with the laser. And at least A) a step of forming a groove by irradiating a laser to a portion where the electroless plating of the insulating resin material is deposited. In the present invention, it is essential to form the groove so as not to penetrate the insulating resin material.

本発明で用いられるレーザーとしては、一般的に用いられるレーザー装置を使用すれば良く、例えば炭酸ガスレーザー、UVレーザー、YAGレーザー、エキシマレーザー、等を挙げることがでる。また、使用する絶縁樹脂材料により、レーザー種、レーザー条件を調整して溝を形成すれば良い。   As the laser used in the present invention, a commonly used laser device may be used, and examples thereof include a carbon dioxide gas laser, a UV laser, a YAG laser, and an excimer laser. Further, the groove may be formed by adjusting the laser type and the laser conditions depending on the insulating resin material to be used.

本発明で形成する溝は、微細配線を形成するという観点から、巾100μm以下、厚み100μm以下であることが好ましく、巾50μm以下、厚み50μm以下であることが好ましい。   The groove formed in the present invention is preferably 100 μm or less in width and 100 μm or less in thickness from the viewpoint of forming fine wiring, and preferably 50 μm or less in width and 50 μm or less in thickness.

また、溝を形成する際に、併せてブラインドビアホールやスルーホールを形成しても良い。   Further, when forming the groove, a blind via hole or a through hole may be formed together.

(スルーホール形成)
本発明のプリント配線板の製造方法は、スルーホールを形成する工程を含んでも良い。スルーホールはメカニカルドリル、レーザー、パンチング等の公知の方法を用いて形成することができる。
(Through hole formation)
The method for manufacturing a printed wiring board of the present invention may include a step of forming a through hole. The through hole can be formed using a known method such as a mechanical drill, laser, punching or the like.

(デスミア)
本発明のプリント配線板の製造方法は、スルーホール形成時、或いは溝を形成した箇所に生じたスミアを除去する目的で、無電解銅めっきを施す前にデスミア工程を取り入れても構わない。デスミアは、湿式のデスミア、ドライデスミア、等いずれの方法を用いても構わない。
(Desmear)
The method for producing a printed wiring board of the present invention may incorporate a desmear process before electroless copper plating for the purpose of removing smear generated at the time of forming a through hole or at a location where a groove is formed. As the desmear, any method such as wet desmear or dry desmear may be used.

湿式のデスミアの場合、用いる液は市販のデスミア薬液、工程を用いることが可能であるが、一般的には、膨潤、粗化、中和、の3工程からなり、粗化工程には過マンガン酸カリウム、過マンガン酸ナトリウムのアルカリ水溶液が用いられる。   In the case of wet desmear, it is possible to use a commercially available desmear chemical solution and process, but generally it consists of three steps of swelling, roughening, and neutralization. An alkaline aqueous solution of potassium acid or sodium permanganate is used.

ドライデスミアの場合、プラズマを用いる場合、コロナを用いる場合、等を例示することができる。いずれの場合も、常圧下、減圧下の両者を実施可能である。   In the case of dry desmear, the case of using plasma, the case of using corona, etc. can be exemplified. In either case, both normal pressure and reduced pressure can be performed.

(無電解めっき)
本発明のプリント配線板の製造方法は、無電解めっきする工程を含む。
本発明に用いられる無電解めっきとしては特に限定はなく、カーボン、パラジウム触媒、有機マンガン導電膜等を用いるダイレクトプレーティング、無電解銅めっき、無電解ニッケルめっき、無電解金めっき、無電解銀めっき、無電解錫めっき、等を挙げる事ができ本発明に使用可能である。
(Electroless plating)
The manufacturing method of the printed wiring board of this invention includes the process of electroless-plating.
There are no particular limitations on the electroless plating used in the present invention, direct plating using carbon, palladium catalyst, organic manganese conductive film, etc., electroless copper plating, electroless nickel plating, electroless gold plating, electroless silver plating , Electroless tin plating and the like, and can be used in the present invention.

上記の中でも、生産性や耐マイグレーション性等の電気特性の観点より、無電解銅めっき、無電解ニッケルめっきが好ましく、無電解めっきの中でも、無電解銅めっきが特に好ましい。以下、無電解銅めっきについて説明する。   Among these, electroless copper plating and electroless nickel plating are preferable from the viewpoint of electrical characteristics such as productivity and migration resistance, and among electroless plating, electroless copper plating is particularly preferable. Hereinafter, electroless copper plating will be described.

本発明の無電解めっきが析出する樹脂層に無電解銅めっきを析出せしめる方法としては、無電解銅めっきを直接析出せしめる方法、パラジウム触媒等の無電解銅めっき触媒を付与した後に、無電解銅めっき触媒を核として無電解銅めっきを析出せしめる方法、等を挙げることができるが、無電解銅めっきをまんべんなく均一に析出せしめるという観点から、パラジウム触媒等の無電解銅めっき触媒を付与した後に、パラジウムを核として無電解銅めっきを析出せしめる方法が好ましい。   As a method of depositing electroless copper plating on the resin layer on which electroless plating of the present invention is deposited, after electroless copper plating catalyst such as palladium catalyst is applied, electroless copper plating is applied. A method of depositing electroless copper plating with a plating catalyst as a core, etc. can be mentioned, but from the viewpoint of depositing electroless copper plating uniformly, after applying an electroless copper plating catalyst such as a palladium catalyst, A method of depositing electroless copper plating using palladium as a nucleus is preferred.

無電解めっきの厚みとしては、特に限定はなく、所望の導体層厚みまで析出させればよいが、微細配線形成という観点からは、無電解めっき厚みは1μm〜30μmの範囲であることが好ましい。   The thickness of the electroless plating is not particularly limited and may be deposited up to a desired conductor layer thickness. However, from the viewpoint of forming fine wiring, the electroless plating thickness is preferably in the range of 1 μm to 30 μm.

また、5μm以下程度の厚みで無電解めっきを形成した後、電解めっきにより所望の導体層厚みまで析出せしめても良い。   Moreover, after forming electroless plating with a thickness of about 5 μm or less, it may be deposited up to a desired conductor layer thickness by electrolytic plating.

(プリント配線板の製造方法)
本発明は、少なくともレーザー照射される前は無電解めっきが析出しない絶縁樹脂材料であって、かつ、レーザー照射された箇所のみ無電解めっきが析出する、絶縁樹脂材料を用いて、少なくとも、A)前記絶縁樹脂材料の無電解めっきを析出させる箇所に、レーザーを照射して溝を形成する工程、B)前記溝に無電解めっきを形成する工程を含むことを特徴とする。また、上記B)工程において、溝を形成した上記絶縁樹脂材料に無電解めっき処理を行った際に、溝以外の無電解めっきが析出しない絶縁樹脂材料が露出している部分には、無電解めっきが析出せず、上記溝部分には、無電解めっきが析出することを特徴とする。
(Printed wiring board manufacturing method)
The present invention is an insulating resin material in which electroless plating is not deposited at least before laser irradiation, and at least A) using an insulating resin material in which electroless plating is deposited only at a position irradiated with laser. A step of forming a groove by irradiating a laser at a portion where the electroless plating of the insulating resin material is deposited, and B) a step of forming an electroless plating in the groove. In addition, in the step B), when the insulating resin material in which the groove is formed is subjected to the electroless plating treatment, the portion where the insulating resin material other than the groove where the electroless plating is not deposited is exposed is electroless. Plating is not deposited, and electroless plating is deposited in the groove portion.

したがって、本発明のプリント配線板の製造方法によれば、レーザー照射して形成した溝の底部のみならず、溝の側面からも無電解めっきが析出するため、無電解めっきと絶縁樹脂材料の密着性が高い。また、溝の底部及び側面から均一に無電解めっきが析出するため配線形状を設計どおりに制御しやすいという利点を有する。   Therefore, according to the method for manufacturing a printed wiring board of the present invention, since electroless plating is deposited not only from the bottom of the groove formed by laser irradiation but also from the side of the groove, the adhesion between the electroless plating and the insulating resin material High nature. Further, since the electroless plating is uniformly deposited from the bottom and side surfaces of the groove, the wiring shape can be easily controlled as designed.

また、所望の箇所にのみ溝を形成できるため、微細配線形成性に優れる。   Further, since the groove can be formed only at a desired location, the fine wiring formability is excellent.

さらには、レーザー照射した箇所にのみ無電解めっきが析出するため、配線間の絶縁信頼性に優れるという利点を有する。   Furthermore, since electroless plating is deposited only at the locations irradiated with laser, there is an advantage that the insulation reliability between wirings is excellent.

上記プリント配線板の製造方法は、レーザー照射した箇所の絶縁樹脂の残渣を除去するという観点から、C)デスミア工程を含むことが好ましい。このような理由から、A)、C)、B)の順に加工することが好ましい。   It is preferable that the manufacturing method of the said printed wiring board includes a C) desmear process from a viewpoint of removing the residue of the insulating resin of the location irradiated with the laser. For these reasons, it is preferable to process in the order of A), C), and B).

さらに、両面プリント配線板を製造する場合、両面の導通を通をとるために、D)スルーホールを形成する工程を含むことが好ましい。その場合、スルーホール内の残渣を除去する目的でC)デスミア工程を含むことが好ましく、このような理由から、A)、D)、C)、B)の順に加工する、若しくはD)、A)、C)、B)の順に加工することが好ましい。   Furthermore, when manufacturing a double-sided printed wiring board, it is preferable to include the step of D) forming a through hole in order to allow conduction on both sides. In that case, it is preferable to include a C) desmear process for the purpose of removing the residue in the through hole. For this reason, A), D), C), B) are processed in this order, or D), A ), C) and B) are preferably processed in this order.

(プリント配線板)
本発明のプリント配線板は、上記製造方法により得られることを特徴とする。本発明の製造方法により得られたプリント配線板の模式図を図1に示す。基材3の上に絶縁樹脂材料1が位置している。絶縁樹脂材料の溝4には、めっき2が形成されている。
(Printed wiring board)
The printed wiring board of the present invention is obtained by the above production method. The schematic diagram of the printed wiring board obtained by the manufacturing method of this invention is shown in FIG. The insulating resin material 1 is located on the base material 3. A plating 2 is formed in the groove 4 of the insulating resin material.

本発明のプリント配線板の製造方法にて作製したプリント配線板は、無電解めっきと絶縁樹脂材料の密着性が高く、配線形状を設計どおりに制御しやすいという利点を有する。   The printed wiring board produced by the method for producing a printed wiring board of the present invention has an advantage that the electroless plating and the insulating resin material have high adhesion, and the wiring shape can be easily controlled as designed.

また、所望の箇所にのみ溝を形成できるため、微細配線形成性に優れる。   Further, since the groove can be formed only at a desired location, the fine wiring formability is excellent.

さらには、レーザー照射した箇所にのみ無電解めっきが析出するため、配線間の絶縁信頼性に優れるという利点を有する。   Furthermore, since electroless plating is deposited only at the locations irradiated with laser, there is an advantage that the insulation reliability between wirings is excellent.

以上、本発明のプリント配線板の製造方法、及びプリント配線板について説明したが、もちろん、本発明のプリント配線板の製造方法、及びプリント配線板はこれに限定されるものではないことはいうまでもない。   As mentioned above, although the manufacturing method of the printed wiring board of this invention and the printed wiring board were demonstrated, it cannot be overemphasized that the manufacturing method of a printed wiring board of this invention and a printed wiring board are not limited to this. Nor.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例における微細配線形成性は、次のようにして評価した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to these. In addition, the fine wiring formability in an Example and a comparative example was evaluated as follows.

〔微細配線形成性〕
実施例ならびに比較例で得られたプリント配線板について、配線幅/配線間隔=10μm/10μmの配線形成箇所で導通が確認されなかった場合を合格、導通が確認された場合を不合格とした。
[Fine wiring formability]
About the printed wiring board obtained by the Example and the comparative example, the case where conduction | electrical_connection was not confirmed by the wiring formation location of wiring width / wiring space | interval = 10micrometer / 10micrometer was made into pass, and the case where conduction was confirmed was made disqualified.

(合成例1;熱可塑性ポリイミドの合成)
容量2000mlのガラス製フラスコに、両末端アミノ変性シリコーンオイル(信越化学工業株式会社製KF−8010)を37g(0.045mol)と、4,4’−ジアミノジフェニルエーテル21g(0.105mol)と、DMFとを投入し、撹拌しながら溶解させ、4,4´−(4,4´−イソプロピリデンジフェノキシ)ビス(無水フタル酸)78g(0.15mol)を添加、20℃で約1時間撹拌し、固形分濃度30%のポリアミド酸溶液を得た。上記ポリアミド酸溶液をフッ素コートしたバットにとり、真空オーブンで、200℃、120分、665Paで減圧加熱し、ポリイミド樹脂1を得た。
(Synthesis Example 1: Synthesis of thermoplastic polyimide)
In a glass flask with a volume of 2000 ml, 37 g (0.045 mol) of amino acid-modified silicone oil (KF-8010 manufactured by Shin-Etsu Chemical Co., Ltd.), 21 g (0.105 mol) of 4,4′-diaminodiphenyl ether, and DMF And dissolved with stirring, 78 g (0.15 mol) of 4,4 ′-(4,4′-isopropylidenediphenoxy) bis (phthalic anhydride) was added, and the mixture was stirred at 20 ° C. for about 1 hour. A polyamic acid solution having a solid content concentration of 30% was obtained. The polyamic acid solution was placed on a fluorine-coated vat and heated under reduced pressure at 200 ° C. for 120 minutes at 665 Pa in a vacuum oven to obtain polyimide resin 1.

(調合例1;絶縁樹脂材料溶液の調合1)
合成例1で得たポリイミド樹脂1を20重量部、及びオキシム構造を有する化合物である2−オクタンジオン−,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)](チバ・スペシャルティ・ケミカルズ(株)製イルガキュアOXE 01)10重量部、を1,3−ジオキソラン70重量部に添加、均一撹拌、溶解して、絶縁樹脂材料溶液(a)を得た。
(Preparation Example 1; Preparation 1 of insulating resin material solution)
20 parts by weight of the polyimide resin 1 obtained in Synthesis Example 1 and 2-octanedione-, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], which is a compound having an oxime structure (Ciba 10 parts by weight of Specialty Chemicals Co., Ltd. Irgacure OXE 01) was added to 70 parts by weight of 1,3-dioxolane, and stirred and dissolved to obtain an insulating resin material solution (a).

(調合例2;絶縁樹脂材料溶液の調合2)
合成例1で得たポリイミド樹脂1を20重量部、及びオキシム構造を有する化合物である1,2−オクタンジオン−,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)](チバ・スペシャルティ・ケミカルズ(株)製イルガキュアOXE 02)10重量部、を1,3−ジオキソラン70重量部に添加、均一撹拌、溶解して、絶縁樹脂材料溶液(b)を得た。
(Formulation Example 2; Preparation 2 of insulating resin material solution)
20 parts by weight of the polyimide resin 1 obtained in Synthesis Example 1 and 1,2-octanedione-, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], which is a compound having an oxime structure ( 10 parts by weight of Ciba Specialty Chemicals Co., Ltd. Irgacure OXE 02) was added to 70 parts by weight of 1,3-dioxolane, uniformly stirred and dissolved to obtain an insulating resin material solution (b).

(実施例1)
支持体(商品名:ルミラーT−60、東レフィルム加工(株)製;38μm)上に絶縁樹脂材料溶液(a)を絶縁樹脂材料の最終厚みが20μmとなるように塗布、60℃で5分間加熱して、絶縁樹脂材料(A)/支持体なる積層体を得た。該積層体の絶縁樹脂材料(A)と両面銅箔付きのガラスエポキシ基板(商品番号:CS−3665D、利昌工業(株)製;銅厚み5μm)とを対向させ、1段目、温度90℃、真空引き30秒、大気開放、加圧時間30秒、及び2段目、温度110℃、圧力1MPa、加圧時間60秒なる条件にて真空ラミネートを行った後、支持体を引き剥がして、ガラスエポキシ基板/絶縁樹脂材料(A)なる積層体を得た。
(Example 1)
An insulating resin material solution (a) was applied on a support (trade name: Lumirror T-60, manufactured by Toray Film Processing Co., Ltd .; 38 μm) so that the final thickness of the insulating resin material was 20 μm, and at 60 ° C. for 5 minutes. Heating was performed to obtain a laminate of insulating resin material (A) / support. The laminated resin resin material (A) and a glass epoxy board (product number: CS-3665D, manufactured by Risho Kogyo Co., Ltd .; copper thickness: 5 μm) with double-sided copper foil are opposed to each other, at the first stage, at a temperature of 90 ° C. After vacuum lamination under the conditions of vacuum drawing 30 seconds, release to the atmosphere, pressurization time 30 seconds, and the second stage, temperature 110 ° C., pressure 1 MPa, pressurization time 60 seconds, the support is peeled off, A laminate of glass epoxy substrate / insulating resin material (A) was obtained.

該積層体の絶縁樹脂材料(A)側から、UVレーザーにてライン/スペースが10μm/10μm、厚みが5μmになるように加工した。   The laminate was processed from the insulating resin material (A) side with a UV laser so that the line / space was 10 μm / 10 μm and the thickness was 5 μm.

このようにして得られた積層体に機械ドリルにてスルーホールを形成した後、減圧プラズマ処理にてデスミア処理を施し、続いて、パラジウム触媒を付与し、無電解銅めっき(ロームアンドハース社製CUPOSIT厚付けタイプ)を施すことにより、ライン/スペースが10μm/10μm、厚みが5μmの銅配線を形成し、プリント配線板を得た。このプリント配線板の微細配線形成性を評価した結果を表1に示す。   After forming a through hole in the laminate obtained in this way with a mechanical drill, it was subjected to a desmear treatment with a reduced-pressure plasma treatment, followed by a palladium catalyst and electroless copper plating (Rohm and Haas Co., Ltd.) By applying the CUPOSIT thickening type), a copper wiring having a line / space of 10 μm / 10 μm and a thickness of 5 μm was formed to obtain a printed wiring board. The results of evaluating the fine wiring formability of this printed wiring board are shown in Table 1.

(実施例2)
支持体(商品名:ルミラーT−60、東レフィルム加工(株)製;38μm)上に絶縁樹脂材料溶液(b)を絶縁樹脂材料の最終厚みが20μmとなるように塗布、60℃で5分間加熱して、絶縁樹脂材料(B)/支持体なる積層体を得た。該積層体の絶縁樹脂材料(B)と両面銅箔付きのガラスエポキシ基板(商品番号:CS−3665D、利昌工業(株)製;銅厚み5μm)とを対向させ、1段目、温度90℃、真空引き30秒、大気開放、加圧時間30秒、及び2段目、温度110℃、圧力1MPa、加圧時間60秒なる条件にて真空ラミネートを行った後、支持体を引き剥がして、ガラスエポキシ基板/絶縁樹脂材料(B)なる積層体を得た。
(Example 2)
The insulating resin material solution (b) was applied on a support (trade name: Lumirror T-60, manufactured by Toray Film Processing Co., Ltd .; 38 μm) so that the final thickness of the insulating resin material was 20 μm, and at 60 ° C. for 5 minutes. Heating was performed to obtain a laminate of insulating resin material (B) / support. The laminated resin resin material (B) and a glass epoxy substrate (product number: CS-3665D, manufactured by Risho Kogyo Co., Ltd .; copper thickness: 5 μm) with double-sided copper foils are opposed to each other, at the first stage, at a temperature of 90 ° C. After vacuum lamination under the conditions of vacuum drawing 30 seconds, release to the atmosphere, pressurization time 30 seconds, and the second stage, temperature 110 ° C., pressure 1 MPa, pressurization time 60 seconds, the support is peeled off, A laminate of glass epoxy substrate / insulating resin material (B) was obtained.

該積層体の絶縁樹脂材料(B)側から、UVレーザーにてライン/スペースが10μm/10μm、厚みが5μmになるように加工した。   The laminate was processed from the insulating resin material (B) side with a UV laser so that the line / space was 10 μm / 10 μm and the thickness was 5 μm.

このようにして得られた積層体に機械ドリルにてスルーホールを形成した後、減圧プラズマ処理にてデスミア処理を施し、続いて、パラジウム触媒を付与し、無電解銅めっき(ロームアンドハース社製CUPOSIT厚付けタイプ)を施すことにより、ライン/スペースが10μm/10μm、厚みが5μmの銅配線を形成し、プリント配線板を得た。このプリント配線板の微細配線形成性を評価した結果を表1に示す。   After forming a through hole in the laminate obtained in this way with a mechanical drill, it was subjected to a desmear treatment with a reduced-pressure plasma treatment, followed by a palladium catalyst and electroless copper plating (Rohm and Haas Co., Ltd.) By applying the CUPOSIT thickening type), a copper wiring having a line / space of 10 μm / 10 μm and a thickness of 5 μm was formed to obtain a printed wiring board. The results of evaluating the fine wiring formability of this printed wiring board are shown in Table 1.

(比較例1)
無電解銅めっき触媒を含有するガラスエポキシ基板(E)(日立化成工業製、商品名:ACL3−E−168,1.44t)の片面上に、感光性永久レジスト層(F)(日立化成工業製商品名:ネガ型の感光性フィルムフォテックSR−3000)を、温度110℃,2m毎分速度でラミネートして積層体を得た。該積層体の感光性永久レジスト層上に配線幅/配線間隔=10μm/10μmを有するマスクパターンを載せ、波長365nmの光を300mJ/cmだけ露光した。続いて、スプレー現像機(サンハヤト(株)製エッチングマシーンES−655D)を用いて、現像液(ジエチレングリコール、モノブチルエーテル:200ml/L,水:800ml/L,ホウ砂:8/L)にて、液温40℃でスプレー現像処理を行い、部分的に、無電解銅めっき触媒を含有するガラスエポキシ基板を露出させた。このようにして得られた積層体に機械ドリルにてスルーホールを形成した後、続いて、無電解銅めっき(ロームアンドハース社製CUPOSIT厚付けタイプ)を施すことにより、厚みが10μmの配線を形成し、プリント配線板を得た。このプリント配線板の微細配線形成性を評価した結果を表1に示す。
(Comparative Example 1)
On one side of a glass epoxy substrate (E) (trade name: ACL3-E-168, 1.44t, manufactured by Hitachi Chemical Co., Ltd.) containing an electroless copper plating catalyst, a photosensitive permanent resist layer (F) (Hitachi Chemical Industry Co., Ltd.) Product name: negative photosensitive film FOTECH SR-3000) was laminated at a temperature of 110 ° C. at a rate of 2 m / min to obtain a laminate. A mask pattern having a wiring width / wiring interval = 10 μm / 10 μm was placed on the photosensitive permanent resist layer of the laminate, and light having a wavelength of 365 nm was exposed by 300 mJ / cm 2 . Subsequently, using a spray developing machine (etching machine ES-655D manufactured by Sunhayato Co., Ltd.), with a developer (diethylene glycol, monobutyl ether: 200 ml / L, water: 800 ml / L, borax: 8 / L), A spray development treatment was performed at a liquid temperature of 40 ° C. to partially expose a glass epoxy substrate containing an electroless copper plating catalyst. After forming a through hole in the laminate obtained in this way with a mechanical drill, subsequently, electroless copper plating (CUPOSIT thickening type manufactured by Rohm and Haas) is applied to form a wiring having a thickness of 10 μm. The printed wiring board was obtained. The results of evaluating the fine wiring formability of this printed wiring board are shown in Table 1.

比較例に示すように、不必要な箇所(ガラスエポキシ基板の全面)に無電解銅めっき触媒が存在するため、無電解銅めっき時に、永久レジスト層とガラスエポキシ基板との界面に無電解銅めっきが異常析出するため、微細配線箇所で導通してしまうという結果となった。   As shown in the comparative example, the electroless copper plating catalyst is present in unnecessary places (the entire surface of the glass epoxy substrate), so the electroless copper plating is applied to the interface between the permanent resist layer and the glass epoxy substrate during electroless copper plating. As a result, abnormal precipitation occurs, resulting in electrical conduction at the fine wiring locations.

これに対して実施例では、比較例で見られるような材料間の界面がないため、無電解銅めっきの異常析出は見られず、微細配線箇所でも良好な絶縁信頼性を示した。   On the other hand, in the examples, since there is no interface between the materials as seen in the comparative example, no abnormal deposition of electroless copper plating was observed, and good insulation reliability was exhibited even at fine wiring locations.

本発明の製造方法により得られたプリント配線板の模式図Schematic diagram of a printed wiring board obtained by the production method of the present invention

符号の説明Explanation of symbols

1 絶縁樹脂材料
2 めっき
3 基材
4 溝
1 Insulating resin material 2 Plating 3 Base material 4 Groove

Claims (8)

少なくともレーザー照射される前は無電解めっきが析出しない絶縁樹脂材料であって、かつ、レーザー照射された箇所のみ無電解めっきが析出する、絶縁樹脂材料を用いて、少なくとも、A)前記絶縁樹脂材料の無電解めっきを析出させる箇所に、レーザーを照射して溝を形成する工程、B)前記溝に無電解めっきを形成する工程を含むことを特徴とするプリント配線板の製造方法。   At least using an insulating resin material that is an insulating resin material in which electroless plating does not deposit before being irradiated with a laser, and in which only the portion irradiated with the laser is deposited. A) The insulating resin material A method for producing a printed wiring board, comprising: forming a groove by irradiating a laser at a location where the electroless plating is deposited; and B) forming an electroless plating in the groove. 上記B)工程において、溝を形成した上記絶縁樹脂材料に無電解めっき処理を行った際に、溝以外の無電解めっきが析出しない絶縁樹脂材料が露出している部分には、無電解めっきが析出せず、上記溝部分には、無電解めっきが析出することを特徴とする請求項1に記載のプリント配線板の製造方法。   In the step B), when an electroless plating process is performed on the insulating resin material in which the groove is formed, the electroless plating is exposed to a portion where the insulating resin material other than the groove where the electroless plating is not deposited is exposed. 2. The method of manufacturing a printed wiring board according to claim 1, wherein electroless plating is deposited in the groove portion without being deposited. さらにC)デスミア工程を含むことを特徴とする請求項1または2に記載のプリント配線板の製造方法。   The method for producing a printed wiring board according to claim 1, further comprising a C) desmear process. A)、C)、B)の順に加工することを特徴とする請求項3に記載のプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to claim 3, wherein the processing is performed in the order of A), C), and B). さらにD)スルーホールを形成する工程を含むことを特徴とする請求項1〜4のいずれか1項に記載のプリント配線板の製造方法。   5. The method for producing a printed wiring board according to claim 1, further comprising D) a step of forming a through hole. A)、D)、C)、B)の順に加工することを特徴とする請求項5に記載のプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to claim 5, wherein the processing is performed in the order of A), D), C), and B). D)、A)、C)、B)の順に加工することを特徴とする請求項5に記載のプリント配線板の製造方法。   6. The printed wiring board manufacturing method according to claim 5, wherein the processing is performed in the order of D), A), C), and B). 請求項1〜7のいずれか1項に記載の製造方法により得られることを特徴とするプリント配線板。   A printed wiring board obtained by the manufacturing method according to claim 1.
JP2008149549A 2008-06-06 2008-06-06 Method for manufacturing printed circuit board, and printed circuit board Pending JP2009295872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149549A JP2009295872A (en) 2008-06-06 2008-06-06 Method for manufacturing printed circuit board, and printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149549A JP2009295872A (en) 2008-06-06 2008-06-06 Method for manufacturing printed circuit board, and printed circuit board

Publications (1)

Publication Number Publication Date
JP2009295872A true JP2009295872A (en) 2009-12-17

Family

ID=41543778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149549A Pending JP2009295872A (en) 2008-06-06 2008-06-06 Method for manufacturing printed circuit board, and printed circuit board

Country Status (1)

Country Link
JP (1) JP2009295872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063857A (en) * 2012-09-20 2014-04-10 Sharp Corp Electronic component and method for manufacturing electronic component
JP5654154B1 (en) * 2013-08-09 2015-01-14 キヤノン・コンポーネンツ株式会社 RESIN PRODUCT AND METHOD FOR PRODUCING RESIN PRODUCT WITH METAL COATING, RESIN PRODUCT WITH METAL COATING, AND WIRING BOARD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063857A (en) * 2012-09-20 2014-04-10 Sharp Corp Electronic component and method for manufacturing electronic component
JP5654154B1 (en) * 2013-08-09 2015-01-14 キヤノン・コンポーネンツ株式会社 RESIN PRODUCT AND METHOD FOR PRODUCING RESIN PRODUCT WITH METAL COATING, RESIN PRODUCT WITH METAL COATING, AND WIRING BOARD
JP2015057457A (en) * 2013-08-09 2015-03-26 キヤノン・コンポーネンツ株式会社 Method for producing resin product and metal film-fitted resin product, metal film-fitted resin product and wiring board

Similar Documents

Publication Publication Date Title
TWI362239B (en) Method of producing circuit board by additive method, and circuit board and multilayer circuit board obtained by the method
TW200935992A (en) Method for manufacturing board with built-in electronic
TWI436707B (en) A method of manufacturing a printed wiring board, and a printed wiring board obtained from the manufacturing method
JP5595363B2 (en) Manufacturing method of laminated body with holes, laminated body with holes, manufacturing method of multilayer substrate, composition for forming underlayer
JP2010021190A (en) Plating undeposition material for plating, and printed wiring board
JP2011171528A (en) Manufacturing method of multilayer wiring board
JP2021528572A (en) Electroless metal patterning
TWI436706B (en) A method of manufacturing a printed wiring board, and a printed wiring board obtained from the manufacturing method
JP2015195364A (en) Manufacturing method of laminate structure
JP2009295872A (en) Method for manufacturing printed circuit board, and printed circuit board
CN104115568B (en) The method and apparatus for manufacturing printed circuit board
JP2004265967A (en) Multilayer printed wiring board, its manufacturing method and semiconductor device
JP2007049116A (en) Multilayer wiring board and manufacturing method thereof
JP2004221449A (en) Multilayer wiring board and its manufacturing method
TW200407057A (en) Method for the manufacture of printed circuit boards with integral plated resistors
JP2011139010A (en) Circuit board and method of manufacturing the same
KR20190049736A (en) Plasma Etch Catalyst Laminates with Traces and Vias
JP2010021302A (en) Printed wiring board
JP2003124637A (en) Multilayer wiring board
JP2010021301A (en) Insulating material, and printed wiring board
KR101987378B1 (en) Method of manufacturing printed circuit board
JP5350184B2 (en) Multilayer circuit board manufacturing method and multilayer circuit board manufactured by the manufacturing method
JP2009007613A (en) Metal thin film pattern forming method on polyimide resin base material, metal thin film circuit pattern forming method on polyimide resin base material, metal thin film base material and metal thin film circuit base material
JP2010021303A (en) Insulating material, and printed wiring board
JP4905318B2 (en) Circuit board manufacturing method