JP2013007065A - Nitriding-quenching method - Google Patents

Nitriding-quenching method Download PDF

Info

Publication number
JP2013007065A
JP2013007065A JP2011138350A JP2011138350A JP2013007065A JP 2013007065 A JP2013007065 A JP 2013007065A JP 2011138350 A JP2011138350 A JP 2011138350A JP 2011138350 A JP2011138350 A JP 2011138350A JP 2013007065 A JP2013007065 A JP 2013007065A
Authority
JP
Japan
Prior art keywords
quenching
nitriding
steel product
gas
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011138350A
Other languages
Japanese (ja)
Inventor
Masayoshi Ikeyama
正芳 池山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011138350A priority Critical patent/JP2013007065A/en
Publication of JP2013007065A publication Critical patent/JP2013007065A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve following problems: a flow rate of an ammonia gas that is flown during nitriding-quenching becomes unstable, and which causes an increase in variation in surface hardness of a steel article after being subjected to the nitriding-quenching.SOLUTION: In a nitriding-quenching method, a reduction step of reducing oxide films overlying on surfaces of an inconel (R) heater 5 and the other metal materials in a heat-treating furnace 1 by introducing an ammonia gas and a nitrogen gas at a flow ratio of an ammonia gas to a nitrogen gas to a ratio of 2:1 into the heat-treating furnace 1, is introduced before a nitriding-quenching step of the steel article, thus, the flow rate of the ammonia gas is stabilized in the nitriding-quenching step preceding the reduction step, thereby suppressing the variation in surface hardness of the steel article subjected to the nitriding-quenching.

Description

本発明は、鉄鋼品の表面を硬化するための浸窒焼入れ方法に関する。   The present invention relates to a nitrogen quenching method for hardening the surface of a steel product.

従来より、特許文献1に開示されているように、熱処理炉内で、アンモニアガス、窒素ガスの雰囲気下、鉄又は鉄合金のような鉄鋼製のワーク(本明細書では「鉄鋼品」と略す)の表面に対し窒素を拡散・浸透させ、鉄鋼品の表面を硬化する浸窒焼入れ方法が行われている。   Conventionally, as disclosed in Patent Document 1, a steel work such as iron or an iron alloy in an atmosphere of ammonia gas or nitrogen gas (abbreviated as “steel product” in this specification) in a heat treatment furnace. Nitrogen quenching method that diffuses and permeates nitrogen into the surface of the steel to harden the surface of the steel product.

特開2009−270155号公報JP 2009-270155 A

ところで、浸窒焼入れ方法のスタート時点では、浸窒焼入れ工程中にヒータ材として使用されるインコネル(登録商標)やその他の金属材の表面は酸化膜に覆われている。かかる酸化膜があると、当該酸化膜が鉄鋼品の浸窒焼入れ工程において鉄鋼品に対し還元剤として作用し、その結果、浸窒焼き入れに不可欠なアンモニアガスの分解に大きな影響を与える。この影響によって、熱処理炉内のアンモニア濃度を不安定にし、ひいては、浸窒焼入れされる鉄鋼品の表面硬度にバラツキ(ロット内、ロット間双方を含む。以下同様。)をもたらす。   By the way, at the start of the nitriding and quenching method, the surfaces of Inconel (registered trademark) and other metal materials used as heater materials during the nitriding and quenching process are covered with an oxide film. When such an oxide film is present, the oxide film acts as a reducing agent on the steel product in the nitrocarburizing and quenching process of the steel product, and as a result, it greatly affects the decomposition of ammonia gas essential for the nitriding quenching. Due to this influence, the ammonia concentration in the heat treatment furnace becomes unstable, and as a result, the surface hardness of the steel product to be nitrogen-quenched is varied (including both within and between lots, the same applies hereinafter).

そこで、本発明は、浸窒焼入れ工程の直前に、熱処理炉内のアンモニア濃度を安定するための新たな工程を導入して、鉄鋼品に浸窒焼入れ後の鉄鋼品の表面硬度のバラツキを防止する浸窒焼入れ方法を提供することを目的とする。   Therefore, the present invention introduces a new process for stabilizing the ammonia concentration in the heat treatment furnace immediately before the nitriding and quenching process to prevent variations in the surface hardness of the steel product after nitrogen quenching. An object of the present invention is to provide a method for nitriding and quenching.

(発明の態様)
以下に、本願において特許請求が可能と認識されている発明(以下、請求可能発明と称する)の態様を例示し、例示された各態様について説明する。ここでは、各態様を、特許請求の範囲と同様に、項に区分すると共に各項に番号を付し、必要に応じて他の項の記載を引用する形式で記載する。これは、請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載、実施形態の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得る。
以下の各項において、(1)〜(3)項の各々が、請求項1〜3の各々に相当する。
(Aspect of the Invention)
In the following, aspects of the invention that is recognized as being capable of being claimed in the present application (hereinafter referred to as claimable invention) will be exemplified, and each exemplified aspect will be described. Here, as in the claims, each aspect is divided into paragraphs, numbers are assigned to the respective paragraphs, and the descriptions of other paragraphs are cited as necessary. This is for the purpose of facilitating the understanding of the claimable invention, and is not intended to limit the combination of the constituent elements constituting the claimable invention to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description accompanying each section, the description of the embodiment, etc., and as long as the interpretation is followed, another aspect is added to the aspect of each section. Moreover, the aspect which deleted the component from the aspect of each term can also be one aspect of the claimable invention.
In the following items, each of the items (1) to (3) corresponds to each of claims 1 to 3.

(1)鉄鋼品の浸窒焼入れ工程前に、熱処理炉内の金属材の表面に存在する酸化膜を還元する還元工程を有することを特徴とする浸窒焼入れ方法。 (1) A nitriding and quenching method comprising a reduction step of reducing an oxide film present on the surface of a metal material in a heat treatment furnace before a nitriding and quenching step of a steel product.

「鉄鋼品」は、鉄、鉄合金のワーク品若しくはバルク品であって、例えば、自動車部品、ベアリングホルダ、クラッチプレート、プレス加工部品その他の鉄鋼製部品用であり、当該用途から高い表面硬度が要求されているものを対象とする。   “Iron and steel products” are iron or iron alloy workpieces or bulk products, for example, automotive parts, bearing holders, clutch plates, pressed parts, and other steel parts. Target what is required.

「浸窒焼入れ」は、鉄−窒素系状態図のオーステナイト領域で、所定温度下、鉄鋼品に窒素を所定時間、拡散・浸透させ、その後、油中に浸漬し急冷して、硬い窒素マルテンサイト組織の層を鉄鋼品の表層の10〜20μm程度の深さに形成することを特徴とする鉄鋼品の表面を硬化する方法である。   “Nitrogen quenching” is an austenite region of the iron-nitrogen phase diagram, where nitrogen is diffused and permeated into steel products for a predetermined time at a predetermined temperature, and then immersed in oil and rapidly cooled to hard nitrogen martensite. It is a method for hardening the surface of a steel product, characterized in that the structure layer is formed to a depth of about 10 to 20 μm of the surface layer of the steel product.

「熱処理炉」は、熱処理前及び熱処理中にエアシール状に大気と熱処理炉の内部空間とをエアーシール状態に遮断することが可能な真空チャンバを備え、かつ、この真空チャンバ内に熱処理品(本明細書では鉄鋼品)を加熱できるヒータを備えている。係るヒータは、外部から電流が供給できるニクロム線等を内部に埋設させた耐熱金属製であることが望ましく、一般に熱処理炉ではニッケル基の超合金であるインコネル(登録商標)が使用される。よって、本願明細書では、ヒータ材をインコネル(登録商標)製として説明する。   The “heat treatment furnace” includes a vacuum chamber capable of shutting off the atmosphere and the interior space of the heat treatment furnace in an air-sealed state before and during heat treatment, and in the vacuum chamber, a heat-treated product (main article) In the specification, a heater capable of heating steel products) is provided. Such a heater is preferably made of a heat-resistant metal in which a nichrome wire or the like capable of supplying an electric current from the outside is embedded, and Inconel (registered trademark), which is a nickel-based superalloy, is generally used in a heat treatment furnace. Therefore, in the present specification, the heater material is described as being made of Inconel (registered trademark).

上記のヒータによる加熱温度は、熱処理炉の内部の数箇所に取り付けられた熱電対によって随時熱処理炉内の各箇所の温度が測定され、熱処理炉内の各箇所の温度をシーケンサ等の制御手段にフィードバックしながら、シーケンサ等の制御手段によって所定の温度パターンで制御されることが好ましい。   The heating temperature by the above heater is measured at various times in the heat treatment furnace at any time by thermocouples attached to several places inside the heat treatment furnace, and the temperature at each place in the heat treatment furnace is used as a control means such as a sequencer. It is preferable to control with a predetermined temperature pattern by a control means such as a sequencer while feeding back.

真空チャンバは、浸窒焼入れされる鉄鋼品が搬入・搬出時に開閉可能な、例えば空圧シリンダ等の駆動手段で駆動されるシャッター機構を備えた真空ドアを備えることが好ましい。また、真空チャンバの適切な箇所にパイプ状の導管を配置し、その導管に逆止弁を設け、この逆止弁を介して真空チャンバと真空ポンプとがエアーシールされ接続されていることが好ましい。   The vacuum chamber is preferably provided with a vacuum door provided with a shutter mechanism that can be opened and closed at the time of carrying-in / out of a steel product to be subjected to nitrogen quenching and that is driven by a driving means such as a pneumatic cylinder. In addition, it is preferable that a pipe-shaped conduit is disposed at an appropriate location in the vacuum chamber, a check valve is provided in the conduit, and the vacuum chamber and the vacuum pump are air-sealed and connected via the check valve. .

真空ポンプは、アンモニアガスや窒素ガスの導入前(ガス置換前)、一度、熱処理炉の内部を真空ポンプで真空引きし、熱処理炉内を一定の真空度の内部雰囲気にしたり、ヒータ表面が還元されたときに発生する酸素ガスを外部へ排出したり、或いは一定の比率のアンモニアガスと窒素ガスのガス濃度が維持されるように、真空チャンバ内の雰囲気を適宜安定化する等のために使用される。   The vacuum pump is used to evacuate the inside of the heat treatment furnace once with the vacuum pump before introducing ammonia gas or nitrogen gas (before gas replacement), or to reduce the heater surface to a constant degree of internal atmosphere. Used to discharge the oxygen gas generated when it is released or to stabilize the atmosphere in the vacuum chamber appropriately so that the gas concentration of ammonia gas and nitrogen gas at a certain ratio is maintained. Is done.

真空チャンバに逆止弁を介して連結され、かつ、真空雰囲気のまま開閉可能な真空ドアで仕切られた内部空間を持つ予備チャンバを、真空チャンバに隣接して設けるようにし、後述の還元工程の前に鉄鋼品を係る予備チャンバに入れておくことが好ましい。予備チャンバ内も真空ポンプで真空雰囲気にすることができ、真空引きが完了し、かつ、還元工程が完了したら、真空ドアを開けて、熱処理炉内に鉄鋼品を搬送、配置することができる。このようにすると、鉄鋼品の熱処理炉内の搬送、配置中に、大気、特に酸素や湿気が真空チャンバ内に侵入することを防止することができ、鉄鋼品の熱処理炉への搬送、配置時に、還元工程で表面の酸化膜が除去されたインコネル(登録商標)製のヒータ及びその他の金属材の表面状態を維持することができる。予備チャンバで浸窒焼入れ前に鉄鋼品を一定の温度にプレヒートしておくようにしてもよい。熱処理する際に鉄鋼品に急に高温が作用するときのヒートショックを未然に防止するためである。   A spare chamber connected to the vacuum chamber via a check valve and having an internal space partitioned by a vacuum door that can be opened and closed in a vacuum atmosphere is provided adjacent to the vacuum chamber. It is preferable to put the steel product in the spare chamber before. The preliminary chamber can also be made into a vacuum atmosphere by a vacuum pump, and when the evacuation is completed and the reduction process is completed, the vacuum door is opened, and the steel product can be transported and arranged in the heat treatment furnace. In this way, it is possible to prevent air, particularly oxygen and moisture from entering the vacuum chamber during the transportation and placement of the steel product in the heat treatment furnace, and during the transportation and placement of the steel product to the heat treatment furnace. The surface state of the heater made of Inconel (registered trademark) from which the oxide film on the surface has been removed in the reduction step and other metal materials can be maintained. The steel product may be preheated to a certain temperature before nitriding and quenching in the preliminary chamber. This is to prevent heat shock when a high temperature suddenly acts on steel products during heat treatment.

還元工程で、真空ポンプで真空引きが完了した後、鉄鋼品を搬送、配置せずに、熱処理炉内に、一定量の窒素ガスとアンモニアガスとを一定の比率、好ましくは両ガスの濃度の比率が好適には1:2となるように一定時間流すことで、真空雰囲気を窒素ガスとアンモニアガスの混合ガスとガス置換しつつ、真空チャンバ内を一定温度に保持して、ヒータ材、すなわちインコネル(登録商標)の表面の酸化層を除去する。この還元工程では、インコネル(登録商標)の表面以外の金属材、例えば真空チャンバの内壁やその他の部品が酸化している場合は、これらの箇所も同時に還元できる。   In the reduction process, after evacuation is completed with a vacuum pump, a certain amount of nitrogen gas and ammonia gas are in a certain ratio, preferably in the concentration of both gases, in the heat treatment furnace without transferring and placing the steel product. By flowing for a certain time so that the ratio is preferably 1: 2, the inside of the vacuum chamber is maintained at a constant temperature while replacing the vacuum atmosphere with a mixed gas of nitrogen gas and ammonia gas. The oxide layer on the surface of Inconel (registered trademark) is removed. In this reduction step, when a metal material other than the surface of Inconel (registered trademark), for example, the inner wall of the vacuum chamber or other parts is oxidized, these portions can be reduced at the same time.

本項によれば、鉄鋼品の浸窒焼入れ前に、熱処理炉内に所定比率のアンモニアガスと窒素ガスを導入し、一定時間、熱処理炉内を還元雰囲気に保持し、熱処理炉内の各箇所の表面を還元させることができる。その結果、インコネル(登録商標)製のヒータ及びその他の金属材料の表面に存在する酸化膜を浸窒焼入れ前に予め除去でき、熱処理炉内でのアンモニア分解反応が一定となるため、鉄鋼品の浸窒焼入れの際に表層に拡散・浸透させるための残留アンモニア濃度が安定し、最終的に、浸窒焼入れされた鉄鋼品の表面硬さのバラツキを小さく抑制することができる。   According to this section, before nitrogen-quenching of steel products, ammonia gas and nitrogen gas at a predetermined ratio are introduced into the heat treatment furnace, and the heat treatment furnace is maintained in a reducing atmosphere for a certain period of time. The surface of the substrate can be reduced. As a result, the oxide film present on the surface of Inconel (registered trademark) heaters and other metal materials can be removed in advance before nitrogen quenching, and the ammonia decomposition reaction in the heat treatment furnace becomes constant. Residual ammonia concentration for diffusing and permeating into the surface layer during nitrogen quenching is stabilized, and finally, variation in surface hardness of the steel product subjected to nitrogen quenching can be suppressed to a small level.

換言すると、本項によれば、鉄鋼品の浸窒焼入れ前に、熱処理炉に一般に使用されるインコネル(登録商標)製のヒータ及びその他の金属材の表面状態を十分還元して酸化膜を取り除き、その直後に、浸窒焼入れを開始することができる。このようにする結果、鉄鋼品に浸窒焼入れするときには、インコネル(登録商標)製のヒータ及びその他の金属材に酸化膜が存在しないため、酸素膜による酸素と反応してしまうことがなくなり、アンモニアガス(アンモニア濃度)がハンチングを起こさず、熱処理炉内においてアンモニアガスの分解反応にバラツキが生じることが抑制される。
この結果、アンモニア濃度を一定にすることができ、熱処理炉内に導入する窒素濃度との比、即ち、窒素濃度:アンモニア濃度=1:2(ストイキ比)を一定に保持でき、浸窒焼入れのバラツキを抑制することができる。
In other words, according to this section, before nitriding and quenching of steel products, the surface state of Inconel (registered trademark) heaters and other metal materials generally used in heat treatment furnaces is sufficiently reduced to remove the oxide film. Immediately thereafter, the nitriding quenching can be started. As a result, when nitriding and quenching steel products, there is no oxide film on the heater and other metal materials made of Inconel (registered trademark), so there is no reaction with oxygen from the oxygen film and ammonia. Gas (ammonia concentration) does not cause hunting, and variation in the decomposition reaction of ammonia gas in the heat treatment furnace is suppressed.
As a result, the ammonia concentration can be made constant, and the ratio with the nitrogen concentration introduced into the heat treatment furnace, that is, nitrogen concentration: ammonia concentration = 1: 2 (stoichiometric ratio) can be kept constant, so Variations can be suppressed.

(2)前記浸窒焼入れ工程は、前記還元工程にて前記熱処理内のアンモニア濃度が所定値まで低下した後、実行されることを特徴とする浸窒焼入れ方法。
本項は、浸窒焼入れ工程の開始のタイミングを例示する。
(3)前記還元工程は、アンモニアガスと窒素ガスを一定の比率で前記熱処理炉内に導入した後、前記熱処理炉内の温度を前記浸窒焼入れ工程時に保持される所定温度と略同一に設定することにより、前記熱処理炉内を還元することを特徴とする(1)又は(2)に記載の浸窒焼入れ方法。
(2) The nitriding and quenching step is performed after the ammonia concentration in the heat treatment has been reduced to a predetermined value in the reduction step.
This section illustrates the timing of the start of the nitriding and quenching process.
(3) In the reduction step, after introducing ammonia gas and nitrogen gas into the heat treatment furnace at a constant ratio, the temperature in the heat treatment furnace is set to be approximately the same as a predetermined temperature maintained during the nitrogen quenching step. The nitriding quenching method according to (1) or (2), wherein the inside of the heat treatment furnace is reduced by doing so.

「所定温度」は、後工程の浸窒焼入れ工程で保持される温度と同程度であることが好ましく、例えば、760〜810℃であることが好ましい。後工程の浸窒焼入れ工程で保持される温度と異なると、浸窒焼入れ工程にて真空度が変化するため好ましくいからである。また「所定温度」は、1000℃であることが好ましい。1000℃を超えるとインコネル(登録商標)の結晶粒が粗大化するため好ましくないからである。   The “predetermined temperature” is preferably about the same as the temperature maintained in the subsequent nitriding and quenching process, and is preferably 760 to 810 ° C., for example. This is because if the temperature is different from the temperature maintained in the subsequent nitriding and quenching process, the degree of vacuum is changed in the nitriding and quenching process, which is preferable. The “predetermined temperature” is preferably 1000 ° C. If the temperature exceeds 1000 ° C., the crystal grains of Inconel (registered trademark) become coarse, which is not preferable.

(4)前記還元工程は、インコネル(登録商標)製のヒータ及びその他の金属材の表面に存在する酸化膜を、鉄鋼品の浸窒焼入れ前に除去することを特徴とする(3)項に記載の浸窒焼入れ方法。
本項は、当該還元工程を作用的な記載によって特定するものである。
(4) Item (3) is characterized in that the reduction step removes an oxide film present on the surface of an Inconel (registered trademark) heater and other metal materials before nitriding and quenching of steel products. Nitrogen quenching method as described.
This section specifies the reduction step by an active description.

(5)真空チャンバとインコネル(登録商標)製のヒータを含む熱処理炉で鉄鋼品に浸窒焼入れを行う方法であって、前記真空チャンバ内を真空状態にする真空引き工程と、該真空引き工程で形成された真空雰囲気をアンモニアガスと窒素ガスでガス置換するために、アンモニアガスと窒素ガスを一定比率で導入するガス導入工程と、ヒータにより所定温度に加熱して、該ガス導入工程で導入されたアンモニアガスと窒素ガスによって真空チャンバ内のインコネル(登録商標)製のヒータ及びその他の金属材の表面を還元する還元工程と、該還元工程が完了後、鉄鋼品を熱処理炉の真空チャンバ内に搬入する鉄鋼品搬入工程と、前記アンモニアガスと窒素ガスの混合ガスの雰囲気下で所定温度で前記鉄鋼品に浸窒焼入れを行う浸窒焼入れ工程と、該浸窒焼入れ工程が完了した前記鉄鋼品を搬出する鉄鋼品搬出工程と、搬出された前記浸窒焼入れが完了した前記鉄鋼品を油に浸漬して冷却する冷却工程と、を含むことを特徴とする鉄鋼品の浸窒焼入れ方法。 (5) A method of performing nitriding and quenching of steel products in a heat treatment furnace including a vacuum chamber and an Inconel (registered trademark) heater, wherein the vacuum chamber is evacuated, and the vacuum step In order to replace the vacuum atmosphere formed in step 1 with ammonia gas and nitrogen gas, a gas introduction step of introducing ammonia gas and nitrogen gas at a constant ratio, and a heater is heated to a predetermined temperature and introduced in the gas introduction step. Reduction process of reducing the surface of Inconel (registered trademark) heater and other metal materials in the vacuum chamber with the ammonia gas and nitrogen gas, and after the reduction process is completed, the steel product is removed from the vacuum chamber of the heat treatment furnace. A steel product carrying-in process to be carried in, and a nitrogen-quenching process in which the steel product is subjected to nitrogen quenching at a predetermined temperature in an atmosphere of a mixed gas of ammonia gas and nitrogen gas A steel product unloading step for carrying out the steel product for which the nitrogen quenching step has been completed, and a cooling step for immersing the steel product for which the nitrocarburization quenching has been completed is immersed in oil for cooling. Nitrogen quenching method for steel products.

本項は、鉄鋼品の浸窒焼入れ方法を以下に説明する実施形態に対応して全主要工程を規定したものである。本項の説明は以下の実施形態の欄で説明する。   This section defines all the main processes corresponding to the embodiment described below for the nitrocarburizing method of steel products. The description of this section will be described in the following embodiment.

本発明によれば、浸窒焼入れされる鉄鋼品の表面硬度のバラツキを防止することができる鉄鋼品の浸窒焼入れ方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nitriding quenching method of the steel product which can prevent the variation in the surface hardness of the steel product nitrocarburized and quenching can be provided.

図1は、本実施形態で用いられる熱処理炉の概略断面図である。FIG. 1 is a schematic cross-sectional view of a heat treatment furnace used in the present embodiment. 図2は、浸窒焼入れ工程における、横軸を浸窒焼入れの処理時間(min)に、縦軸をアンモニア流量(m/hr)にして、処理時間に沿ってアンモニア流量を測定器によってプロットし描いたグラフである。実施例を点状模様のプロットのグラフで示し、比較例を黒四角のプロットのグラフで示す。FIG. 2 plots the ammonia flow rate with a measuring instrument along the treatment time in the nitriding and quenching process with the abscissa indicating the nitriding quenching treatment time (min) and the ordinate indicating the ammonia flow rate (m 3 / hr). It is a graph drawn. An example is shown by the plot graph of a dotted pattern, and a comparative example is shown by the graph of the black square plot. 図3は、浸窒焼入れ工程、鉄鋼品搬出工程、冷却工程が完了した後に、浸窒焼入れされた鉄鋼品の、浸窒焼入れされた深さに相当するマルテンサイト層の深さを測定し、統計学上のバラツキを示す指標である3σについて計算を行い、縦軸に浸窒焼入れの深さ(mm)をとった棒グラフである。右に実施例の計算結果を、左に比較例の計算結果をプロットした棒グラフで示すものである。FIG. 3 shows the measurement of the depth of the martensite layer corresponding to the depth of the nitrocarburizing and quenching of the nitrous-quenched steel product after the nitriding and quenching step, the steel product unloading step, and the cooling step are completed. It is the bar graph which computed about 3σ which is a parameter | index which shows the dispersion | variation in statistics, and took the depth (mm) of nitriding quenching on the vertical axis | shaft. The calculation result of an Example is shown on the right, and the bar graph which plotted the calculation result of the comparative example on the left is shown.

以下、本願発明に係る好適実施形態を、添付図面を参照しながら説明するが、以下に記載される装置及びその各構成要素、各部品、各箇所、各材料は、本願発明の実施形態の一例であり、これに限られるものではない。また、図中、同一の符号を付した部分は同一物、同一部材を表し、装置や部材の各寸法、各比率は実際のものを反映したものではなく、概略的に示したものである。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments according to the present invention will be described with reference to the accompanying drawings. The device described below and its components, components, parts, and materials are examples of the embodiments of the present invention. However, it is not limited to this. Moreover, in the figure, the part which attached | subjected the same code | symbol represents the same thing and the same member, and each dimension and each ratio of an apparatus or a member are not what reflected the actual thing but shown schematically.

以下、本発明に係る本実施形態について、図1を参照して説明する。
図1は、本実施形態で用いる熱処理炉1の概略的な断面図である。
図1に示されるように、熱処理炉1は、真空チャンバ2、基台3、鉄鋼品配置室4、ヒータ5、ガス用導管6、鉄鋼品配置用ステージ7、真空引き用導管8、真空ポンプ9及びガスフロー制御手段10を含む。
Hereinafter, this embodiment according to the present invention will be described with reference to FIG.
FIG. 1 is a schematic cross-sectional view of a heat treatment furnace 1 used in the present embodiment.
As shown in FIG. 1, a heat treatment furnace 1 includes a vacuum chamber 2, a base 3, a steel product placement chamber 4, a heater 5, a gas conduit 6, a steel product placement stage 7, a vacuum suction conduit 8, and a vacuum pump. 9 and gas flow control means 10.

真空チャンバ2は、所定の板厚のステンス鋼製で略円筒形状であり、真空ドア(不図示。以下同様)を備えている。真空チャンバ2のサイズは、例えばバッチ式では、内径1400〜1600mm、高さ1800〜2300mmである。なお、この大きさはバッチ作業するオペレータの操作性の便宜や熱処理炉のアセンブリ、補修、点検作業の便宜等に適度なサイズであるが、処理すべき鉄鋼品の量次第ではこれに限られない。   The vacuum chamber 2 is made of stainless steel having a predetermined plate thickness and has a substantially cylindrical shape, and includes a vacuum door (not shown; the same applies hereinafter). The size of the vacuum chamber 2 is, for example, an internal diameter of 1400 to 1600 mm and a height of 1800 to 2300 mm in a batch type. This size is appropriate for the convenience of the operator of the batch work and for the convenience of assembly, repair, and inspection of the heat treatment furnace, but is not limited to this depending on the amount of steel products to be processed. .

真空チャンバ2の真空ドアから、浸窒処理されるべき鉄鋼品(不図示。以下同様)が搬入・搬出される。真空ドアはOリング付きの空圧シリンダで開閉可能なシャッター構造にする。そして、鉄鋼品用の準備チャンバ(不図示。以下同様)を、真空チャンバ2とエアシール状態で接続して設けるようにする。かかる準備チャンバを設けておくことにより、浸窒処理されるべき鉄鋼品を、後述する還元工程中に、真空状態に保持された準備チャンバ内に配置し、還元工程完了後にシャッター構造の真空ドアを開け、鉄鋼品配置室4の鉄鋼品配置用ステージ7に鉄鋼品を搬入する際に、一度還元状態にした真空チャンバ2内に酸素が侵入しまた酸化層を作るようなことがなく好ましい。準備チャンバにも必要に応じてヒータを設け、ある一定温度で鉄鋼品を予備加熱しておく。鉄鋼品配置室4の鉄鋼品配置用ステージ7に鉄鋼品が搬入された後は、真空ドアを閉める。   From the vacuum door of the vacuum chamber 2, a steel product (not shown; the same applies hereinafter) to be subjected to nitriding treatment is carried in and out. The vacuum door has a shutter structure that can be opened and closed by a pneumatic cylinder with an O-ring. A preparation chamber (not shown; the same applies hereinafter) for steel products is provided so as to be connected to the vacuum chamber 2 in an air-sealed state. By providing such a preparation chamber, a steel product to be subjected to nitriding treatment is placed in a preparation chamber held in a vacuum state during a reduction process described later, and a vacuum door with a shutter structure is provided after the reduction process is completed. When the steel product is loaded into the steel product placement stage 7 of the steel product placement chamber 4 and opened, it is preferable that oxygen does not enter the vacuum chamber 2 once reduced and does not form an oxide layer. The preparation chamber is also provided with a heater as necessary, and the steel product is preheated at a certain temperature. After the steel product is loaded into the steel product placement stage 7 in the steel product placement chamber 4, the vacuum door is closed.

基台3は、耐熱煉瓦、耐熱繊維体等で作製されており、鉄鋼品配置室4の土台として、真空チャンバ2の内部底面に敷き詰められている。なお適宜、基台3の材料となる耐熱煉瓦、耐熱繊維体等を以下に説明する鉄鋼品配置室4の側壁や上壁にも、保熱や、真空チャンバ壁の熱による金属疲労を防ぐため等のために施工するようにしてもよい。
基台3は、図1の点線で示されるように升状の形状とすることが好ましい。
The base 3 is made of heat-resistant bricks, heat-resistant fiber bodies, and the like, and is spread on the inner bottom surface of the vacuum chamber 2 as a base of the steel product placement chamber 4. In order to prevent heat fatigue and metal fatigue due to heat of the vacuum chamber wall, the heat-resistant bricks, heat-resistant fiber bodies, etc., which will be described below, are used as appropriate. You may make it construct for this.
The base 3 is preferably in the shape of a bowl as shown by the dotted line in FIG.

鉄鋼品配置室4は、基台3上に配置されており、真空チャンバ2の略中央に配置されることが好ましい。係る位置に配置されると鉄鋼品配置室4の内部の温度分布が均一となりやすいからである。鉄鋼品配置室4には鉄鋼品配置用ステージ7が設けられている。処理すべき鉄鋼品は、そのまま鉄鋼品配置用ステージ7上に直に配置されるか若しくは坩堝・箱体等の耐熱セラミックス製の容器に収納されて、鉄鋼品配置室4内に設置される。   The steel product arrangement chamber 4 is arranged on the base 3 and is preferably arranged at the approximate center of the vacuum chamber 2. This is because the temperature distribution inside the steel product placement chamber 4 tends to be uniform when placed at such a position. The steel product placement chamber 4 is provided with a steel product placement stage 7. The steel product to be processed is placed directly on the steel product placement stage 7 or is housed in a heat-resistant ceramic container such as a crucible or box and placed in the steel product placement chamber 4.

ヒータ5は、前述の通り、インコネル(登録商標)製の棒状の金属体を用いることが好ましい。そして、ヒータ5は、鉄鋼品配置室4を均一に加温するように鉄鋼品配置室4の周囲に複数本かつ鉛直方向及び水平方向に設けるようにすることが好ましい。ヒータ5は、真空チャンバ2が上記の径1400〜1600mm、高さ1800〜2300mmのようなサイズであれば、例えば、真空チャンバ2内において、垂直方向に径が200mm程度、長さが1300mm程度のインコネル(登録商標)製のものを10〜18本、水平方向に径が200mm程度、長さが600〜700mm程度のインコネル(登録商標)製のものを4本設置する。このようにインコネル(登録商標)製のヒータ5を数本設置するのは鉄鋼品に対する熱の均一化を図るためであるが、多数のヒータ5を設置しているため、これらのヒータ5の表面に当初存在する酸化層を事前に還元する還元工程が重要となる。なお、ヒータ5の上記の好適な本数は、熱処理炉1の真空チャンバ2の大きさや鉄鋼品の処理量等によって当業者によって適宜変更可能である。   As described above, the heater 5 is preferably a rod-shaped metal body made of Inconel (registered trademark). And it is preferable to provide a plurality of heaters 5 in the vertical direction and the horizontal direction around the steel product placement chamber 4 so as to uniformly heat the steel product placement chamber 4. If the vacuum chamber 2 has a size such as the above-described diameter of 1400 to 1600 mm and a height of 1800 to 2300 mm, for example, the heater 5 has a diameter of about 200 mm in the vertical direction and a length of about 1300 mm in the vacuum chamber 2. 10 to 18 inconel (registered trademark) products, four inconel (registered trademark) products having a diameter of about 200 mm in the horizontal direction and a length of about 600 to 700 mm are installed. In this way, several heaters 5 made of Inconel (registered trademark) are installed in order to equalize the heat of the steel product, but since a large number of heaters 5 are installed, the surfaces of these heaters 5 are installed. The reduction step of reducing the oxide layer that is initially present in advance is important. Note that the above-mentioned preferable number of heaters 5 can be appropriately changed by those skilled in the art depending on the size of the vacuum chamber 2 of the heat treatment furnace 1 and the processing amount of steel products.

インコネル(登録商標)は、スペシャルメタルズ社の商品名であり、ニッケルをベースとし、鉄、クロム、ニオブ、モリブデン等の合金元素量の差異によってインコネル600、インコネル625、インコネル718、インコネルX750等様々なものに分けられている。インコネルは耐熱性、耐蝕性、耐酸化性、耐クリープ性等を有し高温特性に優れているため、当該浸窒やその他の浸炭、浸窒・浸炭等の熱による金属表面層の硬化処理を施す熱処理炉のヒータに好適な金属材料である。   Inconel (registered trademark) is a trade name of Special Metals, and is based on nickel. It is divided into things. Inconel has heat resistance, corrosion resistance, oxidation resistance, creep resistance, etc. and excellent high temperature characteristics, so the surface treatment of the metal surface layer by heat such as carburizing, other carburizing, carburizing, carburizing, etc. It is a metal material suitable for a heater of a heat treatment furnace to be applied.

また、ヒータ5は、外部電源(不図示)から電流が供給されることで加熱される。特に、熱処理炉1は、ヒータ5を加熱することにより昇温され、その後、所定時間、所定温度を保持し、加温停止するといったような温度パターン制御を行うため、ヒータ5の輻射熱を絶えず熱電対(不図示)で測定して、各部の温度をフィードバックできるシーケンサ制御手段(不図示)を備え、ヒータ5に供給される電流を制御できるようにすることが好ましい。   Further, the heater 5 is heated by supplying a current from an external power source (not shown). In particular, the heat treatment furnace 1 is heated by heating the heater 5, and then performs temperature pattern control such as holding the predetermined temperature for a predetermined time and stopping the heating. It is preferable to provide sequencer control means (not shown) capable of measuring the pair (not shown) and feeding back the temperature of each part so that the current supplied to the heater 5 can be controlled.

ガス用導管6は、真空チャンバ2の壁の所定箇所(図1では上部)を貫通するように真空溶接でエアシール状態に設けられたステンレス製の円筒管である。ガス用導管6を介して、後述する還元工程で真空チャンバ2の内部にアンモニアガス、窒素ガスが導入される。アンモニアガス、窒素ガスは一定比率で導入する必要があるため、ガスフロー制御手段10をガス用導管6とアンモニアガス用タンク(不図示)、窒素ガス用タンク(不図示)との間に配置することが好ましい。また、アンモニアガス、窒素ガスの逆流を防ぐため、ガス用導管6とアンモニアガス用タンク(不図示)、窒素ガス用タンク(不図示)との間、又はさらに好適にはガス用導管6とガスフロー制御手段10との間に逆止弁(不図示)を設けるようにすることが好ましい。   The gas conduit 6 is a stainless steel cylindrical tube that is provided in an air-sealed state by vacuum welding so as to penetrate a predetermined portion (upper part in FIG. 1) of the wall of the vacuum chamber 2. Ammonia gas and nitrogen gas are introduced into the vacuum chamber 2 through the gas conduit 6 in a reduction process described later. Since ammonia gas and nitrogen gas need to be introduced at a constant ratio, the gas flow control means 10 is disposed between the gas conduit 6, the ammonia gas tank (not shown), and the nitrogen gas tank (not shown). It is preferable. In order to prevent the backflow of ammonia gas and nitrogen gas, the gas conduit 6 and the ammonia gas tank (not shown), the nitrogen gas tank (not shown), or more preferably the gas conduit 6 and the gas. It is preferable to provide a check valve (not shown) between the flow control means 10.

鉄鋼品配置用ステージ7は、前述したので説明を省略する。
真空引き用導管8は、真空チャンバ2の壁の所定箇所(図1では左下箇所)を貫通して真空溶接によってエアーシール状態で取り付けられたステンレス製の円筒管である。真空引き用導管8は、逆止弁11を介して真空ポンプ9に接続されている。
Since the steel product placement stage 7 has been described above, the description thereof will be omitted.
The vacuum evacuation conduit 8 is a stainless steel cylindrical tube that passes through a predetermined portion (lower left portion in FIG. 1) of the wall of the vacuum chamber 2 and is attached in an air-sealed state by vacuum welding. The evacuation conduit 8 is connected to a vacuum pump 9 via a check valve 11.

真空ポンプ9は、一般にロータリポンプを用いる。かかる熱処理炉1においては蒸着やイオンプレーティングのように、内部雰囲気の真空度が要求されないため、ロータリポンプで十分である。ただし、ロータリポンプにはオイルフィルタ(不図示)は備えるようにする。   The vacuum pump 9 generally uses a rotary pump. In such a heat treatment furnace 1, the degree of vacuum in the internal atmosphere is not required unlike vapor deposition and ion plating, so a rotary pump is sufficient. However, the rotary pump is provided with an oil filter (not shown).

真空ポンプ9は、後述する還元工程で、アンモニアガス、窒素ガスを真空チャンバ2の内部に導入する前に動作させて、真空チャンバ2の内部を真空引きする。特に、酸素、湿気をポンプ引きし、好適な還元処理及び浸窒処理が行われる準備をするためである。当該真空引き完了後、信号線12を介してガスフロー制御手段10に、アンモニアガス、窒素ガスを真空チャンバ2の内部に導入する命令を出力することが好ましい。   The vacuum pump 9 is operated before the ammonia gas and nitrogen gas are introduced into the vacuum chamber 2 in a reduction process described later, and the inside of the vacuum chamber 2 is evacuated. In particular, oxygen and moisture are pumped to prepare for a suitable reduction treatment and nitriding treatment. After completion of the evacuation, it is preferable to output a command for introducing ammonia gas and nitrogen gas into the vacuum chamber 2 to the gas flow control means 10 via the signal line 12.

以上の構成により成る熱処理炉1を用いて、本実施形態による鉄鋼品に対する浸窒焼入れに係る製造プロセスを以下説明する。
当該製造プロセスは、真空引き工程、ガス導入工程、還元工程、鉄鋼品搬入工程、浸窒焼入れ工程、鉄鋼品搬出工程および冷却工程を含む。
Using the heat treatment furnace 1 having the above-described configuration, a manufacturing process related to nitriding and quenching for steel products according to the present embodiment will be described below.
The manufacturing process includes a vacuum drawing step, a gas introduction step, a reduction step, a steel product carry-in step, a nitrous quenching step, a steel product carry-out step, and a cooling step.

<真空引き工程>
真空引き工程は、真空チャンバ2の真空ドア(不図示)をエアーシールし、外部の大気と真空チャンバ2の内部とを遮断した状態で、真空ポンプ9を動作させ、真空チャンバ2の内部雰囲気を真空度65Pa以下の真空状態とする工程である。真空度が65Paより大きいと炉内を酸化させるため好ましくない。
<ガス導入工程>
ガス導入工程は、上記の真空引き工程で形成された真空状態の真空チャンバ2の内部に、アンモニアガスと窒素ガスを導入し、真空雰囲気をアンモニアガスと窒素ガスとの混合ガスへとガス置換する工程である。アンモニアガスと窒素ガスの流量比率は、アンモニアガスの分解反応式に基づくストイキ比から2対1とすることが好ましい。そのためにはガスフロー制御手段10でかかる流量比率になるように制御する。
<Vacuum drawing process>
In the evacuation step, a vacuum door (not shown) of the vacuum chamber 2 is air-sealed, and the vacuum pump 9 is operated in a state where the outside atmosphere and the inside of the vacuum chamber 2 are shut off, and the atmosphere inside the vacuum chamber 2 is changed. In this step, the vacuum state is set to a vacuum degree of 65 Pa or less. If the degree of vacuum is higher than 65 Pa, the inside of the furnace is oxidized, which is not preferable.
<Gas introduction process>
In the gas introduction step, ammonia gas and nitrogen gas are introduced into the vacuum chamber 2 in the vacuum state formed in the vacuuming step, and the vacuum atmosphere is replaced with a mixed gas of ammonia gas and nitrogen gas. It is a process. The flow rate ratio of ammonia gas and nitrogen gas is preferably 2: 1 from the stoichiometric ratio based on the decomposition reaction formula of ammonia gas. For this purpose, the gas flow control means 10 controls the flow rate ratio.

<還元工程>
還元工程は、熱処理炉1の内部の表面、特にインコネル(登録商標)製のヒータ5の、表面の酸化膜を除去する工程である。そのために、上記の流量比率で規定されたアンモニアガスと窒素ガスの還元ガス雰囲気で、ヒータ5に電流を供給しかつヒータ5の加熱温度を制御しながら、例えば760〜810℃の高温で、熱処理炉1内のヒータ等の表面が十分還元されるまで保持される。十分還元するための保持時間は、炉内の残留アンモニア濃度が所定の値になるまでの時間とすることができる。本実施形態では、残留アンモニア濃度が0.14vol%になるまで、例えば90〜160min保持するようにする。760〜810℃の高温とするのは、後工程の浸窒焼入れ工程で保持される温度と同程度にするためである。後工程の浸窒焼入れ工程で保持される温度と異なると、浸窒焼入れ工程にて真空度が変化するため好ましくないからである。また90〜160min保持するのは、90minより短いと還元が不十分のため好ましくなく、一方160minより長いと、反応速度が低下して効果が小さくなるため好ましくないからである。
<Reduction process>
The reduction step is a step of removing the oxide film on the surface of the inside of the heat treatment furnace 1, particularly the surface of the heater 5 made of Inconel (registered trademark). Therefore, heat treatment is performed at a high temperature of, for example, 760 to 810 ° C. while supplying current to the heater 5 and controlling the heating temperature of the heater 5 in a reducing gas atmosphere of ammonia gas and nitrogen gas defined by the above flow rate ratio. It is held until the surface of the heater or the like in the furnace 1 is sufficiently reduced. The holding time for sufficient reduction can be the time until the residual ammonia concentration in the furnace reaches a predetermined value. In this embodiment, for example, 90 to 160 min is maintained until the residual ammonia concentration reaches 0.14 vol%. The reason why the high temperature is set to 760 to 810 ° C. is to make it the same level as the temperature maintained in the subsequent nitriding and quenching step. This is because if the temperature is different from the temperature maintained in the subsequent nitriding and quenching process, the degree of vacuum changes in the nitriding and quenching process. The reason why the holding time is 90 to 160 min is not preferable because the reduction is insufficient if it is shorter than 90 min. On the other hand, if it is longer than 160 min, the reaction rate is lowered and the effect is reduced, which is not preferable.

上記の温度制御も、熱処理炉1の真空チャンバ2の内部に設置した熱電対(不図示)で熱処理炉1の内部温度を測定し、測定した内部温度を温度制御手段(不図示)を備えたシーケンサ(不図示)のような制御手段にフィードバックしながら、熱処理炉1の内部温度を一定温度で一定時間保持することが好ましい。   In the above temperature control, the internal temperature of the heat treatment furnace 1 is measured with a thermocouple (not shown) installed in the vacuum chamber 2 of the heat treatment furnace 1, and the measured internal temperature is provided with temperature control means (not shown). It is preferable to maintain the internal temperature of the heat treatment furnace 1 at a constant temperature for a certain time while feeding back to a control means such as a sequencer (not shown).

この還元工程を導入することによって、以下の理由から従来の課題を解決することができる。
まず、アンモニアガス、窒素ガスを用いた、浸窒焼入れをすべき鉄鋼品の表面への窒素の拡散・浸透のし易さを示す窒化ポテンシャルP(N)は、
P(N)=P(NH)/{P(H3/2}・・・式(1)
と表すことができる。
By introducing this reduction step, the conventional problems can be solved for the following reasons.
First, the nitriding potential P (N), which indicates the ease of nitrogen diffusion / penetration into the surface of the steel product to be subjected to nitrogen quenching, using ammonia gas and nitrogen gas,
P (N) = P (NH 3 ) / {P (H 2 ) 3/2 } Formula (1)
It can be expressed as.

理想的な浸窒焼入れでは、式(1)を満たすように、アンモニアガスと窒素ガスを流すことが好ましい。
そして、より具体的には、アンモニア(NH)と窒素(N)のガスの流量比を2対1(ストイキ比)にし、アンモニアガス濃度で窒化ポテンシャルP(N)を管理する。この流量比は、
NH(アンモニア)→1/2N(窒素)+3/2H(水素)・・・式(2)
と分解することから導かれる。
In ideal nitriding quenching, it is preferable to flow ammonia gas and nitrogen gas so as to satisfy the formula (1).
More specifically, the flow rate ratio of ammonia (NH 3 ) and nitrogen (N 2 ) gas is set to 2: 1 (stoichiometric ratio), and the nitriding potential P (N) is managed by the ammonia gas concentration. This flow ratio is
NH 3 (ammonia) → 1 / 2N 2 (nitrogen) + 3 / 2H 2 (hydrogen) (2)
And derived from disassembling.

一方、未分解の残留アンモニアガス(NH)は、ガスフロー制御手段10にフィードバックし、ガスフロー制御手段10で、ガス流量比を2対1になるように調整しながら再利用する。すなわち、フィードバックされた残留アンモニアガス(NH)は、再度流すアンモニアガス、窒素ガスの流量を増減し、アンモニアガス濃度を一定にする。 On the other hand, the undecomposed residual ammonia gas (NH 3 ) is fed back to the gas flow control means 10 and reused while the gas flow control means 10 adjusts the gas flow rate ratio to 2: 1. That is, the fed-back residual ammonia gas (NH 3 ) increases or decreases the flow rates of ammonia gas and nitrogen gas to be reflowed to make the ammonia gas concentration constant.

しかし、従来、このような理想通りの処理が行われなかったのが実情である。これは、アンモニアガスの流量のハンチングが大きいためアンモニアガス濃度を一定にすることができないためである。そのため、導入されるアンモニアガスの流量の増減が大きくなり、熱処理炉1の内部のアンモニアガス濃度のバラツキが大きくなり、かかる状態の下では、浸窒焼入れされた鉄鋼品の表面硬さのバラツキが大きくなる。   However, in reality, such ideal processing has not been performed. This is because the ammonia gas concentration cannot be made constant because the hunting of the ammonia gas flow rate is large. Therefore, the increase and decrease of the flow rate of the introduced ammonia gas is increased, the variation of the ammonia gas concentration inside the heat treatment furnace 1 is increased, and under such a condition, the variation of the surface hardness of the nitrocarburized steel product is increased. growing.

そこで、本発明では、熱処理炉1の内部のうち、特に、多数のヒータ5の材料となっているインコネル(登録商標)の酸化膜が還元剤として働き、インコネル(登録商標)の表面の酸化膜の発生状況がアンモニアガスの分解に大きな影響が与えることに着眼し、浸窒焼入れ工程の直前に、インコネル(登録商標)の表面の酸化膜を除去する還元工程を導入する。
これにより、熱処理炉1の内部、すなわち、真空チャンバ2内の、アンモニア(アンモニアガス)の分解反応のバラツキが抑制され、アンモニア(アンモニアガス)濃度を一定にすることができ、後工程の浸窒焼入れを好適に実施でき、浸窒焼入れされた鉄鋼品の表面硬度のバラツキが安定する。
Therefore, in the present invention, an oxide film of Inconel (registered trademark) which is a material of many heaters 5 in the inside of the heat treatment furnace 1 works as a reducing agent, and an oxide film on the surface of Inconel (registered trademark). In view of the fact that the occurrence of this has a great influence on the decomposition of ammonia gas, a reduction process for removing the oxide film on the surface of Inconel (registered trademark) is introduced immediately before the nitriding quenching process.
As a result, variation in the decomposition reaction of ammonia (ammonia gas) in the heat treatment furnace 1, that is, in the vacuum chamber 2, can be suppressed, and the concentration of ammonia (ammonia gas) can be made constant. Quenching can be carried out suitably, and the variation in surface hardness of the nitrocarburized steel product is stabilized.

<鉄鋼品搬入工程・浸窒焼入れ工程>
上記の還元工程の完了後、浸窒焼入れすべき鉄鋼品を熱処理炉1内の鉄鋼品配置室4の鉄鋼品配置用ステージ7に配置する。このとき、浸窒焼入れすべき鉄鋼品は、前述したように真空雰囲気の準備チャンバ(不図示)から搬出され、熱処理炉1内の鉄鋼品配置室4内に搬入されるようにすることが好ましい。
そして、ヒータ5に供給される電流を調整して、鉄鋼品配置室4内の温度を、好適には760〜810℃になるように加熱して、かつ、アンモニアガスと窒素ガスの流量比を、好適には2対1になるように、所定時間保持して、鉄鋼品に浸窒焼入れを施す。
<Steel product import process / Nitrogen quenching process>
After completion of the above reduction process, the steel product to be nitrocarburized is placed on the steel product placement stage 7 in the steel product placement chamber 4 in the heat treatment furnace 1. At this time, it is preferable that the steel product to be nitrogen-quenched is carried out from a vacuum atmosphere preparation chamber (not shown) as described above and carried into the steel product placement chamber 4 in the heat treatment furnace 1. .
And the electric current supplied to the heater 5 is adjusted, the temperature in the steel product arrangement | positioning chamber 4 is heated so that it may become suitably 760-810 degreeC, and the flow rate ratio of ammonia gas and nitrogen gas is set. The steel product is nitrogen-quenched and held for a predetermined time so that it is preferably 2 to 1.

鉄鋼品配置室4内の温度は760℃未満では鉄鋼品の温度がオーステナイト領域まで上昇しないため好ましくなく、一方810℃より高いと鉄鋼品の表面付近にボイドが発生するため好ましくないからである。
アンモニアガスと窒素ガスの流量比を、好適には2対1とするのは、前述の式(2)から導かれるストイキ比からである。
This is because if the temperature in the steel product placement chamber 4 is less than 760 ° C., the temperature of the steel product does not rise to the austenite region, and if it is higher than 810 ° C., voids are generated near the surface of the steel product, which is not preferred.
The reason why the flow rate ratio of ammonia gas to nitrogen gas is preferably 2 to 1 is from the stoichiometric ratio derived from the above-described equation (2).

なお、保持時間は、浸窒焼入れすべき鉄鋼品の嵩、或いは、熱処理炉1の内容積(真空チャンバ2の内容積)、鉄鋼品配置室4により適宜調整される。   The holding time is appropriately adjusted depending on the volume of the steel product to be nitrocarburized, the internal volume of the heat treatment furnace 1 (the internal volume of the vacuum chamber 2), and the steel product placement chamber 4.

この浸窒焼入れ工程によれば、従来は、ヒータ5の材料のインコネル(登録商標)が酸化して酸化膜を表面に有していたために、アンモニアガスの流量がハンチングし、浸窒焼入れのバラツキが大きかった。しかし、前述したように還元工程を本実施形態で浸窒焼入れ工程の直前に導入した結果、係る不具合を解決し、鉄鋼品の表面硬化層の深さ、即ち鉄鋼品の表面硬度のバラツキが抑制された好適な浸窒焼入れを達成することが可能となる。   According to this nitriding and quenching process, since the Inconel (registered trademark) material of the heater 5 has been oxidized to have an oxide film on the surface, the flow rate of ammonia gas is hunted, and the nitriding and quenching varies. Was big. However, as described above, as a result of introducing the reduction process immediately before the nitriding and quenching process in this embodiment, the problem is solved, and the depth of the surface hardened layer of the steel product, that is, the variation in the surface hardness of the steel product is suppressed. It is possible to achieve a suitable nitriding quenching.

<鉄鋼品搬出工程、冷却工程>
上記の浸窒焼入れ工程完了後の、冷却工程において、ヒータ5への電流の供給を停止し、鉄鋼品搬出工程において、真空チャンバ7の真空ドア(不図示)を開き、浸窒焼入れされた鉄鋼品を搬出する。その後、冷却工程において、浸窒焼入れされた鉄鋼品を網かご等に入れながら油中に浸漬して急冷・硬化し、油中から引き上げ、油分を適宜脱脂除去して浸窒焼入れされて表面硬度が均一に高められた鉄鋼品を得る。
<Steel product unloading process, cooling process>
In the cooling process after completion of the above nitriding and quenching process, the supply of current to the heater 5 is stopped, and in the steel product carrying-out process, the vacuum door (not shown) of the vacuum chamber 7 is opened, and the nitrogenized and quenched steel Unload the goods. After that, in the cooling process, the steel product that has been nitrogen-quenched is immersed in oil while being put in a mesh basket, etc., rapidly cooled and hardened, pulled up from the oil, and degreased and properly degreased and surface-hardened. To obtain a steel product that is uniformly enhanced.

以上より、本実施形態によれば、浸窒焼入れ工程前に熱処理炉内、特にヒータ材であるインコネル(登録商標)の表面が還元される結果、浸窒焼入れ中に流されるアンモニアガスの流量が安定し、浸窒焼入れされる鉄鋼品の表面硬度のバラツキを防止することができる。   As described above, according to the present embodiment, the flow rate of ammonia gas flowing during the nitriding and quenching is reduced as a result of the reduction of the surface of Inconel (registered trademark), which is a heater material, in the heat treatment furnace before the nitriding and quenching step. It is possible to prevent variations in the surface hardness of steel products that are stable and nitrogen-quenched.

以下、本発明に対応する実施例と、従来技術に略対応する比較例の処理条件を示す。また、図2に、処理時間(min)に対するアンモニア流量(m/hr)のグラフを示すことによって、アンモニア流量(m/hr)の安定度に関する比較例に対する実施例の有意差を示す。そして、図3に浸窒焼入れによる表面の硬化層のバラツキに関する比較例に対する実施例の有意差を示す。 Hereinafter, processing conditions of an example corresponding to the present invention and a comparative example substantially corresponding to the prior art will be shown. Further, in FIG. 2 by showing the graph of the ammonia flow to the treatment time (min) (m 3 / hr ), it shows a significant difference in the embodiment for Comparative Example concerning the stability of the ammonia flow (m 3 / hr). And the significant difference of the Example with respect to the comparative example regarding the dispersion | variation in the hardened layer of the surface by nitriding quenching is shown in FIG.

[実施例と比較例の還元工程の処理条件(実施例と比較例で共通条件)]
・鉄鋼品:SCM20材の外径30、内径20の寸法の円筒状の鉄鋼品。
・熱処理炉:径1456mm×高さ2080mm(略円筒形状)
・ヒータ:径210mm×長さ1300mmのインコネル(登録商標)製のものを14本、鉄鋼品処理室4の周囲かつ鉛直方向に平均的に配置し、かつ、径210mm×長さ650mmのインコネル(登録商標)製のものを4本、鉄鋼品処理室4の周囲かつ水平方向に平均的に配置。
・浸窒焼入れ時の保持温度:800℃
・導入ガス流量:アンモニアガス(NHガス)の流量;1.2m/hr、窒素ガス(Nガス)の流量;0.6m/hr
[Processing conditions of the reduction process in the example and the comparative example (common conditions in the example and the comparative example)]
Steel products: Cylindrical steel products having an outer diameter 30 and an inner diameter 20 of SCM20 material.
・ Heat treatment furnace: Diameter 1456mm x Height 2080mm (substantially cylindrical)
-Heater: Inconel (registered trademark) 14 pieces of diameter 210 mm x length 1300 mm are arranged in an average around the steel product processing chamber 4 in the vertical direction, and Inconel (diameter 210 mm x length 650 mm) Four (registered trademark) products are arranged around the steel processing chamber 4 and in the horizontal direction on average.
・ Holding temperature during nitriding and quenching: 800 ℃
Introduction gas flow rate: flow rate of ammonia gas (NH 3 gas); 1.2 m 3 / hr, flow rate of nitrogen gas (N 2 gas); 0.6 m 3 / hr

[実施例と比較例の還元工程の保持時間(実施例と比較例で異なる条件)]
・実施例:100min
・比較例:15min
[Retention time of the reduction process of the example and the comparative example (conditions different between the example and the comparative example)]
-Example: 100 min
・ Comparative example: 15 min

<アンモニア流量(m/hr)の安定度の評価>
図2は、浸窒焼入れ工程における、横軸を浸窒焼入れの処理時間(min)に、縦軸をアンモニア流量(m/hr)にして描いたグラフであり、実施例を点状模様のプロットの折れ線グラフで示し、比較例を黒四角のプロットの折れ線グラフで示した。
<Evaluation of stability of ammonia flow rate (m 3 / hr)>
FIG. 2 is a graph in which the horizontal axis represents the nitriding quenching treatment time (min) and the vertical axis represents the ammonia flow rate (m 3 / hr) in the nitriding quenching step. A plot line graph is shown, and a comparative example is shown as a black square plot line graph.

図2に示したグラフから分かるように、還元工程の時間が100minと長い実施例の方が同時間が15minと短い比較例よりも、経過時間に沿って観察するとプロットの上下方向の揺れ幅が小さく、実施例の方が比較例よりもアンモニア流量(m/hr)が安定していることが分かる。 As can be seen from the graph shown in FIG. 2, when the reduction process has a long time of 100 min, the fluctuation width in the vertical direction of the plot is longer when compared with the comparative example with a short time of 15 min. It can be seen that the ammonia flow rate (m 3 / hr) is smaller in the example than in the comparative example.

<浸窒焼入れによる表面の硬化層のバラツキの評価>
図3では、浸窒焼入れ工程、鉄鋼品搬出工程、冷却工程が完了した後に、浸窒焼入れされた鉄鋼品を樹脂埋めし、表面から深さ方向に向かう断面を金属顕微鏡で撮影し、写真像から浸窒焼入れされた深さに相当するマルテンサイト層の深さを測定し、さらに、統計学上、バラツキを示す一つの指標、3σについて計算を行い、縦軸に浸窒焼入れの深さ(mm)をとりつつ、右に還元工程の時間が100minと長い実施例の統計的な計算結果を、左に還元工程の時間が15minと短い比較例の統計的な計算結果をプロットした。
<Evaluation of variation in surface hardened layer by nitrogen quenching>
In Fig. 3, after the nitriding and quenching process, the steel product unloading process, and the cooling process are completed, the nitrous-quenched steel product is filled with resin, and a cross section from the surface toward the depth direction is photographed with a metal microscope, and a photographic image The depth of the martensite layer corresponding to the depth of nitrocarburizing and quenching was measured, and one statistical index, 3σ, was calculated for statistical purposes. mm), the statistical calculation results of the example with a long reduction process time of 100 min are plotted on the right, and the statistical calculation results of the comparative example with a short reduction process time of 15 min are plotted on the left.

図3に示したグラフから分かるように、還元工程の時間が100minと長い実施例の方が同時間が15minと短い比較例よりも、3σの長さが短く、実施例の方が比較例よりも浸窒焼入れされた層のバラツキが少ないことが分かった。   As can be seen from the graph shown in FIG. 3, the length of the reduction process is 100 min and the length of 3σ is shorter in the example in which the time is 15 min than in the comparative example, and the example is longer in the example than the comparative example. It was also found that there was little variation in the nitrocarburized layer.

<総合評価>
本発明に対応する条件の実施例の方が、従来技術に近い条件の比較例よりも、浸窒焼入れ中のアンモニアガス流量(m/hr)が安定しており、かつ、浸窒焼入れ後の表面硬化された層の深さのバラツキが少なくなった。これは、実施例が比較例よりも浸窒焼入れ工程の直前に導入した還元工程の時間をより長く、即ち実施例は100minに還元工程の時間を設定したのに対して比較例は15minに同時間を設定したためと判断される。
<Comprehensive evaluation>
The embodiment of the conditions corresponding to the present invention has a more stable ammonia gas flow rate (m 3 / hr) during the nitriding quenching than the comparative example of the conditions close to the prior art, and after the nitriding quenching There was less variation in the depth of the surface-cured layer. This is because the time for the reduction process introduced in the example immediately before the nitriding quenching process is longer than that in the comparative example, that is, the time for the reduction process is set to 100 min in the example, whereas the time in the comparative example is set to 15 min. It is determined that the time has been set.

Claims (3)

鉄鋼品の浸窒焼入れ工程前に、熱処理炉内の金属材の表面に存在する酸化膜を還元する還元工程を有することを特徴とする浸窒焼入れ方法。   A nitriding and quenching method comprising a reduction step of reducing an oxide film present on the surface of a metal material in a heat treatment furnace before a nitriding and quenching step of a steel product. 前記浸窒焼入れ工程は、前記還元工程にて前記熱処理内のアンモニア濃度が所定値まで低下した後、実行されることを特徴とする浸窒焼入れ方法。   The nitriding and quenching step is performed after the ammonia concentration in the heat treatment is reduced to a predetermined value in the reducing step. 前記還元工程は、アンモニアガスと窒素ガスを一定の比率で前記熱処理炉内に導入した後、前記熱処理炉内の温度を前記浸窒焼入れ工程時に保持される所定温度と略同一に設定することにより、前記熱処理炉内を還元することを特徴とする請求項1又は2に記載の浸窒焼入れ方法。   In the reduction step, ammonia gas and nitrogen gas are introduced into the heat treatment furnace at a constant ratio, and then the temperature in the heat treatment furnace is set to be approximately the same as a predetermined temperature maintained during the nitrous quenching step. The nitriding quenching method according to claim 1, wherein the inside of the heat treatment furnace is reduced.
JP2011138350A 2011-06-22 2011-06-22 Nitriding-quenching method Pending JP2013007065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138350A JP2013007065A (en) 2011-06-22 2011-06-22 Nitriding-quenching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138350A JP2013007065A (en) 2011-06-22 2011-06-22 Nitriding-quenching method

Publications (1)

Publication Number Publication Date
JP2013007065A true JP2013007065A (en) 2013-01-10

Family

ID=47674653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138350A Pending JP2013007065A (en) 2011-06-22 2011-06-22 Nitriding-quenching method

Country Status (1)

Country Link
JP (1) JP2013007065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031903A (en) * 2015-08-04 2017-02-09 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2017197822A (en) * 2016-04-28 2017-11-02 株式会社日本テクノ Surface hardening method and surface hardening apparatus
CN108385056A (en) * 2018-04-09 2018-08-10 湖南特科能热处理有限公司 A kind of heat treatment method of engine fuel oil system atomizer
CN109355617A (en) * 2018-11-27 2019-02-19 中国航发贵州黎阳航空动力有限公司 A kind of 30Cr2Ni2WVA nitriding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656427A1 (en) * 1993-11-18 1995-06-07 Sumitomo Electric Industries, Ltd. Oil-tempered wire and process for producing the same
JP2009287070A (en) * 2008-05-28 2009-12-10 Toyota Motor Corp Method for preparatorily baking holder and apparatus for determining completion of preparatory baking
JP2009299122A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656427A1 (en) * 1993-11-18 1995-06-07 Sumitomo Electric Industries, Ltd. Oil-tempered wire and process for producing the same
JP2009287070A (en) * 2008-05-28 2009-12-10 Toyota Motor Corp Method for preparatorily baking holder and apparatus for determining completion of preparatory baking
JP2009299122A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031903A (en) * 2015-08-04 2017-02-09 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2017197822A (en) * 2016-04-28 2017-11-02 株式会社日本テクノ Surface hardening method and surface hardening apparatus
CN108385056A (en) * 2018-04-09 2018-08-10 湖南特科能热处理有限公司 A kind of heat treatment method of engine fuel oil system atomizer
CN108385056B (en) * 2018-04-09 2020-02-11 湖南特科能热处理有限公司 Heat treatment method for fuel injection nozzle of engine fuel system
CN109355617A (en) * 2018-11-27 2019-02-19 中国航发贵州黎阳航空动力有限公司 A kind of 30Cr2Ni2WVA nitriding method

Similar Documents

Publication Publication Date Title
JP3852010B2 (en) Vacuum heat treatment method and apparatus
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
JP5835256B2 (en) Manufacturing method of ferritic stainless steel products
JP2013007065A (en) Nitriding-quenching method
JP5669979B1 (en) Method and apparatus for surface hardening treatment of steel member
JP2005009702A (en) Multi-cell type vacuum heat treating apparatus
JP6228403B2 (en) Surface hardening method and surface hardening structure of carbon steel
US20070068606A1 (en) Single-chamber vacuum furnace with hydrogen quenching
JP4358892B1 (en) Fluorination treatment method, fluorination treatment apparatus, and method of using fluorination treatment apparatus
US8317939B2 (en) Method of gas carburizing
CN114341392B (en) Vacuum carburization method and carburized component manufacturing method
JP2002167658A (en) Method of vacuum carburizing for steel parts
JP4169864B2 (en) Method of carburizing steel
JP6803156B2 (en) Methods for processing tantalum or tantalum alloy members
JP5548920B2 (en) Method for carburizing a workpiece having an edge
JP2009138207A (en) Method and apparatus for manufacturing steel having carbon concentration-controlled steel surface
JP2009091638A (en) Heat-treatment method and heat-treatment apparatus
JP6031313B2 (en) Carburizing method
US11492691B2 (en) Case hardened titanium parts and method for making the same
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
EP1598440A1 (en) Method of gas carburizing
JP6542381B2 (en) Method and apparatus for processing an article
JP6583600B1 (en) Vacuum carburizing treatment method and carburized parts manufacturing method
JP2005120404A (en) Gas carburization method, gas carbonitriding method, and surface treatment device
JP2019026875A (en) Production method of workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150924