JP2009283425A - Oxidation reduction-type electricity storage device using circulatory regenerated pure water as electrolyte solution - Google Patents

Oxidation reduction-type electricity storage device using circulatory regenerated pure water as electrolyte solution Download PDF

Info

Publication number
JP2009283425A
JP2009283425A JP2008154610A JP2008154610A JP2009283425A JP 2009283425 A JP2009283425 A JP 2009283425A JP 2008154610 A JP2008154610 A JP 2008154610A JP 2008154610 A JP2008154610 A JP 2008154610A JP 2009283425 A JP2009283425 A JP 2009283425A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolyte solution
storage device
oxidation
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008154610A
Other languages
Japanese (ja)
Inventor
Hiroto Muneta
寛人 棟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamabishi Industry Co Ltd
Original Assignee
Yamabishi Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamabishi Industry Co Ltd filed Critical Yamabishi Industry Co Ltd
Priority to JP2008154610A priority Critical patent/JP2009283425A/en
Publication of JP2009283425A publication Critical patent/JP2009283425A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte solution oxidation reduction-type electricity storage device with a high electric density by dissolving a high concentration vanadium salt into pure water. <P>SOLUTION: The electrolyte solution regeneration circulatory device, in which hydrogen bonding of pure water is separated by resonance electromagnetic wave in an infrared ray region and the water is enabled to have a large dissolving capacity of vanadium salt, is provided in an electrolyte solution circulatory system and the electrolyte solution undergoes circulatory regeneration to dissolve the vanadium salt stably and in high concentration. Further, an electrode auxiliary plate made of carbon fine powder and a small amount of resin, kneaded and pressure-densified, is intervened between an electrode plate and the electrolyte solution to improve a current collection efficiency, and the electrode plate is made unnecessary to contact directly with the electrolyte solution to dispense with a use of an expensive corrosion resistant metal, and the device can be provided at a low cost. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、純水にイオン価数の変化する電解物質を溶解した電解液の酸化還元作用を利用した蓄電装置に関するものである。  The present invention relates to a power storage device using an oxidation-reduction action of an electrolytic solution in which an electrolytic substance whose ionic valence changes in pure water.

従来の電池は、電極の化学変化で充放電する方式で 耐久性や電気密度が小さいため大容量の装置化や廉価で伝導度の高い電極の実用化に問題あった。  Conventional batteries are charged and discharged by the chemical change of the electrodes, and have low durability and electrical density. Therefore, there are problems in realizing large capacity devices and practical use of inexpensive and high conductivity electrodes.

また希硫酸にバナジューム塩を溶解した電解液を使用した本発明装置と同様の酸化還元型蓄電装置も実用化されている。電解液に溶解したバナジュームのイオン価数の変化で充放電するため、電極の化学反応による寿命阻害要因がなく、長寿命で、大容量で、設置スペース自由度の大きい蓄電装置の実現が可能となったが、電解液の危険性や腐食性や硫化水素ガスの発生の問題で小型化や一般普及が困難とされている。  Also, a redox power storage device similar to the device of the present invention using an electrolytic solution in which vanadium salt is dissolved in dilute sulfuric acid has been put into practical use. Since charging and discharging are performed by changing the ionic valence of vanadium dissolved in the electrolyte, it is possible to realize a power storage device that has no long-lived, long-capacity, large-capacity, and large installation space freedom through no electrode chemical reaction. However, due to the risk of electrolyte solution, corrosiveness, and generation of hydrogen sulfide gas, miniaturization and general dissemination are difficult.

また上記の欠点を解決するため、イオン価数の異なるバナジュームを希硫酸で溶解した原液を純水で希釈溶解した電解液を使用した本発明装置と同様の酸化還元型蓄電装置も開発されているが、バナジューム塩の純水での溶解性に問題があり実用化に至っていない。  In addition, in order to solve the above-mentioned drawbacks, a redox type power storage device similar to the device of the present invention using an electrolytic solution obtained by diluting a stock solution obtained by dissolving vanadium having different ionic valence with dilute sulfuric acid with pure water has been developed. However, there is a problem with the solubility of vanadium salt in pure water, and it has not been put into practical use.

上述のように、イオン価数の異なるバナジューム電解液の酸化還元作用を利用した蓄電装置は、多くの長所を持っているが、その普及実用化については解決すべきいくつかの問題点もある。第一に、装置の効率を高め、小型化するために高濃度で、安定した、保守管理が容易で安全なバナジューム電解液が必要とされる。  As described above, the power storage device using the redox action of the vanadium electrolytes having different ionic valences has many advantages, but there are some problems to be solved for its practical use. First, there is a need for a highly concentrated, stable, easy to maintain and safe vanadium electrolyte to increase device efficiency and miniaturization.

また、電池セル内で電解液と接し電気を集めるため耐食性が高く、伝導性の優れた白金やチタン合金等の高価な電極板が使用されているが、価格が高いため汎用普及が難しい。耐食性が高く伝導性の優れた価格の安い電極板または電極装置が必要とされる。  In addition, expensive electrode plates such as platinum and titanium alloys having high corrosion resistance and excellent conductivity are used because they are in contact with the electrolytic solution in the battery cell and collect electricity, but their general use is difficult due to their high price. There is a need for an inexpensive electrode plate or electrode device that has high corrosion resistance and excellent conductivity.

また、電池の動作の発停時に、陰極側に、水素ガスが発生し、円滑な運転を阻害されるため、水素のガス化蓄積の防止が必要とされる。  In addition, since hydrogen gas is generated on the cathode side when the operation of the battery starts and stops and smooth operation is hindered, it is necessary to prevent hydrogen gasification and accumulation.

また、電解液貯蔵タンクを屋外に設置する場合、季節によって電解液の凍結や温度上昇が問題となる。  In addition, when the electrolytic solution storage tank is installed outdoors, freezing of the electrolytic solution and a rise in temperature become a problem depending on the season.

このような課題を解決するために本発明者は、天然深成岩や凝灰岩や金属やそれらの焼結体から放射される5〜10テラヘルツの遠赤外線領域の共鳴電磁波により、水の水素結合を分離し、水分子同士の結合しているクラスターを微細化し、水分子間の隙間の小さい純水にすることにより、バナジューム塩の微粉末が安定して溶解することを見出し、本発明をなすに至った。  In order to solve such problems, the present inventor separated hydrogen bonds of water by resonance electromagnetic waves in the far-infrared region of 5 to 10 terahertz emitted from natural plutonic rocks, tuffs, metals, and sintered bodies thereof. The present inventors have found that the fine powder of vanadium salt can be stably dissolved by refining a cluster in which water molecules are bonded to each other and making pure water with small gaps between water molecules, thereby achieving the present invention. .

すなわち、上記課題を解決するために、本発明の純水の電解液循環再生装置は、天然深成岩や凝灰岩や金属やそれらの焼結体から放射される5〜10テラヘルツの遠赤外線領域の共鳴電磁波で、遠赤外線領域のエネルギー領域の水素結合を励起し、切り離す。  That is, in order to solve the above-mentioned problems, the pure water electrolyte circulation regeneration device of the present invention is a resonance electromagnetic wave in the far-infrared region of 5 to 10 terahertz radiated from natural plutonic rock, tuff, metal, or a sintered body thereof. Thus, the hydrogen bond in the energy region of the far infrared region is excited and separated.

電解液循環再生装置が純水の水素結合を切り離し、クラスターを小さくしていることは、この電解循環再生装置を通過する水に空気を送り込むことで、小さくなった隙にナノバブル化された酸素が安定して溶存され、溶存酸素量が1.5〜2.5倍増加することや、水のPHが、通常の純水より1.5〜3倍上昇することで証明される。  The fact that the electrolyte circulation regenerator cuts off the hydrogen bonds of pure water and made the clusters smaller is that the air bubbled into the water that passes through this electrolysis circulation regenerator allows oxygen that has been nanobubbled into the gap It is proved by the fact that it is dissolved stably and the dissolved oxygen amount increases 1.5 to 2.5 times, and the pH of water rises 1.5 to 3 times that of ordinary pure water.

また本発明の第2の酸化還元型蓄電装置において、カーボン微粉末を90〜95%程度の重量比で樹脂バインダーと混練して圧密を繰り返すことにより、嵩比重を高め、伝導度を高めた電極補助板を、電極に圧接し、電解液に直接接する側に使用することにより、電解液の酸化還元により生ずる起電力、または充放電のための電力を、高効率で電解液を介して集電供給することにより電池セルの小型が図れるとともに、電極の腐食を防止する。  Further, in the second oxidation-reduction type power storage device of the present invention, an electrode having increased bulk specific gravity and increased conductivity by kneading carbon fine powder with a resin binder at a weight ratio of about 90 to 95% and repeating compaction. By using the auxiliary plate on the side in direct contact with the electrode and in direct contact with the electrolyte, the electromotive force generated by the oxidation / reduction of the electrolyte or the power for charging / discharging is collected through the electrolyte with high efficiency. By supplying, the battery cell can be reduced in size and the corrosion of the electrode can be prevented.

また本発明の第3の酸化還元型蓄電装置において、電池セルの電解液室内に充填され電解液内の電荷を効率良く集電するためのスポンジ状カーボンの粗密度を陰極電解液室側で、正極電解液室側よりも微細にすることにより、電池動作の発停時の円滑な動作を阻害する水素ガスが、陰極で蓄積されないようにする。  In the third oxidation-reduction type power storage device of the present invention, the coarse density of the sponge-like carbon charged in the electrolytic solution chamber of the battery cell for efficiently collecting the electric charge in the electrolytic solution on the cathode electrolytic solution chamber side, By making it finer than the cathode electrolyte chamber side, hydrogen gas that hinders smooth operation during battery operation is prevented from accumulating at the cathode.

また本発明の第4の酸化還元型蓄電装置において、電解液貯蔵タンクの外表面に、輻射熱を遮蔽するフィルムを貼り付けることにより、電解液貯蔵タンクを屋外に設置した場合の紫外線等の輻射熱による電解液の温度上昇や放射冷却による電解液の凍結を防止するとともに、有害電磁波ノイズの電解液への影響を防止する。  Further, in the fourth oxidation-reduction type power storage device of the present invention, by attaching a film that shields radiant heat on the outer surface of the electrolyte storage tank, the electrolyte storage tank is caused by radiant heat such as ultraviolet rays when the electrolyte storage tank is installed outdoors. It prevents the electrolyte from freezing due to temperature rise and radiation cooling of the electrolyte, and also prevents harmful electromagnetic noise from affecting the electrolyte.

本発明によれば、バナジューム塩を高濃度で安定して溶解でき、炭素含有率の高い電極補助板により高効率で集電し、陰極側の水素ガス蓄積を防ぐように電解液室に充填するスポンジカーボンの密度を高めることにより、小型で高効率の電解液酸化還元型蓄電装置を廉価で生産することができる。  According to the present invention, the vanadium salt can be stably dissolved at a high concentration, and the electrode chamber is filled with high efficiency by the electrode auxiliary plate having a high carbon content so as to prevent hydrogen gas accumulation on the cathode side. By increasing the density of the sponge carbon, a small and highly efficient electrolytic redox power storage device can be produced at low cost.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
図1は、本発明の概念を示すフロー図である。この蓄電装置は、電池セル内でイオン交換膜11をはさんで、イオン価数の異なる正極電解液室9と陰極電解液室10が接していて、充電時には水素イオンが、イオン交換膜11を介して陰極電解液室から陽極電解液室へ移動し、放電時には、陽極電解液室9から陰極電解液室10に水素イオンが移動するように構成され、電力は陽極電極板7及び陰極電極板8を介して取り出されるようになっている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flowchart showing the concept of the present invention. In this power storage device, the cathode electrolyte chamber 9 and the cathode electrolyte chamber 10 having different ion valences are in contact with each other across the ion exchange membrane 11 in the battery cell, and hydrogen ions pass through the ion exchange membrane 11 during charging. The cathode electrolyte chamber moves from the cathode electrolyte chamber to the anode electrolyte chamber, and at the time of discharge, the hydrogen ions move from the anode electrolyte chamber 9 to the cathode electrolyte chamber 10, and the power is supplied to the anode electrode plate 7 and the cathode electrode plate. 8 to be taken out.

正極及び陰極の電解液は、それぞれ正極液電解液貯蔵タンク1および陰極電解液貯蔵タンク2に貯蔵され、正極電解液循環ポンプ3および陰極電解液循環ポンプ4により電池セルを介して循環され、電池セル内でイオン交換膜11を介して、水素イオンを正極および陰極電解液室9及び10の間で移動することにより充放電を行なう。従って充放電能力は電池セル能力により決定されるが、蓄電量は電解液貯蔵タンク1及び2の容量で決定される。  The positive and negative electrode electrolytes are respectively stored in the positive electrode electrolyte storage tank 1 and the cathode electrolyte storage tank 2, and are circulated through the battery cells by the positive electrode electrolyte circulation pump 3 and the cathode electrolyte circulation pump 4, so that the battery Charging / discharging is performed by moving hydrogen ions between the positive electrode and the cathode electrolyte chambers 9 and 10 through the ion exchange membrane 11 in the cell. Therefore, the charge / discharge capacity is determined by the battery cell capacity, but the charged amount is determined by the capacity of the electrolyte storage tanks 1 and 2.

装置全体を小型高効率化するためには、電気密度を高濃度にする必要があり、そのためにバナジューム塩を安定して均一に溶解する方法として、本発明では、天然深成岩や凝灰岩や金属やそれらの焼結体による5〜10テラヘルツの遠赤外線領域の共鳴電磁波発生体51及び61を充填した電解液循環再生装置5及び6を電極液循環系統の電解液循環ポンプ3および4の出口側設けていて、電解液の水分子間の水素結合を分離し、バナジューム塩を高濃度で安定して溶解する。  In order to make the entire device small and highly efficient, it is necessary to increase the electric density. Therefore, as a method for stably and uniformly dissolving the vanadium salt, in the present invention, natural plutonic rock, tuff, metal, and the like are used. Electrolyte circulation regenerators 5 and 6 filled with resonant electromagnetic wave generators 51 and 61 in the far-infrared region of 5 to 10 terahertz made of the sintered body are provided on the outlet side of the electrolyte circulation pumps 3 and 4 of the electrode solution circulation system. Thus, hydrogen bonds between water molecules in the electrolyte are separated, and the vanadium salt is stably dissolved at a high concentration.

図2は、本発明の電池セルの模式図で、イオン交換膜11をはさんで正極電解液室9と陰極電解液室10があり、イオン価数の異なるバナジューム水溶液が循環ポンプ3及び4により電解液貯蔵タンク1及び2から移送され、陽極電解液室9では、充電時に、4価のバナジュームが5価のバナジュームとなり、放電時には5価の4価のバナジュームになる。また陰極電解液室10では、充電時に3価のバナジュームが2価のバナジュームになり、放電時には2価のバナジュームが3価になる。イオンの移動は水素イオンで行なわれる。  FIG. 2 is a schematic diagram of a battery cell according to the present invention, which has a positive electrode electrolyte chamber 9 and a cathode electrolyte chamber 10 with an ion exchange membrane 11 interposed therebetween. Vanadium aqueous solutions having different ion valences are circulated by circulation pumps 3 and 4. In the anodic electrolyte chamber 9 transferred from the electrolyte storage tanks 1 and 2, the tetravalent vanadium becomes a pentavalent vanadium during charging, and becomes a pentavalent vanadium during discharging. In the cathode electrolyte chamber 10, trivalent vanadium becomes divalent vanadium during charging, and divalent vanadium becomes trivalent during discharging. Ions are moved by hydrogen ions.

正極及び陰極電解液室内9及び10には、電解液の正極及び陰極電極補助板71及び81で効率良く電荷の移動による集電を行なうために、純綿を炭化したカーボンスポンジが充填され、陰極電極液室10には、正極電解液室9よりも微細で、空隙のサイズの細かい材料を使用することにより、電池動作停止時に水素ガスが陰極電解液室10に蓄積されることで、次の円滑な運転の阻害を防止する。  The positive electrode and cathode electrolyte chambers 9 and 10 are filled with carbon sponge carbonized with pure cotton in order to efficiently collect current by the movement of electric charges in the positive electrode and cathode electrode auxiliary plates 71 and 81 of the electrolyte solution. The liquid chamber 10 is made of a material that is finer than the positive electrode electrolyte chamber 9 and has a small gap size, so that hydrogen gas is accumulated in the cathode electrolyte chamber 10 when the battery operation is stopped. Prevent obstructive driving.

充放電動作で、正極及び陰極電解液室9及び10を、イオン交換膜11を介して移動する電荷を、効率良く集電し、金属電極の腐食を防止するため、カーボン微粉末を90〜95%程度の重量比で樹脂バインダーと混練して圧密を繰り返すことにより、嵩比重を高め、伝導度を高めた正極及び陰極電極補助板71及び81を、正極電極板7および陰極電極板8と圧接して構成している。  In the charge / discharge operation, 90 to 95 carbon fine powder is used to efficiently collect the charges moving through the ion exchange membrane 11 through the positive and negative electrode electrolyte chambers 9 and 10 and prevent corrosion of the metal electrode. The positive and negative electrode auxiliary plates 71 and 81 having increased bulk specific gravity and increased conductivity are mixed with the positive electrode plate 7 and the negative electrode plate 8 by pressing and kneading with a resin binder at a weight ratio of about%. Configured.

電解液貯蔵タンク1及び2を電池セルと分離して屋外に設置する場合、紫外線等の輻射熱による電解液の温度上昇や放射冷却による電解液の凍結を防止したり、有害電磁波ノイズの電解液への影響を防止するため、電解液貯蔵タンク1及び2の外表面に、輻射熱を遮蔽するフィルムを貼り付ける。  When the electrolytic solution storage tanks 1 and 2 are separated from the battery cell and installed outdoors, the electrolytic solution temperature rise due to radiant heat such as ultraviolet rays and the electrolytic solution freezing due to radiation cooling can be prevented, or the electrolyte solution can generate harmful electromagnetic noise. In order to prevent the influence of the above, a film for shielding radiant heat is stuck on the outer surfaces of the electrolyte storage tanks 1 and 2.

産業上の利用の可能性Industrial applicability

本発明によれば、保守点検が容易な、長寿命で、比較的容量の大きい電解液酸化還元型蓄電装置を、低価格で提供できるため、太陽光発電や風力発電のような不安定な起電力の自然エネルギーの蓄積が可能となり、温室効果ガスの排出削減にも貢献できる。また夜間の廉価な電気を蓄電、需要の多い昼間の電力として使用することにより、電力の平準化と節電が可能となる。  According to the present invention, it is possible to provide an electrolyte redox power storage device that is easy to perform maintenance and has a long life and a relatively large capacity at a low price. Accumulation of natural energy from electric power is possible, which can contribute to reducing greenhouse gas emissions. In addition, low-cost electricity at night can be stored and used as daytime power, which is in high demand, so that power leveling and power saving can be achieved.

は、本発明の概念を示すフロー図である。FIG. 3 is a flowchart showing the concept of the present invention. は、本発明の電池セルの断面模式図である。These are the cross-sectional schematic diagrams of the battery cell of this invention.

符号の説明Explanation of symbols

1. 正極電解液貯蔵槽
2. 陰極電解液貯蔵槽
3. 正極電解液循環ポンプ
4. 陰極電解液循環ポンプ
5. 正極電解液循環再生装置
6. 陰極電解液循環再生装置
7. 正極電極板
8. 陰極電極板
9. 正極電解液室
10.陰極電解液室
11.イオン交換膜
20.正極電解液入り口配管
21.正極電解液出口配管
30.陰極電解液入り口配管
31.陰極電解液出口配管
51.共鳴電磁波発生体
61.共鳴電磁波発生体
71.正極補助電極板
81.陰極補助電極板
1. 1. Positive electrode electrolyte storage tank 2. Catholyte storage tank 3. Positive electrode electrolyte circulation pump 4. Catholyte circulation pump 5. Cathode electrolyte circulation regeneration device 6. Cathode electrolyte circulation regeneration device Positive electrode plate 8. 8. Cathode electrode plate Positive electrode electrolyte chamber 10. Cathode electrolyte chamber 11. Ion exchange membrane 20. Positive electrode electrolyte inlet pipe 21. Positive electrode outlet piping 30. Cathode electrolyte inlet piping 31. Cathode electrolyte outlet pipe 51. Resonant electromagnetic wave generator 61. Resonant electromagnetic wave generator 71. Positive electrode auxiliary electrode plate 81. Cathode auxiliary electrode plate

Claims (4)

電解質のバナジューム塩を純水に溶解し電解液とする酸化還元型蓄電装置において、電解液の循環配管系統に、遠赤外線領域の電磁波を発生する装置を設けることを特徴とする酸化還元型蓄電装置。  An oxidation-reduction type power storage device in which vanadium salt of an electrolyte is dissolved in pure water to form an electrolyte solution, and a device that generates electromagnetic waves in the far infrared region is provided in a circulation piping system of the electrolyte solution, . 請求項1に記載される酸化還元型蓄電装置において、カーボン微粉末を90%〜95%の重量比で樹脂バインダーと混練して圧密を繰り返すことにより、嵩比重を高め、電気伝導度を高めた電極補助板を電極板と圧接して、電解液に直接接する側に使用することを特徴とする酸化還元型蓄電装置。  In the oxidation-reduction type power storage device according to claim 1, the bulk specific gravity is increased and the electrical conductivity is increased by repeating compaction by kneading the carbon fine powder with a resin binder at a weight ratio of 90% to 95%. An oxidation-reduction power storage device, wherein the electrode auxiliary plate is used in contact with the electrode plate and is in contact with the electrolyte. 請求項1及び請求項2に記載される酸化還元型蓄電装置において、イオン交換膜をはさんで正極と陰極間に分けられている電解液室内に、陰極室に正極室より細く、スポンジ状に繊維密度を高くして重ね織りした炭素繊維を充填することを特徴とする酸化還元型蓄電装置。  3. The oxidation-reduction type power storage device according to claim 1 or 2, wherein the cathode chamber is narrower than the cathode chamber, in a sponge shape, in the electrolyte chamber divided between the cathode and cathode across the ion exchange membrane. An oxidation-reduction type power storage device characterized by being filled with carbon fibers woven in layers with a high fiber density. 請求項1乃至請求項3に記載される酸化還元型蓄電装置において、電解液貯蔵タンクの外表面に、輻射熱を遮蔽するフィルムを貼り付けることを特徴とする酸化還元型蓄電装置。  4. The oxidation-reduction power storage device according to claim 1, wherein a film that shields radiant heat is attached to an outer surface of the electrolyte storage tank.
JP2008154610A 2008-05-19 2008-05-19 Oxidation reduction-type electricity storage device using circulatory regenerated pure water as electrolyte solution Pending JP2009283425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154610A JP2009283425A (en) 2008-05-19 2008-05-19 Oxidation reduction-type electricity storage device using circulatory regenerated pure water as electrolyte solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154610A JP2009283425A (en) 2008-05-19 2008-05-19 Oxidation reduction-type electricity storage device using circulatory regenerated pure water as electrolyte solution

Publications (1)

Publication Number Publication Date
JP2009283425A true JP2009283425A (en) 2009-12-03

Family

ID=41453653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154610A Pending JP2009283425A (en) 2008-05-19 2008-05-19 Oxidation reduction-type electricity storage device using circulatory regenerated pure water as electrolyte solution

Country Status (1)

Country Link
JP (1) JP2009283425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531721A (en) * 2011-09-28 2014-11-27 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with two-phase storage
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531721A (en) * 2011-09-28 2014-11-27 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with two-phase storage
US9350039B2 (en) 2011-09-28 2016-05-24 United Technologies Corporation Flow battery with two-phase storage
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11637298B2 (en) 2018-08-02 2023-04-25 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Similar Documents

Publication Publication Date Title
Yu et al. Toward a new generation of low cost, efficient, and durable metal–air flow batteries
Lao-Atiman et al. Model-based analysis of an integrated zinc-air flow battery/zinc electrolyzer system
CN103247816B (en) A kind of semi-solid flow cell
CN103378385B (en) Metal-air battery and energy resource system
US11233263B2 (en) Redox flow battery systems and methods of manufacture and operation and reduction of metallic impurities
JP5751589B2 (en) An open-type lithium-air battery using a metal mesh, a metal film, or a sintered body of a metal powder and a solid electrolyte as an air electrode
US20200388857A1 (en) Redox flow batteries employing diamond
CN103384929A (en) Alkali metal-air flow batteries
CN105742656A (en) Zinc-iodine flow battery
JP2013225443A (en) Metal-air battery and energy system
JP5891358B2 (en) Energy system
CN103872370B (en) flow battery
JP2009283425A (en) Oxidation reduction-type electricity storage device using circulatory regenerated pure water as electrolyte solution
KR102015064B1 (en) Power generation system having serially connected heterogeneous reverse electrodialysis
CN103988352B (en) There is the flow battery strengthening durability
JP6247778B2 (en) Quinone polyhalide flow battery
CN109841931B (en) Magnesium chloride fuel cell
JP2008300356A (en) Powdered fuel cell
JP2017033880A (en) Power generator using circulation type magnesium air battery
US20090130539A1 (en) Electric power grid buffer
KR102041554B1 (en) Hybrid power generation system and self supporting hydrogen-electricity complex charge station using reverse electrodialysis power generation appartus with effective hydrogen-electricity generation
JP2008117721A (en) Secondary battery
CN104716385A (en) Vanadium manganese hybrid flow battery
JP2015051421A (en) Electrodialyzer for seawater or the like composed of carbon electrode
CN209929451U (en) Chlorine-magnesium fuel cell