JP4255815B2 - Gas carburizing method - Google Patents

Gas carburizing method Download PDF

Info

Publication number
JP4255815B2
JP4255815B2 JP2003399648A JP2003399648A JP4255815B2 JP 4255815 B2 JP4255815 B2 JP 4255815B2 JP 2003399648 A JP2003399648 A JP 2003399648A JP 2003399648 A JP2003399648 A JP 2003399648A JP 4255815 B2 JP4255815 B2 JP 4255815B2
Authority
JP
Japan
Prior art keywords
carburizing
temperature
chamber
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003399648A
Other languages
Japanese (ja)
Other versions
JP2005163056A (en
Inventor
暁華 立里
亮介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2003399648A priority Critical patent/JP4255815B2/en
Publication of JP2005163056A publication Critical patent/JP2005163056A/en
Application granted granted Critical
Publication of JP4255815B2 publication Critical patent/JP4255815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、鋼製の被処理部品を直接加熱し、高温で短時間に浸炭処理を施すためのガス浸炭方法に関するものである。   The present invention relates to a gas carburizing method for directly heating a workpiece to be processed and performing a carburizing process at a high temperature in a short time.

従来、この種のガス浸炭法は、例えば、特許文献1に記載されているように、被処理部品を、浸炭室内に装填し、この浸炭室内を、浸炭ガスを含む浸炭雰囲気にし、この状態で、前記被処理部品を高周波等にて、例えば、約1100〜1200℃等のような比較的高い浸炭温度に直接加熱することによって行われる。   Conventionally, in this type of gas carburizing method, as described in, for example, Patent Document 1, a part to be processed is loaded into a carburizing chamber, and the carburizing chamber is set to a carburizing atmosphere containing carburizing gas. The component to be treated is directly heated to a relatively high carburizing temperature such as about 1100 to 1200 ° C. at a high frequency or the like.

また、前記の加熱に際しては、前記浸炭室内に装填した被処理部品における温度を測定して、この温度が所定の浸炭温度になるまで加熱するように温度制御することが行われる。   Further, during the heating, the temperature of the component to be processed loaded in the carburizing chamber is measured, and the temperature is controlled so that the temperature is heated until the temperature reaches a predetermined carburizing temperature.

そして、この温度制御に際して、被処理部品の温度測定に、熱電対温度計等のような接触型の温度計を使用した場合、正確な温度を測定するためには、この温度計の要部を、被処理部品に穿設した孔に挿入する等のように、被処理部品に埋め込むようにしなければならないから、多量生産方式には適用することができない。   In this temperature control, when a contact-type thermometer such as a thermocouple thermometer is used to measure the temperature of the part to be processed, in order to measure an accurate temperature, the main part of this thermometer is used. Since it must be embedded in the part to be processed, such as being inserted into a hole drilled in the part to be processed, it cannot be applied to a mass production system.

そこで、従来は、例えば、特許文献2に記載されているように、被処理部品から発する熱放射を利用した放射温度計を使用し、非接触の状態で、測定するようにしている。
特開昭60−36657号公報 特開2002−252076号公報
Therefore, conventionally, as described in Patent Document 2, for example, a radiation thermometer using thermal radiation generated from a component to be processed is used, and measurement is performed in a non-contact state.
JP-A-60-36657 JP 2002-252076 A

しかし、前記したように、被処理部品を、浸炭室内に装填し、この浸炭室内を、浸炭ガスを含む浸炭雰囲気にし、この状態で、前記被処理部品を所定の浸炭温度に直接加熱するというガス浸炭方法に、前記放射温度計による温度制御を適用した場合には、以下に述べるような問題があった。   However, as described above, the gas to be processed is loaded into the carburizing chamber, the carburizing chamber is set to a carburizing atmosphere containing a carburizing gas, and in this state, the gas to be processed is directly heated to a predetermined carburizing temperature. When the temperature control by the radiation thermometer is applied to the carburizing method, there are the following problems.

すなわち、従来は、前記浸炭室内を、昇温過程から浸炭処理の全体にわたって同じ浸炭雰囲気にするとともに、同じ圧力にしていることにより、前記被処理部品に対する浸炭が、前記昇温過程の途中からも始まることになるから、被処理部品に対する浸炭処理を、所定の通りに正確に制御することができないという問題がある。   That is, conventionally, by making the carburizing chamber the same carburizing atmosphere from the temperature raising process to the entire carburizing process and the same pressure, carburizing the parts to be treated can be performed even in the middle of the temperature raising process. Therefore, there is a problem that the carburizing process for the part to be processed cannot be accurately controlled as specified.

この問題を解消するには、換言すると、前記昇温過程での浸炭の進行を抑制するには、前記浸炭室内を、前記昇温過程の間だけ浸炭ガスを含まない、例えば、不活性ガス等によるガス雰囲気にすれば良い。   In order to solve this problem, in other words, in order to suppress the progress of carburizing in the temperature raising process, the carburizing chamber does not contain carburizing gas only during the temperature raising process, for example, inert gas, etc. The gas atmosphere is good.

しかし、このようにすることは、前記昇温過程の間において、被処理部品の表面に、炭素が逃げるという脱炭反応が発生し、この脱炭反応のために、表面が、当該表面からの熱放射が変化するように変色することにより、前記放射温度計にて測定した温度と、前記被処理部品における実際の温度との間の差が、温度の上昇につれて大きくなるから、前記放射温度計による温度制御が正確に行うことができないという問題を招来する。   However, in this way, during the temperature rising process, a decarburization reaction that carbon escapes occurs on the surface of the component to be processed, and because of this decarburization reaction, the surface is separated from the surface. By changing the color so that the thermal radiation changes, the difference between the temperature measured by the radiation thermometer and the actual temperature in the component to be processed increases as the temperature rises. This leads to a problem that temperature control cannot be performed accurately.

特に、これらの問題は、浸炭時間を短縮を図るために、その浸炭温度を、1200〜1400℃に高くした場合に顕著に発生するのであった。   In particular, these problems occur remarkably when the carburizing temperature is increased to 1200 to 1400 ° C. in order to shorten the carburizing time.

本発明は、これらの問題を解消したガス浸炭方法を提供することを技術的課題とするものである。   This invention makes it a technical subject to provide the gas carburizing method which eliminated these problems.

この技術的課題を達成するため本発明の請求項1は、
「鋼製の被処理部品を、浸炭室内に装填し、この浸炭室内を、浸炭ガスを含む浸炭雰囲気にし、この状態で、前記被処理部品を、当該被処理部品における温度を放射温度計にて測定しながら所定の浸炭温度に加熱し、この浸炭温度に適宜時間維持して浸炭処理するにおいて、前記被処理部品を前記浸炭温度に加熱するまでの昇温過程の間、前記浸炭室内の圧力を、前記被処理部品を前記浸炭温度に加熱してからの浸炭処理過程のときにおける圧力よりも、当該昇温過程の間における浸炭を抑制するように低くする。」
ことを特徴としている。
In order to achieve this technical problem, claim 1 of the present invention provides:
“Steel to-be-treated parts are loaded into a carburizing chamber, and the carburizing chamber is made into a carburizing atmosphere containing carburizing gas. In this state, the temperature of the to-be-treated parts is measured with a radiation thermometer. In the case of heating to a predetermined carburizing temperature while measuring and maintaining the carburizing temperature for an appropriate period of time to perform the carburizing process, the pressure in the carburizing chamber is increased during the temperature raising process until the workpiece is heated to the carburizing temperature. The pressure is lower than the pressure in the carburizing process after heating the workpiece to the carburizing temperature so as to suppress carburizing during the temperature raising process. "
It is characterized by that.

また、本発明の請求項2は、
「前記請求項1の記載において、前記浸炭室内を、前記昇温過程の前に一旦高い真空にし、次いで、浸炭雰囲気にする。」
ことを特徴としている。
Further, claim 2 of the present invention provides
“In the description of claim 1, the carburizing chamber is once evacuated to a high vacuum before the temperature raising process and then carburized.
It is characterized by that.

前記したように、前記被処理部品を前記浸炭温度に加熱するまでの昇温過程の間、前記浸炭室内の圧力を、前記被処理部品を前記浸炭温度に加熱してからの浸炭処理過程のときにおける圧力よりも、当該昇温過程の間における浸炭を抑制するように低くすることにより、前記昇温過程の間における浸炭の進行を少ない状態にとどめることができて、浸炭処理を、専ら前記浸炭処理過程において行うことになるから、被処理部品に対する浸炭処理を、所定の通りに正確に制御できる。特に浸炭温度が1200℃を越えると本発明の効果が顕著である。   As described above, during the temperature raising process until the part to be treated is heated to the carburizing temperature, the pressure in the carburizing chamber is changed to the carburizing process after the part to be treated is heated to the carburizing temperature. By lowering the pressure at the temperature so as to suppress the carburization during the temperature raising process, the progress of carburizing during the temperature raising process can be kept small, and carburizing treatment is exclusively performed for the carburizing. Since it is performed in the process, the carburizing process for the part to be processed can be accurately controlled as prescribed. In particular, when the carburizing temperature exceeds 1200 ° C., the effect of the present invention is remarkable.

しかも、前記浸炭室内は、昇温過程の間において、浸炭雰囲気であることにより、この昇温過程の間において被処理部品に脱炭反応が発生することを抑制できるから、前記放射温度計による温度制御の精度を確実に向上できるから、前記浸炭処理の制御の正確性を更に向上できる。   In addition, since the carburizing chamber is a carburizing atmosphere during the temperature raising process, it is possible to suppress the occurrence of a decarburization reaction on the component to be treated during the temperature raising process. Since the control accuracy can be reliably improved, the control accuracy of the carburizing process can be further improved.

また、請求項2に記載したように、前記浸炭室内を、前記昇温過程の前に一旦高い真空にし、次いで、浸炭雰囲気にすることにより、浸炭室内を浸炭雰囲気にすることが、残存酸素を少なくした状態にして短時間で確実にできるから、残存酸素による表面の酸化や浸炭室内での煤の発生を確実に抑制できるとともに、浸炭処理のサイクルタイムを大幅に短縮できる。   In addition, as described in claim 2, the carburizing chamber is temporarily turned to a high vacuum before the temperature raising process, and then the carburizing atmosphere is set to a carburizing atmosphere, whereby residual oxygen is reduced. Since it can be reliably reduced in a short time in a reduced state, surface oxidation due to residual oxygen and generation of soot in the carburizing chamber can be reliably suppressed, and the cycle time of the carburizing process can be greatly shortened.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は、ガス浸炭装置を示す縦断正面図である。   FIG. 1 is a longitudinal front view showing a gas carburizing apparatus.

この図において、符号1は、密閉型の浸炭室を示し、この浸炭室1の内部には、これに装填される被処理部品2を載せておくための載置台3と、前記被処理部品2を高周波加熱するための高周波誘導加熱コイル4とが設けられている。   In this figure, reference numeral 1 denotes a sealed carburizing chamber. Inside the carburizing chamber 1, a mounting table 3 for placing a component 2 to be processed loaded thereon, and the component 2 to be processed. And a high frequency induction heating coil 4 for high frequency heating.

また、前記浸炭室1には、前記被処理部品2の温度を、当該被処理部品2から発する熱放射を利用して測定するための放射温度計5が設けられ、この放射温度計5からの出力を制御回路6に入力して、この制御回路6にて前記高周波誘導加熱コイル4に対する電源回路7を制御することにより、前記被処理部品2を、所定の浸炭温度(例えば、約1200〜1400℃等)に高周波加熱するように構成されている。   The carburizing chamber 1 is provided with a radiation thermometer 5 for measuring the temperature of the component 2 to be processed using thermal radiation emitted from the component 2 to be processed. An output is input to the control circuit 6, and the control circuit 6 controls the power supply circuit 7 for the high-frequency induction heating coil 4, so that the component 2 to be processed has a predetermined carburizing temperature (e.g. It is configured to be heated at a high frequency to 0 ° C. or the like.

なお、前記放射温度計5は、被処理部品2からの熱放射が少ないときには温度の測定を行うことができないので、前記放射温度計5による温度制御は、実際には、被処理部品2の温度が、当該被処理部品2からの熱放射が多くなる例えば700〜900℃になってから行うように構成している。   Since the radiation thermometer 5 cannot measure the temperature when the heat radiation from the component 2 to be processed is small, the temperature control by the radiation thermometer 5 is actually the temperature of the component 2 to be processed. However, the heat radiation from the component 2 to be processed is increased, for example, at 700 to 900 ° C.

更にまた、前記浸炭室1には、流量制御弁8を備えた窒素又はアルゴン等の不活性ガス供給通路9が接続されているとともに、当該浸炭炉1からの排出弁10付き排出通路11が接続され、これに加えて、当該浸炭室1内を高い真空にするための真空ポンプ12が接続されている。   Furthermore, an inert gas supply passage 9 such as nitrogen or argon having a flow rate control valve 8 is connected to the carburizing chamber 1, and a discharge passage 11 with a discharge valve 10 from the carburizing furnace 1 is connected. In addition to this, a vacuum pump 12 for connecting the carburizing chamber 1 to a high vacuum is connected.

一方、前記不活性ガス供給通路9のうち流量制御弁8より下流側の部位には、流量制御弁13を備えたメタン又はプロパン等の浸炭ガス供給通路14が接続されている。   On the other hand, a carburizing gas supply passage 14 such as methane or propane provided with a flow control valve 13 is connected to a portion of the inert gas supply passage 9 downstream of the flow control valve 8.

そして、実際のガス浸炭は次の順序で行う。   And actual gas carburizing is performed in the following order.

先ず、前記浸炭室1内に、被処理部品2を装填し、次いで、前記浸炭室1内を、当該浸炭室1からの排気通路11における排気弁10を閉じた状態で、真空ポンプ12にて、例えば、26Paの高い真空の状態にする。   First, the workpiece 2 is loaded into the carburizing chamber 1, and then the inside of the carburizing chamber 1 is closed by the vacuum pump 12 with the exhaust valve 10 in the exhaust passage 11 from the carburizing chamber 1 being closed. For example, a high vacuum state of 26 Pa is set.

そして、前記浸炭室1内に、前記不活性ガス供給通路9及び前記浸炭ガス供給通路14から、例えば、窒素ガス等の不活性ガスに適宜量の浸炭ガス(例えば、4.2%程度のメタンガス)を混合した混合ガスを、前記浸炭室1内が、例えば、1300Paの圧力になるまで充満することにより、前記浸炭室1内を、浸炭ガスを含む浸炭雰囲気にするとともに、1300Paの圧力に維持する。   In the carburizing chamber 1, an appropriate amount of carburizing gas (for example, about 4.2% methane gas) is added to the inert gas such as nitrogen gas from the inert gas supply passage 9 and the carburizing gas supply passage 14. ) Is mixed until the inside of the carburizing chamber 1 reaches, for example, a pressure of 1300 Pa, thereby making the inside of the carburizing chamber 1 a carburizing atmosphere containing a carburizing gas and maintaining the pressure at 1300 Pa. To do.

この状態で、前記被処理部品2を、高周波誘導加熱コイル4にて、約1分間で、所定の浸炭温度(例えば、約1200〜1400℃等)に高周波加熱する。   In this state, the to-be-processed component 2 is high-frequency heated to a predetermined carburizing temperature (for example, about 1200 to 1400 ° C.) in about 1 minute by the high-frequency induction heating coil 4.

すなわち、前記浸炭室1内における被処理部品2を前記浸炭温度に加熱するまでの昇温過程の間は、前記浸炭室1内を、浸炭ガスを含む浸炭雰囲気にするとともに、例えば、1300Paの低い圧力の状態にする。   That is, during the temperature rising process until the component 2 to be processed in the carburizing chamber 1 is heated to the carburizing temperature, the carburizing chamber 1 is set to a carburizing atmosphere containing a carburizing gas and, for example, as low as 1300 Pa. Set pressure.

次いで、前記被処理部品2の温度が前記浸炭温度になったとき、前記浸炭室1内への混合ガスの供給量を増して、浸炭室1内の圧力を、大気圧と同じ程度、例えば、1000〜1050hPaにまで上昇するとともに、排気通路11における排気弁10を開いて混合ガスの一部を排気して、前記浸炭室1内を、流動する浸炭雰囲気にして、この状態を、約5分間にわたって維持することにより、前記被処理部品2に対して所定の浸炭処理を行うのである。   Next, when the temperature of the part to be processed 2 reaches the carburizing temperature, the supply amount of the mixed gas into the carburizing chamber 1 is increased, and the pressure in the carburizing chamber 1 is set to the same level as the atmospheric pressure, for example, While raising the pressure to 1000 to 1050 hPa, the exhaust valve 10 in the exhaust passage 11 is opened and a part of the mixed gas is exhausted to make the inside of the carburizing chamber 1 a flowing carburizing atmosphere. This state is maintained for about 5 minutes. Thus, a predetermined carburizing process is performed on the component 2 to be processed.

ところで、本発明者達は、前記浸炭室1内に装填した被処理部品2を、圧力を1300Paにし、且つ、浸炭ガスを含まない窒素ガスのみの雰囲気にした状態で高い温度に高周波加熱する第1の実験と、前記浸炭室1内に装填した被処理部品2を、圧力を同じく1300Paにし、且つ、前記窒素ガスに4.2%のメタンガスを含む浸炭雰囲気にした状態で高い温度に高周波加熱する第2の実験との両方について、前記被処理部品2の温度を、当該被処理部品2に埋め込んだ熱電対温度計と、前記放射温度計5との両方で測定した結果は次の通りであった。   By the way, the present inventors perform high-frequency heating of the workpiece 2 loaded in the carburizing chamber 1 to a high temperature in a state where the pressure is set to 1300 Pa and the atmosphere of only nitrogen gas containing no carburizing gas. 1 and high-frequency heating of the workpiece 2 loaded in the carburizing chamber 1 to a high temperature in a state where the pressure is set to 1300 Pa and the carburizing atmosphere contains 4.2% methane gas in the nitrogen gas. The results of measuring the temperature of the component 2 to be processed by both the thermocouple thermometer embedded in the component 2 to be processed and the radiation thermometer 5 are as follows. there were.

すなわち、図2は、前者の第1の実験の場合(1300Paの圧力で、浸炭雰囲気にしないとき)を示し、この場合、放射温度計5にて測定した温度は、曲線Bで示すように、熱電対温度計にて測定した温度(曲線Aで示す)に対して、加熱時間の経過に比例して次第に高くなるという現象が認められた。   That is, FIG. 2 shows the case of the first experiment (when the pressure is 1300 Pa and the carburizing atmosphere is not used). In this case, the temperature measured by the radiation thermometer 5 is as shown by the curve B. A phenomenon was observed in which the temperature gradually increased in proportion to the elapse of the heating time with respect to the temperature measured by a thermocouple thermometer (shown by curve A).

これに対して、図3は、後者の第2の実験の場合(1300Paの圧力で、浸炭雰囲気にしたとき)を示し、この場合、放射温度計5にて測定した温度曲線B′は、熱電対温度計にて測定した温度曲線A′に対して略平行になり、放射温度計5にて測定した温度が、熱電対温度計にて測定した温度に対して加熱時間の経過に比例して変化することを回避できるのであった。   On the other hand, FIG. 3 shows the case of the latter second experiment (when a carburizing atmosphere is used at a pressure of 1300 Pa). In this case, the temperature curve B ′ measured by the radiation thermometer 5 is a thermoelectric curve. It becomes substantially parallel to the temperature curve A ′ measured with the thermometer, and the temperature measured with the radiation thermometer 5 is proportional to the elapsed time of heating with respect to the temperature measured with the thermocouple thermometer. It was possible to avoid changing.

そこで、前記したように、前記浸炭室1内に装填した被処理部品2を所定の浸炭温度にまで加熱するまでの昇温過程の間、前記浸炭室1内を、浸炭雰囲気で、且つ、圧力が1300Paの状態にすることにより、前記被処理部品2の温度を放射温度計5にて正確に測定できるから、前記昇温過程及びその後における浸炭処理過程に際しての温度制御を前記放射温度計5にて高い精度で確実に行うことができるのである。   Therefore, as described above, during the temperature rising process until the workpiece 2 loaded in the carburizing chamber 1 is heated to a predetermined carburizing temperature, the carburizing chamber 1 is pressurized in a carburizing atmosphere and pressure. Since the temperature of the component 2 to be processed can be accurately measured by the radiation thermometer 5 by setting the pressure to 1300 Pa, the temperature control in the temperature raising process and the subsequent carburizing process is performed on the radiation thermometer 5. It can be done reliably with high accuracy.

更に、本発明者達の実験によると、浸炭温度が1200〜1400℃である場合、前記浸炭室1内の圧力は、浸炭処理過程において1000〜1050hPaにする一方、昇温過程において1000〜1500Paにすることが、前記した効果を達成する上で好ましく、また、前記浸炭室1内を前記した昇温過程に先立って真空するときには、100Pa以下にすることが前記した効果を達成する上で好ましかった。   Further, according to experiments by the present inventors, when the carburizing temperature is 1200 to 1400 ° C., the pressure in the carburizing chamber 1 is 1000 to 1050 hPa in the carburizing process, and 1000 to 1500 Pa in the temperature raising process. It is preferable to achieve the above-described effect, and when the inside of the carburizing chamber 1 is evacuated prior to the above-described temperature raising process, it is preferable to set the pressure to 100 Pa or less to achieve the above-described effect. won.

本発明において、被処理部品を加熱する方法としては、前記した高周波加熱に限らず、レーザ光線の照射による加熱等のその他の加熱方法を採用できることはいうまでもなく、また、本発明は、被処理部品の全体に対して浸炭を施す場合に限らず、被処理部品の一部を加熱することでその部分のみに浸炭する場合にも適用できる。   In the present invention, the method for heating the component to be processed is not limited to the above-described high-frequency heating, and it is needless to say that other heating methods such as heating by laser beam irradiation can be adopted. The present invention is not limited to the case where carburization is performed on the entire processing component, but can also be applied to the case where only a portion of the processing target is heated and carburized.

本発明の実施形態を示す縦断正面図である。It is a vertical front view which shows embodiment of this invention. 浸炭ガスの雰囲気にしない状態で高周波加熱したときにおける温度曲線を示す図。The figure which shows the temperature curve when high frequency heating is carried out in the state which is not made into the atmosphere of carburizing gas. 浸炭ガスの雰囲気にした状態で高周波加熱したときにおける温度曲線を示す図。The figure which shows the temperature curve when it heats by the high frequency in the state made into the atmosphere of carburizing gas.

符号の説明Explanation of symbols

1 浸炭室
2 被処理部品
3 載置台
4 高周波誘導加熱コイル
5 放射温度計
6 制御回路
7 高周波誘導加熱コイルの電源回路
9 不活性ガス供給通路
10 排気弁
11 排気通路
12 真空ポンプ
14 浸炭ガス供給通路
8,13 流量制御弁
DESCRIPTION OF SYMBOLS 1 Carburizing chamber 2 Parts to be processed 3 Mounting table 4 High frequency induction heating coil 5 Radiation thermometer 6 Control circuit 7 Power supply circuit of high frequency induction heating coil 9 Inert gas supply passage 10 Exhaust valve 11 Exhaust passage 12 Vacuum pump 14 Carburizing gas supply passage 8,13 Flow control valve

Claims (4)

鋼製の被処理部品を、浸炭室内に装填し、この浸炭室内を、浸炭ガスを含む浸炭雰囲気にし、この状態で、前記被処理部品を、当該被処理部品における温度を放射温度計にて測定しながら所定の浸炭温度に加熱し、この浸炭温度に適宜時間維持して浸炭処理するにおいて、前記被処理部品を前記浸炭温度に加熱するまでの昇温過程の間、前記浸炭室内の圧力を、前記被処理部品を前記浸炭温度に加熱してからの浸炭処理過程のときにおける圧力よりも、当該昇温過程の間における浸炭を抑制するように低くすることを特徴とするガス浸炭方法。   The steel parts to be treated are loaded into the carburizing chamber, and the carburizing chamber is set to a carburizing atmosphere containing carburizing gas. In this state, the temperature of the parts to be treated is measured with a radiation thermometer. While heating to a predetermined carburizing temperature and maintaining the carburizing temperature for an appropriate period of time to perform the carburizing process, during the temperature rising process until the part to be processed is heated to the carburizing temperature, the pressure in the carburizing chamber is A gas carburizing method, characterized in that the pressure is lower than the pressure during the carburizing process after the part to be processed is heated to the carburizing temperature so as to suppress carburizing during the temperature raising process. 前記請求項1の記載において、前記浸炭室内を、前記昇温過程の前に一旦高い真空にし、次いで、浸炭雰囲気にすることを特徴とするガス浸炭方法。   2. The gas carburizing method according to claim 1, wherein the carburizing chamber is once evacuated to a high vacuum before the temperature raising step, and then is carburized. 前記請求項1又は2の記載において、前記浸炭温度が1200〜1400℃で、前記浸炭処理過程のときにおける前記浸炭室内の圧力が1000〜1050hPaである一方、前記昇温過程のときにおける前記浸炭室内の圧力が1000〜1500Paであることを特徴とするガス浸炭方法。   3. The carburizing chamber according to claim 1, wherein the carburizing temperature is 1200 to 1400 ° C., and the pressure in the carburizing chamber during the carburizing process is 1000 to 1050 hPa, while the carburizing chamber in the temperature raising process. The gas carburizing method, wherein the pressure is 1000 to 1500 Pa. 前記請求項1又は2の記載において、前記浸炭室内を、前記昇温過程の前に一旦高い真空にするときにおける圧力が100Pa以下であることを特徴とするガス浸炭方法。   3. The gas carburizing method according to claim 1, wherein a pressure when the inside of the carburizing chamber is once evacuated to a high vacuum before the temperature raising process is 100 Pa or less.
JP2003399648A 2003-11-28 2003-11-28 Gas carburizing method Expired - Fee Related JP4255815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399648A JP4255815B2 (en) 2003-11-28 2003-11-28 Gas carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399648A JP4255815B2 (en) 2003-11-28 2003-11-28 Gas carburizing method

Publications (2)

Publication Number Publication Date
JP2005163056A JP2005163056A (en) 2005-06-23
JP4255815B2 true JP4255815B2 (en) 2009-04-15

Family

ID=34724137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399648A Expired - Fee Related JP4255815B2 (en) 2003-11-28 2003-11-28 Gas carburizing method

Country Status (1)

Country Link
JP (1) JP4255815B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550276B2 (en) * 2009-07-23 2014-07-16 光洋サーモシステム株式会社 Gas carburizing apparatus and gas carburizing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176135A (en) * 1974-12-27 1976-07-01 Komatsu Mfg Co Ltd SHINTAN FUNIKINOJIDOSEIGYOHOHO
FR2681332B1 (en) * 1991-09-13 1994-06-10 Innovatique Sa METHOD AND DEVICE FOR CEMENTING STEEL IN A LOW PRESSURE ATMOSPHERE.
JP4041602B2 (en) * 1998-10-28 2008-01-30 Dowaホールディングス株式会社 Vacuum carburizing method for steel parts
JP4118469B2 (en) * 1999-08-23 2008-07-16 本田技研工業株式会社 Carburized material manufacturing equipment
JP3428936B2 (en) * 2000-01-31 2003-07-22 オリエンタルエンヂニアリング株式会社 Gas curing method for metal surface
JP3531736B2 (en) * 2001-01-19 2004-05-31 オリエンタルエンヂニアリング株式会社 Carburizing method and carburizing device
JP2002252076A (en) * 2001-02-27 2002-09-06 Miyaden Co Ltd High-frequency induction heating method and its device
JP5428032B2 (en) * 2001-06-05 2014-02-26 Dowaサーモテック株式会社 Carburizing method
JP2003013136A (en) * 2001-07-04 2003-01-15 Toho Gas Co Ltd Method for controlling heat treatment atmosphere
JP2005105396A (en) * 2003-10-02 2005-04-21 Dowa Mining Co Ltd Carburizing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Also Published As

Publication number Publication date
JP2005163056A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP6622844B2 (en) Apparatus and method for selective oxidation at low temperature using a remote plasma source
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
JP2014181397A (en) Manufacturing method of ferritic stainless steel product
JP2000129418A (en) Vacuum carburizing method for steel parts and apparatus therefor
JP4255815B2 (en) Gas carburizing method
JP6552209B2 (en) Method and apparatus for manufacturing metal spring
US8317939B2 (en) Method of gas carburizing
JP4292280B2 (en) Carburizing method
JP7360151B2 (en) Stainless steel surface hardening treatment method and surface hardening treatment equipment
WO2014069149A1 (en) Heat treatment method and method for manufacturing machine part
KR101249539B1 (en) Real time nitriding depth monitoring method for plasma nitriding process
KR100592757B1 (en) Method of gas carburizing
JP5683416B2 (en) Method for improving insulation resistance of vacuum heating furnace
JP2019026875A (en) Production method of workpiece
JP2017197822A (en) Surface hardening method and surface hardening apparatus
JPWO2021039911A5 (en)
JP2019135332A (en) Manufacturing method and manufacturing apparatus for metallic spring
US7416614B2 (en) Method of gas carburizing
JP2005105396A (en) Carburizing method
JP2009270155A (en) Nitriding quenching method and nitrided quenched part
JP3899081B2 (en) Gas carburizing method
JP3899077B2 (en) Gas carburizing method
JP2003166016A (en) Vacuum carburization apparatus
JPWO2005003401A1 (en) Gas carburizing method
JPH06108139A (en) Plasma carburizing quenching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4255815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees