JP2008117721A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2008117721A
JP2008117721A JP2006302339A JP2006302339A JP2008117721A JP 2008117721 A JP2008117721 A JP 2008117721A JP 2006302339 A JP2006302339 A JP 2006302339A JP 2006302339 A JP2006302339 A JP 2006302339A JP 2008117721 A JP2008117721 A JP 2008117721A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
calcium
potassium
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006302339A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nukina
康之 貫名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006302339A priority Critical patent/JP2008117721A/en
Publication of JP2008117721A publication Critical patent/JP2008117721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery using inexpensive water as a solvent and using hydrogen as an active material, as problem-free resources. <P>SOLUTION: A battery part 6 is formed by interposing an aqueous electrolyte solution of pyrazine and an electrolyte between a negative electrode 1 and a positive electrode 2, and the electrolyte solution is made to flow between the battery part 6 and the outside. The secondary battery using inexpensive water as a solvent and using hydrogen as an active material, as problem-free resources, while taking advantages of the characteristics of a redox flow battery, can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力エネルギーを貯留する二次電池に関するものである。   The present invention relates to a secondary battery that stores electric power energy.

従来、電荷の授受にあずかる活物質自体が流動する水溶液の形態で用いられ、寸法形状の可逆性にすぐれ、非常に長い充放電サイクル寿命が得られるオールバナジウムレドックスフロー電池が知られている(例えば、特許文献1参照)。
特開2001−167787号公報
Conventionally, an albanadium redox flow battery is known that is used in the form of an aqueous solution in which an active material itself that is responsible for charge transfer is flowing, has excellent reversibility of dimensions and a very long charge / discharge cycle life (for example, , See Patent Document 1).
JP 2001-167787 A

しかしながら、前記従来の構成では、すぐれた特長を有するものの、パナジウムのような希少な元素を使用しなければならず、資源上に問題があった。   However, although the conventional configuration has excellent features, a rare element such as Panadium has to be used, which causes a problem in terms of resources.

本発明は、前記従来の課題を解決するもので、安価な水を溶媒とし、水素を活物質とした資源上に問題のない二次電池を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a secondary battery having no problem on resources using inexpensive water as a solvent and hydrogen as an active material.

前記従来の課題を解決するために、本発明の二次電池は、対向する負極と正極の間に、ピラジンと電解質を溶解した水溶液である電解液を挟んで電池部を構成し、この電池部と外部との間で電解液を流通させるようにしたものである。   In order to solve the above-mentioned conventional problems, the secondary battery of the present invention comprises a battery part with an electrolyte solution, which is an aqueous solution in which pyrazine and an electrolyte are dissolved, between an opposing negative electrode and a positive electrode. The electrolyte is allowed to flow between the outside and the outside.

これによって、レドックスフロー電池の特長を生かしながら、安価な水を溶媒とし、水素を活物質とした資源上に問題のない二次電池が得られるものである。   As a result, while taking advantage of the redox flow battery, it is possible to obtain a secondary battery having no problem on resources using inexpensive water as a solvent and hydrogen as an active material.

本発明の二次電池は、レドックスフロー電池の特長を生かしながら、安価な水を溶媒とし、水素を活物質とした資源上に問題のない二次電池が得られる。   The secondary battery of the present invention can provide a secondary battery having no problem on resources using inexpensive water as a solvent and hydrogen as an active material while taking advantage of the redox flow battery.

第1の発明は、対向する負極と正極の間に、ピラジンと電解質を溶解した水溶液である電解液を挟んで電池部を構成し、この電池部と外部との間で電解液を流通させるようにした二次電池とすることにより、レドックスフロー電池の特長を生かしながら、安価な水を溶媒とし、水素を活物質とした資源上に問題のない二次電池が得られるものである。   According to a first aspect of the present invention, a battery part is configured by sandwiching an electrolytic solution that is an aqueous solution in which pyrazine and an electrolyte are dissolved between a negative electrode and a positive electrode facing each other, and the electrolytic solution is circulated between the battery part and the outside. By using the secondary battery as described above, it is possible to obtain a secondary battery having no problem on resources using inexpensive water as a solvent and hydrogen as an active material while taking advantage of the features of the redox flow battery.

第2の発明は、特に、第1の発明において、負極と正極を多孔質炭素材料で構成したことにより、安価な水を溶媒とし、水素を活物質とした資源上に問題のない二次電池が得られる。   The second invention is a secondary battery that has no problem in terms of resources using inexpensive water as a solvent and hydrogen as an active material, particularly because the negative electrode and the positive electrode are made of a porous carbon material in the first invention. Is obtained.

第3の発明は、特に、第1または第2の発明において、対向する負極と正極の間に、ピラジンと電解質を溶解した水溶液を含浸した隔膜を設けたことにより、安価な水を溶媒とし、水素を活物質とした資源上に問題のない二次電池が得られる。   According to a third invention, in particular, in the first or second invention, a diaphragm impregnated with an aqueous solution in which pyrazine and an electrolyte are dissolved is provided between the opposing negative electrode and the positive electrode. A secondary battery having no problem on resources using hydrogen as an active material can be obtained.

第4の発明は、特に、第1〜第3のいずれか1つの発明において、電解質が塩酸、フッ酸、臭酸、よう酸、硫酸、リン酸から選ばれた1つの酸であることにより、安価な水素イオンを溶媒とし、水素を活物質とすることができる。   According to a fourth invention, in particular, in any one of the first to third inventions, the electrolyte is one acid selected from hydrochloric acid, hydrofluoric acid, odorous acid, iodic acid, sulfuric acid, and phosphoric acid. Inexpensive hydrogen ions can be used as a solvent, and hydrogen can be used as an active material.

第5の発明は、特に、第1〜第3のいずれか1つの発明において、電解質が水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムから選ばれた1つのアルカリであることにより、安価な水を溶媒とし、水素を活物質とすることができる。   In a fifth aspect of the invention, in particular, in any one of the first to third aspects, the electrolyte may be one alkali selected from sodium hydroxide, lithium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide. As a result, inexpensive water can be used as a solvent, and hydrogen can be used as an active material.

第6の発明は、特に、第1〜第3のいずれか1つの発明において、電解質が塩化ナトリウム、塩化リチウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、フッ化ナトリウム、フッ化リチウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム、臭化ナトリウム、臭化リチウム、臭化カリウム、臭化マグネシウム、臭化カルシウム、よう化ナトリウム、よう化リチウム、よう化カリウム、よう化マグネシウム、よう化カルシウム、硫酸ナトリウム、硫酸リチウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、リン酸ナトリウム、リン酸リチウム、リン酸カリウム、リン酸マグネシウム、リン酸カルシウムから選ばれた1つの塩であることにより、安価な水素イオンと水を混合した水を溶媒とし、水素を活物質とすることができる。   In a sixth aspect of the invention, in particular, in any one of the first to third aspects of the invention, the electrolyte is sodium chloride, lithium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium fluoride, lithium fluoride, potassium fluoride, Magnesium fluoride, calcium fluoride, sodium bromide, lithium bromide, potassium bromide, magnesium bromide, calcium bromide, sodium iodide, lithium iodide, potassium iodide, magnesium iodide, calcium iodide, sodium sulfate , Lithium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, sodium phosphate, lithium phosphate, potassium phosphate, magnesium phosphate, calcium phosphate by mixing with cheap hydrogen ion and water Water as a solvent and hydrogen as an active material. Can.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態)
図は、本発明の実施の形態における二次電池を示すものである。
(Embodiment)
The figure shows a secondary battery in an embodiment of the present invention.

図1に示すように、本実施の形態における二次電池は、多孔質炭素材料である活性炭粉末層の負極1が、同じく活性炭粉末層である正極2と多孔質連通体である隔膜(セパレータ)3を介して対向し、負極1、正極2、隔膜3は電解液を含浸している。このように、負極1と正極2は、電解液を挟んで対向し、電池部6を構成している。また、電池部6は、外部電源(図示せず)を接続する負極側の集電電極4と正極側の集電電極5を有する。   As shown in FIG. 1, the secondary battery according to the present embodiment includes a negative electrode 1 of an activated carbon powder layer that is a porous carbon material, a positive electrode 2 that is also an activated carbon powder layer, and a diaphragm (separator) that is a porous communication body. 3, the negative electrode 1, the positive electrode 2, and the diaphragm 3 are impregnated with an electrolytic solution. Thus, the negative electrode 1 and the positive electrode 2 are opposed to each other with the electrolytic solution interposed therebetween, and constitute the battery unit 6. The battery unit 6 includes a negative-side current collecting electrode 4 and a positive-side current collecting electrode 5 for connecting an external power source (not shown).

そして、電池部6と外部との間で電解液を流通させるようにしている。そのために、負極側と正極側の電解液タンク7、8と、負極側と正極側の電解液ポンプ9、10とを備え、電池部6と電解液タンク7、8との間で電解液を流通させるものである。   And electrolyte solution is circulated between the battery part 6 and the exterior. For this purpose, the negative electrode side and the positive electrode side electrolytic solution tanks 7 and 8 and the negative electrode side and the positive electrode side electrolytic solution pumps 9 and 10 are provided, and the electrolytic solution is supplied between the battery unit 6 and the electrolytic solution tanks 7 and 8. It is to be distributed.

ここで、電解液は、ピラジンと電解質を溶解した水溶液であり、液体である。電解質は、水中で解離し、電解液にイオン導電性を付与する。   Here, the electrolytic solution is an aqueous solution in which pyrazine and an electrolyte are dissolved, and is a liquid. The electrolyte dissociates in water and imparts ionic conductivity to the electrolyte.

電解質には、(1)塩酸、フッ酸、臭酸、よう酸、硫酸、リン酸などの酸、また(2)水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムなどのアルカリ、さらに(3)塩化ナトリウム、塩化リチウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、フッ化ナトリウム、フッ化リチウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム、臭化ナトリウム、臭化リチウム、臭化カリウム、臭化マグネシウム、臭化カルシウム、よう化ナトリウム、よう化リチウム、よう化カリウム、よう化マグネシウム、よう化カルシウム、硫酸ナトリウム、硫酸リチウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、リン酸ナトリウム、リン酸リチウム、リン酸カリウム、リン酸マグネシウム、リン酸カルシウムなどの塩が利用できる。   The electrolyte includes (1) acids such as hydrochloric acid, hydrofluoric acid, odorous acid, iodic acid, sulfuric acid, phosphoric acid, and (2) sodium hydroxide, lithium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, etc. (3) sodium chloride, lithium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium fluoride, lithium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, sodium bromide, lithium bromide, Potassium bromide, magnesium bromide, calcium bromide, sodium iodide, lithium iodide, potassium iodide, magnesium iodide, calcium iodide, sodium sulfate, lithium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, sodium phosphate , Lithium phosphate, potassium phosphate, magnesium phosphate Beam, the salts such as calcium phosphate can be used.

ピラジンは、(化1)に示すように二つの窒素を有し、この部分が、2重結合の遷移で反応しやすい分子構造を有する。   Pyrazine has two nitrogens as shown in (Chemical Formula 1), and this part has a molecular structure that easily reacts at the transition of a double bond.

充電時に、外部電源(図示せず)を負極側の集電電極4と正極側の集電電極5に接続し、負極側の集電電極4に負電圧を、正極側の集電電極5に正電圧を印加する。従って、これらの集電電極4、5に接する活性炭粉末層の負極1が負に印加され、正極2が正に印加される。   At the time of charging, an external power source (not shown) is connected to the negative collector electrode 4 and the positive collector electrode 5, a negative voltage is applied to the negative collector electrode 4, and the positive collector electrode 5 is connected to the negative collector electrode 5. Apply a positive voltage. Therefore, the negative electrode 1 of the activated carbon powder layer in contact with the current collecting electrodes 4 and 5 is applied negatively, and the positive electrode 2 is applied positively.

この時、負極1の活性炭粉末層の内部表面では、(化2)あるいは(化3)に従って、ピラジンの水素付加が起こると同時に、ピラジンの水素付加物の中に負電荷が蓄積される。   At this time, pyrazine hydrogenation occurs on the inner surface of the activated carbon powder layer of the negative electrode 1 according to (Chemical Formula 2) or (Chemical Formula 3), and at the same time, a negative charge is accumulated in the hydrogenated product of pyrazine.

その化合物は(化10)のXがHの場合である。   The compound is when X in (Chemical Formula 10) is H.

(化2)に従って水素イオンが利用されるか、(化3)に従って溶媒の水が利用されるかは、電解液の水素イオン濃度によるもので、塩酸、フッ酸、臭酸、よう酸、硫酸、リン酸などの酸の場合は、水素イオンが利用され、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムなどのアルカリの場合は溶媒の水が利用され、多数の塩類の場合は、混合して利用される。   Whether hydrogen ions are used in accordance with (Chemical Formula 2) or water in the solvent is used in accordance with (Chemical Formula 3) depends on the hydrogen ion concentration of the electrolytic solution. Hydrochloric acid, hydrofluoric acid, odorous acid, iodic acid, sulfuric acid In the case of acids such as phosphoric acid, hydrogen ions are used, and in the case of alkalis such as sodium hydroxide, lithium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, solvent water is used. In the case of salts, they are mixed and used.

同じ充電時、正極2の活性炭粉末層の内部表面でも、ピラジンへの付加反応が起こる。   During the same charge, an addition reaction to pyrazine also occurs on the inner surface of the activated carbon powder layer of the positive electrode 2.

水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムなどのアルカリでは、(化4)に従って水酸基が付加して負電荷が除かれ、結果的には正電荷が付加物中に蓄積した状態となる。   In alkalis such as sodium hydroxide, lithium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide, a hydroxyl group is added according to (Chemical Formula 4) to remove the negative charge, and as a result, a positive charge is contained in the adduct. Will be accumulated.

硫酸、リン酸などの酸では、(化5)に従って水酸基が付加する。   In acids such as sulfuric acid and phosphoric acid, hydroxyl groups are added according to (Chemical Formula 5).

塩酸、フッ酸、臭酸、よう酸などの酸では、(化6)〜(化9)にそれぞれ示す反応により付加反応がおき電荷の蓄積が起こる。   In acids such as hydrochloric acid, hydrofluoric acid, odorous acid, and iodic acid, addition reactions occur due to the reactions shown in (Chemical Formula 6) to (Chemical Formula 9), and charge accumulation occurs.

多数の塩類では水酸イオンの濃度とその他の陰イオンの濃度により(化4)〜(化9)の反応が混合して起こる。   In many salts, the reactions of (Chemical Formula 4) to (Chemical Formula 9) are mixed depending on the concentration of hydroxide ion and the concentration of other anions.

以上の充電の過程を通して、水素ガス、酸素ガス、塩素ガス、フッ素ガス、臭素ガス、よう素ガスなどの気体は発生しない。   Gases such as hydrogen gas, oxygen gas, chlorine gas, fluorine gas, bromine gas and iodine gas are not generated through the above charging process.

次の放電時に、外部負荷(図示せず)が負極側の集電電極4と正極側の集電電極5に接続し、負極側の集電電極4から負電圧を受け、正極側の集電電極5から正電圧を受ける。このときの反応は、充電時の反応の逆反応であり、(化11)〜(化18)のように進行し、外部負荷に電荷を流し、元の状態に戻る。   During the next discharge, an external load (not shown) is connected to the negative electrode side collector electrode 4 and the positive electrode side collector electrode 5, receives a negative voltage from the negative electrode side collector electrode 4, and collects the positive electrode side current collector. A positive voltage is received from the electrode 5. The reaction at this time is a reverse reaction of the reaction at the time of charging, proceeds as shown in (Chemical Formula 11) to (Chemical Formula 18), flows charge to the external load, and returns to the original state.

この放電の過程でも、負極側の電解液ポンプ9と正極側の電解液ポンプ10は運転を続け、負極側の電解液を負極側の電解液タンク7との間で、正極側の電解液を正極側の電解液タンク8との間で循環し続ける。そのため、タンク内の蓄電容量分も含めて放電することができる。   Even during this discharge process, the negative electrode side electrolyte pump 9 and the positive electrode side electrolyte pump 10 continue to operate, and the negative electrode side electrolyte solution is passed between the negative electrode side electrolyte solution tank 7 and the positive electrode side electrolyte solution. Circulation continues with the electrolyte tank 8 on the positive electrode side. Therefore, it is possible to discharge including the amount of power stored in the tank.

充放電の過程は以上のようであるが、この間、電解液は液状を保ち、析出して寸法形状的な変化を引き起こすことがない。   The charging / discharging process is as described above. During this time, the electrolytic solution remains in a liquid state and does not precipitate and cause a change in dimension and shape.

図2は、実験に用いた電池部6の構成を示す。図に示すように、間隙11と間隙12には、電解液を含浸した活性炭を塗りつけ、フッ素樹脂のメンブレンフィルター13(図1の隔膜3)厚み有り姿0.07ミリメートルを挟み、ポリエチレン製の枠16、17とともに、グラファイトカーボンを熱硬化樹脂で固めた集電電極14、15(図1の集電電極4、5)で挟みつけると圧密され、余剰の電解液を含浸した活性炭は、集電電極14、15に設けた穴19、20より電池部6外に排出され、電解液を含浸した活性炭を含む間隙11と間隙12の厚みが一定に保たれる。なお、メンブレンフィルター13の周囲にはシールフィルム18が施されている。   FIG. 2 shows the configuration of the battery unit 6 used in the experiment. As shown in the figure, the gap 11 and the gap 12 are coated with activated carbon impregnated with an electrolyte, and a fluororesin membrane filter 13 (diaphragm 3 in FIG. 1) is sandwiched between 0.07 millimeters with a thickness, and a polyethylene frame. 16, 17, and activated carbon impregnated with excess electrolyte solution when it is sandwiched between collector electrodes 14 and 15 (collector electrodes 4 and 5 in FIG. 1) in which graphite carbon is hardened with a thermosetting resin, Thicknesses of the gap 11 and the gap 12 containing activated carbon impregnated with the electrolytic solution are discharged from the holes 19 and 20 provided in the electrodes 14 and 15 and kept constant. A seal film 18 is provided around the membrane filter 13.

以下の実験は、この間隙11と間隙12の面積を4平方センチメートルにとり、間隙11と間隙12の厚みを1ミリメートルとして行った。   In the following experiment, the area of the gap 11 and the gap 12 was 4 square centimeters, and the thickness of the gap 11 and the gap 12 was 1 millimeter.

図3に電解液として、6規定塩酸とピラジンの等重量混合液を用いた結果を示す。図中aの区間は2ボルト定電圧で外部電源から充電した区間、図中bの区間は外部電源を外し開回路とした区間、図中cの区間は10オームの外部負荷を接続した区間である。約1.6ボルトの開放起電力が得られ、0.14アンペアから0.12アンペアの放電電流が得られた。   FIG. 3 shows the results of using an equal weight mixed solution of 6N hydrochloric acid and pyrazine as the electrolytic solution. The section a in the figure is a section charged from an external power source at a constant voltage of 2 volts, the section b in the figure is a section in which an external power source is removed and opened, and the section c in the figure is a section in which an external load of 10 ohm is connected. is there. An open electromotive force of about 1.6 volts was obtained, and a discharge current of 0.14 to 0.12 amperes was obtained.

図4に電解液として、1規定水酸化ナトリウム溶液とピラジンの等重量混合液を用いた結果を示す。約1.4ボルトの開放起電力が得られ、0.12アンペアから0.1アンペアの放電電流が得られた。   FIG. 4 shows the results of using an equal weight mixed solution of 1N sodium hydroxide solution and pyrazine as the electrolytic solution. An open electromotive force of about 1.4 volts was obtained, and a discharge current of 0.12 to 0.1 amperes was obtained.

このように、本実施の形態では、対向する負極と正極の間に、ピラジンと電解質を溶解した水溶液である電解液を挟んで電池部を構成し、この電池部と外部との間で電解液を流通させるようにしたことにより、レドックスフロー電池の特長を生かしながら、安価な水を溶媒とし、水素を活物質とした資源上に問題のない二次電池が得られるものである。   Thus, in the present embodiment, a battery part is configured by sandwiching an electrolytic solution, which is an aqueous solution in which pyrazine and an electrolyte are dissolved, between an opposing negative electrode and a positive electrode, and the electrolytic solution is provided between the battery part and the outside. As a result, it is possible to obtain a secondary battery having no problem in terms of resources using cheap water as a solvent and hydrogen as an active material while taking advantage of the features of the redox flow battery.

以上のように、本発明にかかる二次電池は、レドックスフロー電池の特長を生かしながら、安価な水を溶媒とし、水素を活物質とした資源上に問題のない二次電池が得られるので、電池部を複数集合配置することで各種機器や装置に適用することができるものである。   As described above, since the secondary battery according to the present invention makes use of the features of the redox flow battery, a secondary battery can be obtained which has no problem on resources using cheap water as a solvent and hydrogen as an active material. By arranging a plurality of battery units, the battery unit can be applied to various devices and apparatuses.

本発明の実施の形態における二次電池の原理を示す構成図The block diagram which shows the principle of the secondary battery in embodiment of this invention (a)同二次電池の電池部を示す正面図(b)(a)のA−A線による断面図(A) Front view showing a battery part of the secondary battery (b) Sectional view taken along line AA of (a) 同二次電池の実験結果の一例を示す図The figure which shows an example of the experimental result of the secondary battery 同二次電池の実験結果の他例を示す図The figure which shows the other example of the experimental result of the secondary battery

符号の説明Explanation of symbols

1 負極
2 正極
3 隔膜
4 負極側の集電電極
5 正極側の集電電極
6 電池部
7 負極側の電解液タンク
8 正極側の電解液タンク
9 負極側の電解液ポンプ
10 負極側の電解液ポンプ
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Diaphragm 4 Negative electrode side collector electrode 5 Positive electrode side current collector electrode 6 Battery part 7 Negative electrode side electrolyte tank 8 Positive electrode side electrolyte tank 9 Negative electrode side electrolyte pump 10 Negative electrode side electrolyte pump

Claims (6)

対向する負極と正極の間に、ピラジンと電解質を溶解した水溶液である電解液を挟んで電池部を構成し、この電池部と外部との間で電解液を流通させるようにした二次電池。 A secondary battery in which a battery part is configured by sandwiching an electrolytic solution, which is an aqueous solution in which pyrazine and an electrolyte are dissolved, between an opposing negative electrode and a positive electrode, and the electrolytic solution is circulated between the battery part and the outside. 負極と正極を多孔質炭素材料で構成した請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the negative electrode and the positive electrode are made of a porous carbon material. 対向する負極と正極の間に、ピラジンと電解質を溶解した水溶液を含浸した隔膜を設けた請求項1または2に記載の二次電池。 The secondary battery according to claim 1 or 2, wherein a diaphragm impregnated with an aqueous solution in which pyrazine and an electrolyte are dissolved is provided between the opposing negative electrode and the positive electrode. 電解質が塩酸、フッ酸、臭酸、よう酸、硫酸、リン酸から選ばれた1つの酸である請求項1〜3のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein the electrolyte is one acid selected from hydrochloric acid, hydrofluoric acid, odorous acid, iodic acid, sulfuric acid, and phosphoric acid. 電解質が水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムから選ばれた1つのアルカリである請求項1〜3のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein the electrolyte is one alkali selected from sodium hydroxide, lithium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide. 電解質が塩化ナトリウム、塩化リチウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、フッ化ナトリウム、フッ化リチウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム、臭化ナトリウム、臭化リチウム、臭化カリウム、臭化マグネシウム、臭化カルシウム、よう化ナトリウム、よう化リチウム、よう化カリウム、よう化マグネシウム、よう化カルシウム、硫酸ナトリウム、硫酸リチウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、リン酸ナトリウム、リン酸リチウム、リン酸カリウム、リン酸マグネシウム、リン酸カルシウムから選ばれた1つの塩である請求項1〜3のいずれか1項に記載の二次電池。 The electrolyte is sodium chloride, lithium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium fluoride, lithium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, sodium bromide, lithium bromide, potassium bromide, odor Magnesium iodide, calcium bromide, sodium iodide, lithium iodide, potassium iodide, magnesium iodide, calcium iodide, sodium sulfate, lithium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, sodium phosphate, lithium phosphate, The secondary battery according to any one of claims 1 to 3, wherein the secondary battery is one salt selected from potassium phosphate, magnesium phosphate, and calcium phosphate.
JP2006302339A 2006-11-08 2006-11-08 Secondary battery Pending JP2008117721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302339A JP2008117721A (en) 2006-11-08 2006-11-08 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302339A JP2008117721A (en) 2006-11-08 2006-11-08 Secondary battery

Publications (1)

Publication Number Publication Date
JP2008117721A true JP2008117721A (en) 2008-05-22

Family

ID=39503477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302339A Pending JP2008117721A (en) 2006-11-08 2006-11-08 Secondary battery

Country Status (1)

Country Link
JP (1) JP2008117721A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510464A (en) * 2008-01-23 2011-03-31 エーシーエーエル・エナジー・リミテッド Fuel cell
US8080327B1 (en) * 2011-06-27 2011-12-20 Vinazene, Inc. Electrical storage device utilizing pyrazine-based cyanoazacarbons and polymers derived therefrom
WO2015147582A1 (en) * 2014-03-26 2015-10-01 Oci Company Ltd. Redox flow battery
CN106601943A (en) * 2015-10-20 2017-04-26 北京好风光储能技术有限公司 Integrated parallel-flow lithium flow battery reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510464A (en) * 2008-01-23 2011-03-31 エーシーエーエル・エナジー・リミテッド Fuel cell
US8080327B1 (en) * 2011-06-27 2011-12-20 Vinazene, Inc. Electrical storage device utilizing pyrazine-based cyanoazacarbons and polymers derived therefrom
WO2015147582A1 (en) * 2014-03-26 2015-10-01 Oci Company Ltd. Redox flow battery
CN106601943A (en) * 2015-10-20 2017-04-26 北京好风光储能技术有限公司 Integrated parallel-flow lithium flow battery reactor
CN106601943B (en) * 2015-10-20 2019-03-08 北京好风光储能技术有限公司 Integrated downflow type lithium flow battery reactor

Similar Documents

Publication Publication Date Title
Ding et al. Electrochemical neutralization energy: from concept to devices
US9469554B2 (en) Bipolar electrode and supercapacitor desalination device, and methods of manufacture
FI108685B (en) Electrochemical apparatus for emitting electrical current using air electrode
US8916281B2 (en) Rebalancing electrolytes in redox flow battery systems
US20160248109A1 (en) Driven electrochemical cell for electrolyte state of charge balance in energy storage devices
Kim et al. Enhanced desalination via cell voltage extension of membrane capacitive deionization using an aqueous/organic bi-electrolyte
CN105453321B (en) Flow battery with the hydrated ion exchange membrane for possessing maximum waters cluster size
AU2012271273A1 (en) Metal-air cell with ion exchange material
CN105324875A (en) Cathodes capable of operating in an electrochemical reaction, and related cells, devices, and methods
JP2012054035A (en) Vanadium ion battery
CN102176380A (en) Oxidation-reduction reaction electrochemical capacitor
JP2008117721A (en) Secondary battery
US10665868B2 (en) Electrochemical cells and batteries
JP2008117720A (en) Secondary battery
KR102015064B1 (en) Power generation system having serially connected heterogeneous reverse electrodialysis
JP5979551B2 (en) Vanadium redox battery
JP6546099B2 (en) Alkali metal insertion materials as electrodes in electrolysis cells
CN1848506A (en) Vanadium ion liquid flow accumulator battery
KR102024716B1 (en) Alkali metal ion battery using alkali metal conductive ceramic separator
US20230207852A1 (en) Binary redox flow battery for simultaneously charging and discharging electricity
EP3042415A1 (en) Sodium-halogen secondary cell
JP2019515423A (en) Redox flow battery
WO2009143670A1 (en) Battery of sea water electrolyte
US20150030896A1 (en) Sodium-halogen secondary cell
JP2009283425A (en) Oxidation reduction-type electricity storage device using circulatory regenerated pure water as electrolyte solution