JP2009289500A - 無電極放電ランプおよび照明器具 - Google Patents

無電極放電ランプおよび照明器具 Download PDF

Info

Publication number
JP2009289500A
JP2009289500A JP2008138759A JP2008138759A JP2009289500A JP 2009289500 A JP2009289500 A JP 2009289500A JP 2008138759 A JP2008138759 A JP 2008138759A JP 2008138759 A JP2008138759 A JP 2008138759A JP 2009289500 A JP2009289500 A JP 2009289500A
Authority
JP
Japan
Prior art keywords
temperature
discharge lamp
electrodeless discharge
amalgam
bulb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008138759A
Other languages
English (en)
Inventor
Shinichi Anami
真一 阿南
Makoto Ukekawa
信 請川
Atsunori Okada
淳典 岡田
Koji Hiramatsu
宏司 平松
Motohiro Saimi
元洋 齋見
Yoshinori Tsuzuki
佳典 都築
Ayumi Sato
歩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008138759A priority Critical patent/JP2009289500A/ja
Publication of JP2009289500A publication Critical patent/JP2009289500A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

【課題】周囲温度が幅広い範囲で変化しても光出力特性や電気的特性の変化が少ない無電極放電ランプおよび照明器具を提供することにある。
【解決手段】無電極放電ランプは、内側に窪んだ凹部4を有するバルブ2と、一端部が封止されるとともに凹部4の底に連結された他端部においてバルブ2の内部の放電空間に連通する管状部5と、管状部5の内側に配置されるアマルガム(図示せず)を収納した金属容器7と、管状部5の周囲に巻回される誘導コイル14と、誘導コイル14と管状部5の外周面との間に配置され一部が凹部4の外側に露出する筒状の放熱体12とを備える。そして、放熱体12の内部に、液相と気相との間で相変化を起こす物質が封入されてなる封入部10が設けられてなる。
【選択図】図1

Description

本発明は、無電極放電ランプおよびこれが収納される筐体を備えた照明器具に関するものである。
従来から、ガラス管内に一対の電極を配設してなる蛍光ランプが提供されている。これに対して、バルブ内に電極を持たない無電極蛍光ランプ(以下、無電極放電ランプと称す)として、図15に示す構成のものが提案されている(特許文献1参照)。
ここにおいて、図15に示す無電極放電ランプは、ガラスなどの透光性材料により形成され内部に希ガスおよび水銀が封入されるとともに内側に窪んだ凹部4を有するバルブ2と、バルブ2の内壁に形成される蛍光体膜6と、一端部が封止されるとともに凹部4の底に連結された他端部においてバルブ2内部の放電空間に連通する管状部5と、管状部5の内側に配置され水銀を含有したアマルガムが収納される金属容器7と、凹部4の内側に設けられ管状部5の周囲に管状部5の軸方向に沿って巻回される誘導コイル14と、誘導コイル14と管状部5の外周面との間に配置され一部が凹部4の外側に露出する筒状の放熱体12とを備える。ここで、放熱体12は、一端部が凹部4の底側に位置し他端部が凹部4の外側に露出していることにより、凹部4の内側で発生した熱を凹部4の外側へ放熱することができる。また、図15に示すように、凹部4の内側において放熱体12の外周面の一部と誘導コイル14との間に、フェライトコア13が配設されている。
しかして、上述の無電極放電ランプは、高周波電源からケーブル(図示せず)を介して誘導コイル14に高周波電流が通電されると、バルブ2内部に高周波電磁界が発生し、バルブ2内部に封入された希ガスが放電する。ここで、希ガスの放電によりバルブ2が加熱されてバルブ2に封入された水銀が蒸発(蒸気化)する。また、バルブ2内部に発生した高周波電磁界によりバルブ2内の水銀蒸気が励起され、水銀蒸気から発生した紫外線がバルブ2の内壁に形成された蛍光体膜6に照射され可視光に変換される。
ところで、図15に示す構成の無電極放電ランプは、上述のように、バルブ2内に電極を持たないことにより、電極切れやエミッタ(熱電子放射物質)の消耗による不点が起こらないので、一般の蛍光ランプに比べて長寿命という特徴がある。
また、図15に示す構成の無電極放電ランプは、広範な周囲温度の環境下において安定した光束量を得ることを目的として、水銀若しくは水銀化合物を含有するアマルガムが、金属容器7に収納された形で管状部5の内側に配設され、アマルガムが配設された箇所の温度における飽和蒸気圧でバルブ2の内部の放電空間内の水銀蒸気圧を制御している。
また、従来から、無電極放電ランプとして、図16に示すように、ガラスなどの透光性材料により形成され内側に窪んだ凹部4を有し且つ内壁に蛍光体膜(図示せず)が形成されるとともに、内部に希ガスおよび水銀蒸気が封入されるバルブ2と、凹部4の内側に配設される放熱体であるヒートパイプ12’と、ヒートパイプ12’の一部に装着されるフェライトコア13と、フェライトコア13の周囲に巻回される誘導コイル14とを備え、一端部から凹部4の内側に挿入されるヒートパイプ12’の他端部が、金属のハウジング111の内壁に固定された金属フランジ110に結合された形でハウジング111の外部に露出したものが提案されている(特許文献2参照)。
図16に示す構成の無電極放電ランプでは、ヒートパイプ12’の一部がハウジング111の外部に配置されていることにより、誘導コイル14付近で発生した熱を効率よくバルブ2の外部に逃がすことができるので、誘導コイル14を効率的に冷却することができる。
特開2005−197031号公報 特許第2807305号公報
しかしながら、上記特許文献1に開示されている無電極放電ランプや、上記特許文献2に開示されている無電極放電ランプであってフェライトコア13の内側にアマルガムを配置して使用するものでは、常温に比べて非常に低温(例えば、−20℃)の環境下で使用する場合、バルブ2内の放電空間で発生した熱やフェライトコア13や誘導コイル14で発生した熱が放熱体12やヒートパイプ12’を介して無電極放電ランプの外部へ放熱されるので、上述のアマルガムを効率よく暖めることができないことがあった。従って、アマルガムの温度で決まるバルブ2内の水銀蒸気圧が所望の圧力よりも低くなってしまい、バルブ2内の放電空間内の水銀密度が不足し、所望の光束量が得られなかったり、放電インピーダンスが低くなりすぎ、所望の電気的特性が得られない。
一方、小型の照明器具などで使用される場合には、上述のアマルガムが常温に比べて高温(例えば、60℃)になるために、バルブ2内の放電空間内の水銀蒸気圧が所望の値よりも高くなり、光束量が低下したり、発光効率が低下してしまう。
本願発明は、上記事由に鑑みてなされたものであり、その目的は、周囲温度が幅広い範囲で変化しても光出力特性や電気的特性の変化が少ない無電極放電ランプおよび照明器具を提供することにある。
請求項1の発明は、透光性材料により形成され内部に希ガスおよび水銀が封入されるとともに内側に窪んだ凹部を有するバルブと、バルブの内壁に形成された蛍光体膜と、一端部が封止されるとともに凹部の底に連結された他端部においてバルブ内部の放電空間に連通する管状部と、管状部の内側に配置され水銀若しくは水銀化合物を含有したアマルガムと、凹部の内側に設けられ管状部の周囲に管状部の軸方向に沿って巻回される誘導コイルと、誘導コイルと管状部の外周面との間に配置され一部が凹部の外側に露出した放熱体とを備え、放熱体の一部若しくは放熱体とアマルガムとの間に、使用温度範囲内で相変化する物質が配置されてなることを特徴とする。
この発明によれば、放熱体の一部若しくは放熱体とアマルガムとの間に、使用温度範囲内の相変化する物質が配置されてなるので、当該物質の配置および当該物質の材料を適切に設定することにより、周囲温度が比較的低いときは、放熱体の熱を効率よくアマルガムに伝え、一方、周囲温度が比較的高いときは、放熱体の熱をアマルガムに伝えにくくすることで、アマルガムの温度変化を抑制し、バルブの内部の放電空間の水銀蒸気圧の変化を小さく抑えることで、無電極放電ランプの光束量の低下を防ぐことができるとともに、放電インピーダンスの変化を抑制することができる。即ち、この発明によれば、周囲温度が幅広い範囲で変化しても無電極放電ランプの光出力特性や電気的特性の変化を少なくすることができる。
請求項2の発明は、請求項1の発明において、前記物質は、前記相変化する温度が周囲温度に対して無電極放電ランプの発光効率が最大となる温度付近であることを特徴とする。
この発明によれば、前記物質は、前記相変化する温度が周囲温度に対して無電極放電ランプの発光効率が最大となる温度付近なので、前記アマルガムの温度を周囲温度に対して発光効率が最大となる温度付近で保つことにより、バルブ内部の放電空間の水銀蒸気圧の変化を抑制することができるので、比較的簡便に、周囲温度が幅広い範囲で変化しても無電極放電ランプの発光効率を最大に保つことができる。
請求項3の発明は、請求項1または請求項2の発明において、前記物質は、液相と気相との間で相変化を起こす物質であり、且つ前記相変化する温度が周囲温度に対して発光効率が最大となる温度付近であり、前記放熱体の内部における前記放熱体の外周面のうち周囲に前記誘導コイルが巻回される部位と前記放熱体の内周面が前記アマルガムに対向する部位との間の部位に少なくとも一部が配置されていることを特徴とする。
この発明によれば、前記物質は、前記相変化する温度よりも低い温度では熱伝導率が高い液相であり前記相変化する温度よりも高い温度では熱伝導率が低い気相となるものであって、周囲温度が比較的低いときは前記誘導コイルで発生した熱を効率よく前記アマルガムへ伝え、周囲温度が比較的高いときは前記誘導コイルで発生した熱を前記アマルガムに伝えにくくすることにより、周囲温度の変化に対する前記アマルガムの温度の変化を抑制し、バルブの内部の水銀蒸気圧の変化を抑制することができるので、周囲温度が幅広い範囲で変化しても無電極放電ランプの光出力特性や電気的特性の変化を少なくすることができる。
請求項4の発明は、請求項1または請求項2の発明において、前記物質は、少なくとも固相と液相との間で相変化を起こす物質であり、且つ前記相変化する温度が周囲温度に対して発光効率が最大となる温度付近であり、前記物質の少なくとも一部が前記放熱体における前記放熱体の内側に前記アマルガムが配置される部位と上記他端部との間の部位に配置されていることを特徴とする。
この発明によれば、周囲温度の変化に対する前記アマルガムの温度の変化を抑制し、バルブ内の放電空間の水銀蒸気圧の変化を抑制することができるので、周囲温度が幅広い範囲で変化しても無電極放電ランプの光出力特性や電気的特性の変化を少なくすることができる。また、この発明によれば、周囲温度が比較的高いときには、前記誘導コイルで発生した熱の前記凹部の外側への放熱量が大きくなるので、前記誘導コイルの過度な温度上昇を避けることができる。
請求項5の発明は、請求項1または請求項2の発明において、前記管状部は、前記アマルガムを内側に配設した内管と内管の外側を覆う外管とから構成される二重管で構成され、前記物質は、液相と気相との間で相変化を起こすものであり、前記管状部の内管と外管との間に配置されてなることを特徴とする。
この発明によれば、周囲温度が高温のときは、前記放熱体からの熱を前記アマルガムに伝えにくくし、周囲温度が低温のときは、前記放熱体からの熱を前記アマルガムに伝えやすくすることにより、周囲温度の変化に対する前記アマルガムの温度の変化を抑制し、前記バルブの内部の水銀蒸気圧の変化を小さく抑えることができるので、周囲温度が幅広い範囲で変化しても無電極放電ランプの光出力特性や電気的特性の変化を少なくすることができる。また、この発明によれば、前記放熱体自体の放熱性は変化しないので、前記誘導コイルで発生した熱の前記凹部の外側への放熱量に与える影響は少なく、前記誘導コイルの過度な温度上昇を避けることができる。
請求項6の発明は、請求項1の発明において、前記使用温度範囲内において液化しない非凝縮性ガスおよび一部が気化し得る冷媒が封入され、冷媒が気化するときに周囲の熱が吸熱される蒸発部と、蒸発部で気化した冷媒が凝縮する凝縮部とを有する密閉容器を有し、当該密閉容器内において非凝縮性ガスと冷媒との界面が凝縮部へ到達すると蒸発部の温度が略一定に維持される可変コンダクタンスヒートパイプを備え、可変コンダクタンスヒートパイプの蒸発部が前記放熱体の内部における前記アマルガムの近傍に配置されてなることを特徴とする。
この発明によれば、前記放熱体の内部に可変コンダクタンスヒートパイプが配置されることにより、前記アマルガムを周囲温度に対して発光効率が最大となる前記相変化する温度で略一定に保つことができるので、周囲温度が幅広い範囲で変化しても無電極放電ランプの光出力特性や電気的特性の変化を少なくすることができる。
請求項7の発明は、請求項1乃至請求項6いずれか1項に記載の無電極放電ランプが収納される筐体を備えることを特徴とする。
この発明によれば、請求項1乃至請求項6いずれか1項に記載の無電極放電ランプが収納される筐体を備え、当該無電極放電ランプは、周囲温度が幅広い範囲で変化しても光出力特性の変化が少ないので、照明器具内の温度が変化しても光出力の変化を抑制することができる。
請求項1の発明によれば、無電極放電ランプを使用温度範囲内で相変化する物質を有し、周囲温度が幅広い範囲で変化したときにアマルガムの温度の変化を抑制することにより、バルブ内の放電空間の水銀蒸気圧の変化を小さく抑えることができるので、無電極放電ランプの光束量の低下および放電インピーダンスの変化を抑制することができる。即ち、周囲温度が幅広い温度範囲で変化しても光出力特性や電気的特性の変化が少ない無電極放電ランプを提供することができる。
請求項7の発明によれば、請求項1乃至請求項6いずれか1項に記載の無電極放電ランプが収納される筐体を備え、当該無電極放電ランプは、周囲温度が幅広い範囲で変化しても光出力特性の変化が少ないので、照明器具内の温度変化による光出力特性や電気的特性の変化を抑制することができる。
(実施形態1)
以下、本実施形態の無電極放電ランプ100について図1乃至図4に基づいて説明する。
本実施形態の無電極放電ランプ100は、ガラスなどの透光性材料により形成され内部に希ガスおよび水銀蒸気が封入されるとともに内側に窪んだ凹部4を有するバルブ2と、バルブ2の内壁に形成された蛍光体膜(図示せず)と、一端部が封止されるとともに凹部4の底に連続一体に連結された他端部においてバルブ2内部の放電空間に連通する管状部5と、管状部5の内側に配置され水銀および水銀化合物のうちのいずれか一方を含有したアマルガム(図示せず)を収納した金属容器7と、管状部5の周囲に管状部5の軸方向に沿って巻回される誘導コイル14と、誘導コイル14と管状部5の外周面との間に配置され一部が凹部4の外側に露出した筒状の放熱体12とを備える。
また、本実施形態の無電極放電ランプ100では、電球形状のバルブ2を後述のパワーカプラ部11に固定するための円筒状の口金3が、バルブ2の頚部2aに設けられている。また、バルブ2の内部には、無電極放電ランプ100の始動を補助するための始動補助部9が配置されている。ここで、凹部4の内側に管状部5が形成されたバルブ2と口金3と始動補助部9とからランプ部1が構成されている。
また、本実施形態の無電極放電ランプ100では、内側に円筒状の放熱体12を挿通するための挿通穴40aが貫設されたシリンダ40と、凹部4の内側に設けられ放熱体12の外周面の一部を取り囲む形で配設されるフェライトコア13と、上述の放熱体12、フェライトコア13およびシリンダ40を一体に支持する支持台31とを備える。ここで、放熱体12と、放熱体12の外周面の一部装着されるフェライトコア13と、フェライトコア13の外周面に巻回された誘導コイル14と、放熱体12が内側に配置されるシリンダ40と、支持台31とで、上述のパワーカプラ部11が構成されている。要するに、パワーカプラ部11はバルブ2の凹部4に挿入される。
バルブ2の凹部4は、ガラスなどの透光性材料で形成され一端側を閉塞して底部が形成されるとともに他端側を開口した円筒状部材をバルブ2の一部に形成された開口部からバルブ2内部に挿入し、バルブ2の開口部の周縁と前記円筒状部材の開口部の周縁とを溶着することにより形成される。また、バルブ2の内部の放電空間には、アルゴンガスなどの希ガスが封入されている。ここで、バルブ2内部の希ガスの分圧は数10〜数100Paとなるように設定されている。また、電球形状のバルブ2の頚部2aには、周方向の全体に亘って内側に窪んだ係合凹部2bが形成されており、後述の円筒状の口金3の内周面から内側に突出して形成された係合凸部3aと係合する。なお、蛍光体膜は、バルブ2の内壁にアルミナなどから形成された保護膜(図示せず)上に積層する形で形成されている。
管状部5は、バルブ2の有する凹部4の内側に形成され一端部が封止され凹部4の底に連結された他端部において内部空間がバルブ2内部の放電空間に連通している。ここで、管状部5は、製造時にバルブ2内を排気するためにバルブ2に溶着された排気管を用いて形成されており、当該排気管は、バルブ2内を排気した後に、アマルガムを収納した金属容器7と2本のガラス製のロッド8,8とが収められた状態で一端部が封止され、バルブ2が密閉される。ここで、管状部5の側壁には、管軸方向における中間部に内側に突出した第1の突部5aが形成され、上記他端部に内側に突出した第2の突部5bが形成されている。また、2本のロッド8,8は、金属容器7を管状部5の管軸方向の両側から挟む形で配置され、2本のロッド8,8の間に金属容器7が保持される。ここで、金属容器7は、内部が空洞のカプセル状に形成され、側面に貫設した2つの孔(図示せず)を通じて内部に収納されたアマルガムから出る水銀蒸気を通過させている。
アマルガムは、例えば、ビスマスとインジウムとの合金からなる基体金属に3.5%の含有比率で水銀を含有したものである。この水銀を含有するアマルガムを使用することにより、水銀単体を使用した場合に比較して、広い温度範囲でバルブ2内の水銀蒸気圧を略一定に保つことができる。
口金3は、円筒状部材で形成され、内周面の周方向に沿って内側に突出した係合凸部3aが形成されており、当該口金3の一端側の開口部から電球形状のバルブ2の頚部2aが挿入され、バルブ2の頚部2aの周方向全体に亘って形成された係合凹部2bと係合凸部3aとが係合することにより、バルブ2に口金3が固定される。また、口金3の内周面において、係合凸部3aが内側に突出した部位に対してバルブ2が挿入される側とは反対側に、周方向の全体に亘って内側に突出したフランジ部3bが形成されている。フランジ部3bは、ランプ部1にパワーカプラ部11が装着された状態で後述のシリンダ40の基台部40bに当接する。
始動補助部9は、一端部にフック9bが形成されたコ字状の支持体9aの他端部にフラグ9cを固着してなり、フック9bが形成された一端部が管状部5内に挿入されるとともに、フラグ9cが固着された他端部がバルブ2内の放電空間に導出された形で配置される。また、始動補助部9は、管状部5の側壁に形成された上述の第2の突部5bにフック9bが係止されることで、支持体9aが管状部5から抜けないように固定されている。ここで、フラグ9cには、水酸化セシウムなどの仕事関数の小さい金属化合物が塗布されている。なお、フラグ9cに塗布された金属化合物は、無電極放電ランプ100の始動時におけるバルブ2内の放電空間に存在する電子の数を増やす役割を担っている。
放熱体12は、例えば、アルミニウム等の熱伝導率の高い金属で形成され、円筒状の形状を有している。また、放熱体12は、一端部が凹部4の底側に配置され他端部が凹部4の外側に配置されており、誘導コイル14で発生した熱を凹部4の外側へ放熱できる。
フェライトコア13は、円筒状に形成され、放熱体12に2つ装着されている。なお、フェライトコア13は、例えば、亜鉛、マンガン、ニッケル、鉄等の金属化合物である磁性材料で形成されている。
シリンダ40は、円柱状の基台部40bと、基台部40bより外径が小さく形成され先端面がフェライトコア13に対向した円柱状の突台部40cとから構成され、内側に円筒状の放熱体12が挿通される挿通穴40aが貫設されている。ここで、挿通穴40aは、円柱状の突台部40cの中心軸方向において突台部40cの先端面からフェライトコア13側とは反対側に規定距離だけ奥側の部位から基台部40bにおいて突台部40cとは反対側の端面に至る部位の内径が、放熱体12の外径に比べて大きくなる形で形成されている。ここにおいて、シリンダ40内部の放熱体12とシリンダ40との間に形成された隙間に、後述の支持台31の一部を構成し内側に挿通穴31aが貫設された円柱状の突台部31cが挿入される。
支持台31は、円柱状の基台部31bと、基台部31bより外径が小さく形成された円柱状の突台部31cとから構成され、内側に円筒状の放熱体12が挿通される挿通穴31aが貫設されている。ここで、円柱状の突台部31cの外径は、シリンダ40の挿通穴40aにおいて隙間部40dに対応する部位の内径と略同じ大きさに形成されている。また、挿通穴31aは、円柱状の基台部31bの中心軸方向において突台部31cとは反対側の端面から規定距離だけ奥側の部位に段部31dが内周面全体に亘って形成されている。しかして、放熱体12の端面12aが段部31dに当接した形で支持台31の内側に固定される。なお、段部31dの幅は、放熱体12の端面12aの一部が露出する大きさに形成されている。
次に、本実施形態の無電極放電ランプ100の動作について説明する。
高周波電源(図示せず)を動作させ、高周波電源からケーブル(図示せず)を介して誘導コイル14に高周波電流を流すと、誘導コイル14は、高周波電流に対応する周期で交番する磁束を発生する。ここで、誘導コイル14の内側にフェライトコア13が配置されていることで、誘導コイル14で発生した磁束がフェライトコア13内を通ることにより、バルブ2内に、効率よく交番磁束を発生させることができる。そして、バルブ2内に発生させた交番磁束により、誘導コイル14で発生した磁界に鎖交する位置、即ち、バルブ2内における誘導コイル14の周回方向に誘導電界が発生する。この誘導電界により、バルブ2内の電子が加速され、電子はエネルギーを持った状態でバルブ2内の水銀原子や希ガス原子に衝突する。電子が衝突した水銀原子は、電離されたり、励起されたりする。水銀原子の電離によって生じた電子は、再び誘導電界により加速され、再び水銀原子に衝突する。そして、所定の数量以上の電子が生成したところで放電が持続する。一方、電子の衝突によって励起された水銀原子は、光(主に、紫外線)を放射し、基底状態に戻る。水銀原子から放射された紫外線のうち、バルブ2の内壁に形成された蛍光体膜に到達したものは、上記蛍光体膜の蛍光体により可視光に変換され外部に放射される。しかして、本実施形態の無電極放電ランプ100は、蛍光ランプとして機能する。
また、本実施形態の無電極放電ランプ100の動作は、バルブ2内の水銀蒸気圧に依存し、バルブ2内の水銀蒸気圧は、金属容器7に収納されたアマルガムの温度で決まる。本実施形態のような構成では、アマルガムの温度は、放熱体12において内側に金属容器7が配置された部位の温度に強く影響する。ここで、アマルガムは、上述のように、ビスマスとインジウムとの合金からなる基体金属に水銀を含有したものであるので、広い温度範囲で水銀蒸気圧の変化が小さいという特徴を有している。
しかしながら、周囲温度が常温に比べて非常に低い場合、放熱体12の温度も低くなるので、アマルガムの温度も低くなる。すると、バルブ2内の水銀蒸気圧が低くなりすぎ、水銀原子の励起確率が減少し、水銀原子から発生する紫外線の量も低下するので、無電極放電ランプ100の発光効率が低下する。また、水銀の励起確率の低下により、水銀原子から発生する青色領域の可視光の強度が減少する。水銀は青色領域に比較的強い励起可視光を放射する特性があるので、このような状況下では、青色が不足し、可視光の色温度が低下する。また、バルブ2内の水銀蒸気圧が所望の値よりも過度に低くなることにより、水銀の電離確率も減少し、放電インピーダンスが高くなる。このように、無電極放電ランプ100の電気的特性が変化すると、パワーカプラ部11と放電インピーダンスの両方で決まる高周波電源から見た負荷が変動するので、高周波電源の特性に悪影響を及ぼし、無電極放電ランプ100の発光効率の低下や立ち消えが発生することがある。
一方、周囲温度が常温に比べて非常に高い場合、アマルガムの温度も高くなる。すると、バルブ2内の水銀蒸気圧が所望の値よりも高くなりすぎ、バルブ2内の水銀原子の密度が高くなりすぎて、水銀原子で発生した紫外線を水銀原子が再吸収する現象である自己吸収が増加し、バルブ2の内壁に形成された蛍光体膜に到達する紫外線の量が減少し、無電極放電ランプ100の発光効率が低下する。また、水銀原子の励起可視光強度が相対的に増加する。これは、可視放射する励起準位の下準位が基底状態ではないため、再吸収が起こりにくいことから生じる。このような状況下では、相対的に青色が強くなり、色温度が増加する傾向にある。また、バルブ2内の水銀蒸気圧が所望の値よりも過度に高くなることにより、水銀の電離確率も増加し、放電インピーダンスが低くなる。このように、無電極放電ランプ100の電気的特性が変化すると、パワーカプラ部11と放電インピーダンスの両方で決まる高周波電源から見た負荷が変化するので、高周波電源の特性に悪影響を及ぼし、無電極放電ランプ100の発光効率の低下や立ち消えが発生することがある。
そこで、上述の不具合が起こらないように、本実施形態の無電極放電ランプ100では、放熱体12の内部に、無電極放電ランプ100の使用温度範囲内で相変化する物質が配置されている。
具体的には、前記相変化する物質は、液相と気相との間で相変化を起こす物質であり、且つ相変化する温度が周囲温度に対して無電極放電ランプ100の発光効率が最大となる温度付近であり、また、図1,2に示すように、放熱体12において周囲に誘導コイル14が巻回される部位と内側にアマルガムが収納された金属容器7が配置される部位12bとの間の部位に形成された封入部10に封入されている。また、封入部10の体積は、封入されている物質が全て液相のときの体積に比べて大きくなるように設定されている。
ここで、無電極放電ランプ100が比較的低い温度のときは、図2(a)に示すように、封入部10内の液相と気相との間で相変化する物質は液相であり気化しておらず、封入部10の一部は液相の物質で充填されている。従って、誘導コイル14で発生した熱は、一部が当該物質を介してアマルガムが収納された金属容器7側へ比較的効率よく伝達される。一方、周囲温度が上昇し、無電極放電ランプ100が比較的高い温度のときは、図2(b)に示すように、封入部10内の物質の一部が液相から気相に相変化していることで、液相の物質で充たされない部分が生じる。即ち、放熱体12内部に比較的大きな空洞が生じる。ここで、放熱体12のうち空洞が生じた部分の熱伝導率が低下することで、誘導コイル14で発生した熱は、放熱体12を介してアマルガムが収納された金属容器7側へ伝わりにくくなる。
本実施形態の無電極放電ランプ100の動作を模式的に表したものを図3に示す。上述のように、放熱体12において封入部10が形成された部位が温度に応じて大きさが変化する熱抵抗12cとして機能し、図3に示すように、放熱体12において内側に金属容器7が配設された部位12bと誘導コイル14との間の封入部10が形成された部位の熱抵抗12cが変化する。なお、放熱体12において内側に金属容器7が配設された部位12bとアマルガムが収納された金属容器7との間の部位の熱抵抗5e、および放熱体12において内側に金属容器7が配設された部位12bと凹部4の外部との間の部位の熱抵抗12dは一定に保たれている。ここにおいて、熱抵抗12cは、アマルガムの温度が所望の温度範囲(図4中の2本の破線で示した範囲)の下限に近づくと小さくなり、誘導コイル14で発生した熱が金属容器7に伝わりやすくなり、一方、アマルガムの温度が所望の温度範囲の上限に近づくと大きくなり、誘導コイル14で発生した熱が金属容器7に伝わりにくくなる。しかして、金属容器7に収納されたアマルガムの温度変化を抑制し、バルブ2内の水銀蒸気圧の変化が抑制される。
本実施形態の無電極放電ランプ100におけるアマルガムの温度の周囲温度依存性を表したものを図4に示す。図4中の一点鎖線は、従来の無電極放電ランプにおける周囲温度依存性を表す。図4中の破線は、周囲温度が無電極放電ランプ100の使用温度範囲の下限である第1の規定温度T以上の環境下における所望のアマルガムの温度範囲を表す。図4に示すように、周囲温度が所望のアマルガムの温度範囲の上限に対応する第2の規定温度Tcよりも高い場合、従来の無電極放電ランプでは、アマルガムの温度が所望の温度範囲を超えるのに対して、本実施形態の無電極放電ランプ100では、アマルガムの温度が所望の温度範囲内に収まっている。
結局、本実施形態の無電極放電ランプ100では、周囲温度が常温よりも比較的低い場合は、誘導コイル14で発生した熱を効率よくアマルガムに伝えることにより、アマルガムを所望の温度に保ち、十分な水銀蒸気をバルブ2内の放電空間に供給することができるので、無電極放電ランプ100の光束量の低下および放電インピーダンスの上昇を抑制することができる。一方、周囲温度が常温よりも比較的高い場合は、誘導コイル14で発生した熱をアマルガムに伝わりにくくすることで、アマルガムの温度上昇を抑制し、バルブ2内の放電空間の水銀蒸気圧の圧力上昇を抑制することができるので、光束量の低下および放電インピーダンスの低下を抑制することができる。即ち、本実施形態の無電極放電ランプ100では、周囲温度が幅広い範囲で変化しても無電極放電ランプ100の光出力特性や電気的特性の変化が少なくすることができる。
ところで、封入部10に封入された物質は、液相と気相との間で相変化する温度が周囲温度に対して発光効率が最大となる温度付近にある。従って、アマルガムの温度が、当該相変化する温度よりも低い場合は、誘導コイル14で発生した熱がアマルガムに伝わり易く、当該相変化する温度よりも高い場合には、誘導コイル14で発生した熱がアマルガムに伝わりにくくなる。
しかして、本実施形態の無電極放電ランプ100では、周囲温度が幅広い範囲で変化しても無電極放電ランプ100の発光効率を最大に保つことができる。
また、本実施形態の無電極放電ランプ100では、使用温度範囲に応じて封入部10に封入される物質を適宜選択してもよい。また、誘導コイル14が配設される位置とアマルガムを収納した金属容器7が配設される位置に応じて、放熱体12内部において封入部10を形成する位置或いは封入部10の大きさを適宜選択してもよい。
(実施形態2)
本実施形態の無電極放電ランプ100の基本構成は、実施形態1と略同じであり、相変化する物質が、少なくとも固相と液相との間で相変化を起こす物質であり、且つ相変化する温度が周囲温度に対して無電極放電ランプの発光効率が最大となる温度付近であり、図5、図6に示すように、放熱体12において内側にアマルガムを収納した金属容器7が配置される部位と上記他端部との間の部位に形成された封入部10に封入されている点が相違する。なお、実施形態1と同様の構成要素については同一の符号を付して説明を省略する。
封入部10は、前記相変化する温度で固相と液相との間で相変化する物質に加え、液化した物質が毛細管現象により輸送されるための金網などの部材が設けられており、一般的なヒートパイプと同様の構成となっている。ここで、前記物質は、上述のように、周囲温度に対して無電極放電ランプ100の発光効率が最大となる温度付近で相変化を起こすものである。なお、本実施形態の無電極放電ランプ100では、実施形態1と同様に、ビスマスとインジウムとの合金からなる基体金属に3.5%の含有比率で水銀を含有してなるアマルガムを使用しており、アマルガムの温度に対する所望の温度範囲は、80℃〜100℃である。従って、封入部10に封入される物質としては、融点が80.5℃であるナフタレンが封入されている。
従って、周囲温度が常温よりも低い場合には、物質は固相であり、放熱体12において内側に金属容器7が配置された部位から凹部4の外部への熱伝導率が下がり、アマルガムの温度が上昇する。一方、周囲温度が常温よりも高く、アマルガムの温度が所望の温度範囲の上限に近い場合には、物質は液相であり、放熱体12において内側に金属容器7が配置された部位から凹部4の外部への熱伝導率が上がり、アマルガムの周辺の熱が外部へ効率的に輸送されるため、アマルガムの温度上昇が抑制される。
本実施形態の無電極放電ランプ100の動作を模式的に表したものを図7に示す。上述のように、放熱体12において封入部10が形成された部位が周囲温度に応じて大きさが変化する熱抵抗12dとして機能し、図7に示すように、放熱体12において内側に金属容器7が配設された部位と、凹部4の外部との間の封入部10が形成された部位の熱抵抗12dが変化する。なお、放熱体12において内側に金属容器7が配設された部位12bとアマルガムが収納された金属容器7との間の部位の熱抵抗5e、および放熱体12において内側に金属容器7が配設された部位12bと誘導コイル14との間の部位の熱抵抗12cは一定である。ここにおいて、熱抵抗12dは、アマルガムの温度が所望の温度範囲の下限に近づくと大きくなり、アマルガム付近の熱が凹部4の外部に逃げにくくなり、一方、アマルガムの温度が所望の温度範囲の上限に近づくと小さくなり、アマルガム付近の熱が凹部4の外部に逃げやすくなる。しかして、周囲温度の変化に対する金属容器7に収納されたアマルガムの温度変化を抑制し、バルブ2内の水銀蒸気圧の変化を小さく抑えることができる。
結局、本実施形態の無電極放電ランプ100は、周囲温度が常温よりも比較的低い場合は、無電極放電ランプ100の外部へ逃げる熱伝導量を小さくし、アマルガムの温度を高く保つとともに、周囲温度が常温よりも比較的高い場合は、無電極放電ランプ100の外部へ逃げる熱伝導量を大きくし、アマルガムの温度上昇を抑えることにより、周囲温度の変化に対するアマルガムの温度変化を小さくすることができるので、周囲温度が幅広い範囲で変化しても安定して点灯することができる。更に、周囲温度が常温よりも比較的高い場合は、誘導コイル14から凹部4の外側へ逃げる熱伝導量を大きくできるので、誘導コイル14の過度な温度上昇を避けることができる。
また、本実施形態の無電極放電ランプ100では、無電極放電ランプ100の使用温度範囲に応じて封入部10に封入される物質を適宜選択してもよい。また、誘導コイル14が配設される位置とアマルガムを収納した金属容器7が配設される位置に応じて、封入部10を形成する位置および封入部10の大きさを適宜選択してもよい。
(実施形態3)
本実施形態の無電極放電ランプ100の基本構成は、実施形態1と略同じであり、図8に示すように、管状部5は、アマルガムを収納した金属容器7を内側に配設した内管5cと内管5cの外側を覆う外管5dとから構成される二重管で構成され、管状部5の内管5cと外管5dとの間の形成された封入部10に前記相変化する温度で液相と気相との間で相変化を起こす物質が置されてなる点が相違する。なお、実施形態1と同様の構成要素については同一の符号を付して説明を省略する。
ここで、周囲温度が所望の温度以下のときは、図9(a)に示すように、封入部10内の物質は液相であり気化しておらず、封入部10においてアマルガムが収納された金属容器7に対向する部位が物質で充填されている。従って、誘導コイル14で発生し放熱体12を伝導する熱は、当該物質を介してアマルガムが収納された金属容器7側へ比較的効率よく伝達される。一方、周囲温度が所望の温度以上に上昇したときは、図9(b)に示すように、封入部10内部の物質の一部が液相から気相に相変化することで、封入部10内部において金属容器7に対向する部位を充填していた液相の物質が気化して無くなる。即ち、封入部10内部において金属容器7に対向する部位に空洞が生じる。従って、当該空洞が生じた部分の熱伝導率が大幅に低下し、放熱体12を伝導する熱は金属容器7側へ伝わりにくくなる。
本実施形態の無電極放電ランプ100の動作を模式的に表したものを図10に示す。上述のように、管状部5に形成された封入部10が周囲温度に応じて大きさが変化する熱抵抗5eとして機能し、図10に示すように、放熱体12において内側に金属容器7が配置された部位12bと、アマルガムが収納された金属容器7との間の封入部10が形成された部位の熱抵抗5eが変化する。なお、放熱体12において内側に金属容器7が配設された部位12bと誘導コイル14との間の部位の熱抵抗12c、および放熱体12において内側に金属容器7が配設された部位と凹部4の外部との間の部位の熱抵抗12dは一定である。ここにおいて、熱抵抗5eは、アマルガムの温度が所望の温度範囲の下限に近づくと小さくなり、放熱体12の熱が金属容器7に伝わりやすくなり、一方、アマルガムの温度が所望の温度範囲の上限に近づくと大きくなり、放熱体12の熱が金属容器7に伝わりにくくなる。しかして、周囲温度の変化に対する金属容器7に収納されたアマルガムの温度の変化を抑制し、バルブ2内の水銀蒸気圧の変化を小さく抑えることができる。
結局、本実施形態の無電極放電ランプ100は、周囲温度が常温よりも低いときは、放熱体12からアマルガムが収納された金属容器7への熱伝導量を大きくし、周囲温度が常温よりも高いときは、放熱体12から金属容器7への熱伝導量を小さくすることにより、周囲温度の変化に対するアマルガムの温度変化を抑制することができるので、周囲温度が幅広い範囲で変化しても安定して点灯することができる。また、本実施形態の無電極放電ランプ100では、放熱体12の一部の放熱性を変化させるものではなく、誘導コイル14で発生した熱のバルブ2の外部への放熱量に与える影響は少ないので、誘導コイル14の過度な温度上昇を避けることができる。
また、本実施形態の無電極放電ランプ100では、無電極放電ランプ100の使用温度範囲に応じて封入部10に封入される物質を適宜選択してもよい。また、誘導コイル14が配設される位置とアマルガムを収納した金属容器7が配設される位置に応じて、封入部10を形成する位置および封入部10の大きさを適宜選択してもよい。
(実施形態4)
本実施形態の無電極放電ランプ100の基本構成は、実施形態1と略同じであり、図11に示すように、使用温度範囲内で液化しない非凝縮性ガスと一部が気化しうる冷媒とが封入された密閉容器103aを有する後述の可変コンダクタンスヒートパイプ103を備え、後述の蒸発部103dが放熱体12の内部におけるアマルガムが収納された金属容器7に近い部位に配置されてなる点が相違する。なお、実施形態1と同様の構成要素については同一の符号を付して説明を省略する。
ここで、可変コンダクタンスヒートパイプ103は、図11に示すように、放熱体12において内側にアマルガムが収納された金属容器7が配置される部位12bとバルブ2の外部、即ち、放熱体12においてバルブ2の外部に配置される側の端面12aとの間の部位に配置されている。
また、可変コンダクタンスヒートパイプ103としては、特開2001−280870号公報に記載されたものと同様の構成を採用している(図12参照)。即ち、可変コンダクタンスヒートパイプ103は、図12に示すように、非凝縮性ガスおよび冷媒が封入され両端部が密閉された管状の密閉容器103aと、密閉容器103aにおける非凝縮性ガスおよび気相にある冷媒で充たされる空間に連通するガス溜め部103bと、密閉容器103aにおける非凝縮性ガスおよび気相にある冷媒で充たされる部位の外周部に装着されたヒートシンク103cとを備え、密閉容器103aには、一端部から管軸方向に所定の長さだけ奥側の部位まで液相にある冷媒で充填され当該冷媒が気化するときに周囲の熱を吸熱する蒸発部103dが形成され、他端部から管軸方向に所定の距離だけ奥側の部位には蒸発部103dで気化した冷媒が凝縮する凝縮部103eが設けられている。なお、非凝縮性ガスとしては、アルゴン、窒素等が使用され、冷媒としては、水等が使用される。
次に、可変コンダクタンスヒートパイプ103の動作について説明する。
可変コンダクタンスヒートパイプ103において、蒸発部103dの周囲温度が上昇すると、温度上昇に伴う非凝縮性ガスと冷媒とのガス圧の増加率の差異により、気相にある冷媒の体積が増加し、密閉容器103a内で気相にある冷媒が管軸方向において上記一端部から上記他端部に向かって非凝縮性ガスを押し込むことにより冷媒と非凝縮性ガスとの界面が上記他端部に向かって移動する。そして、蒸発部103dの温度が周囲温度に対して無電極放電ランプ100の発光効率が最大となる温度付近のアマルガムの温度に対応する第3の規定温度T(図13参照)に到達すると、当該界面が他端部から管軸方向に所定の距離だけ奥側に設けられた凝縮部103eにまで移動し、蒸発部103dで気化した冷媒が凝縮部103eで液化されて蒸発部103dに戻り再び蒸発部103dで冷媒が気化するという循環を繰り返す。つまり、可変コンダクタンスヒートパイプ103では、非凝縮性ガスと気相にある冷媒との界面が凝縮部103eに移動した状態で、蒸発部103dの温度が略一定に保たれる。
本実施形態の無電極放電ランプ100では、放熱体12の内部において可変コンダクタンスヒートパイプ103の蒸発部(図示せず)が金属容器7の近くに配置されていることにより、金属容器7近傍の部位の温度を所定の温度で維持し、金属容器7に収納されたアマルガムの温度の変化を抑制することができるので、バルブ2の内部の放電空間の水銀蒸気圧を所望の圧力で略一定に保つことができる。
本実施形態の無電極放電ランプ100におけるアマルガムの温度の周囲温度依存性を表したものを図13に示す。図13中の一点鎖線は、可変コンダクタンスヒートパイプ103が設けられていない無電極放電ランプ100における周囲温度依存性を表す。図13中の縦軸から引いた破線は、周囲温度が無電極放電ランプ100の使用温度範囲の下限である第1の規定温度T以上の環境下におけるアマルガムの温度に対する所望の温度範囲を表す。図13に示すように、可変コンダクタンスヒートパイプ103が設けられた本実施形態の無電極放電ランプ100では、周囲温度が第3の規定温度T以上では、可変コンダクタンスヒートパイプ103の内部における非凝縮性ガスと冷媒との界面が凝縮部に到達した状態となり、放熱体12において金属容器7が内側に配置される部位の温度が略一定に保たれる。従って、本実施形態の無電極放電ランプでは、周囲温度が所望のアマルガムの温度範囲の上限に対応する第2の規定温度Tcよりも高い場合でもアマルガムの温度を第3の規定温度Tで略一定に保たれる。
しかして、本実施形態の無電極放電ランプ100は、アマルガムが収納された金属容器7の近くに可変コンダクタンスヒートパイプ103の蒸発部を配置することにより、周囲温度の変化に対するアマルガムの温度変化を抑制することができるので、周囲温度が幅広い範囲で変化しても安定して点灯することができる。
また、誘導コイル14が巻回された部位に、別の可変コンダクタンスヒートパイプ(図示せず)の蒸発部(図示せず)を配置することにより、当該部位の温度を略一定に保つことができるので、当該部位の温度を誘導コイル14の電力ロスが最も少なくなる温度に設定することで、無電極放電ランプ100の発光効率を更に高めることができる。
また、本実施形態の無電極放電ランプ100では、無電極放電ランプ100の使用温度範囲に応じて封入部10に封入される物質を適宜選択してもよい。また、誘導コイル14が配設される位置とアマルガムを収納した金属容器7が配設される位置に応じて、封入部10を形成する位置および封入部10の大きさを適宜選択してもよい。
(実施形態5)
図14に実施形態1で説明した無電極放電ランプ100を備えた照明器具を示す。
本実施形態の照明器具は、椀状の反射板31とガラス等の透光性材料で形成された前面パネル32とで構成された筐体30と、筐体30の内部に配置された無電極放電ランプ100と、筐体30とは別の場所に配置され無電極放電ランプ100のパワーカプラ部11(図1参照)に高周波電流を供給することで無電極放電ランプ100を点灯させる高周波電源を含む点灯装置21とを備え、点灯装置21とパワーカプラ部11とが管灯線20を介して電気的に接続されてなるものである。また、点灯装置21に電源線211を介して電源プラグ212が接続されている。電源プラグ212を商用電源(図示せず)に接続することで、商用電源から点灯装置21に電力が供給される。なお、無電極放電ランプ100から出射される光は前面パネル32を透過して外部に放射される。
しかして、本実施形態の照明器具は、実施形態1で説明した無電極放電ランプ100を備えるので、照明器具内の温度が大きく変化しても安定した光出力が維持され、立ち消えを防止することができるとともに、色温度の変化も抑制される。
なお、本実施形態では、実施形態1の無電極放電ランプ100を備える例について説明したが、実施形態2乃至実施形態4で説明した無電極放電ランプ100を備えたものであってもよい。
実施形態1の無電極放電ランプの概略断面図である。 同上の要部説明図である。 同上の動作説明図である。 同上の動作説明図である。 実施形態2の無電極放電ランプの概略断面図である。 同上の要部説明図である。 同上の動作説明図である。 実施形態3の無電極放電ランプの概略断面図である。 同上の要部説明図である。 同上の動作説明図である。 実施形態4の無電極放電ランプの概略断面図である。 同上の要部説明図である。 同上の動作説明図である。 実施形態5の照明器具の概略斜視図である。 従来例の無電極放電ランプの概略断面図である。 他の従来例の無電極放電ランプの一部破断した側面図である。
符号の説明
2 バルブ
4 凹部
5 管状部
7 金属容器
10 封入部
12 放熱体
14 誘導コイル
30 筐体
100 無電極放電ランプ

Claims (7)

  1. 透光性材料により形成され内部に希ガスおよび水銀が封入されるとともに内側に窪んだ凹部を有するバルブと、バルブの内壁に形成された蛍光体膜と、一端部が封止されるとともに凹部の底に連結された他端部においてバルブ内部の放電空間に連通する管状部と、管状部の内側に配置され水銀若しくは水銀化合物を含有したアマルガムと、凹部の内側に設けられ管状部の周囲に管状部の軸方向に沿って巻回される誘導コイルと、誘導コイルと管状部の外周面との間に配置され一部が凹部の外側に露出した放熱体とを備え、放熱体の一部若しくは放熱体とアマルガムとの間に、使用温度範囲内で相変化する物質が配置されてなることを特徴とする無電極放電ランプ。
  2. 前記物質は、前記相変化する温度が周囲温度に対して無電極放電ランプの発光効率が最大となる温度付近であることを特徴とする請求項1記載の無電極放電ランプ。
  3. 前記物質は、液相と気相との間で相変化を起こす物質であり、且つ前記相変化する温度が周囲温度に対して発光効率が最大となる温度付近であり、前記放熱体の内部における前記放熱体の外周面のうち周囲に前記誘導コイルが巻回される部位と前記放熱体の内周面が前記アマルガムに対向する部位との間の部位に少なくとも一部が配置されていることを特徴とする請求項1または請求項2記載の無電極放電ランプ。
  4. 前記物質は、少なくとも固相と液相との間で相変化を起こす物質であり、且つ前記相変化する温度が周囲温度に対して発光効率が最大となる温度付近であり、前記物質の少なくとも一部が前記放熱体における前記放熱体の内側に前記アマルガムが配置される部位と上記他端部との間の部位に配置されていることを特徴とする請求項1または請求項2記載の無電極放電ランプ。
  5. 前記管状部は、前記アマルガムを内側に配設した内管と内管の外側を覆う外管とから構成される二重管で構成され、前記物質は、液相と気相との間で相変化を起こすものであり、前記管状部の内管と外管との間に配置されてなることを特徴とする請求項1または請求項2記載の無電極放電ランプ。
  6. 前記使用温度範囲内において液化しない非凝縮性ガスおよび一部が気化し得る冷媒が封入され、冷媒が気化するときに周囲の熱が吸熱される蒸発部と、蒸発部で気化した冷媒が凝縮する凝縮部とを有する密閉容器を有し、当該密閉容器内において非凝縮性ガスと冷媒との界面が凝縮部へ到達すると蒸発部の温度が一定に維持される可変コンダクタンスヒートパイプを備え、可変コンダクタンスヒートパイプの蒸発部が前記放熱体の内部における前記アマルガムの近傍に配置されてなることを特徴とする請求項1記載の無電極放電ランプ。
  7. 請求項1乃至請求項6いずれか1項に記載の無電極放電ランプが収納される筐体を備えることを特徴とする照明器具。
JP2008138759A 2008-05-27 2008-05-27 無電極放電ランプおよび照明器具 Withdrawn JP2009289500A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138759A JP2009289500A (ja) 2008-05-27 2008-05-27 無電極放電ランプおよび照明器具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138759A JP2009289500A (ja) 2008-05-27 2008-05-27 無電極放電ランプおよび照明器具

Publications (1)

Publication Number Publication Date
JP2009289500A true JP2009289500A (ja) 2009-12-10

Family

ID=41458536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138759A Withdrawn JP2009289500A (ja) 2008-05-27 2008-05-27 無電極放電ランプおよび照明器具

Country Status (1)

Country Link
JP (1) JP2009289500A (ja)

Similar Documents

Publication Publication Date Title
JP4258380B2 (ja) 無電極蛍光ランプ及びその点灯装置
JP4872224B2 (ja) 無電極放電ランプと同ランプを備えた照明器具
JP2008053178A (ja) 無電極放電灯装置及び照明器具
JP2010527129A (ja) 無電極バルブ
KR101030481B1 (ko) 무전극 방전 램프, 조명 기구, 및 무전극 방전 램프의 제조 방법
JP2009289500A (ja) 無電極放電ランプおよび照明器具
JP2009289490A (ja) 無電極放電ランプおよび照明器具
JP2008159436A (ja) 無電極放電ランプ及び照明器具
JP2010049953A (ja) 紫外線エンハンサ、高圧放電ランプおよび照明装置
JP2010050057A (ja) 無電極放電灯及び照明器具
JP2006269211A (ja) 無電極放電ランプ及びそれを備えた照明器具
JP2007242553A (ja) 無電極放電ランプ及びそれを用いる照明器具
JP2011204481A (ja) 無電極放電ランプ
JP4775350B2 (ja) 無電極放電ランプ、及び照明器具、及び無電極放電ランプの製造方法
JP2009289499A (ja) 無電極放電ランプおよび照明器具
JP4737064B2 (ja) 無電極蛍光ランプ及び照明器具
KR100731156B1 (ko) 제논 무전극 형광 램프의 전열구조
JP2010050055A (ja) 無電極放電灯及び照明器具
JP2011258359A (ja) 無電極放電ランプ及びそれを用いた装置
JP3178259B2 (ja) 無電極放電ランプ
JP2010009873A (ja) 無電極放電灯装置および照明器具
JP2009289488A (ja) 無電極放電ランプおよび照明器具
US8896191B2 (en) Mercury-free discharge lamp
JP2009158194A (ja) 無電極放電ランプ装置、及びこれを用いた照明器具
JP2009158184A (ja) 無電極放電ランプ装置、及びそれを用いた照明器具

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100810

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802