JP2009287070A - Method for preparatorily baking holder and apparatus for determining completion of preparatory baking - Google Patents

Method for preparatorily baking holder and apparatus for determining completion of preparatory baking Download PDF

Info

Publication number
JP2009287070A
JP2009287070A JP2008139731A JP2008139731A JP2009287070A JP 2009287070 A JP2009287070 A JP 2009287070A JP 2008139731 A JP2008139731 A JP 2008139731A JP 2008139731 A JP2008139731 A JP 2008139731A JP 2009287070 A JP2009287070 A JP 2009287070A
Authority
JP
Japan
Prior art keywords
jig
heat treatment
baking
treatment furnace
ammonia concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008139731A
Other languages
Japanese (ja)
Inventor
Hisayoshi Tawa
久佳 田和
Izuru Yamamoto
出 山本
Takuya Shimizu
拓也 清水
Hitoshi Kabasawa
均 椛澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Techno KK
Toyota Motor Corp
Original Assignee
Nihon Techno KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Techno KK, Toyota Motor Corp filed Critical Nihon Techno KK
Priority to JP2008139731A priority Critical patent/JP2009287070A/en
Publication of JP2009287070A publication Critical patent/JP2009287070A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparatorily baking a holder, which can give a stable nitriding potential and a nitriding quality to a workpiece in the first heat treatment of the workpiece without performing a complicated preparation work, when heat-treating the workpiece in a heat treatment furnace into which ammonia gas is supplied, and to provide an apparatus for determining the completion of preparatory baking. <P>SOLUTION: The method for preparatorily baking the holder 22 which is used when the workpiece 21 to be heat-treated in the heat treatment furnace 2 into which the ammonia gas is supplied is placed in the heat treatment furnace 2 includes: preparatorily baking the holder 22 which is mounted in the heat treatment furnace 2 before heat-treating the workpiece 21; measuring a concentration of remaining ammonia in an atmospheric gas in the heat treatment furnace 2 which is preparatorily baking the holder; and determining the completion of the preparatory baking of the holder 22 based on a value of the measured concentration of the remaining ammonia. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アンモニアガスが供給される熱処理炉内で熱処理がなされるワークを熱処理炉内に設置する際に用いられる治具の空焼き方法および空焼き完了判定装置に関する。   The present invention relates to an empty baking method and an empty baking completion determination device for a jig used when a workpiece to be heat-treated in a heat treatment furnace to which ammonia gas is supplied is placed in the heat treatment furnace.

従来、窒化焼入れや浸炭浸窒焼入れなどといったように、鋼材表面に窒素を侵入させる処理が行われている。
例えば、特許文献1に記載されるように、オーステナイト系ステンレス鋼を高温で窒化処理することにより、オーステナイト系ステンレス鋼の表面に窒素を浸透させて表面を硬化させることが行われている。
Conventionally, treatment for intruding nitrogen into the surface of a steel material, such as nitriding quenching and carburizing and nitriding quenching, has been performed.
For example, as described in Patent Document 1, by nitriding austenitic stainless steel at a high temperature, nitrogen is penetrated into the surface of the austenitic stainless steel to harden the surface.

このような鋼材表面に窒素を侵入させる処理を、熱処理炉を用いた雰囲気熱処理により行う場合、処理対象となるワークは治具を介して熱処理炉内に設置される。
また、鋼材表面に窒素を侵入させる処理を行うときには、熱処理炉内に所定流量のアンモニアを供給しながら熱処理を施すが、実際にワークに対して熱処理を行う前に、アンモニアを供給した雰囲気の熱処理炉内で前記治具のみを空焼きして、治具に吸着されているガスを除去したり、治具表面に熱処理炉内の雰囲気を予め吸着させたりすることが行われている。
When such a treatment for intruding nitrogen into the steel surface is performed by atmospheric heat treatment using a heat treatment furnace, the workpiece to be treated is placed in the heat treatment furnace via a jig.
In addition, when performing a treatment to infiltrate nitrogen into the steel surface, heat treatment is performed while supplying ammonia at a predetermined flow rate into the heat treatment furnace, but before actually performing heat treatment on the workpiece, heat treatment in an atmosphere in which ammonia is supplied. Only the jig is baked in the furnace to remove the gas adsorbed on the jig, or the atmosphere in the heat treatment furnace is adsorbed on the jig surface in advance.

これは、ワークを熱処理する際の熱処理炉内の雰囲気における窒化ポテンシャルなどを安定化させるために行われるものであるが、時間や回数などの空焼きを行う条件は明確に規定されておらず、現場の勘やコツにより適宜処理時間にて1〜2回の空焼きが行われている。
なお、前記窒化ポテンシャルは、一般的にアンモニアガスの濃度P(NH)および水素ガスの濃度P(H)を用いて以下の式により表わされるものであり、アンモニアガスの濃度P(NH)によりその高低が左右される。
(窒化ポテンシャル)=K・P(NH)/{P(H3/2
上記式中のKは定数である。
This is done to stabilize the nitriding potential in the atmosphere in the heat treatment furnace when heat-treating the workpiece, but the conditions for performing the baking such as time and number of times are not clearly defined, Depending on the intuition and knack on site, the baking is performed once or twice as appropriate in the processing time.
The nitriding potential is generally expressed by the following equation using the ammonia gas concentration P (NH 3 ) and the hydrogen gas concentration P (H 2 ). The ammonia gas concentration P (NH 3 ) Depends on the height.
(Nitriding potential) = K · P (NH 3 ) / {P (H 2 ) 3/2 }
K in the above formula is a constant.

しかし、例えば窒化焼入れなどの高温で窒化処理を行う場合、治具の空焼きを1〜2回程度行ったとしても、実際にワークの熱処理を行った際には最初の数バッチの間の処理では狙いの窒化ポテンシャルや窒化品質を得ることができず、処理回数に伴って狙いの窒化ポテンシャルや窒化品質に近づいていくこととなる。   However, when nitriding is performed at a high temperature such as nitriding and quenching, even if the jig is baked about once or twice, when the workpiece is actually heat-treated, the processing during the first few batches is performed. However, the target nitriding potential and nitriding quality cannot be obtained, and the target nitriding potential and nitriding quality are approached with the number of treatments.

例えば、第一の形状を備えた治具Aおよび第二の形状を備えた治具B(治具Bは治具Aよりも小さい)について、空焼きを所定の時間で1回行った後にワークに対する窒化焼入れ処理を行った場合、図7に示すように熱処理炉内の窒化ポテンシャルは、前記治具Aおよび治具Bの両方で、初回の処理では狙い値から外れた値となっており、処理回数を重ねるに従って狙い値に近づくこととなっている。
また、図8に示すように、窒化焼入れ処理されたワークの硬化層深さも、前記治具Aおよび治具Bの両方で、初回の処理では狙い値から外れた値となっており、処理回数を重ねるに従って狙い値に近づくこととなっている。
For example, after the jig A having the first shape and the jig B having the second shape (the jig B is smaller than the jig A) are baked once in a predetermined time, the workpiece When the nitriding and quenching treatment is performed, the nitriding potential in the heat treatment furnace as shown in FIG. 7 is a value deviating from the target value in the first treatment in both the jig A and the jig B. As the number of processing is repeated, the target value is approached.
Further, as shown in FIG. 8, the depth of the hardened layer of the workpiece subjected to the nitriding and quenching treatment is also a value deviated from the target value in the first treatment in both the jig A and the jig B, and the number of treatments The target value will be approached as the values are repeated.

従って、処理を開始してから処理毎にワークの窒化品質を確認し、窒化ポテンシャルや硬化層深さなどの窒化品質が狙い値に収束して安定していることを見極めなければ、製品の生産としてのワークの処理を開始することができず、ワークの熱処理開始前の準備作業が非常に煩雑であった。
特開平5−222512号公報
Therefore, if the nitridation quality of the workpiece is checked after each process and the nitridation quality such as nitriding potential and hardened layer depth has not converged to the target value and is stable, the production of the product As a result, the preparatory work before the heat treatment of the work was started was very complicated.
Japanese Patent Laid-Open No. 5-222512

そこで、本発明では、治具の空焼き実施後に行われるワークに対する熱処理について、煩雑な準備作業を行うことなく、ワークの初回の熱処理時から安定した窒化ポテンシャルや窒化品質を得ることができる治具の空焼き方法および空焼き完了判定装置を提供するものである。   Therefore, in the present invention, a jig capable of obtaining a stable nitriding potential and nitriding quality from the time of the first heat treatment of the workpiece without performing complicated preparatory work on the heat treatment of the workpiece performed after the jig is baked. An empty baking method and an empty baking completion determination device are provided.

上記課題を解決する治具の空焼き方法および空焼き完了判定装置は、以下の特徴を有する。
即ち、請求項1記載の如く、アンモニアガスが供給される熱処理炉内で熱処理がなされるワークを熱処理炉内に設置する際に用いられる治具の空焼き方法であって、ワークに対する熱処理を行う前に、前記熱処理炉内に載置された治具の空焼きを行い、空焼き中の熱処理炉内の雰囲気における残留アンモニア濃度を計測し、計測した残留アンモニア濃度の値に基づいて、前記治具の空焼きの完了を判定する。
The jig baking method and the baking completion determination device for solving the above-described problems have the following characteristics.
That is, according to the first aspect of the present invention, there is provided a jig baking method used when a workpiece to be heat-treated in a heat treatment furnace to which ammonia gas is supplied is placed in the heat treatment furnace, and the workpiece is heat-treated. Before, the jig placed in the heat treatment furnace is baked, the residual ammonia concentration in the atmosphere in the heat treatment furnace being baked is measured, and based on the value of the measured residual ammonia concentration, the treatment is performed. Judge the completion of baking of the ingredients.

また、請求項2記載の如く、前記治具の空焼きの完了の判定は、空焼き中に計測した残留アンモニア濃度の経時的変化量が、予め設定された所定の範囲内に収まったときに行う。   In addition, as described in claim 2, the determination of the completion of the baking of the jig is performed when the amount of change over time in the residual ammonia concentration measured during the baking is within a predetermined range. Do.

また、請求項3記載の如く、アンモニアガスが供給される熱処理炉内で熱処理がなされるワークを熱処理炉内に設置する際に用いられる治具の空焼き完了を判定する装置であって、熱処理炉内の残留アンモニア濃度を計測する計測手段と、前記計測器により計測された残留アンモニア濃度の値に基づいて、前記治具の空焼きの完了を判定する判定手段とを備える。   The apparatus according to claim 3, wherein the apparatus is used for determining completion of empty firing of a jig used when a workpiece to be heat-treated in a heat-treatment furnace supplied with ammonia gas is placed in the heat-treatment furnace. Measuring means for measuring the residual ammonia concentration in the furnace, and determination means for determining completion of empty baking of the jig based on the value of the residual ammonia concentration measured by the measuring instrument.

また、請求項4記載の如く、前記判定手段は、前記計測器により計測された残留アンモニア濃度の経時的変化量を算出する演算部と、前記演算部により算出された残留アンモニア濃度の経時的変化量が、予め設定された所定の範囲内に収まったときに前記治具の空焼きの完了の判定を行う判定部とを備える。   According to a fourth aspect of the present invention, the determination means includes a calculation unit that calculates a temporal change amount of the residual ammonia concentration measured by the measuring instrument, and a temporal change of the residual ammonia concentration calculated by the calculation unit. A determination unit configured to determine whether the jig has been baked or not when the amount falls within a predetermined range.

本発明によれば、種々の大きさや形状などの治具に対して、同様の処理で空焼きを行うことで(残留アンモニア濃度が一定になるまで治具の空焼きを行うことで)、ワークに対する初回の熱処理時から一定の窒化ポテンシャルや硬化層深さを得ることが可能となるため、広範なワークに対して熱処理の準備作業を簡便にしつつ、熱処理されたワークの品質向上を図ることができる。   According to the present invention, a jig of various sizes and shapes is baked by the same process (by baking the jig until the residual ammonia concentration becomes constant), Since it is possible to obtain a constant nitriding potential and hardened layer depth from the first heat treatment, it is possible to improve the quality of the heat-treated workpiece while simplifying the preparation work for a wide range of workpieces. it can.

次に、本発明を実施するための形態を、添付の図面を用いて説明する。   Next, modes for carrying out the present invention will be described with reference to the accompanying drawings.

図1には、窒化焼入れや浸炭浸窒焼入れなど鋼材表面に窒素を侵入させる処理を行うための熱処理炉2、および前記熱処理炉2内にワーク21を設置するために用いられる治具22の空焼き完了判定装置1を示している。   FIG. 1 shows a heat treatment furnace 2 for performing a treatment for intruding nitrogen into the surface of a steel material such as nitriding and carburizing and nitriding, and a jig 22 used for installing a workpiece 21 in the heat treating furnace 2. The baking completion determination apparatus 1 is shown.

鋼材表面に窒素を侵入させる処理は、熱処理炉2を用いた雰囲気熱処理により行われ、処理対象となるワーク21は治具22を介して熱処理炉2内に設置される。
また、前記熱処理炉2には、該熱処理炉2内にアンモニアガスを供給するためのアンモニアガス供給管25が接続されており、ワーク21の熱処理および治具22の空焼きを行うときには、前記アンモニアガス供給管25を通じて熱処理炉2内に所定の流量のアンモニアガスが供給されるように構成されている。
The treatment for intruding nitrogen into the steel material surface is performed by atmospheric heat treatment using the heat treatment furnace 2, and the workpiece 21 to be treated is placed in the heat treatment furnace 2 via the jig 22.
The heat treatment furnace 2 is connected to an ammonia gas supply pipe 25 for supplying ammonia gas into the heat treatment furnace 2. When performing heat treatment of the workpiece 21 and empty firing of the jig 22, the ammonia gas supply pipe 25 is connected to the heat treatment furnace 2. A predetermined amount of ammonia gas is supplied into the heat treatment furnace 2 through the gas supply pipe 25.

つまり、ワーク21に窒素を侵入させる処理は、熱処理炉2内に治具22を介してワーク21を設置し、ワーク21を設置した熱処理炉2内に所定の流量のアンモニアガスを供給しながら、前記熱処理炉2内の雰囲気を所定の温度に加熱することで行われている。   That is, in the process of injecting nitrogen into the work 21, the work 21 is installed in the heat treatment furnace 2 via the jig 22, and a predetermined flow rate of ammonia gas is supplied into the heat treatment furnace 2 in which the work 21 is installed. This is performed by heating the atmosphere in the heat treatment furnace 2 to a predetermined temperature.

ワーク21の表面に窒素を侵入させる処理を行うときには、実際にワーク21に対して熱処理を行う前に、アンモニアガスが供給された雰囲気の熱処理炉2内で前記治具22のみを空焼きして、治具22に吸着されているガスや治具22表面に形成されている酸化膜を除去したり、治具22表面に熱処理炉2内の雰囲気を吸着させたりすることなどが行われる。   When performing a treatment for intruding nitrogen into the surface of the work 21, only the jig 22 is baked in the heat treatment furnace 2 in an atmosphere to which ammonia gas is supplied before the heat treatment is actually performed on the work 21. The gas adsorbed on the jig 22 and the oxide film formed on the surface of the jig 22 are removed, or the atmosphere in the heat treatment furnace 2 is adsorbed on the surface of the jig 22.

前記治具22の空焼きは、ワーク21を熱処理する際の熱処理炉2内の雰囲気における窒化ポテンシャルなどを安定化させるために行われるものであるが、従来のように予め設定された所定の処理時間にて1〜2回の空焼きを行っただけでは、ワーク21に対する熱処理を開始するときに熱処理炉2内の雰囲気が安定しない場合がある。   The jig 22 is baked in order to stabilize the nitriding potential in the atmosphere in the heat treatment furnace 2 when the work 21 is heat-treated. There are cases where the atmosphere in the heat treatment furnace 2 is not stable when the heat treatment for the workpiece 21 is started only by performing empty baking once or twice in time.

これは、以下の理由による。
つまり、アンモニアガス(NH)は、高温の部材に接触したときに、その部材が有する触媒作用によって分解されるが、治具22の空焼きを行う際に熱処理炉2内に供給されるアンモニアガスは、高温になった治具22表面の触媒作用により分解されることとなる。
従って、触媒作用を奏する治具22表面の組成(酸化膜により覆われている面積)が変化すれば、アンモニアガスの分解率が変化し、熱処理炉2内の窒化ポテンシャルやワーク21の窒化品質が変動することとなる。
This is due to the following reason.
That is, ammonia gas (NH 3 ) is decomposed by the catalytic action of the member when it comes into contact with the high-temperature member, but ammonia supplied into the heat treatment furnace 2 when the jig 22 is baked. The gas is decomposed by the catalytic action on the surface of the jig 22 that has become high temperature.
Therefore, if the composition (area covered by the oxide film) on the surface of the jig 22 that performs the catalytic action changes, the decomposition rate of ammonia gas changes, and the nitriding potential in the heat treatment furnace 2 and the nitriding quality of the work 21 are changed. Will fluctuate.

また、治具22においては、その製造過程で表面に酸化膜が形成されるが、形成された酸化膜は、治具22の空焼きの処理時間などに応じ、図2に示す式に従って還元され減少していく。
つまり、熱処理炉2内に供給されたアンモニアガスは高温により分解が進行して窒素ガス(N)と水素ガス(H)とが生成され、生成した水素ガスにより治具22の構成部材の成分である鉄(Fe)やクロム(Cr)やモリブデン(Mo)などの酸化膜が還元され、治具22の表面に形成される酸化膜が減少することとなる。
In addition, an oxide film is formed on the surface of the jig 22 during the manufacturing process, and the formed oxide film is reduced according to the equation shown in FIG. Decrease.
That is, the ammonia gas supplied into the heat treatment furnace 2 is decomposed at a high temperature to generate nitrogen gas (N 2 ) and hydrogen gas (H 2 ). The oxide film such as iron (Fe), chromium (Cr), and molybdenum (Mo), which are components, is reduced, and the oxide film formed on the surface of the jig 22 is reduced.

また、熱処理炉2内のアンモニアガスは治具22の表面に接触すると、治具22を構成する金属部材の触媒作用により分解が進行するが、治具22の表面が前記酸化膜により覆われていると触媒作用を有する前記金属部材との接触が阻害されて分解が抑制されることとなる。
従って、治具22の表面に形成される酸化膜の多少により熱処理炉2内の残留アンモニア濃度が変化し、熱処理炉2内の窒化ポテンシャルやワーク21の窒化品質が変動することとなる。
Further, when the ammonia gas in the heat treatment furnace 2 comes into contact with the surface of the jig 22, the decomposition proceeds due to the catalytic action of the metal member constituting the jig 22, but the surface of the jig 22 is covered with the oxide film. If so, contact with the metal member having a catalytic action is hindered and decomposition is suppressed.
Therefore, the residual ammonia concentration in the heat treatment furnace 2 changes depending on the amount of the oxide film formed on the surface of the jig 22, and the nitriding potential in the heat treatment furnace 2 and the nitriding quality of the work 21 change.

このように、治具22を高温に加熱することにより治具22表面の酸化膜量が減少し、治具22表面の酸化膜の多少により熱処理炉2内の残留アンモニア濃度が変化するため、空焼き後も治具22に酸化膜が残存している状態でワーク21の熱処理を開始すると、ワーク21の熱処理中に治具22の酸化膜が還元されて徐々に減少していくこととなって、熱処理炉2内の残留アンモニア濃度が変化するため、狙い値どおりの熱処理炉2内の窒化ポテンシャルやワーク21の窒化品質を得ることが困難となる。
従って、治具22の空焼きを行う際には、治具22表面の酸化膜が全て除去され、熱処理炉2内におけるアンモニアガスの分解挙動が安定して残留アンモニア濃度が一定となるまで行うことが重要である。
Thus, heating the jig 22 to a high temperature reduces the amount of oxide film on the surface of the jig 22, and the residual ammonia concentration in the heat treatment furnace 2 changes depending on the amount of oxide film on the surface of the jig 22. When the heat treatment of the workpiece 21 is started with the oxide film remaining on the jig 22 even after baking, the oxide film of the jig 22 is reduced during the heat treatment of the workpiece 21 and gradually decreases. Since the residual ammonia concentration in the heat treatment furnace 2 changes, it becomes difficult to obtain the nitriding potential in the heat treatment furnace 2 and the nitriding quality of the work 21 as intended.
Therefore, when the jig 22 is baked, all the oxide film on the surface of the jig 22 is removed, and the decomposition behavior of the ammonia gas in the heat treatment furnace 2 is stabilized and the residual ammonia concentration becomes constant. is important.

但し、ワーク21の熱処理時に用いられる治具22の形状(大きさ含む)や、治具22の製造時に形成される酸化膜の量は、ワーク21や治具22によって異なるため、酸化膜を完全に除去するために必要な空焼き時間などといった空焼きの条件は、一概に決定することはできない。   However, since the shape (including size) of the jig 22 used at the time of heat treatment of the workpiece 21 and the amount of the oxide film formed at the time of manufacturing the jig 22 differ depending on the workpiece 21 and the jig 22, the oxide film is completely The baking conditions, such as the baking time required for removal, cannot be generally determined.

そこで、本例においては、治具22の空焼きを行う際に、前記空焼き完了判定装置1により治具22の空焼きが完了したことを判定して、ワーク21の一回目の処理時から熱処理炉2内の窒化ポテンシャルやワーク21の窒化品質を得ることができるようにしている。   Therefore, in this example, when performing the blank firing of the jig 22, the blank firing completion determination device 1 determines that the blank firing of the jig 22 has been completed, and from the first processing of the workpiece 21. The nitriding potential in the heat treatment furnace 2 and the nitriding quality of the work 21 can be obtained.

前記空焼き完了判定装置1は、熱処理炉2内の雰囲気が供給され、供給された熱処理炉2内の雰囲気における残留アンモニア濃度の計測を行う残留アンモニア濃度計測器11と、前記残留アンモニア濃度計測器11により計測された残留アンモニア濃度の値に基づいて前記治具22の空焼きの完了を判定する判定装置12とを備えている。   The empty baking completion determination device 1 is supplied with an atmosphere in the heat treatment furnace 2 and measures the residual ammonia concentration in the supplied atmosphere in the heat treatment furnace 2, and the residual ammonia concentration measurement instrument. And a determination device 12 that determines completion of empty baking of the jig 22 based on the value of the residual ammonia concentration measured by 11.

前記判定装置12は、前記残留アンモニア濃度計測器11にて計測された残留アンモニア濃度の経時的変化量を算出する演算部12aと、前記演算部12aにて算出された残留アンモニア濃度の経時的変化量に基づいて前記治具22の空焼きの完了の判定を行う判定部12bと、前記判定部12bによる判定の判定基準などが記憶された記憶部12cとを備えている。   The determination device 12 includes a calculation unit 12a that calculates a temporal change amount of the residual ammonia concentration measured by the residual ammonia concentration measuring instrument 11, and a temporal change of the residual ammonia concentration calculated by the calculation unit 12a. The determination part 12b which determines completion of the baking of the jig | tool 22 based on quantity is provided, and the memory | storage part 12c in which the determination criteria of the determination by the said determination part 12b, etc. were memorize | stored.

このように構成される空焼き完了判定装置1を用いて治具22の空焼きの完了を判定する場合は、まず治具22の空焼きを行う熱処理炉2内の雰囲気を導出ガスとして取り出し、取り出した導出ガスの残留アンモニア濃度を残留アンモニア濃度計測器11により計測する。   When determining the completion of the baking of the jig 22 using the empty baking completion determination device 1 configured as described above, first, the atmosphere in the heat treatment furnace 2 in which the jig 22 is burned is taken out as a derived gas, The residual ammonia concentration measuring device 11 measures the residual ammonia concentration of the extracted gas.

残留アンモニア濃度計測器11による残留アンモニア濃度の計測は、治具22の空焼きを行っている最中において連続的または断続的に繰り返し行われ、残留アンモニア濃度計測器11による計測値は前記判定装置12に入力される。
判定装置12においては、入力された計測値を用いて、前記演算部12aにより残留アンモニア濃度の経時的変化量が算出される。
The measurement of the residual ammonia concentration by the residual ammonia concentration measuring instrument 11 is repeated continuously or intermittently during the baking of the jig 22, and the measurement value by the residual ammonia concentration measuring instrument 11 is determined by the determination device. 12 is input.
In the determination device 12, the amount of change over time in the residual ammonia concentration is calculated by the calculation unit 12a using the input measurement value.

ここで、熱処理炉2にて治具22の空焼きを行った場合、前述のように、熱処理炉2内では治具22の酸化膜が還元されて徐々に減少していき、熱処理炉2内の残留アンモニア濃度が変化する。
具体的には、図3に示すように、残留アンモニア濃度は時間の経過とともに減少していき、所定の時間Tが経過した時点で一定の残留アンモニア濃度Cとなる。
また、図4に示すように、残留アンモニア濃度の経時的変化量は、時間の経過とともに減少していき、残留アンモニア濃度が一定の値Cとなったときに0となる。
Here, when the jig 22 is baked in the heat treatment furnace 2, as described above, the oxide film of the jig 22 is reduced and gradually reduced in the heat treatment furnace 2. The residual ammonia concentration changes.
Specifically, as shown in FIG. 3, the residual ammonia concentration decreases with time, and reaches a constant residual ammonia concentration C when a predetermined time T elapses.
Further, as shown in FIG. 4, the amount of change in the residual ammonia concentration with time decreases with time, and becomes 0 when the residual ammonia concentration reaches a constant value C.

熱処理炉2内においては、空焼きの初期のように治具22表面に、アンモニアガスの分解作用が低い酸化膜が多く存在している間は、前述のようにアンモニアガスの分解が抑制されて残留アンモニア濃度が高くなり、窒化ポテンシャルも高くなる。
その後、時間が経つにつれて治具22表面の酸化膜が減少していき、アンモニアガスが接触する治具22表面の面積が大きくなってアンモニアガスの分解が進行するようになり、残留アンモニア濃度が徐々に減少していき、窒化ポテンシャルも低下していく。
そして、治具22表面の酸化膜が還元反応により完全に除去されてしまうと、アンモニアガスが接触する治具22表面の面積が一定になるため、アンモニアガスの分解度合いが安定し、酸化膜の減少につれて低下していた残留アンモニア濃度が一定となる。また、このとき残留アンモニア濃度の経時的変化量が0となる。
In the heat treatment furnace 2, the decomposition of ammonia gas is suppressed as described above while there are many oxide films with low ammonia gas decomposition action on the surface of the jig 22 as in the early stage of baking. Residual ammonia concentration increases and nitriding potential increases.
Thereafter, as time passes, the oxide film on the surface of the jig 22 decreases, the area of the surface of the jig 22 in contact with the ammonia gas increases, the decomposition of the ammonia gas proceeds, and the residual ammonia concentration gradually increases. The nitriding potential also decreases.
When the oxide film on the surface of the jig 22 is completely removed by the reduction reaction, the area of the surface of the jig 22 in contact with the ammonia gas becomes constant. Therefore, the degree of decomposition of the ammonia gas is stabilized, and the oxide film The residual ammonia concentration, which has decreased with the decrease, becomes constant. At this time, the amount of change over time in the residual ammonia concentration becomes zero.

すなわち、治具22表面の酸化膜が還元反応により完全に除去された状態になると、熱処理炉2内の雰囲気における残留アンモニア濃度が一定となり安定した状態になるため、熱処理炉2内の残留アンモニア濃度が一定となった時点で治具22の空焼きが完了したとして、判定装置12により治具22の空焼きの完了を判定するように構成している。   That is, when the oxide film on the surface of the jig 22 is completely removed by the reduction reaction, the residual ammonia concentration in the atmosphere in the heat treatment furnace 2 becomes constant and stable, so the residual ammonia concentration in the heat treatment furnace 2 The determination device 12 is configured to determine whether the jig 22 has been baked, assuming that the baking of the jig 22 has been completed at a point in time when the jig 22 has become constant.

具体的には、前記演算部12aにより算出された残留アンモニア濃度の経時的変化量が時間とともに減少してきて0になると、判定部12bにより治具22の空焼きが完了したと判定するように構成することができる。   Specifically, when the change over time of the residual ammonia concentration calculated by the arithmetic unit 12a decreases with time and becomes zero, the determination unit 12b determines that the baking of the jig 22 has been completed. can do.

但し、残留アンモニア濃度計測器11による残留アンモニア濃度の計測値にノイズが乗ったり、計測値が外乱により若干揺らいだりすることを考慮して、残留アンモニア濃度の経時的変化量が0を挟んだ所定の範囲r〜−rの間の値になったときに治具22の空焼きが完了したと判定するように構成することもできる。
治具22の空焼きの完了を判定するための判定基準となる前記値rの大きさは、ノイズの大きさや計測値の揺らぎ量などに応じた大きさに設定されており、予め判定装置12の記憶部12cに記憶されている。
However, considering that the measurement value of the residual ammonia concentration measured by the residual ammonia concentration measuring device 11 is noisy or the measurement value fluctuates slightly due to a disturbance, the change amount of the residual ammonia concentration with time is zero. It can also be configured to determine that the baking of the jig 22 has been completed when a value in the range r to -r is reached.
The value r serving as a determination criterion for determining whether or not the jig 22 has been baked is set in accordance with the magnitude of noise, the amount of fluctuation of the measurement value, and the like, and is determined in advance. Is stored in the storage unit 12c.

このように、治具22の空焼きを行っている最中に、残留アンモニア濃度計測器11により熱処理炉2内の残留アンモニア濃度を逐次監視し、残留アンモニア濃度が一定になり安定した時点で、判定装置12により治具22の空焼きが完了したとの判定を行うようにしている。   In this way, while the jig 22 is being baked, the residual ammonia concentration measuring instrument 11 sequentially monitors the residual ammonia concentration in the heat treatment furnace 2, and when the residual ammonia concentration becomes constant and stable, The determination device 12 determines that the jig 22 has been baked.

これにより、残留アンモニア濃度が一定になっている状態の熱処理炉2によりワーク21に対する熱処理を開始することが可能となり、ワーク21の初回の熱処理時から安定した窒化ポテンシャルや窒化品質を得ることができ、熱処理がなされたワーク21の品質を向上することができる。   Thereby, it becomes possible to start the heat treatment for the workpiece 21 by the heat treatment furnace 2 in a state where the residual ammonia concentration is constant, and a stable nitriding potential and nitriding quality can be obtained from the time of the first heat treatment of the workpiece 21. The quality of the workpiece 21 that has been heat-treated can be improved.

例えば、第一の形状を備えた治具Aおよび第二の形状を備えた治具B(治具Bは治具Aよりも小さい)について、前記空焼き完了判定装置1により空焼きが完了したと判定されるまで治具22の空焼きを行った後に、ワーク21に対する窒化焼入れ処理を行った場合、図5に示すように、熱処理炉2内の窒化ポテンシャルは、前記治具Aおよび治具Bの両方で、初回の処理から略狙い値を示しており、その後処理を繰り返し行っても安定して略狙い値を示している。   For example, for the jig A having the first shape and the jig B having the second shape (the jig B is smaller than the jig A), the baking is completed by the baking completion determination device 1. When the workpiece 22 is subjected to nitriding and quenching after the jig 22 is baked until it is determined that the nitriding potential in the heat treatment furnace 2 is as shown in FIG. In both cases B, the substantially target value is shown from the first processing, and the target value is stably shown even if the processing is repeated thereafter.

また、図6に示すように、窒化焼入れ処理されたワーク21の硬化層深さも、前記治具Aおよび治具Bの両方で、初回の処理から略狙い値を示しており、その後処理を繰り返し行っても安定して略狙い値を示すこととなっている。   Further, as shown in FIG. 6, the depth of the hardened layer of the workpiece 21 subjected to the nitriding and quenching treatment also shows a substantially target value from the first treatment in both the jig A and the jig B, and the treatment is repeated thereafter. Even if it goes, it will show a stable target value.

つまり、本例においては、治具22の空焼きを行っている最中の熱処理炉2内の残留アンモニア濃度を残留アンモニア濃度計測器11により継続的に計測して監視し、残留アンモニア濃度が一定になり安定するまで治具22の空焼きを行うようにしているので、治具22の表面に形成されている酸化膜量の多少にかかわらず、ワーク21に対する初回の熱処理時から狙い通りの窒化ポテンシャルや硬化層深さを得ることが可能となっている(残留アンモニア濃度が一定になるまで治具22の空焼きが行われるので、酸化膜量が多い治具22では空焼き時間が長くなり、酸化膜量が少ない治具22では空焼き時間は短くなる)。   In other words, in this example, the residual ammonia concentration in the heat treatment furnace 2 during the baking of the jig 22 is continuously measured and monitored by the residual ammonia concentration measuring device 11, and the residual ammonia concentration is constant. Since the jig 22 is baked until it becomes stable, the nitridation is performed as intended from the time of the first heat treatment on the workpiece 21 regardless of the amount of the oxide film formed on the surface of the jig 22. It is possible to obtain potential and hardened layer depth (since the jig 22 is baked until the residual ammonia concentration becomes constant, the baked time becomes longer in the jig 22 having a large amount of oxide film. In the jig 22 having a small amount of oxide film, the baking time is shortened).

これにより、種々の大きさや形状などの治具22に対しても、同様の処理で空焼きを行うことで(残留アンモニア濃度が一定になるまで治具22の空焼きを行うことで)、ワーク21に対する初回の熱処理時から一定の窒化ポテンシャルや硬化層深さを得ることが可能となるため、広範なワーク21に対して熱処理の準備作業を簡便にしつつ、熱処理されたワーク21の品質向上を図ることができる。   As a result, the jig 22 having various sizes and shapes is also baked by the same process (by baking the jig 22 until the residual ammonia concentration becomes constant). Since it is possible to obtain a constant nitriding potential and hardened layer depth from the time of the first heat treatment for the workpiece 21, it is possible to improve the quality of the heat-treated workpiece 21 while simplifying the preparation work of the heat treatment for a wide variety of workpieces 21. Can be planned.

熱処理炉および空焼き完了判定装置を示す概略図である。It is the schematic which shows a heat processing furnace and an empty baking completion determination apparatus. 空焼き時の熱処理炉内におけるアンモニアガスの分解反応を示す図である。It is a figure which shows the decomposition reaction of ammonia gas in the heat treatment furnace at the time of empty baking. 空焼き時の熱処理炉内における残留アンモニア濃度と時間との関係を示す図である。It is a figure which shows the relationship between the residual ammonia density | concentration in the heat processing furnace at the time of empty baking, and time. 空焼き時の熱処理炉内における残留アンモニア濃度の変化量と時間との関係を示す図である。It is a figure which shows the relationship between the variation | change_quantity of the residual ammonia concentration in the heat processing furnace at the time of empty baking, and time. 空焼き完了判定装置により治具の空焼きが完了したとの判定が行われた後にワークの熱処理を行った際の窒化ポテンシャルを示す図である。It is a figure which shows the nitriding potential at the time of performing the heat processing of a workpiece | work after it determines with the blanking completion determination apparatus having determined that the blanking of the jig was completed. 空焼き完了判定装置により治具の空焼きが完了したとの判定が行われた後にワークの熱処理を行った際のワークの硬化層深さを示す図である。It is a figure which shows the hardened layer depth of the workpiece | work at the time of heat-processing a workpiece | work after determining with the blank baking completion determination apparatus having completed the baking of the jig | tool. 従来の方法により治具の空焼きを行った後にワークの熱処理を行った際の窒化ポテンシャルを示す図である。It is a figure which shows the nitriding potential at the time of heat-processing a workpiece | work after performing the blank baking of the jig | tool by the conventional method. 従来の方法により治具の空焼きを行った後にワークの熱処理を行った際のワークの硬化層深さを示す図である。It is a figure which shows the hardening layer depth of the workpiece | work at the time of heat-processing a workpiece | work after performing the blank baking of the jig | tool by the conventional method.

符号の説明Explanation of symbols

1 空焼き完了判定装置
2 熱処理炉
11 残留アンモニア濃度計測器
12 判定装置
12a 演算部
12b 判定部
12c 記憶部
21 ワーク
22 治具
25 アンモニアガス供給管
DESCRIPTION OF SYMBOLS 1 Empty burning completion determination apparatus 2 Heat processing furnace 11 Residual ammonia concentration measuring device 12 Judgment apparatus 12a Operation part 12b Judgment part 12c Memory | storage part 21 Work 22 Jig 25 Ammonia gas supply pipe

Claims (4)

アンモニアガスが供給される熱処理炉内で熱処理がなされるワークを熱処理炉内に設置する際に用いられる治具の空焼き方法であって、
ワークに対する熱処理を行う前に、前記熱処理炉内に載置された治具の空焼きを行い、
空焼き中の熱処理炉内の雰囲気における残留アンモニア濃度を計測し、
計測した残留アンモニア濃度の値に基づいて、前記治具の空焼きの完了を判定する、
ことを特徴とする治具の空焼き方法。
An empty baking method of a jig used when a workpiece to be heat-treated in a heat treatment furnace to which ammonia gas is supplied is installed in the heat treatment furnace,
Before performing heat treatment on the workpiece, perform a blank firing of the jig placed in the heat treatment furnace,
Measure the residual ammonia concentration in the atmosphere in the heat treatment furnace during baking,
Based on the value of the measured residual ammonia concentration, determine the completion of baking of the jig,
A jig baking method characterized by the above.
前記治具の空焼きの完了の判定は、
空焼き中に計測した残留アンモニア濃度の経時的変化量が、予め設定された所定の範囲内に収まったときに行う、
ことを特徴とする請求項1に記載の治具の空焼き方法。
Judgment of the completion of baking of the jig is as follows:
When the amount of change over time in the residual ammonia concentration measured during baking is within a predetermined range set in advance,
The method for baking an empty jig according to claim 1.
アンモニアガスが供給される熱処理炉内で熱処理がなされるワークを熱処理炉内に設置する際に用いられる治具の空焼き完了を判定する装置であって、
熱処理炉内の残留アンモニア濃度を計測する計測手段と、
前記計測器により計測された残留アンモニア濃度の値に基づいて、前記治具の空焼きの完了を判定する判定手段とを備える、
ことを特徴とする治具の空焼き完了判定装置。
An apparatus for determining completion of empty firing of a jig used when a workpiece to be heat-treated in a heat treatment furnace to which ammonia gas is supplied is installed in the heat treatment furnace,
A measuring means for measuring the residual ammonia concentration in the heat treatment furnace;
Based on the value of the residual ammonia concentration measured by the measuring instrument, a determination means for determining completion of empty baking of the jig,
An apparatus for determining whether a jig has been completely baked.
前記判定手段は、
前記計測器により計測された残留アンモニア濃度の経時的変化量を算出する演算部と、
前記演算部により算出された残留アンモニア濃度の経時的変化量が、予め設定された所定の範囲内に収まったときに前記治具の空焼きの完了の判定を行う判定部とを備える、
ことを特徴とする請求項3に記載の治具の空焼き完了判定装置。

The determination means includes
A calculation unit for calculating a temporal change in residual ammonia concentration measured by the measuring device;
A determination unit configured to determine whether the jig has been baked or not when a temporal change amount of the residual ammonia concentration calculated by the arithmetic unit is within a predetermined range set in advance.
The apparatus for determining whether or not the jig has been baked according to claim 3.

JP2008139731A 2008-05-28 2008-05-28 Method for preparatorily baking holder and apparatus for determining completion of preparatory baking Pending JP2009287070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139731A JP2009287070A (en) 2008-05-28 2008-05-28 Method for preparatorily baking holder and apparatus for determining completion of preparatory baking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139731A JP2009287070A (en) 2008-05-28 2008-05-28 Method for preparatorily baking holder and apparatus for determining completion of preparatory baking

Publications (1)

Publication Number Publication Date
JP2009287070A true JP2009287070A (en) 2009-12-10

Family

ID=41456570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139731A Pending JP2009287070A (en) 2008-05-28 2008-05-28 Method for preparatorily baking holder and apparatus for determining completion of preparatory baking

Country Status (1)

Country Link
JP (1) JP2009287070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007065A (en) * 2011-06-22 2013-01-10 Toyota Motor Corp Nitriding-quenching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007065A (en) * 2011-06-22 2013-01-10 Toyota Motor Corp Nitriding-quenching method

Similar Documents

Publication Publication Date Title
JP5835256B2 (en) Manufacturing method of ferritic stainless steel products
JP3960697B2 (en) Carburizing and carbonitriding methods
JP6552209B2 (en) Method and apparatus for manufacturing metal spring
Kula et al. FineCarb-the flexible system for low pressure carburizing. New options and performance
JP2009287070A (en) Method for preparatorily baking holder and apparatus for determining completion of preparatory baking
JP4853615B2 (en) Vacuum carburizing quality control method and vacuum carburizing furnace
EP2474641A2 (en) Method and apparatus for heat treating a metal
JP2011052262A (en) Vacuum carburization method
CN114341392B (en) Vacuum carburization method and carburized component manufacturing method
KR101245564B1 (en) Gas Nitriding Heat Treatment of the Stainless steel, Heat resisting steel and High alloy steel
KR20120035444A (en) Real time nitriding depth monitoring method and apparatus for plasma nitriding process
JP6543213B2 (en) Surface hardening method and surface hardening apparatus
JP6583600B1 (en) Vacuum carburizing treatment method and carburized parts manufacturing method
JP5024647B2 (en) Vacuum carburizing quality control method and vacuum carburizing furnace
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JP2004162134A (en) Method and apparatus for manufacturing endless metallic belt
JP2019135332A (en) Manufacturing method and manufacturing apparatus for metallic spring
JP2000303160A (en) Carburizing treating method
JP2010024535A (en) Carburization method for steel
JP4255815B2 (en) Gas carburizing method
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material
JP6759842B2 (en) Steel manufacturing method
JP3721536B2 (en) Carburizing method for narrow and deep holes
JP2019026875A (en) Production method of workpiece
JP6786111B2 (en) Method of suppressing sooting in vacuum carburizing method