JP2009290069A - Semiconductor device, and method of manufacturing the same - Google Patents

Semiconductor device, and method of manufacturing the same Download PDF

Info

Publication number
JP2009290069A
JP2009290069A JP2008142505A JP2008142505A JP2009290069A JP 2009290069 A JP2009290069 A JP 2009290069A JP 2008142505 A JP2008142505 A JP 2008142505A JP 2008142505 A JP2008142505 A JP 2008142505A JP 2009290069 A JP2009290069 A JP 2009290069A
Authority
JP
Japan
Prior art keywords
type
channel
semiconductor device
semiconductor
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008142505A
Other languages
Japanese (ja)
Inventor
Kazuhiro Aihara
一洋 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2008142505A priority Critical patent/JP2009290069A/en
Publication of JP2009290069A publication Critical patent/JP2009290069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which can operate at a high speed effectively, and to provide a method of manufacturing the same. <P>SOLUTION: The semiconductor device is embedded in an n-type Si substrate 2, and includes a source and a drain which are formed separately from each other so as to sandwich a channel between them, and further, has a gate formed on the channel. Each of the source and the drain includes the laminate of: a SiC material 3; and a p-type SiGe material which is formed on the whole top surface of the SiC material 3 and is made of a semiconductor material capable of giving a stress to the channel. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置に関し、特に、チャネルに対して応力を付与する半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device that applies stress to a channel.

一般的なトランジスタとしては、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)が広く知られている。   As a general transistor, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is widely known.

従来におけるp型MOSFETでは、ソース・ドレイン領域にSiGe(シリコン・ゲルマニウム)層を形成してチャネル領域に圧縮応力を与えることによって、キャリアの移動度を向上させていた(例えば、特許文献1参照)。   In a conventional p-type MOSFET, the mobility of carriers is improved by forming a SiGe (silicon-germanium) layer in the source / drain regions and applying a compressive stress to the channel region (see, for example, Patent Document 1). .

米国特許第6621131号明細書US Pat. No. 6,621,131

しかし、特許文献1では、ソース・ドレイン領域に用いたp型SiGeの比誘電率がn型基板であるSi(シリコン)の比誘電率よりも大きいため、p型SiGeとn型Siとのpn接合部において大きな接合容量が生じ、トランジスタの高速動作を妨げてしまうという問題がある。   However, in Patent Document 1, the relative permittivity of p-type SiGe used for the source / drain regions is larger than the relative permittivity of Si (silicon) which is an n-type substrate, so that the pn between p-type SiGe and n-type Si is used. There is a problem in that a large junction capacitance is generated at the junction, which hinders high-speed operation of the transistor.

本発明は、これらの問題を解決するためになされたもので、効果的に高速動作が可能な半導体装置およびその製造方法を提供することを目的とする。   The present invention has been made to solve these problems, and an object of the present invention is to provide a semiconductor device capable of effectively operating at high speed and a method for manufacturing the same.

上記の課題を解決するために、本発明の一実施形態による半導体装置は、第1導電型の半導体基板に埋め込まれ、チャネルを挟んで離間して形成されたソースおよびドレインと、チャネル上に形成されたゲートとを備え、ソースおよびドレインは、低比誘電率層と、低比誘電率層の全面上に形成され、チャネルに応力を与えることが可能な半導体材料よりなる第2導電型の半導体層との積層からなることを特徴とする。   In order to solve the above problems, a semiconductor device according to an embodiment of the present invention is formed on a channel, and a source and a drain that are embedded in a semiconductor substrate of a first conductivity type and spaced apart with a channel interposed therebetween. A second conductivity type semiconductor comprising a low relative dielectric constant layer and a semiconductor material formed on the entire surface of the low relative dielectric constant layer and capable of applying stress to the channel. It consists of lamination | stacking with a layer, It is characterized by the above-mentioned.

本発明の一実施形態では、第1導電型の半導体基板に埋め込まれ、チャネルを挟んで離間して形成されたソースおよびドレインと、チャネル上に形成されたゲートとを備え、ソースおよびドレインは、低比誘電率層と、低比誘電率層の全面上に形成され、チャネルに応力を与えることが可能な半導体材料よりなる第2導電型の半導体層との積層からなるため、効果的な高速動作が可能である。   In one embodiment of the present invention, the semiconductor device includes a source and a drain embedded in a semiconductor substrate of the first conductivity type and spaced apart from each other with a channel interposed therebetween, and a gate formed on the channel. Effectively high speed because it consists of a laminate of a low relative dielectric constant layer and a second conductivity type semiconductor layer made of a semiconductor material that is formed on the entire surface of the low relative dielectric constant layer and can apply stress to the channel. Operation is possible.

本発明の実施形態について、図面を用いて以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず初めに、本発明の前提となる技術について説明する。   First, the technology that is the premise of the present invention will be described.

従来におけるp型のMOSFETでは、ソース・ドレインであるSiGeでチャネルに圧縮応力を与えることによってキャリアの移動度を向上させていた。しかし、ソース・ドレインであるp型SiGeと基板であるn型Siとのpn接合部において大きな接合容量が生じ、トランジスタの高速動作を妨げるという問題があった。   In the conventional p-type MOSFET, the carrier mobility is improved by applying compressive stress to the channel with SiGe as the source and drain. However, there is a problem in that a large junction capacitance is generated at the pn junction between the p-type SiGe as the source / drain and the n-type Si as the substrate, preventing high-speed operation of the transistor.

この問題の対策として、p型SiGeとn型Siとの間に低比誘電率であるSiC(炭化シリコン)またはC(炭素)を形成することによって、接合容量を低減させるMOSFETが提案されている。   As a countermeasure against this problem, MOSFETs have been proposed that reduce junction capacitance by forming SiC (silicon carbide) or C (carbon) having a low relative dielectric constant between p-type SiGe and n-type Si. .

図13は、従来における半導体装置の構成図である。図13に示すように、p型MOSFETであるトランジスタ10は、n型Si基板11に埋め込まれ、チャネルを挟んで離間するようにソースとドレインとが形成されている。ソースおよびドレインの各々は、不純物が注入されていないSiC12またはCの上面にp型SiGe14を形成し、p型SiGe14の側面を囲むようにp型SiC13が形成されている。すなわち、p型SiGe14とn型Si基板11との間にp型SiC13が介在している。ゲートは、チャネル上にゲート絶縁膜15とゲート電極16とを順に形成し、それらの側面にサイドウォール17を形成することで構成される。   FIG. 13 is a configuration diagram of a conventional semiconductor device. As shown in FIG. 13, a transistor 10 that is a p-type MOSFET is embedded in an n-type Si substrate 11, and a source and a drain are formed so as to be separated with a channel interposed therebetween. In each of the source and drain, p-type SiGe 14 is formed on the upper surface of SiC 12 or C in which no impurity is implanted, and p-type SiC 13 is formed so as to surround the side surface of p-type SiGe 14. That is, the p-type SiC 13 is interposed between the p-type SiGe 14 and the n-type Si substrate 11. The gate is formed by sequentially forming a gate insulating film 15 and a gate electrode 16 on a channel, and forming a sidewall 17 on the side surfaces thereof.

次に図13に示すトランジスタ10の形成方法について説明する。まず、Si基板のチャネルを挟んで離間してリセスを形成する。形成したリセスの底面および側面にSiCまたはCをエピタキシャル成長させる。続いて、SiCの形成後に残ったリセス部分を埋めるようにSiGeをエピタキシャル成長させる。SiGeの形成後、所定の条件下でp型不純物を注入する。このとき、リセスの底面に形成したSiCまたはCには不純物が注入されないようにしている。すなわち、不純物が注入されていないSiC12またはC上の上面にp型SiGe14が形成され、p型SiGe14の側面を囲むようにp型SiC13またはCが形成される。その後、前述のゲートが形成される。   Next, a method for forming the transistor 10 illustrated in FIGS. First, recesses are formed spaced apart across the channel of the Si substrate. SiC or C is epitaxially grown on the bottom and side surfaces of the formed recess. Subsequently, SiGe is epitaxially grown so as to fill the recess portion remaining after the formation of SiC. After the formation of SiGe, p-type impurities are implanted under predetermined conditions. At this time, impurities are prevented from being implanted into SiC or C formed on the bottom surface of the recess. That is, p-type SiGe 14 is formed on the upper surface of SiC 12 or C on which no impurity is implanted, and p-type SiC 13 or C is formed so as to surround the side surface of p-type SiGe 14. Thereafter, the aforementioned gate is formed.

上記のMOSFETでは、基板に用いたSiの格子定数は5.43Åであり、ソースおよびドレインに用いたSiGeの格子定数は5.43Åより大きく5.64Å以下である(SiGeの格子定数は、SiとGeとの組成比に応じて前記範囲内で変化する)。従って、SiGeはSiよりも格子定数が大きいため、SiGeによってチャネルのSiが圧縮される。このように、圧縮されることによってチャネルに歪が生じ、チャネルを通過するキャリアの移動度を向上させることができる。   In the above MOSFET, the lattice constant of Si used for the substrate is 5.43Å, and the lattice constant of SiGe used for the source and drain is greater than 5.43Å and less than or equal to 5.64Å (the lattice constant of SiGe is Si Depending on the composition ratio of Ge and Ge. Therefore, since SiGe has a larger lattice constant than Si, channel Si is compressed by SiGe. In this way, the channel is distorted by being compressed, and the mobility of carriers passing through the channel can be improved.

また、ソースおよびドレインに用いたp型SiGeの比誘電率は11.9より大きく16.0以下であり、基板に用いたn型Siの比誘電率の11.9より高い。従って、p型SiGeとn型Siとを接合させると、動作時にpn接合部において大きな接合容量が発生してしまう。接合容量が大きくなると、トランジスタの高速動作を妨げる原因となる。この問題を解決するために、上記の構造のように、p型SiGeとn型Siとの間にSiCまたはCを形成している。SiCの比誘電率は10.0、Cの比誘電率は5.7であるため、両者とも比誘電率がSiGeおよびSiより低い。このように、低比誘電率層を設けることによって、pn接合の接合容量を低減でき、トランジスタの動作速度を向上させることが可能である。   The relative dielectric constant of p-type SiGe used for the source and drain is larger than 11.9 and not more than 16.0, which is higher than the relative dielectric constant of n-type Si used for the substrate. Therefore, when p-type SiGe and n-type Si are joined, a large junction capacitance is generated at the pn junction during operation. When the junction capacitance is increased, the high-speed operation of the transistor is hindered. In order to solve this problem, SiC or C is formed between p-type SiGe and n-type Si as in the above structure. Since the relative permittivity of SiC is 10.0 and the relative permittivity of C is 5.7, both have a relative permittivity lower than that of SiGe and Si. Thus, by providing the low relative dielectric constant layer, the junction capacitance of the pn junction can be reduced and the operation speed of the transistor can be improved.

一方、上記の低比誘電率層は、p型SiCまたはp型Cは、p型SiGeとチャネルとの間にも形成されている。SiCの格子定数は3.08Å、Cの格子定数は3.56Åであり、SiGeおよびSiの格子定数よりも小さい。そのため、p型SiGeによってn型Siを圧縮する効果が低減し、チャネルにおけるキャリアの移動度を向上させる効果が不十分となる。このようなことから、p型SiGeとn型Siとの間に形成されたp型SiCまたはp型Cの膜厚を薄くするか、p型SiCまたはp型Cを形成しないことが好ましい。   On the other hand, in the low relative dielectric constant layer, p-type SiC or p-type C is also formed between the p-type SiGe and the channel. The lattice constant of SiC is 3.08Å and the lattice constant of C is 3.56Å, which is smaller than the lattice constant of SiGe and Si. Therefore, the effect of compressing n-type Si by p-type SiGe is reduced, and the effect of improving carrier mobility in the channel is insufficient. For this reason, it is preferable to reduce the film thickness of p-type SiC or p-type C formed between p-type SiGe and n-type Si, or not to form p-type SiC or p-type C.

本発明は、上記の問題を解決するためのものであり、その構成および動作について以下に説明する。   The present invention is for solving the above problems, and the configuration and operation thereof will be described below.

〈実施形態1〉
図1〜図5は、本発明の実施形態1による半導体装置の製造工程を示す図である。本実施形態1によるトランジスタ1は、n型(第1導電型)Si基板2(半導体基板)に埋め込まれ、チャネルを挟んで離間して形成されたソースおよびドレインと、チャネル上に形成されたゲートとを備え、ソースおよびドレインは、SiC3(低比誘電率層)と、SiC3の全面上に形成され、チャネルに応力を与えることが可能な半導体材料よりなるp型(第2導電型)SiGe4(半導体層)との積層からなることを特徴としている。以下に、本実施形態1によるトランジスタ1の形成方法について詳細に説明する。
<Embodiment 1>
1 to 5 are views showing a manufacturing process of a semiconductor device according to Embodiment 1 of the present invention. The transistor 1 according to the first embodiment includes a source and a drain that are embedded in an n-type (first conductivity type) Si substrate 2 (semiconductor substrate) and spaced apart from each other, and a gate that is formed on the channel. The source and drain are formed of SiC3 (low relative dielectric constant layer) and p-type (second conductivity type) SiGe4 (semiconductor material formed on the entire surface of SiC3 and capable of applying stress to the channel). It is characterized by comprising a laminate with a semiconductor layer. Hereinafter, a method for forming the transistor 1 according to the first embodiment will be described in detail.

図1に示すように、n型Si基板2のチャネルを挟んで離間するようにリセス(第1のリセス)を形成する。次に、図2に示すように、形成されたリセスにSiC3をエピタキシャル成長によって形成する。そして、図3に示すように、SiC3が所定の膜厚となるように再度リセス(第2のリセス)を形成する。なお、SiC3の膜厚は、SiC3の空乏層によってソース・ドレインの接合容量が低減できる程度の厚さまでエッチングすることが望ましい。   As shown in FIG. 1, a recess (first recess) is formed so as to be separated with the channel of the n-type Si substrate 2 interposed therebetween. Next, as shown in FIG. 2, SiC3 is formed by epitaxial growth in the formed recess. Then, as shown in FIG. 3, a recess (second recess) is formed again so that SiC3 has a predetermined thickness. It is desirable that the SiC3 film be etched to such a thickness that the junction capacity between the source and the drain can be reduced by the SiC3 depletion layer.

その後、図4に示すように、チャネルに応力を与えることが可能な半導体材料よりなるp型SiGe4をSiC3の全面上にエピタキシャル成長によって形成する。なお、p型不純物の注入は、SiGeのエピタキシャル成長時に同時に注入してもよいし、SiGe形成後に所定の条件下でp型不純物を注入してもよい。また、このとき、p型不純物はSiC3には注入されないようにする。   Thereafter, as shown in FIG. 4, p-type SiGe4 made of a semiconductor material capable of applying stress to the channel is formed on the entire surface of SiC3 by epitaxial growth. The p-type impurity may be implanted simultaneously with the epitaxial growth of SiGe, or the p-type impurity may be implanted under predetermined conditions after the formation of SiGe. At this time, p-type impurities are not implanted into SiC3.

p型SiGe4の形成後、図5に示すように、n型Si基板2のチャネル上にゲート絶縁膜5とゲート電極6とを積層し、それらの側面にサイドウォール7を設けてゲートを形成することによってトランジスタ1が完成する。   After the formation of the p-type SiGe 4, as shown in FIG. 5, the gate insulating film 5 and the gate electrode 6 are laminated on the channel of the n-type Si substrate 2, and the side walls 7 are provided on the side surfaces thereof to form the gate. Thus, the transistor 1 is completed.

以上のことから、p型SiGe4によってチャネルに圧縮応力を与えてキャリアの移動度を向上させ、SiC3によって接合容量を低減させてトランジスタ1の動作速度を向上させている。また、p型SiGe4とチャネルとの間にはSiCが形成されていないため、より効果的にチャネルに対して圧縮応力を与えることができ、効果的に高速動作が可能となる。   From the above, compressive stress is applied to the channel by p-type SiGe4 to improve carrier mobility, and junction capacity is reduced by SiC3 to improve the operation speed of the transistor 1. In addition, since SiC is not formed between the p-type SiGe4 and the channel, a compressive stress can be applied to the channel more effectively, and high-speed operation can be effectively performed.

〈実施形態2〉
図6〜図12は、本発明の実施形態2による半導体装置の製造方法を示す図である。本実施形態2では、SiC3の間であって、チャネルの下層に形成した半導体材料よりなるn型SiGe8をさらに備えることを特徴としている。その他の構成は、実施形態1と同様である。以下に、本実施形態2によるトランジスタ1の形成方法について詳細に説明する。
<Embodiment 2>
6 to 12 are views showing a method of manufacturing a semiconductor device according to Embodiment 2 of the present invention. The second embodiment is characterized by further comprising n-type SiGe8 made of a semiconductor material between SiC3 and formed in the lower layer of the channel. Other configurations are the same as those of the first embodiment. Hereinafter, a method for forming the transistor 1 according to the second embodiment will be described in detail.

図6および図7に示すように、n型Si基板2上にn型SiGe8とn型Si9とを順に形成する。このとき、SiGeとSiとを順に形成した後にn型不純物を二層に対して注入してもよい。次に、図8に示すように、後にn型Si9に形成されるチャネルを挟んで離間するようにリセスを形成する。リセスの形成後、図9に示すように、SiCをエピタキシャル成長によって形成する。そして、図10に示すように、SiC3が所定の膜厚となるように再度リセスを形成する。なお、SiC3の膜厚は、SiC3の空乏層によってソース・ドレインの接合容量が低減できる程度の厚さまでエッチングすることが望ましい。   As shown in FIGS. 6 and 7, n-type SiGe 8 and n-type Si 9 are sequentially formed on the n-type Si substrate 2. At this time, after forming SiGe and Si in order, the n-type impurity may be implanted into the two layers. Next, as shown in FIG. 8, recesses are formed so as to be separated with a channel formed later in n-type Si 9 interposed therebetween. After the formation of the recess, SiC is formed by epitaxial growth as shown in FIG. Then, as shown in FIG. 10, the recess is formed again so that the SiC3 has a predetermined film thickness. It is desirable that the SiC3 film be etched to such a thickness that the junction capacity between the source and the drain can be reduced by the SiC3 depletion layer.

その後、図11に示すように、チャネルに応力を与えることが可能な半導体材料よりなるp型SiGe4をSiC3の全面上にエピタキシャル成長によって形成する。なお、p型不純物の注入は、SiGeのエピタキシャル成長時に同時に注入してもよいし、SiGe形成後に所定の条件下でp型不純物を注入してもよい。また、このとき、p型不純物はSiC3には注入されないようにする。   Thereafter, as shown in FIG. 11, p-type SiGe4 made of a semiconductor material capable of applying stress to the channel is formed on the entire surface of SiC3 by epitaxial growth. The p-type impurity may be implanted simultaneously with the epitaxial growth of SiGe, or the p-type impurity may be implanted under predetermined conditions after the formation of SiGe. At this time, p-type impurities are not implanted into SiC3.

p型SiGe4の形成後、図12に示すように、n型Si9のチャネル上にゲート絶縁膜5とゲート電極6とを積層し、それらの側面にサイドウォール7を設けてゲートを形成することによってトランジスタ1が完成する。   After forming the p-type SiGe4, as shown in FIG. 12, the gate insulating film 5 and the gate electrode 6 are laminated on the channel of the n-type Si9, and the side walls 7 are provided on the side surfaces thereof to form the gate. Transistor 1 is completed.

以上のことから、チャネルには、ソース・ドレインに形成されるp型SiGe4からの圧縮応力に加えて、n型SiGeからの圧縮応力がさらに与えられるため、実施形態1よりもチャネルにおけるキャリアの移動度がさらに向上される。従って、さらに効果的に高速動作が可能となる。   From the above, since the channel is further given a compressive stress from the n-type SiGe in addition to the compressive stress from the p-type SiGe4 formed in the source / drain, the carrier movement in the channel is higher than that in the first embodiment. The degree is further improved. Therefore, high-speed operation can be performed more effectively.

本発明の実施形態では、低比誘電率層としてSiC3を用いたが、Cなど比誘電率の低いものであればいかなるものであってもよい。また、チャネルに応力を与えることが可能な半導体材料としてp型SiGe4を用いたが、チャネルに圧縮効果を与えるものであればいかなるものであってもよい。   In the embodiment of the present invention, SiC3 is used as the low relative dielectric constant layer, but any layer having a low relative dielectric constant such as C may be used. Moreover, although p-type SiGe4 is used as a semiconductor material capable of applying stress to the channel, any material may be used as long as it provides a compression effect to the channel.

本実施形態では、p型のMOSFETについて説明したが、n型のMOSFETについても同様の効果を奏する。なお、n型のMOSFETの場合は、p型Si基板とし、本実施形態でのp型SiGeをn型SiCとすればよい。   In the present embodiment, the p-type MOSFET has been described, but the same effect can be achieved with an n-type MOSFET. In the case of an n-type MOSFET, a p-type Si substrate may be used, and the p-type SiGe in this embodiment may be n-type SiC.

本発明の実施形態1による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 1 of this invention. 本発明の実施形態1による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 1 of this invention. 本発明の実施形態1による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 1 of this invention. 本発明の実施形態1による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 1 of this invention. 本発明の実施形態1による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 1 of this invention. 本発明の実施形態2による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 2 of this invention. 本発明の実施形態2による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 2 of this invention. 本発明の実施形態2による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 2 of this invention. 本発明の実施形態2による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 2 of this invention. 本発明の実施形態2による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 2 of this invention. 本発明の実施形態2による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 2 of this invention. 本発明の実施形態2による半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the semiconductor device by Embodiment 2 of this invention. 従来における半導体装置の構成図である。It is a block diagram of the conventional semiconductor device.

符号の説明Explanation of symbols

1 トランジスタ、2 n型Si基板、3 SiC、4 p型SiGe、5 ゲート絶縁膜、6 ゲート電極、7 サイドウォール、8 n型SiGe、9 n型Si、10 トランジスタ、11 n型Si基板、12 SiC、13 p型SiC、14 p型SiGe、15 ゲート絶縁膜、16 ゲート電極、17 サイドウォール。   1 transistor, 2 n-type Si substrate, 3 SiC, 4 p-type SiGe, 5 gate insulating film, 6 gate electrode, 7 sidewall, 8 n-type SiGe, 9 n-type Si, 10 transistor, 11 n-type Si substrate, 12 SiC, 13 p-type SiC, 14 p-type SiGe, 15 gate insulating film, 16 gate electrode, 17 sidewall.

Claims (8)

第1導電型の半導体基板に埋め込まれ、チャネルを挟んで離間して形成されたソースおよびドレインと、
前記チャネル上に形成されたゲートと、
を備え、
前記ソースおよび前記ドレインは、低比誘電率層と、前記低比誘電率層の全面上に形成され、前記チャネルに応力を与えることが可能な半導体材料よりなる第2導電型の半導体層との積層からなることを特徴とする、半導体装置。
A source and a drain embedded in a semiconductor substrate of the first conductivity type and spaced apart with a channel interposed therebetween;
A gate formed on the channel;
With
The source and the drain are formed of a low relative dielectric constant layer and a second conductivity type semiconductor layer formed on the entire surface of the low relative dielectric constant layer and made of a semiconductor material capable of applying stress to the channel. A semiconductor device comprising a stack.
前記各低比誘電率層の間であって、前記チャネルの下層に形成した前記半導体材料よりなる第1導電型の半導体層をさらに備えることを特徴とする、請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, further comprising a semiconductor layer of a first conductivity type made of the semiconductor material formed between the low relative dielectric constant layers and under the channel. 前記半導体材料は、SiGeからなることを特徴とする、請求項1または請求項2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor material is made of SiGe. 前記低比誘電率層は、SiCまたはCからなることを特徴とする、請求項1または請求項2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the low relative dielectric constant layer is made of SiC or C. (a)第1導電型の半導体基板のチャネルを挟んで離間するように第1のリセスを形成する工程と、
(b)前記工程(a)の後、前記各第1のリセスに低比誘電率層を形成する工程と、
(c)前記工程(b)の後、前記低比誘電率層が所定の膜厚となるように第2のリセスを形成する工程と、
(d)前記工程(c)の後、前記チャネルに応力を与えることが可能な半導体材料よりなる第2導電型の半導体層を前記低比誘電率層の全面上に形成する工程と、
(e)前記工程(d)の後、前記チャネル上にゲートを形成する工程と、
を備える、半導体装置の製造方法。
(A) forming a first recess so as to be spaced apart across a channel of a first conductivity type semiconductor substrate;
(B) after the step (a), forming a low relative dielectric constant layer in each of the first recesses;
(C) after the step (b), forming a second recess so that the low relative dielectric constant layer has a predetermined thickness;
(D) after the step (c), forming a second conductivity type semiconductor layer made of a semiconductor material capable of applying stress to the channel over the entire surface of the low relative dielectric constant layer;
(E) after the step (d), forming a gate on the channel;
A method for manufacturing a semiconductor device.
前記各低比誘電率層の間であって、前記チャネルの下層に前記半導体材料よりなる第1導電型の半導体層を形成する工程をさらに備えることを特徴とする、請求項5に記載の半導体装置の製造方法。   6. The semiconductor according to claim 5, further comprising a step of forming a first conductivity type semiconductor layer made of the semiconductor material between the low dielectric constant layers and below the channel. Device manufacturing method. 前記半導体材料は、SiGeからなることを特徴とする、請求項5または請求項6に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 5, wherein the semiconductor material is made of SiGe. 前記低比誘電率層は、SiCまたはCからなることを特徴とする、請求項5または請求項6に記載の半導体装置に製造方法。   The method of manufacturing a semiconductor device according to claim 5, wherein the low relative dielectric constant layer is made of SiC or C.
JP2008142505A 2008-05-30 2008-05-30 Semiconductor device, and method of manufacturing the same Pending JP2009290069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142505A JP2009290069A (en) 2008-05-30 2008-05-30 Semiconductor device, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142505A JP2009290069A (en) 2008-05-30 2008-05-30 Semiconductor device, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009290069A true JP2009290069A (en) 2009-12-10

Family

ID=41458980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142505A Pending JP2009290069A (en) 2008-05-30 2008-05-30 Semiconductor device, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009290069A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412204A (en) * 2011-11-30 2012-04-11 上海华力微电子有限公司 Single-transistor DRAM (dynamic random access memory) and preparation method thereof
CN102543882A (en) * 2011-11-08 2012-07-04 上海华力微电子有限公司 Method for forming silicon on insulator-SiGe heterojunction 1T-DRAM (1T-Dynamic Random Access Memory) structure on insulator and formed structure
CN102683261A (en) * 2011-03-01 2012-09-19 格罗方德半导体公司 Superior integrity of high-k metal gate stacks by capping STI regions
CN103811340A (en) * 2012-11-09 2014-05-21 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237590A (en) * 2001-02-09 2002-08-23 Univ Tohoku Mos field effect transistor
JP2004319988A (en) * 2003-03-31 2004-11-11 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2005217391A (en) * 2003-10-31 2005-08-11 Internatl Business Mach Corp <Ibm> High-mobility hetero-junction complementary field-effect transistor and its method
WO2007077540A1 (en) * 2006-01-05 2007-07-12 Nxp B.V. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method
JP2007329477A (en) * 2006-06-09 2007-12-20 Internatl Business Mach Corp <Ibm> Semiconductor structure and its type, and method (structure and method for forming multilayer embedded stressor)
JP2009094113A (en) * 2007-10-04 2009-04-30 Renesas Technology Corp Semiconductor apparatus
JP2009099702A (en) * 2007-10-16 2009-05-07 Toshiba Corp Semiconductor device and its manufacturing method
JP2009147265A (en) * 2007-12-18 2009-07-02 Panasonic Corp Semiconductor device, and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237590A (en) * 2001-02-09 2002-08-23 Univ Tohoku Mos field effect transistor
JP2004319988A (en) * 2003-03-31 2004-11-11 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2005217391A (en) * 2003-10-31 2005-08-11 Internatl Business Mach Corp <Ibm> High-mobility hetero-junction complementary field-effect transistor and its method
WO2007077540A1 (en) * 2006-01-05 2007-07-12 Nxp B.V. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method
JP2007329477A (en) * 2006-06-09 2007-12-20 Internatl Business Mach Corp <Ibm> Semiconductor structure and its type, and method (structure and method for forming multilayer embedded stressor)
JP2009094113A (en) * 2007-10-04 2009-04-30 Renesas Technology Corp Semiconductor apparatus
JP2009099702A (en) * 2007-10-16 2009-05-07 Toshiba Corp Semiconductor device and its manufacturing method
JP2009147265A (en) * 2007-12-18 2009-07-02 Panasonic Corp Semiconductor device, and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683261A (en) * 2011-03-01 2012-09-19 格罗方德半导体公司 Superior integrity of high-k metal gate stacks by capping STI regions
KR101396519B1 (en) * 2011-03-01 2014-05-22 글로벌파운드리즈 드레스덴 모듈 원 리미티드 라이어빌리티 컴퍼니 & 씨오. 케이지 Superior integrity of high-k metal gate stacks by capping sti region
CN102543882A (en) * 2011-11-08 2012-07-04 上海华力微电子有限公司 Method for forming silicon on insulator-SiGe heterojunction 1T-DRAM (1T-Dynamic Random Access Memory) structure on insulator and formed structure
CN102543882B (en) * 2011-11-08 2015-01-21 上海华力微电子有限公司 Method for forming silicon on insulator-SiGe heterojunction 1T-DRAM (1T-Dynamic Random Access Memory) structure on insulator and formed structure
CN102412204A (en) * 2011-11-30 2012-04-11 上海华力微电子有限公司 Single-transistor DRAM (dynamic random access memory) and preparation method thereof
CN103811340A (en) * 2012-11-09 2014-05-21 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
US10008602B2 (en) 2012-11-09 2018-06-26 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor devices and methods for manufacturing the same

Similar Documents

Publication Publication Date Title
TWI628797B (en) Conversion of strain-inducing buffer to electrical insulator
US8455858B2 (en) Semiconductor structure for reducing band-to-band tunneling (BTBT) leakage
CN102214684B (en) Semiconductor structure with suspended sources and drains as well as formation method thereof
EP2955757B1 (en) Nitride power component and manufacturing method therefor
CN102237401B (en) There is HEMT and the manufacture method thereof of lightly mixed drain area
US9935107B2 (en) CMOS FinFET device with dual strained cladding layers on relaxed SiGe fins, and method of fabricating the same
US9306016B2 (en) Semiconductor device and method for manufacturing the same
JP2007157788A (en) Semiconductor device
US20100213512A1 (en) High-Mobility Channel Devices on Dislocation-Blocking Layers
US20150097197A1 (en) Finfet with sigma cavity with multiple epitaxial material regions
US20130037821A1 (en) Semiconductor Device and Manufacturing Method thereof
US11239327B2 (en) HEMT and method of adjusting electron density of 2DEG
JP5426732B2 (en) Field effect transistor
US8441045B2 (en) Semiconductor device and method for manufacturing the same
JP2009290069A (en) Semiconductor device, and method of manufacturing the same
CN102214682B (en) Semiconductor structure with suspended source electrode and drain electrode and formation method thereof
JP5166789B2 (en) Semiconductor device
CN102214685B (en) Semiconductor structure with suspended sources and drains as well as formation method thereof
CN104779285A (en) FINFET (Fin Field Effect Transistor) semiconductor device and manufacturing method thereof
JP2011199112A (en) Semiconductor device, and method of manufacturing the same
WO2013063975A1 (en) Tunneling field effect transistor structure and forming method thereof
CN102214683B (en) Semiconductor structure having suspended source and suspended drain, and formation method of semiconductor structure
CN102208440B (en) Semiconductor structure and forming method thereof
JP2010010473A (en) Semiconductor device and method of manufacturing the same
CN103545366B (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100524

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Effective date: 20110221

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Effective date: 20121218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416