JP2009283238A - 燃料電池のガス流路構造及び燃料電池 - Google Patents

燃料電池のガス流路構造及び燃料電池 Download PDF

Info

Publication number
JP2009283238A
JP2009283238A JP2008133101A JP2008133101A JP2009283238A JP 2009283238 A JP2009283238 A JP 2009283238A JP 2008133101 A JP2008133101 A JP 2008133101A JP 2008133101 A JP2008133101 A JP 2008133101A JP 2009283238 A JP2009283238 A JP 2009283238A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
fuel
flow path
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008133101A
Other languages
English (en)
Inventor
Kosaku Fujinaga
幸作 藤永
Masanori Furuya
正紀 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008133101A priority Critical patent/JP2009283238A/ja
Publication of JP2009283238A publication Critical patent/JP2009283238A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】 酸化剤ガス及び燃料ガスをより効果的に発電反応に寄与させることができる燃料電池のガス流路構造を提供すること。
【解決手段】 このガス流路構造を実現するための燃料電池セルFC1は、複数個組み合わせて燃料電池セルスタックFCS1として用いられるものであって、隣接する燃料電池セルFC1の燃料極40に向けて燃料ガスを方向づけるように、段部80をインターコネクタ部50上に設けている。
【選択図】図4

Description

本発明の態様は、一般に、燃料電池のガス流路構造及び燃料電池に関する。
従来、このような燃料電池に用いられる燃料電池セルは、電解質を挟んで空気極と燃料極が配置されている。燃料電池の作動原理は、空気極に接した酸化剤ガスとしての空気は空気極内で電子を受け取って酸素イオンとなり、その酸素イオンが電解質中を燃料極側に移動し、燃料極内に入った水素と反応して電子を離して水を生成するものである。従って、発電を継続するためには、空気極には空気を、燃料極には燃料ガスを、それぞれ絶え間なく供給する必要がある。従って、燃料電池セルの内外にガス流路が形成されることになり、そのガス流路に空気及び燃料ガスを流し続ける態様が採用されている(下記特許文献1、特許文献2参照)。
特開2007−128739号公報 特開2006−202519号公報
ところで、燃料電池セルの形状がいかなるものであれ、その内外に空気や燃料ガスを流して発電する形態を採用した場合、内側に配置した空気極又は燃料極から電気を取り出すためのインターコネクタ部が必要となる。そのインターコネクタ部では上述したような発電反応は行われないことから、各燃料電池セルには上述したような発電反応を行う反応部と、未反応部とが形成される。そのため、燃料電池セル内外に形成されるガス流路においては、反応部に近い領域を流れる空気又は燃料ガスは発電反応に効果的に利用されるものの、未反応部に近い領域を流れる空気又は燃料ガスは発電反応に利用されないまま放出されることになる。
そこで、本発明では、酸化剤ガス及び燃料ガスをより効果的に発電反応に寄与させることができる燃料電池のガス流路構造及び燃料電池を提供することを目的とする。
上記課題を解決するために、本発明に係る燃料電池のガス流路構造は、燃料ガス及び酸化剤ガスの一方を含む第1ガスと他方を含む第2ガスとによって作動する複数の燃料電池セルを含む燃料電池のガス流路構造であって、前記第1ガスが通る第1流路と、前記第2ガスが通る第2流路と、前記第1ガスに対応し、前記第1流路に臨んで形成される第1電極と、前記第2ガスに対応し、前記第2流路に臨んで形成される第2電極と、を備え、前記第1流路において前記第1ガスを前記第1電極に向けて方向付ける第1方向付け部及び前記第2流路において前記第2ガスを前記第2電極に向けて方向付ける第2方向付け部の少なくとも一方を備えることを特徴とする。
本発明によれば、酸化剤ガス及び燃料ガスをより効果的に発電反応に寄与させることができる燃料電池のガス流路構造及び燃料電池を提供することができる。
本発明を実施するための最良の形態を説明するのに先立って、本発明の作用効果について説明する。
本発明に係る燃料電池のガス流路構造は、燃料ガス及び酸化剤ガスの一方を含む第1ガスと他方を含む第2ガスとによって作動する複数の燃料電池セルを含む燃料電池のガス流路構造であって、前記第1ガスが通る第1流路と、前記第2ガスが通る第2流路と、前記第1ガスに対応し、前記第1流路に臨んで形成される第1電極と、前記第2ガスに対応し、前記第2流路に臨んで形成される第2電極と、を備え、前記第1流路において前記第1ガスを前記第1電極に向けて方向付ける第1方向付け部及び前記第2流路において前記第2ガスを前記第2電極に向けて方向付ける第2方向付け部の少なくとも一方を備えることを特徴とする。
本発明では、第1流路において第1ガスを第1電極に向けて方向付ける第1方向付け部及び第2流路において第2ガスを第2電極に向けて方向付ける第2方向付け部の少なくとも一方を備えているので、各流路を流れるガスを効率的に電極に誘導することができ、発電反応に寄与せずにガスが流出してしまうことを抑制することができる。
また、本発明に係る燃料電池のガス流路構造では、前記第1流路は隣接する複数の前記燃料電池セル間に形成され、前記第2流路は複数の前記燃料電池セルそれぞれの内部に形成されていることも好ましい。この好ましい態様では、燃料電池セル間に流れる第1ガスを第1電極に向けて方向付けすることができると共に、燃料電池セル内部を流れる第2ガスを第2電極に向けて方向付けすることもできる。
また、本発明に係る燃料電池のガス流路構造では、前記第1方向付け部は、隣接する前記燃料電池セルの第1電極に向けて前記第1ガスを方向付けるように、複数の前記燃料電池セルそれぞれに設けられていることも好ましい。この好ましい態様によれば、燃料電池セル間に流れる第1ガスを、隣接する燃料電池セルに設けられている第1方向付け部によって第1電極に誘導することができ、効果的に利用することが可能となる。
また、本発明に係る燃料電池のガス流路構造では、複数の前記燃料電池セルはそれぞれ、前記第1電極と、前記第2電極と、前記第1電極と前記第2電極との間に配置される電解質部と、前記第2電極と電気的に接続されたインターコネクタ部と、前記第1電極、前記第2電極、前記電解質部、及び前記インターコネクタ部を支持するための支持体と、を備え、隣接する前記燃料電池セルは、一方の燃料電池セルの第1電極が他方の燃料電池セルのインターコネクタ部と対向するように配置されており、前記インターコネクタ部に前記第1方向付け部が設けられていることも好ましい。インターコネクタ部近傍を流れる第1ガスは発電反応に寄与せず、そのまま放出されてしまうので、そのインターコネクタ部に第1方向付け部を設けることでより直接的に第1ガスに働きかけて隣接する燃料電池セルの第1電極へと誘導することができる。
また、本発明に係る燃料電池のガス流路構造では、複数の前記燃料電池セルはそれぞれ、前記第1電極と、前記第2電極に相当し且つ他の部分を支持するための支持体としても機能する電極支持体と、前記第1電極と前記電極支持体との間に配置される電解質部と、前記第2電極と電気的に接続されたインターコネクタ部と、を備え、隣接する前記燃料電池セルは、一方の燃料電池セルの第1電極が他方の燃料電池セルのインターコネクタ部と対向するように配置されており、前記インターコネクタ部に前記第1方向付け部が設けられていることも好ましい。インターコネクタ部近傍を流れる第1ガスは発電反応に寄与せず、そのまま放出されてしまうので、そのインターコネクタ部に第1方向付け部を設けることでより直接的に第1ガスに働きかけて隣接する燃料電池セルの第1電極へと誘導することができる。
また、本発明に係る燃料電池のガス流路構造では、前記第2方向付け部は、前記燃料電池セルの内部に形成された第2流路において、前記第2電極に向けて前記第2ガスを方向付けるように、複数の前記燃料電池セルそれぞれに設けられていることも好ましい。この好ましい態様によれば、燃料電池セル内に流れる第2ガスを、各燃料電池セル内に設けられている第2方向付け部によって第2電極に誘導することができ、効果的に利用することが可能となる。
また、本発明に係る燃料電池のガス流路構造では、複数の前記燃料電池セルはそれぞれ、前記第1電極と、前記第2電極と、前記第1電極と前記第2電極との間に配置される電解質部と、前記第2電極と電気的に接続されたインターコネクタ部と、前記第1電極、前記第2電極、前記電解質部、及び前記インターコネクタ部を支持するための支持体と、を備え、前記インターコネクタ部に対応した位置の前記第2流路に前記第2方向付け部が設けられていることも好ましい。インターコネクタ部に対応した位置近傍を流れる第2ガスは発電反応に寄与せず、そのまま放出されてしまうので、そのインターコネクタ部に対応した位置に第2方向付け部を設けることでより直接的に第2ガスに働きかけて第2電極へと誘導することができる。
また、本発明に係る燃料電池のガス流路構造では、複数の前記燃料電池セルはそれぞれ、前記第1電極と、前記第2電極に相当し且つ他の部分を支持するための支持体としても機能する電極支持体と、前記第1電極と前記電極支持体との間に配置される電解質部と、前記第2電極と電気的に接続されたインターコネクタ部と、を備え、前記インターコネクタ部に対応した位置の前記第2流路に前記第2方向付け部が設けられていることも好ましい。インターコネクタ部に対応した位置近傍を流れる第2ガスは発電反応に寄与せず、そのまま放出されてしまうので、そのインターコネクタ部に対応した位置に第2方向付け部を設けることでより直接的に第2ガスに働きかけて第2電極へと誘導することができる。
また、本発明に係る燃料電池のガス流路構造では、前記電解質部は前記電極支持体の外表面の一部に形成され、当該形成された電解質部に重ねて前記第1電極が形成されることで第1反応部を形成しており、前記インターコネクタ部は、前記電極支持体の外表面であって前記電解質部が形成されていない残部に形成されることも好ましい。
また、本発明に係る燃料電池のガス流路構造では、前記電解質部及び前記電解質部を挟んで形成される前記第1電極及び前記第2電極からなる第2反応部が前記支持体の外表面の一部に形成され、前記インターコネクタ部は、前記支持体の外表面であって前記第2反応部が形成されていない残部に形成され、前記支持体は導電性を有する材料によって形成されていることも好ましい。
また、上述したガス流路構造を備える燃料電池を構成することで、上述した作用効果を奏する燃料電池を提供することができる。
続いて、本発明の好適な実施形態について、図面を参照して説明する。なお、説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
図1〜図5を参照しながら、本発明の第一実施形態に係る燃料電池セルFC1及びその燃料電池セルFC1を組み合わせた燃料電池セルスタックFCS1について説明する。この実施形態は、燃料電池セルFC1の外部流路に第1方向付け部を設ける例を示す実施形態である。図1は、燃料電池セルFC1の外形を説明するための斜視図である。図2は、図1のA―A線を含むxz平面における燃料電池セルFC1の断面図である。図3は、図1のB―B線を含むyz平面における燃料電池セルFC1の断面図である。図4は、図1に示す燃料電池セルFC1を2つ組み合わせた燃料電池セルスタックFCS1であって、図1のA―A線を含むxz平面における断面図である。図5は、図1に示す燃料電池セルFC1を2つ組み合わせた燃料電池セルスタックFCS1であって、図1のB―B線を含むyz平面における断面図である。
図1において、燃料電池セルFC1の軸方向(燃料電池セルFC1が延在する方向)をy方向とし、y方向に直交する燃料電池セルFC1の幅方向(後述する流路60が連設される方向)をx方向とし、y方向及びx方向の双方に直交する方向であって燃料電池セルFC1の厚み方向をz方向としている。
図1に示すように、燃料電池セルFC1は、直方体状を成すように形成されている。燃料電池セルFC1は、空気極支持体20(本発明における電極支持体、第2電極に相当する)と、電解質部30と、燃料極40(本発明における第1電極に相当する)と、インターコネクタ部50と、流路60とを備えている。更にインターコネクタ部50上には、集電部材70と、段部80(本発明における第1方向付け部に相当する)が設けられている。
空気極支持体20は、電解質部30、燃料極40、及びインターコネクタ部50を支持するための支持体であって、その内部には流路60が形成されている。空気極支持体20は、ペロブスカイト型酸化物からなる空気極材料によって形成されている。そのような空気極材料としては、例えばLaCoO、LaMnO、LaFeO等であって、SrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、又はそれらの複合材等が用いられる。
空気極支持体20には、燃料電池セルFC1の軸方向(燃料電池セルFC1が延在する方向)であるy方向に沿って流路60が形成されている。本実施形態の場合、流路60はy方向と直交するx方向に3つ連なって形成されている。各流路60は、一端から他端に向けて空気が流れるように形成されている。
電解質部30は、空気極支持体20のインターコネクタ部50が形成されていない三面と、インターコネクタ部50が形成されている面であってインターコネクタ部50が形成されていない部分を覆うように層状に形成されている。電解質部30は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
燃料極40は、空気極支持体20のインターコネクタ部50が形成されていない三面にかけて繋がるように層状に形成されている。燃料極40は、多孔質のニッケルとYSZのサーメットにより形成されている。
インターコネクタ部50は、空気極支持体20の一面の一部を覆うように層状に形成されている。インターコネクタ部50は、LaCrOにSrやCa等をドープしたものにより形成されている。
尚、この第一実施形態では、空気極支持体20として構成したが、燃料極支持体として構成しても構わない。その場合、燃料極40は空気極として構成される。空気極支持体20を燃料極支持体として構成する場合には、多孔質のニッケルとYSZのサーメットにより形成される。その場合、燃料極40を空気極として構成するため、例えばLaCoO、LaMnO、LaFeO等であって、SrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、又はそれらの複合材等が用いられる。
集電部材70は、図1のy方向に2列に並んで形成され、各列は5個のブロック状に分割されている。分割された集電部材70の間には、段部80が形成されている。段部80は、各列ごとの集電部材70の間に配置されており、列間においてインターコネクタ部50よりも突出するように形成されている(図2及び図3参照)。従って、燃料電池セルFC1を組み合わせて燃料電池セルスタックFCS1を形成すると、図4及び図5に示すようになる。図4及び図5に示すように、隣接する燃料電池セルFC1間において、一方の燃料電池セルFC1のインターコネクタ部50に設けられた段部80が、他方の燃料電池セルFC1の燃料極40に向けて突出するように形成されている。従って、燃料電池セルFC1の外側に燃料ガスを流した場合(換言すれば、燃料電池セルFC1の外側を燃料ガスの流路とした場合)、燃料ガスは段部80によってその流れが乱されて燃料極40へと方向付けられる。このように構成することで、発電反応に供されないインターコネクタ部50近傍を流れる燃料ガスが、隣接する燃料電池セルFC1の反応部(本発明の第1反応部に相当する)に導かれて発電反応に供されるため、燃料枯れ等の発生を効果的に低減することができる。
尚、空気極支持体20を導電性の支持体として構成することも好ましい。この好ましい第二実施形態について、図6〜図10を参照しながら説明する。図6は、導電性の支持体によって形成された燃料電池セルFC2の外形を説明するための斜視図である。図7は、図6のC―C線を含むxz平面における燃料電池セルFC2の断面図である。図8は、図6のD―D線を含むyz平面における燃料電池セルFC2の断面図である。図9は、図6に示す燃料電池セルFC2を2つ組み合わせた燃料電池セルスタックFCS2であって、図6のC―C線を含むxz平面における断面図である。図10は、図6に示す燃料電池セルFC2を2つ組み合わせた燃料電池セルスタックFCS2であって、図6のD―D線を含むyz平面における断面図である。
図6において、燃料電池セルFC2の軸方向(燃料電池セルFC2が延在する方向)をy方向とし、y方向に直交する燃料電池セルFC2の幅方向(後述する流路61が連設される方向)をx方向とし、y方向及びx方向の双方に直交する方向であって燃料電池セルFC2の厚み方向をz方向としている。
図6に示すように、燃料電池セルFC2は、直方体状を成すように形成されている。燃料電池セルFC2は、支持体21(本発明における支持体に相当する)と、電解質部31と、燃料極41(本発明における第1電極に相当する)と、空気極91(本発明における第2電極に相当する)と、インターコネクタ部51と、流路61とを備えている。更にインターコネクタ部51上には、集電部材70と、段部80(本発明における第1方向付け部に相当する)が設けられている。
支持体21は、電解質部31、燃料極41、空気極91、及びインターコネクタ部51を支持するための支持体であって、その内部には流路61が形成されている。支持体21は、導電性の材料によって形成されており、例えばインターコネクタを形成する場合に用いられるLaCrOにSrやCa等をドープしたものにより形成されている。
支持体21には、燃料電池セルFC2の軸方向(燃料電池セルFC2が延在する方向)であるy方向に沿って流路61が形成されている。本実施形態の場合、流路61はy方向と直交するx方向に3つ連なって形成されている。各流路61は、一端から他端に向けて空気が流れるように形成されている。
電解質部31は、支持体21のインターコネクタ部51が形成されていない三面と、インターコネクタ部51が形成されている面であってインターコネクタ部51が形成されていない部分を覆うように層状に形成されている。電解質部31は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
燃料極41は、支持体21のインターコネクタ部51が形成されていない三面にかけて繋がるように層状に形成されている。燃料極41は、多孔質のニッケルとYSZのサーメットにより形成されている。
空気極91は、支持体21のインターコネクタ部51が形成されていない三面にかけて繋がるように層状に形成されている。空気極91は、ペロブスカイト型酸化物からなる空気極材料によって形成されている。そのような空気極材料としては、例えばLaCoO、LaMnO、LaFeO等であって、SrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、又はそれらの複合材等が用いられる。
インターコネクタ部51は、支持体21の一面の一部を覆うように層状に形成されている。インターコネクタ部51は、LaCrOにSrやCa等をドープしたものにより形成されている。
集電部材70は、第一実施形態と同様に、図6のy方向に2列に並んで形成され、各列は5個のブロック状に分割されている。分割された集電部材70の間には、段部80が形成されている。段部80は、各列ごとの集電部材70の間に配置されており、列間においてインターコネクタ部50よりも突出するように形成されている(図7及び図8参照)。従って、燃料電池セルFC2を組み合わせて燃料電池セルスタックFCS2を形成すると、図9及び図10に示すようになる。図9及び図10に示すように、隣接する燃料電池セルFC2間において、一方の燃料電池セルFC2のインターコネクタ部51に設けられた段部80が、他方の燃料電池セルFC2の燃料極41に向けて突出するように形成されている。従って、燃料電池セルFC2の外側に燃料ガスを流した場合(換言すれば、燃料電池セルFC2の外側を燃料ガスの流路とした場合)、燃料ガスは段部80によってその流れが乱されて燃料極41へと方向付けられる。このように構成することで、発電反応に供されないインターコネクタ部51近傍を流れる燃料ガスが、隣接する燃料電池セルFC2の反応部(本発明の第2反応部に相当する)に導かれて発電反応に供されるため、燃料枯れ等の発生を効果的に低減することができる。
尚、上述した第一実施形態及び第二実施形態共に、段部80を燃料電池セルFC1,FC2の軸方向(y方向)に一様に設けたが、段部80を設ける態様はこれに限られない。図11に示すように、外側のガスが流れる方向の上流側のみに設けると、特に外側のガスが燃料の場合、メタンを主成分とする炭化水素燃料を効率良く燃料電池の燃料極表面へ接触させて、燃料の改質による吸熱反応により上流での発電反応の活性を抑制することができ、燃料電池セルの軸方向における燃料の濃度の偏りを抑制できる。図12に示すように、外側のガスが流れる方向の下流側のみに設けると、外側のガスが燃料または空気のいずれにしても、段部80を設けた部分において、ガスは隣接する燃料電池セルFC1,FC2の反応部(本発明の第2反応部に相当する)へと導かれるので、ガスが希薄になりそうな部位で燃料枯れまたは酸素枯れを抑制できる。
上述した第一実施形態及び第二実施形態では、インターコネクタ部50,51とは別個の部材として段部80を設けたが、段部80をインターコネクタ部と一体的に設けることも好ましい。この好ましい第三実施形態について、図13〜図19を参照しながら説明する。
図13は、燃料電池セルFC3の外形を説明するための斜視図である。図14は、図13のE―E線を含むxz平面における燃料電池セルFC3の断面図である。図15は、図13のF―F線を含むxz平面における燃料電池セルFC3の断面図である。図16は、図13のG―G線を含むyz平面における燃料電池セルFC3の断面図である。図17は、図13に示す燃料電池セルFC3を2つ組み合わせた燃料電池セルスタックFCS3であって、図13のE―E線を含むxz平面における断面図である。図18は、図13に示す燃料電池セルFC3を2つ組み合わせた燃料電池セルスタックFCS3であって、図13のF―F線を含むxz平面における断面図である。図19は、図13に示す燃料電池セルFC3を2つ組み合わせた燃料電池セルスタックFCS3であって、図13のG―G線を含むyz平面における断面図である。
図13において、燃料電池セルFC3の軸方向(燃料電池セルFC3が延在する方向)をy方向とし、y方向に直交する燃料電池セルFC3の幅方向(後述する流路63が連設される方向)をx方向とし、y方向及びx方向の双方に直交する方向であって燃料電池セルFC3の厚み方向をz方向としている。
図13に示すように、燃料電池セルFC3は、直方体状を成すように形成されている。燃料電池セルFC3は、空気極支持体23(本発明における電極支持体、第2電極に相当する)と、電解質部33と、燃料極43(本発明における第1電極に相当する)と、インターコネクタ部53と、流路63とを備えている。更にインターコネクタ部53上には、集電部材73が設けられている。
空気極支持体23は、電解質部33、燃料極43、及びインターコネクタ部53を支持するための支持体であって、その内部には流路63が形成されている。空気極支持体23は、ペロブスカイト型酸化物からなる空気極材料によって形成されている。そのような空気極材料としては、例えばLaCoO、LaMnO、LaFeO等であって、SrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、又はそれらの複合材等が用いられる。
空気極支持体23には、燃料電池セルFC3の軸方向(燃料電池セルFC3が延在する方向)であるy方向に沿って流路63が形成されている。本実施形態の場合、流路63はy方向と直交するx方向に3つ連なって形成されている。各流路63は、一端から他端に向けて空気が流れるように形成されている。
空気極支持体23は、各集電部材73の間において、外側に部分的に突出し、段部83を形成するように形成されている。
電解質部33は、空気極支持体23のインターコネクタ部53が形成されていない三面と、インターコネクタ部53が形成されている面であってインターコネクタ部53が形成されていない部分を覆うように層状に形成されている。電解質部33は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
燃料極43は、空気極支持体23のインターコネクタ部53が形成されていない三面にかけて繋がるように層状に形成されている。燃料極43は、多孔質のニッケルとYSZのサーメットにより形成されている。
インターコネクタ部53は、空気極支持体23の一面の一部を覆うように層状に形成されている。インターコネクタ部53は、LaCrOにSrやCa等をドープしたものにより形成されている。
尚、この第三実施形態では、空気極支持体23として構成したが、燃料極支持体として構成しても構わない。その場合、燃料極43は空気極として構成される。空気極支持体23を燃料極支持体として構成する場合には、多孔質のニッケルとYSZのサーメットにより形成される。その場合、燃料極43を空気極として構成するため、例えばLaCoO、LaMnO、LaFeO等であって、SrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、又はそれらの複合材等が用いられる。
集電部材73は、図13のy方向に2列に並んで形成され、各列は5個のブロック状に分割されている。分割された集電部材73の間には、上述したように段部83が形成されている。段部83は、各列ごとの集電部材73の間に突出するように形成されている(図14及び図16参照)。従って、燃料電池セルFC3を組み合わせて燃料電池セルスタックFCS3を形成すると、図17,図18及び図19に示すようになる。図17〜図19に示すように、隣接する燃料電池セルFC3間において、一方の燃料電池セルFC3のインターコネクタ部53に設けられた段部83が、他方の燃料電池セルFC3の燃料極43に向けて突出するように形成されている。従って、燃料電池セルFC3の外側に燃料ガスを流した場合(換言すれば、燃料電池セルFC3の外側を燃料ガスの流路とした場合)、燃料ガスは段部83によってその流れが乱されて燃料極43へと方向付けられる。このように構成することで、発電反応に供されないインターコネクタ部53近傍を流れる燃料ガスが、隣接する燃料電池セルFC3の反応部(本発明の第1反応部に相当する)に導かれて発電反応に供されるため、燃料枯れ等の発生を効果的に低減することができる。
また、上述した第一実施形態と第二実施形態との関係のように、空気極支持体23を導電性の支持体とし、空気極を別途層状に設けることも好ましい。
上述した第一実施形態から第三実施形態は、燃料電池セルFC1,FC2,FC3の外部流路に第1方向付け部を設ける例を示す実施形態であったが、第四実施形態として、内部流路に第2方向付け部を設ける例を説明する。この第四実施形態について、図20〜図26を参照しながら説明する。
図20は、燃料電池セルFC4の外形を説明するための斜視図である。図21は、図20のH―H線を含むxz平面における燃料電池セルFC4の断面図である。図22は、図20のI―I線を含むxz平面における燃料電池セルFC4の断面図である。図23は、図20のJ―J線を含むyz平面における燃料電池セルFC4の断面図である。図24は、図20に示す燃料電池セルFC4を2つ組み合わせた燃料電池セルスタックFCS4であって、図20のH―H線を含むxz平面における断面図である。図25は、図20に示す燃料電池セルFC4を2つ組み合わせた燃料電池セルスタックFCS4であって、図20のI―I線を含むxz平面における断面図である。図26は、図20に示す燃料電池セルFC4を2つ組み合わせた燃料電池セルスタックFCS4であって、図20のJ―J線を含むyz平面における断面図である。
図20において、燃料電池セルFC4の軸方向(燃料電池セルFC4が延在する方向)をy方向とし、y方向に直交する燃料電池セルFC4の幅方向(後述する流路64が連設される方向)をx方向とし、y方向及びx方向の双方に直交する方向であって燃料電池セルFC3の厚み方向をz方向としている。
図20に示すように、燃料電池セルFC4は、直方体状を成すように形成されている。燃料電池セルFC4は、燃料極支持体24(本発明における電極支持体、第2電極に相当する)と、電解質部34と、空気極44(本発明における第1電極に相当する)と、インターコネクタ部54と、流路64とを備えている。更にインターコネクタ部54上には、集電部材74が設けられている。
燃料極支持体24は、電解質部34、空気極44、及びインターコネクタ部54を支持するための支持体であって、その内部には流路64が形成されている。燃料極支持体は多孔質のニッケルとYSZのサーメットにより形成されている。
燃料極支持体24には、燃料電池セルFC4の軸方向(燃料電池セルFC4が延在する方向)であるy方向に沿って流路64が形成されている。本実施形態の場合、流路64はy方向と直交するx方向に3つ連なって形成されている。各流路64は、一端から他端に向けて燃料が流れるように形成されている。
燃料極支持体24は、各集電部材74の間において、内側に部分的に突出し、段部84を形成するように形成されている。
電解質部34は、燃料極支持体24のインターコネクタ部54が形成されていない三面と、インターコネクタ部54が形成されている面であってインターコネクタ部54が形成されていない部分を覆うように層状に形成されている。電解質部34は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
空気極44は、燃料極支持体24のインターコネクタ部54が形成されていない三面にかけて繋がるように層状に形成されている。空気極44は、ペロブスカイト型酸化物からなる材料によって形成されている。そのような空気極材料としては、例えばLaCoO、LaMnO、LaFeO等であって、SrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、又はそれらの複合材等が用いられる。
インターコネクタ部54は、燃料極支持体24の一面の一部を覆うように層状に形成されている。インターコネクタ部53は、LaCrOにSrやCa等をドープしたものにより形成されている。
尚、この第四実施形態では、燃料極支持体24として構成したが、空気極支持体として構成しても構わない。その場合、空気極44は燃料極として構成される。燃料極支持体24を空気極支持体として構成する場合には、空気極材料としては、例えばLaCoO、LaMnO、LaFeO等であって、SrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、又はそれらの複合材等が用いられる。その場合、空気極を燃料極として構成するため、多孔質のニッケルとYSZのサーメットにより形成される。
集電部材74は、図20のy方向に2列に並んで形成され、各列は5個のブロック状に分割されている。分割された集電部材74の間には、上述したように段部84が形成されている。段部84は、各列ごとの集電部材74の間において、流路64側に突出するように形成されている(図21及び図23参照)。従って、流路64内を流れる空気は段部84によってその流れが乱されて、反応部(本発明の第1反応部に相当する)における燃料極支持体24(換言すれば、空気極44に対応する位置の燃料極支持体24)側へと導かれる。このように構成することで、発電反応に供されないインターコネクタ部54側の燃料極支持体24近傍を流れる燃料が、反応部(本発明の第1反応部に相当する)における燃料極支持体側へと導かれて発電反応に供されるため、燃料枯れ等の発生を効果的に低減することができる。
段部84は外側から見れば、各列ごとの集電部材74の間に陥没するように形成されている(図21及び図23参照)。従って、燃料電池セルFC4を組み合わせて燃料電池セルスタックFCS4を形成すると、図24,図25及び図26に示すようになる。図24〜図26に示すように、隣接する燃料電池セルFC4間において、一方の燃料電池セルFC4のインターコネクタ部54に設けられた段部84が、他方の燃料電池セルFC4の燃料極44からは後退して陥没するように形成されている。従って、燃料電池セルFC4の外側に空気を流した場合(換言すれば、燃料電池セルFC4の外側を空気の流路とした場合)、空気は段部84が形成された場所において流速が遅くなり、結果的にその流れが乱されて隣接する燃料電池セルFC4の空気極44に対する接触時間が長くなる。このように構成することで、発電反応に供されないインターコネクタ部54近傍を流れる空気が、隣接する燃料電池セルFC4の反応部(本発明の第1反応部に相当する)に導かれて発電反応に供されるため、酸素枯れ等の発生を効果的に低減することができる。
また、上述した第一実施形態と第二実施形態との関係のように、燃料極支持体24を導電性の支持体とし、燃料極を別途層状に設けることも好ましい。
上述した燃料電池セルFC1,FC2,FC3,FC4や、燃料電池セルスタックFCS1,FCS2,FCS3,FCS4を用いて、モジュール容器内に収め、断熱材や集電部材を配置し、更にガスを供給するためのヘッダやガスタンクを設けて燃料電池モジュールを構成することができることは、詳細に説明するまでもなく当然のことである。また、そのような燃料電池モジュールを用いて、制御装置や空気供給装置やガス供給装置、並びに電力取り出し装置等を装着し、燃料電池システムを構成することができることも、詳細に説明するまでもなく当然のことである。
第一実施形態に係る燃料電池セルを示す斜視図である。 第一実施形態に係る燃料電池セルを示す断面図である。 第一実施形態に係る燃料電池セルを示す断面図である。 第一実施形態に係る燃料電池セルスタックを示す断面図である。 第一実施形態に係る燃料電池セルスタックを示す断面図である。 第二実施形態に係る燃料電池セルを示す斜視図である。 第二実施形態に係る燃料電池セルを示す断面図である。 第二実施形態に係る燃料電池セルを示す断面図である。 第二実施形態に係る燃料電池セルスタックを示す断面図である。 第二実施形態に係る燃料電池セルスタックを示す断面図である。 段部の設け方の変形例を示す図である。 段部の設け方の変形例を示す図である。 第三実施形態に係る燃料電池セルを示す斜視図である。 第三実施形態に係る燃料電池セルを示す断面図である。 第三実施形態に係る燃料電池セルを示す断面図である。 第三実施形態に係る燃料電池セルを示す断面図である。 第三実施形態に係る燃料電池セルスタックを示す断面図である。 第三実施形態に係る燃料電池セルスタックを示す断面図である。 第三実施形態に係る燃料電池セルスタックを示す断面図である。 第四実施形態に係る燃料電池セルを示す斜視図である。 第四実施形態に係る燃料電池セルを示す断面図である。 第四実施形態に係る燃料電池セルを示す断面図である。 第四実施形態に係る燃料電池セルを示す断面図である。 第四実施形態に係る燃料電池セルスタックを示す断面図である。 第四実施形態に係る燃料電池セルスタックを示す断面図である。 第四実施形態に係る燃料電池セルスタックを示す断面図である。
符号の説明
20:空気極支持体
21:支持体
30:電解質部
31:電解質部
40:燃料極
41:燃料極
50:インターコネクタ部
51:インターコネクタ部
60:流路
61:流路
70:集電部材
80:段部
91:空気極
FC1:燃料電池セル
FC2:燃料電池セル
FCS1:燃料電池セルスタック
FCS2:燃料電池セルスタック

Claims (11)

  1. 燃料ガス及び酸化剤ガスの一方を含む第1ガスと他方を含む第2ガスとによって作動する複数の燃料電池セルを含む燃料電池のガス流路構造であって、
    前記第1ガスが通る第1流路と、
    前記第2ガスが通る第2流路と、
    前記第1ガスに対応し、前記第1流路に臨んで形成される第1電極と、
    前記第2ガスに対応し、前記第2流路に臨んで形成される第2電極と、を備え、
    前記第1流路において前記第1ガスを前記第1電極に向けて方向付ける第1方向付け部及び前記第2流路において前記第2ガスを前記第2電極に向けて方向付ける第2方向付け部の少なくとも一方を備えることを特徴とする燃料電池のガス流路構造。
  2. 前記第1流路は隣接する複数の前記燃料電池セル間に形成され、前記第2流路は複数の前記燃料電池セルそれぞれの内部に形成されていることを特徴とする請求項1に記載の燃料電池のガス流路構造。
  3. 前記第1方向付け部は、隣接する前記燃料電池セルの第1電極に向けて前記第1ガスを方向付けるように、複数の前記燃料電池セルそれぞれに設けられていることを特徴とする請求項2に記載の燃料電池のガス流路構造。
  4. 複数の前記燃料電池セルはそれぞれ、前記第1電極と、前記第2電極と、前記第1電極と前記第2電極との間に配置される電解質部と、前記第2電極と電気的に接続されたインターコネクタ部と、前記第1電極、前記第2電極、前記電解質部、及び前記インターコネクタ部を支持するための支持体と、を備え、
    隣接する前記燃料電池セルは、一方の燃料電池セルの第1電極が他方の燃料電池セルのインターコネクタ部と対向するように配置されており、
    前記インターコネクタ部に前記第1方向付け部が設けられていることを特徴とする請求項3に記載の燃料電池のガス流路構造。
  5. 複数の前記燃料電池セルはそれぞれ、前記第1電極と、前記第2電極に相当し且つ他の部分を支持するための支持体としても機能する電極支持体と、前記第1電極と前記電極支持体との間に配置される電解質部と、前記第2電極と電気的に接続されたインターコネクタ部と、を備え、
    隣接する前記燃料電池セルは、一方の燃料電池セルの第1電極が他方の燃料電池セルのインターコネクタ部と対向するように配置されており、
    前記インターコネクタ部に前記第1方向付け部が設けられていることを特徴とする請求項3に記載の燃料電池のガス流路構造。
  6. 前記第2方向付け部は、前記燃料電池セルの内部に形成された第2流路において、前記第2電極に向けて前記第2ガスを方向付けるように、複数の前記燃料電池セルそれぞれに設けられていることを特徴とする請求項2に記載の燃料電池のガス流路構造。
  7. 複数の前記燃料電池セルはそれぞれ、前記第1電極と、前記第2電極と、前記第1電極と前記第2電極との間に配置される電解質部と、前記第2電極と電気的に接続されたインターコネクタ部と、前記第1電極、前記第2電極、前記電解質部、及び前記インターコネクタ部を支持するための支持体と、を備え、
    前記インターコネクタ部に対応した位置の前記第2流路に前記第2方向付け部が設けられていることを特徴とする請求項6に記載の燃料電池のガス流路構造。
  8. 複数の前記燃料電池セルはそれぞれ、前記第1電極と、前記第2電極に相当し且つ他の部分を支持するための支持体としても機能する電極支持体と、前記第1電極と前記電極支持体との間に配置される電解質部と、前記第2電極と電気的に接続されたインターコネクタ部と、を備え、
    前記インターコネクタ部に対応した位置の前記第2流路に前記第2方向付け部が設けられていることを特徴とする請求項6に記載の燃料電池のガス流路構造。
  9. 前記電解質部は前記電極支持体の外表面の一部に形成され、当該形成された電解質部に重ねて前記第1電極が形成されることで第1反応部を形成しており、
    前記インターコネクタ部は、前記電極支持体の外表面であって前記電解質部が形成されていない残部に形成されることを特徴とする請求項5又は8に記載の燃料電池のガス流路構造。
  10. 前記電解質部及び前記電解質部を挟んで形成される前記第1電極及び前記第2電極からなる第2反応部が前記支持体の外表面の一部に形成され、
    前記インターコネクタ部は、前記支持体の外表面であって前記第2反応部が形成されていない残部に形成され、
    前記支持体は導電性を有する材料によって形成されていることを特徴とする請求項4又は7に記載の燃料電池のガス流路構造。
  11. 請求項1〜10のいずれか1項に記載のガス流路構造を備える燃料電池。
JP2008133101A 2008-05-21 2008-05-21 燃料電池のガス流路構造及び燃料電池 Pending JP2009283238A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133101A JP2009283238A (ja) 2008-05-21 2008-05-21 燃料電池のガス流路構造及び燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133101A JP2009283238A (ja) 2008-05-21 2008-05-21 燃料電池のガス流路構造及び燃料電池

Publications (1)

Publication Number Publication Date
JP2009283238A true JP2009283238A (ja) 2009-12-03

Family

ID=41453496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133101A Pending JP2009283238A (ja) 2008-05-21 2008-05-21 燃料電池のガス流路構造及び燃料電池

Country Status (1)

Country Link
JP (1) JP2009283238A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238760A (ja) * 1990-02-15 1991-10-24 Ngk Insulators Ltd 固体電解質型燃料電池
JP2003217607A (ja) * 2002-01-21 2003-07-31 Mitsubishi Materials Corp セパレータ、セパレータの製造方法および固体高分子型燃料電池
JP2004281094A (ja) * 2003-03-12 2004-10-07 Kyocera Corp セルスタック及び燃料電池
JP2007128739A (ja) * 2005-11-04 2007-05-24 Hitachi Ltd 燃料電池
JP2007227130A (ja) * 2006-02-23 2007-09-06 Honda Motor Co Ltd 燃料電池
JP2008108573A (ja) * 2006-10-25 2008-05-08 Toyota Auto Body Co Ltd 燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238760A (ja) * 1990-02-15 1991-10-24 Ngk Insulators Ltd 固体電解質型燃料電池
JP2003217607A (ja) * 2002-01-21 2003-07-31 Mitsubishi Materials Corp セパレータ、セパレータの製造方法および固体高分子型燃料電池
JP2004281094A (ja) * 2003-03-12 2004-10-07 Kyocera Corp セルスタック及び燃料電池
JP2007128739A (ja) * 2005-11-04 2007-05-24 Hitachi Ltd 燃料電池
JP2007227130A (ja) * 2006-02-23 2007-09-06 Honda Motor Co Ltd 燃料電池
JP2008108573A (ja) * 2006-10-25 2008-05-08 Toyota Auto Body Co Ltd 燃料電池

Similar Documents

Publication Publication Date Title
US8507139B2 (en) Fuel cell module
JP5114899B2 (ja) 固体高分子型燃料電池
JP2011129279A (ja) 燃料電池モジュール
JP5655940B2 (ja) 燃料電池
US20100209798A1 (en) Fuel cell stack
JP2007250297A (ja) 燃料電池
JP2008053078A (ja) 燃料電池及び燃料電池モジュール
JP2005166423A (ja) 固体酸化物型燃料電池
JP5541291B2 (ja) 燃料電池及び燃料電池を備えた車両
JP4875223B2 (ja) 燃料電池用セパレータ及びそれを備える燃料電池
JP2006269409A (ja) 固体酸化物形燃料電池
JP2009283238A (ja) 燃料電池のガス流路構造及び燃料電池
JP6340977B2 (ja) 燃料電池
JP5408381B2 (ja) 燃料電池
JP6690996B2 (ja) 電気化学反応セルスタック
JP2009277390A (ja) 燃料電池の流路板及びこれを用いた燃料電池
JP2007073356A (ja) 固体酸化物形燃料電池
JP2009087876A (ja) 単室型燃料電池及び単室型燃料電池積層体
US20230145403A1 (en) Fuel cell stack including a separator having a gas equal distribution structure
JP2013041673A (ja) 固体電解質型の燃料電池スタック
JP5491079B2 (ja) 燃料電池システム
JP5217177B2 (ja) 燃料電池
JP2009140810A (ja) 燃料電池スタック
JP2023119145A (ja) 集電体-電気化学反応単セル複合体、および、電気化学反応セルスタック
JP2006236597A (ja) 燃料電池用セパレータおよび固体酸化物形燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130515