JP2009280633A - Method and apparatus for cracking tar - Google Patents

Method and apparatus for cracking tar Download PDF

Info

Publication number
JP2009280633A
JP2009280633A JP2008131091A JP2008131091A JP2009280633A JP 2009280633 A JP2009280633 A JP 2009280633A JP 2008131091 A JP2008131091 A JP 2008131091A JP 2008131091 A JP2008131091 A JP 2008131091A JP 2009280633 A JP2009280633 A JP 2009280633A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
gas
tar
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131091A
Other languages
Japanese (ja)
Other versions
JP5610561B2 (en
Inventor
Kazuhiro Sato
和宏 佐藤
Keiji Tatsumi
圭司 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2008131091A priority Critical patent/JP5610561B2/en
Publication of JP2009280633A publication Critical patent/JP2009280633A/en
Application granted granted Critical
Publication of JP5610561B2 publication Critical patent/JP5610561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cracking tar in which a temperature of a catalyst is controlled within a range of a reaction temperature by dispersing an oxidizing agent, and an apparatus for cracking tar. <P>SOLUTION: This method for cracking tar includes cracking tar contained in a gasified gas as an inflammable gas by use of a metal catalyst, wherein by supplying the oxidizing agent via a dispersion layer set in a preceding stage of the catalyst, the temperature of the catalyst is controlled within the range of the reaction temperature of the catalyst. Furthermore, by oxidizing the gas for gasification on the catalyst by use of the oxidizing agent, the temperature of the catalyst is controlled within the range of the reaction temperature of the catalyst. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可燃性ガスのガス化ガス中に含まれるタール分を触媒によって分解するタール分解方法およびタール分解装置に関する。   The present invention relates to a tar decomposing method and a tar decomposing apparatus for decomposing a tar content contained in a combustible gas gas by a catalyst.

木屑や下水汚泥のような有機物を含む廃棄物(有機系廃棄物)やバイオマス燃料から高効率にエネルギー転換する技術として、ガス化技術が注目されている。ガス化することによって発生したガスを、ガスエンジンやガスタービンなどの内燃機関にて燃焼させることにより発電することが可能であり、その発電効率は燃料を直接燃焼して蒸気を発生させ、蒸気タービンにより発電するボイラ発電システムによるより高効率という特長を有する(特許文献1)。   Gasification technology has attracted attention as a technology for converting energy efficiently from waste (organic waste) containing organic matter such as wood chips and sewage sludge and biomass fuel. It is possible to generate power by burning the gas generated by gasification in an internal combustion engine such as a gas engine or a gas turbine, and the power generation efficiency is to directly burn fuel to generate steam. It has a feature of higher efficiency by a boiler power generation system that generates power by using a power source (Patent Document 1).

しかし、ガス化設備から発生した生成ガスはダスト、タール、その他の有害な腐食性物質・汚染物質が含まれており、そのままガスエンジン等の発電設備に投入すると、燃焼設備、配管類、ノズル、その他に詰まりや腐食などの問題が生じる。   However, the generated gas generated from the gasification equipment contains dust, tar, and other harmful corrosive substances / contaminants. If it is directly input to the power generation equipment such as a gas engine, the combustion equipment, piping, nozzles, Other problems such as clogging and corrosion occur.

そこで、ガス化設備から発生したガス化ガスは、無害化処理される必要がある。すなわち、特許文献1の図2に示すように、ガス化設備1から生成されたガス化ガスは高温集塵設備2にて集塵処理され、ガス化ガス中のダストが除去された後、タール分解触媒層3aを備えた反応器であるタール分解設備3に導入されて、ガス化ガス中のタール分が分解され、その後ガス化ガスはガス冷却設備4にて冷却され、低温集塵設備(図示略)などに送られて、更に無害化される(例えば、特許文献1)。   Therefore, the gasification gas generated from the gasification facility needs to be detoxified. That is, as shown in FIG. 2 of Patent Document 1, the gasification gas generated from the gasification facility 1 is collected by the high-temperature dust collection facility 2, and the dust in the gasification gas is removed. It is introduced into a tar decomposition facility 3 which is a reactor equipped with a decomposition catalyst layer 3a, and the tar content in the gasification gas is decomposed. Thereafter, the gasification gas is cooled in the gas cooling facility 4, and the low-temperature dust collection facility ( (Not shown) and the like, and further detoxified (for example, Patent Document 1).

また、ガス化設備によりガス化され、除塵されたガス化ガスを受け入れると共に、ガス化ガス中に含まれるタール分を分解する触媒層を備えた反応器を有するタール分解システムにおいて、前記反応器中のガス化ガスの温度を測定する温度検出器と、この温度検出器の測定結果と予め設定した設定温度とを比較すると共に前記反応器に導入されるガス化ガスの温度を設定温度に近づかせるよう昇温または降温指令を行う演算制御部とを有することを特徴とするタール分解システムが知られている(特許文献2参照)。   A tar decomposition system having a reactor that receives a gasified gas that has been gasified and removed by a gasification facility and that has a catalyst layer that decomposes the tar content contained in the gasified gas. A temperature detector for measuring the temperature of the gasification gas of the gas, and the measurement result of the temperature detector and a preset set temperature are compared, and the temperature of the gasification gas introduced into the reactor is brought close to the set temperature There is known a tar decomposition system including an arithmetic control unit that performs a temperature increase or decrease command (see Patent Document 2).

特開平11−21566号公報JP-A-11-21565 特開2007−99927号公報(請求項1)JP 2007-99927 A (Claim 1)

しかしながら、上記特許文献2のタール分解システムでは、ガス化ガスの温度を予め設定された温度範囲に近づけることができるものの、ガス化ガスを昇温するための空気や酸素ガスを、ガス化炉とタール分解設備の間に設けられた配管中に供給する構成であったため、配管中でガス化ガスが部分燃焼された際に、火炎が発生し、この火炎発生による不均一燃焼によって煤が発生し、この煤が配管内壁に付着したり、ガス化ガスとともに触媒層に移動し、煤が触媒表面に堆積する。煤の堆積によって、触媒の働きが悪くなり、またガス化ガスの流れが悪くなり、ガス化ガスの偏流による性能低下や圧力損失上昇による誘引動力上昇を引き起こす。また、一度発生した煤は還元雰囲気では極めて燃え難いため、メンテナンスに炉の停止を要する。また、ガス化ガスの温度が低い場合においても、酸化剤の燃焼が不完全となり、煤の発生が大きくなる。   However, in the tar decomposition system of Patent Document 2, although the temperature of the gasification gas can be brought close to a preset temperature range, air or oxygen gas for raising the temperature of the gasification gas is used as a gasification furnace. Since it was configured to supply into the piping provided between the tar decomposition facilities, a flame was generated when the gasified gas was partially burned in the piping, and soot was generated due to non-uniform combustion due to the generation of the flame. The soot adheres to the inner wall of the pipe or moves to the catalyst layer together with the gasification gas, and soot accumulates on the catalyst surface. The accumulation of soot deteriorates the function of the catalyst and the flow of the gasification gas, which causes a decrease in performance due to the drift of the gasification gas and an increase in attractive power due to an increase in pressure loss. In addition, once generated soot is extremely difficult to burn in a reducing atmosphere, the furnace must be stopped for maintenance. Even when the temperature of the gasification gas is low, combustion of the oxidant becomes incomplete, and soot generation is increased.

また、酸化剤を配管に供給した場合において、燃焼しない温度域(700℃未満)においては、酸化剤が触媒層に到達し、触媒の酸化・発熱が生じることとなる。しかしこのとき、酸化剤がガス化ガス中に分散せずに局所的な温度上昇が起こると触媒が熱的劣化を生じてしまい問題である。   Further, when the oxidizing agent is supplied to the pipe, the oxidizing agent reaches the catalyst layer in a temperature range where the combustion does not occur (less than 700 ° C.), and the catalyst is oxidized and generated heat. However, at this time, if the oxidant is not dispersed in the gasification gas and a local temperature rise occurs, the catalyst is thermally deteriorated, which is a problem.

また、タール分解設備の入口のガス化ガスの温度が高い場合でも、放熱や反応熱(触媒の吸熱反応)を考慮すると、配管上でガス化ガスを燃焼させて温度上昇させるよりも、触媒に近い位置でガス化ガスを燃焼させて触媒の反応温度を維持させるほうがよいと考えられる。しかし、酸化剤を直接的に触媒近傍に供給すると、上述のように局所的な燃焼が生じ、触媒が熱的劣化してしまう。   In addition, even when the temperature of the gasification gas at the inlet of the tar decomposition facility is high, considering the heat dissipation and reaction heat (catalyst endothermic reaction), the temperature of the gasification gas is increased rather than burning the gasification gas on the pipe and raising the temperature. It is considered better to maintain the reaction temperature of the catalyst by burning the gasification gas at a close position. However, if the oxidizing agent is supplied directly to the vicinity of the catalyst, local combustion occurs as described above, and the catalyst is thermally deteriorated.

また、上記の特許文献2のタール分解システムのほかに、触媒の温度をその反応温度にするために、外熱式反応器により温度を上昇させたり、直接バーナーで温度上昇させることが考えられる。しかし、外熱反応器は構造が複雑であり、また、高価な耐熱性金属配管を用いており、設備費用やメンテナンス費用が非常に大きくなるため好ましいものではない。また、バーナーにより直接触媒の温度を上昇させる方法では、上述の特許文献2の場合と同様に火炎や煤が発生してしまい好ましいものではない。   In addition to the tar decomposition system described in Patent Document 2, it is conceivable that the temperature of the catalyst is raised to the reaction temperature by raising the temperature with an external heating reactor or directly with a burner. However, the external heat reactor is not preferable because it has a complicated structure and uses expensive heat-resistant metal piping, which greatly increases equipment costs and maintenance costs. Further, the method of directly raising the temperature of the catalyst with a burner is not preferable because flame and soot are generated as in the case of Patent Document 2 described above.

そこで、本発明は、上記従来技術の有する問題点・状況に鑑みてなされたものであって、その目的は、酸化剤を分散させることで、触媒の温度をその反応温度範囲に制御するタール分解方法およびそのタール分解装置を提供することにある。   Accordingly, the present invention has been made in view of the above-mentioned problems and situations of the prior art, and its purpose is to disperse an oxidizing agent, thereby controlling the temperature of the catalyst within the reaction temperature range. It is to provide a method and a tar decomposition apparatus thereof.

上記課題は、各請求項記載の発明により達成される。すなわち、本発明に係るタール分解方法は、
可燃性ガスのガス化ガス中に含まれるタール分を金属系触媒によって分解するタール分解方法であって、
前記触媒の前段に設けた分散層を介して酸化剤を供給することで、前記触媒の温度を当該触媒の反応温度範囲に制御することを特徴とする。
The above-mentioned subject is achieved by the invention described in each claim. That is, the tar decomposition method according to the present invention is:
A tar decomposition method in which a tar content contained in a gasified gas of a combustible gas is decomposed by a metal catalyst,
The temperature of the catalyst is controlled within the reaction temperature range of the catalyst by supplying an oxidizing agent through a dispersion layer provided in the preceding stage of the catalyst.

上記方法の実施態様として、前記酸化剤によって前記触媒上で前記ガス化ガスを酸化し、前記触媒の温度を当該触媒の反応温度範囲に制御することを特徴とする。   As an embodiment of the above method, the gasification gas is oxidized on the catalyst by the oxidizing agent, and the temperature of the catalyst is controlled within a reaction temperature range of the catalyst.

この構成によれば、供給された酸化剤が分散層内で分散されつつガス化ガスと混合され、ガス化ガスの燃焼を抑制するとともに、触媒層に到達して、酸化剤が触媒層に対し均一な酸化反応を促進する。また、タールの改質反応に必要な反応温度を保持させることができるとともに、局所的な酸化・発熱による触媒の熱的劣化を抑制することができる。   According to this configuration, the supplied oxidant is mixed with the gasification gas while being dispersed in the dispersion layer, suppressing combustion of the gasification gas, reaching the catalyst layer, and the oxidant with respect to the catalyst layer. Promotes a uniform oxidation reaction. Further, the reaction temperature necessary for the tar reforming reaction can be maintained, and thermal deterioration of the catalyst due to local oxidation and heat generation can be suppressed.

上記方法の他の実施態様として、触媒の酸化反応とは別にあるいは追加的に、前記酸化剤によって前記ガス化ガスを均一燃焼し、前記触媒の温度を当該触媒の反応温度範囲に制御することを特徴とする。   As another embodiment of the above method, in addition to or in addition to the oxidation reaction of the catalyst, the gasification gas is uniformly burned by the oxidizing agent, and the temperature of the catalyst is controlled within the reaction temperature range of the catalyst. Features.

この構成によれば、供給された酸化剤が分散層内で分散されるとともにガス化ガスと反応して、火炎を生じない均一燃焼を促進する。よって火炎を伴う不均一燃焼によって生じる煤が発生しない。また、均一燃焼されたガス化ガスの温度上昇によって、触媒温度を反応温度範囲に制御できる。酸化剤が好適に分散されているため、局所的な温度上昇が抑制されており、よって触媒の熱的劣化が生じない。   According to this configuration, the supplied oxidant is dispersed in the dispersion layer and reacts with the gasification gas to promote uniform combustion without generating a flame. Therefore, no soot is generated due to non-uniform combustion accompanied by a flame. Further, the catalyst temperature can be controlled within the reaction temperature range by increasing the temperature of the gasified gas that is uniformly combusted. Since the oxidizing agent is suitably dispersed, local temperature rise is suppressed, and thermal degradation of the catalyst does not occur.

また、上記方法において、酸化剤の供給量あるいはその供給速度である流速を制御することが好ましい。酸化剤の供給量あるいはその供給速度である流速を制御することで、酸化剤の分散状態を制御できる。例えば、流速を大きくすると分散性が向上し、ガス化ガスとの混合性が向上する。また、分散性の向上により、ガス化ガスの燃焼に際し、火炎が生じることがなく、煤も発生しない。また、酸化剤の温度を常温以上にすることが好ましい。酸化反応、燃焼反応を好適に行なうためである。   Further, in the above method, it is preferable to control the supply amount of the oxidant or the flow rate which is the supply speed. The dispersion state of the oxidant can be controlled by controlling the supply amount of the oxidant or the flow rate that is the supply speed thereof. For example, when the flow rate is increased, dispersibility is improved, and mixing with the gasification gas is improved. Further, due to the improved dispersibility, no flame is generated and no soot is generated when the gasified gas is burned. Moreover, it is preferable to make the temperature of an oxidizing agent normal temperature or more. This is because the oxidation reaction and the combustion reaction are suitably performed.

また、他の本発明のタール分解装置は、
可燃性ガスのガス化ガス中に含まれるタール分を触媒によって分解するタール分解装置であって、
前記タール分解装置内部に設けられたタールを分解する金属系触媒層と、
前記金属系触媒層の温度を測定する触媒層温度測定手段と、
前記金属系触媒層の前段に設けられた分散層と、
前記酸化剤を供給する酸化剤供給手段と、
前記触媒層温度測定手段で測定される触媒層の温度を当該触媒の反応温度範囲になるように、前記分散層を介して前記酸化剤供給手段から供給する酸化剤の流速を制御する制御手段と、を有することを特徴とする。
In addition, the tar decomposition apparatus of the present invention is
A tar decomposition apparatus that decomposes a tar content contained in a combustible gas gas by a catalyst,
A metal-based catalyst layer for decomposing tar provided inside the tar decomposition apparatus;
A catalyst layer temperature measuring means for measuring the temperature of the metal catalyst layer;
A dispersion layer provided in front of the metal-based catalyst layer;
An oxidant supply means for supplying the oxidant;
Control means for controlling the flow rate of the oxidant supplied from the oxidant supply means via the dispersion layer so that the temperature of the catalyst layer measured by the catalyst layer temperature measurement means falls within the reaction temperature range of the catalyst; It is characterized by having.

この構成によれば、分散層を介して酸化剤供給手段から供給する酸化剤の流速を制御することができ、よって、金属触媒層の温度がその反応温度範囲内に保持されるようにできる。そして、供給された酸化剤が分散層内で分散されつつガス化ガスと混合され、ガス化ガスの燃焼を抑制するとともに、触媒層に到達して、酸化剤が触媒層に対し均一な酸化反応を促進する。また、タールの改質反応に必要な反応温度を保持させることができるとともに、局所的な酸化・発熱による触媒の熱的劣化を抑制することができる。また、別のあるいは追加的な作用として、供給された酸化剤が分散層内で分散されるとともにガス化ガスと反応して、均一燃焼を促進する。よって火炎を伴う不均一燃焼によって生じる煤が発生しない。また、均一燃焼されたガス化ガスの温度上昇によって、触媒温度を反応温度範囲に制御できる。酸化剤が好適に分散されているため、局所的な温度上昇が抑制されており、よって触媒の熱的劣化が生じない。   According to this configuration, the flow rate of the oxidant supplied from the oxidant supply means via the dispersion layer can be controlled, and thus the temperature of the metal catalyst layer can be maintained within the reaction temperature range. The supplied oxidant is mixed with the gasification gas while being dispersed in the dispersion layer to suppress the combustion of the gasification gas and reach the catalyst layer so that the oxidant is uniformly oxidized with respect to the catalyst layer. Promote. Further, the reaction temperature necessary for the tar reforming reaction can be maintained, and thermal deterioration of the catalyst due to local oxidation and heat generation can be suppressed. As another or additional action, the supplied oxidant is dispersed in the dispersion layer and reacts with the gasification gas to promote uniform combustion. Therefore, no soot is generated due to non-uniform combustion accompanied by a flame. Further, the catalyst temperature can be controlled within the reaction temperature range by increasing the temperature of the gasified gas that is uniformly combusted. Since the oxidizing agent is suitably dispersed, local temperature rise is suppressed, and thermal degradation of the catalyst does not occur.

また、上記本発明の一実施形態として、
前記分散層の温度を測定する分散層温度測定手段を、さらに有し、
前記制御手段は、前記分散層温度測定手段で測定される分散層の温度および前記触媒層温度測定手段で測定される触媒層の温度に基いて、当該触媒の温度を当該触媒の反応温度範囲になるように、酸化剤の流速を制御することを特徴とする。
As one embodiment of the present invention,
A dispersion layer temperature measuring means for measuring the temperature of the dispersion layer;
The control means sets the temperature of the catalyst within the reaction temperature range of the catalyst based on the temperature of the dispersion layer measured by the dispersion layer temperature measuring means and the temperature of the catalyst layer measured by the catalyst layer temperature measuring means. Thus, the flow rate of the oxidizing agent is controlled.

この構成によれば、触媒層の温度と分散層の温度とのそれぞれの温度に基いて、酸化剤の流速を制御できるため、ガス化ガスの流入量の変動が大きい場合においても、効果的に金属触媒層の温度をその反応温度範囲内に保持でき、また、局所的な触媒の酸化反応や、煤の発生をより好適に抑制できる。   According to this configuration, since the flow rate of the oxidant can be controlled based on the temperature of the catalyst layer and the temperature of the dispersion layer, it is effective even when the variation in the amount of gasification gas inflow is large. The temperature of the metal catalyst layer can be maintained within the reaction temperature range, and the local oxidation reaction of the catalyst and the generation of soot can be more suitably suppressed.

また、酸化剤供給手段の配置としては、分散層の上流側あるいは、分散層内部に配置することが挙げられる。   Moreover, as an arrangement | positioning of an oxidizing agent supply means, arrange | positioning upstream or inside a dispersion layer is mentioned.

また、分散層は、耐熱材料の分散剤を収納手段に充填して構成したことを特徴とする。分散層を構成する分散剤は、耐熱性を有し、例えば、セラミック、アルミナ、シリカ、シリカ・アルミナ、粘土鉱物等が挙げられる。分散剤の形状は、例えば、ボール、リング、ペレット等の各種形状が例示され、その大きさは外径で例えば約3〜25mm程度が好ましい。収納手段は、耐熱性を有し、その形状は柱状、箱状、球状、ハニカム形状等の様々な形状が例示され、それらは単体でもよく複数個で構成されていてもよい。   Further, the dispersion layer is characterized in that the storage means is filled with a dispersant of a heat resistant material. The dispersant constituting the dispersion layer has heat resistance, and examples thereof include ceramic, alumina, silica, silica / alumina, and clay mineral. Examples of the shape of the dispersant include various shapes such as balls, rings, and pellets, and the size is preferably about 3 to 25 mm in outer diameter. The storage means has heat resistance, and its shape is exemplified by various shapes such as a columnar shape, a box shape, a spherical shape, and a honeycomb shape, and these may be a single member or a plurality of members.

また、ガス化ガスは、例えば、バイオマス燃料、石炭、コークス、廃油、その他の有機性化合物をガス化したものである。ガス化の方法は、例えば、熱分解、部分酸化、水蒸気改質等の方法が挙げられる。本発明において、ガス化ガスの温度は、500℃以上900℃以下のガス温度であることが好ましい。500℃未満では金属系触媒が酸化燃焼しにくいためである。   Moreover, gasification gas is gasified, for example, biomass fuel, coal, coke, waste oil, and other organic compounds. Examples of the gasification method include methods such as thermal decomposition, partial oxidation, and steam reforming. In this invention, it is preferable that the temperature of gasification gas is 500 degreeC or more and 900 degrees C or less gas temperature. This is because if the temperature is lower than 500 ° C., the metal catalyst is difficult to oxidize and burn.

本発明の実施形態を、図面を参照して詳細に説明する。図1は、本発明に係る一実施形態に係るタール分解装置の概略フローを示す。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic flow of a tar decomposing apparatus according to an embodiment of the present invention.

ガス化設備1は、例えば、流動層ガス化炉、循環流動層ガス化炉等で構成される。ガス化設備1は、例えば、バイオマス燃料、石炭、コークス、廃油、その他の有機性化合物を、熱分解等の方法でガス化し、ガス化ガスを生成する。   The gasification facility 1 includes, for example, a fluidized bed gasification furnace, a circulating fluidized bed gasification furnace, and the like. For example, the gasification facility 1 gasifies biomass fuel, coal, coke, waste oil, and other organic compounds by a method such as thermal decomposition to generate gasified gas.

タール分解装置2は、ガス化設備1によって生成されたガス化ガス(約800〜900℃程度)中のタール成分を金属系触媒によって処理する。タール分解装置2は、金属系触媒層を有する反応器21と、この反応器21の前段に設置される分散層を有する分散器22(収納手段に相当する)を有している。   The tar decomposition apparatus 2 treats the tar component in the gasification gas (about 800 to 900 ° C.) generated by the gasification facility 1 with a metal catalyst. The tar decomposing apparatus 2 includes a reactor 21 having a metal catalyst layer, and a disperser 22 (corresponding to storage means) having a disperse layer installed in the previous stage of the reactor 21.

金属系触媒は、例えば、ニッケル系触媒、コバルト系触媒、鉄系触媒、クロム系触媒および銅系触媒から選択される単体構成あるいは複数の組合せ構成が挙げられる。ニッケル系触媒としては、例えば、Ni/AlO3、Ni/MgO、Ni/MgO・CaO等が例示され、ニッケル、マグネシアおよびカルシアを含む複合酸化物の改質触媒がより好ましい。これらの金属系触媒の反応温度は、金属系触媒の劣化温度未満であり、例えば、700℃以上850℃未満の範囲であり、好ましくは750℃以上800℃未満の範囲である。 Examples of the metal-based catalyst include a single-piece structure or a plurality of combination structures selected from nickel-based catalysts, cobalt-based catalysts, iron-based catalysts, chromium-based catalysts, and copper-based catalysts. Examples of the nickel-based catalyst include Ni / Al 2 O 3 , Ni / MgO, Ni / MgO · CaO, and the like, and a composite oxide reforming catalyst containing nickel, magnesia and calcia is more preferable. The reaction temperature of these metal-based catalysts is lower than the deterioration temperature of the metal-based catalyst, for example, in the range of 700 ° C. or higher and lower than 850 ° C., and preferably in the range of 750 ° C. or higher and lower than 800 ° C.

分散層を構成する分散剤は、耐熱性を有し、例えば、セラミック、アルミナ、シリカ、シリカ・アルミナ、粘土鉱物等が挙げられる。分散剤の形状は、例えば、ボール、リング、ペレット等の各種形状が例示され、その大きさは外径で例えば約3〜25mm程度が好ましい。分散器22は、耐熱性を有し、その形状は柱状、箱状、球状、ハニカム形状等の様々な形状が例示され、それらは単体でもよく複数個で構成されていてもよい。   The dispersant constituting the dispersion layer has heat resistance, and examples thereof include ceramic, alumina, silica, silica / alumina, and clay mineral. Examples of the shape of the dispersant include various shapes such as balls, rings, and pellets, and the size is preferably about 3 to 25 mm in outer diameter. The disperser 22 has heat resistance, and its shape is exemplified by various shapes such as a columnar shape, a box shape, a spherical shape, and a honeycomb shape, and these may be a single body or a plurality of shapes.

図1には図示していないが、ガス化設備1とタール分解装置2の間に、セラミックフィルターなどからなる高温集塵設備を介し、この高温集塵設備でガス化ガス中のダスト等を集塵・除去するように構成してもよい。   Although not shown in FIG. 1, dust and the like in the gasified gas are collected by a high-temperature dust collection facility between the gasification facility 1 and the tar decomposition device 2 via a high-temperature dust collection facility composed of a ceramic filter or the like. You may comprise so that dust may be removed.

タール分解装置2に導入されたガス化ガスは、金属系触媒によってガス化ガス中のタールが分解される。その後、ガス化ガスは、ガス精製設備3に送給されガス化ガスが精製され、ガス利用設備4に送給され燃焼等に提供される。ガス精製設備3は、例えば、ガス冷却装置、バグフィルター等の低温集塵装置、湿式ガス精製設備等を単独であるいはそれらの組合せで構成できる。ガス利用設備4は、例えば、ボイラー等の燃焼設備、ガスタービン、ガスエンジン等の発電設備等を単独であるいはそれらの組合せで構成される。   In the gasification gas introduced into the tar decomposition apparatus 2, the tar in the gasification gas is decomposed by the metal catalyst. Thereafter, the gasification gas is supplied to the gas purification facility 3 to purify the gasification gas, and is supplied to the gas utilization facility 4 to be provided for combustion or the like. The gas purification equipment 3 can comprise, for example, a gas cooling device, a low-temperature dust collector such as a bag filter, a wet gas purification equipment, or the like alone or in combination thereof. The gas utilization facility 4 includes, for example, a combustion facility such as a boiler, a power generation facility such as a gas turbine and a gas engine, or a combination thereof.

(実施形態1)
本実施形態1のタール分解設備2の特徴構成について以下に説明する。金属系触媒層を有する反応器21には、その金属系触媒の温度を測定する触媒温度測定器24が設置される。触媒温度測定器24の温度検出部位は、触媒の温度を検知する位置であれば特に制限されないが、例えば反応器21の外壁、反応器21の内壁部、反応器21の内部、または触媒層に近接する位置、触媒層壁面、触媒層内部、触媒に直接接触する位置等が例示される。また、触媒温度測定器24は、1個に限定されず、複数個設置してもよい。また、触媒温度測定器24は、ガス化ガスの入り口側の触媒層の上部に設置してもよく、中部あるいは下部に設置してもよいが、上部、中部、下部のそれぞれに複数個づつ設置することがより好ましい。複数の測定された温度データによって、触媒の温度状態、温度分布を的確に得ることができる。
(Embodiment 1)
A characteristic configuration of the tar decomposition facility 2 of Embodiment 1 will be described below. The reactor 21 having a metal catalyst layer is provided with a catalyst temperature measuring device 24 for measuring the temperature of the metal catalyst. The temperature detection part of the catalyst temperature measuring device 24 is not particularly limited as long as it is a position where the temperature of the catalyst is detected. Examples thereof include a position close to each other, a catalyst layer wall surface, the inside of the catalyst layer, a position in direct contact with the catalyst, and the like. Further, the catalyst temperature measuring device 24 is not limited to one, and a plurality of catalyst temperature measuring devices 24 may be installed. Further, the catalyst temperature measuring device 24 may be installed at the upper part of the catalyst layer on the gasification gas inlet side, or may be installed at the middle part or the lower part. More preferably. The temperature state and temperature distribution of the catalyst can be accurately obtained from a plurality of measured temperature data.

分散層を有する分散器22には、分散層の温度を測定する分散層温度測定器25が設置される。分散層温度測定器25の温度検出部位は、分散層の温度を検知する位置であれば特に制限されないが、例えば分散器22の外壁、分散器22の内壁部、分散器22の内部、または分散層に近接する位置、分散層内部、分散剤に直接接触する位置等が例示される。また、分散層温度測定器25は、1個に限定されず、複数個設置してもよい。また、分散層温度測定器25は、ガス化ガスの入り口側の分散層の上部に設置してもよく、中部あるいは下部に設置してもよいが、上部、中部、下部のそれぞれに複数個づつ設置することがより好ましい。複数の測定された温度データによって、分散層の温度状態、温度分布を的確に得ることができる。   A dispersion layer temperature measuring device 25 for measuring the temperature of the dispersion layer is installed in the dispersion device 22 having the dispersion layer. The temperature detection portion of the dispersion layer temperature measuring device 25 is not particularly limited as long as it is a position for detecting the temperature of the dispersion layer. For example, the outer wall of the dispersion device 22, the inner wall portion of the dispersion device 22, the inside of the dispersion device 22, or the dispersion device. Examples are the position close to the layer, the inside of the dispersion layer, the position in direct contact with the dispersant, and the like. Moreover, the number of the dispersion | distribution layer temperature measuring devices 25 is not limited to one, You may install two or more. Further, the dispersion layer temperature measuring device 25 may be installed in the upper part of the dispersion layer on the gasification gas inlet side, or may be installed in the middle part or the lower part. It is more preferable to install. The temperature state and temperature distribution of the dispersion layer can be accurately obtained from a plurality of measured temperature data.

触媒温度測定器24、分散層温度測定器25は、接触式温度計でもよく非接触式温度計でもよい。   The catalyst temperature measuring device 24 and the dispersed bed temperature measuring device 25 may be a contact thermometer or a non-contact thermometer.

酸化剤供給手段23は、1個あるいは複数個のノズル231を備える。ノズル231は、分散層に対し酸化剤を均一に分散して供給できるような構造を有し、また、そのように配置される。ノズル231の先端は、気体の酸化剤を分散層に対し均一に分散できるように小さい孔を複数有し、放射線状に噴射できるように構成されることが好ましい。ノズル231から噴射される酸化剤の分散層平面に対する密度分布が略均一になっていることが好ましい。   The oxidant supply means 23 includes one or a plurality of nozzles 231. The nozzle 231 has a structure that allows the oxidant to be uniformly dispersed and supplied to the dispersion layer, and is arranged as such. It is preferable that the tip of the nozzle 231 has a plurality of small holes so that the gaseous oxidant can be uniformly dispersed in the dispersion layer, and can be ejected radially. It is preferable that the density distribution of the oxidant sprayed from the nozzle 231 with respect to the dispersion layer plane is substantially uniform.

また、酸化剤供給手段23は、酸化剤の貯留容器(不図示)から酸化剤を所定の供給量、流速でノズル231に供給するためのコンプレッサーを備え、これにより圧縮ガスを生成できる。酸化剤供給手段23は、流量計、流量調節弁、流速計、流速調整のための流速調節機能を備える。酸化剤供給手段23は後述する制御装置26からの指令に応じて酸化剤の供給制御を行う。   Further, the oxidant supply means 23 includes a compressor for supplying an oxidant from a storage container (not shown) of the oxidant to the nozzle 231 at a predetermined supply amount and a flow rate, thereby generating a compressed gas. The oxidant supply means 23 includes a flow meter, a flow rate adjustment valve, a flow rate meter, and a flow rate adjustment function for adjusting the flow rate. The oxidant supply means 23 performs oxidant supply control in accordance with a command from a control device 26 described later.

酸化剤は、例えば空気、酸素富化空気である。酸化剤の温度は、常温以上400℃以下であることが好ましく、酸化剤を高温にするための燃焼コストの低減の観点から、常温以上100℃以下がより好ましい。酸化剤を昇温するための燃焼装置(不図示)は、酸化剤供給手段23の前段に配置してもよく、酸化剤供給手段23あるいは酸化剤の貯留容器(不図示)に備えていてもよい。酸化剤として空気を用いる場合、貯留容器はなくてもよい。   The oxidizing agent is, for example, air or oxygen-enriched air. The temperature of the oxidizing agent is preferably normal temperature or higher and 400 ° C. or lower, and more preferably normal temperature or higher and 100 ° C. or lower from the viewpoint of reducing the combustion cost for increasing the oxidizing agent temperature. A combustion apparatus (not shown) for raising the temperature of the oxidant may be disposed in front of the oxidant supply means 23, or may be provided in the oxidant supply means 23 or an oxidant storage container (not shown). Good. When air is used as the oxidant, there is no need for a storage container.

制御装置26(制御手段に相当する)は、触媒温度測定器24で測定される触媒層の温度を当該触媒の反応温度範囲(例えば700℃以上850℃未満)になるように、酸化剤供給手段23によって供給される酸化剤の流速を設定し、酸化剤供給手段23に指令する。制御装置26は、例えば、触媒温度測定器24で測定された温度に基いて、酸化剤の流速を設定できる。また、別実施形態として、制御装置26は、触媒温度測定器24で測定された温度データおよび分散層温度測定器25で測定された温度データに基いて、酸化剤の流速を設定できる。酸化剤の供給量は、ガス化ガスの流量や触媒層の仕様によって設定され、例えばガス化ガス1.0mN/h当たり0.01〜0.1mN/hである。また、設定される流速は、例えば、1〜20m/secである。制御方法としては、例えば、触媒の温度データに基づくフィードバック制御、PID制御、比例制御が挙げられる。制御装置26は、情報処理装置、ファームウエアあるいは専用回路等で構成され、情報処理装置の場合、制御手順を記述したプログラムとそれを格納するメモリと演算部であるCPU、メインメモリ等のハードウエア資源との協働作用によって実現される。また、制御装置26は、ガス化設備1およびタール分解装置2の制御装置と連動していてもよく、単独に機能していてもよい。 The control device 26 (corresponding to the control means) includes an oxidant supply means so that the temperature of the catalyst layer measured by the catalyst temperature measuring device 24 falls within the reaction temperature range of the catalyst (for example, 700 ° C. or higher and lower than 850 ° C.). The flow rate of the oxidant supplied by 23 is set, and the oxidant supply means 23 is commanded. For example, the control device 26 can set the flow rate of the oxidizing agent based on the temperature measured by the catalyst temperature measuring device 24. As another embodiment, the control device 26 can set the flow rate of the oxidant based on the temperature data measured by the catalyst temperature measuring instrument 24 and the temperature data measured by the dispersed bed temperature measuring instrument 25. Supply amount of the oxidizing agent is set by the specifications of the flow rate and the catalyst bed of the gasification gas, for example, gasification gas 1.0 m 3 N / h per 0.01~0.1m 3 N / h. Moreover, the set flow rate is 1-20 m / sec, for example. Examples of the control method include feedback control based on catalyst temperature data, PID control, and proportional control. The control device 26 is configured by an information processing device, firmware, a dedicated circuit, or the like. In the case of the information processing device, a program describing a control procedure, a memory for storing the program, a CPU as a calculation unit, and hardware such as a main memory Realized by cooperation with resources. Moreover, the control apparatus 26 may be interlock | cooperated with the control apparatus of the gasification equipment 1 and the tar decomposition | disassembly apparatus 2, and may function independently.

以下では、制御装置26の制御動作を図2の動作フローを用いて説明する。ステップS1において、触媒層の温度データを取得する。触媒層の温度データは、触媒温度測定器24によって測定された温度データが、制御装置26に送信され、不図示のメモリに蓄積されている。次いで、制御装置26は、取得した触媒層の温度データが、触媒の反応温度範囲(例えば750℃以上800℃以下)に含まれているか否かを判断する(ステップS2)。   Hereinafter, the control operation of the control device 26 will be described with reference to the operation flow of FIG. In step S1, temperature data of the catalyst layer is acquired. As the temperature data of the catalyst layer, the temperature data measured by the catalyst temperature measuring device 24 is transmitted to the control device 26 and stored in a memory (not shown). Next, the control device 26 determines whether or not the acquired temperature data of the catalyst layer is included in the reaction temperature range of the catalyst (for example, 750 ° C. or higher and 800 ° C. or lower) (step S2).

次いで、制御装置26は、触媒層の温度データがその触媒の反応温度範囲よりも低い場合、酸化剤の供給制御を行う(ステップS3)。制御装置26は、複数種類の酸化剤のうち、空気あるいは酸素富化空気のいずれかを選択することができる。また、制御装置26は、酸化剤の流速を設定する。触媒層の温度データとその触媒の反応温度範囲の差を演算し、その差に応じて、流速を設定できる。流速設定に際し、予め設定されている供給量に応じて設定されてもよい。また、流速設定に際し、供給量も設定するように構成できる。また、酸化剤の供給時間を設定できる。また、供給方法として、連続供給、間欠供給を選択できる。制御装置26で設定された酸化剤の種類、流速(あるいは供給量および流速)、供給時間と共に供給指令を酸化剤供給手段23に送信する(ステップS3)。   Next, when the temperature data of the catalyst layer is lower than the reaction temperature range of the catalyst, the control device 26 performs oxidant supply control (step S3). The control device 26 can select either air or oxygen-enriched air from among a plurality of types of oxidizers. The control device 26 sets the flow rate of the oxidant. The difference between the temperature data of the catalyst layer and the reaction temperature range of the catalyst is calculated, and the flow rate can be set according to the difference. In setting the flow velocity, the flow rate may be set according to a preset supply amount. In addition, the supply amount can be set when the flow rate is set. Moreover, the supply time of an oxidizing agent can be set. Moreover, continuous supply and intermittent supply can be selected as a supply method. A supply command is transmitted to the oxidant supply means 23 together with the type, flow rate (or supply amount and flow rate), and supply time of the oxidant set by the control device 26 (step S3).

流速は、例えば1.5m/sec以上が好ましく、5.0m/sec以上がより好ましく、10.0m/sec以上が特に好ましい。流速をより高速に設定し分散層による均一分散によって、ガス化ガスと酸化剤の自己燃焼の際の均一燃焼を促進できる。また、ガス化ガスとの均一な混合が促進され、触媒上での均一な酸化反応を促進できる。   For example, the flow rate is preferably 1.5 m / sec or more, more preferably 5.0 m / sec or more, and particularly preferably 10.0 m / sec or more. Uniform combustion at the time of self-combustion of the gasified gas and the oxidant can be promoted by setting the flow rate at a higher speed and uniform dispersion by the dispersion layer. Further, uniform mixing with the gasification gas is promoted, and uniform oxidation reaction on the catalyst can be promoted.

酸化剤供給手段23は、その指令の酸化剤を吸入し、指令の流速(あるいは供給量および流速)、供給時間に応じて、供給用のノズル231に酸化剤を送給する。   The oxidant supply means 23 sucks the commanded oxidant, and supplies the oxidant to the supply nozzle 231 according to the command flow rate (or supply amount and flow rate) and the supply time.

ノズル231から高速で噴射された酸化剤は、分散層内部に送給され、分散層によってガス化ガスと均一に混合される。この際、酸化剤が高速で噴射されるため、ガス化ガスと酸化剤の混合により、ガス化ガスの燃焼が抑えられる。そして、ガス化ガスと混合された酸化剤が触媒層に送給され、触媒の均一な酸化反応を促進できる。以下に酸化反応の反応式を示す。
(式1) Ni+1/2O→NiO(発熱反応)・・・(1)
(式2) NiO+H→Ni+HO・・・(2)
(式3) NiO+CO→Ni+CO・・・(3)
The oxidant injected at high speed from the nozzle 231 is fed into the dispersion layer, and is uniformly mixed with the gasification gas by the dispersion layer. At this time, since the oxidizing agent is injected at a high speed, the combustion of the gasifying gas is suppressed by mixing the gasifying gas and the oxidizing agent. And the oxidizing agent mixed with gasification gas is supplied to a catalyst layer, and it can accelerate | stimulate the uniform oxidation reaction of a catalyst. The reaction formula of the oxidation reaction is shown below.
(Formula 1) Ni + 1 / 2O 2 → NiO (exothermic reaction) (1)
(Formula 2) NiO + H 2 → Ni + H 2 O (2)
(Formula 3) NiO + CO → Ni + CO 2 (3)

これにより、触媒の均一な酸化反応の発熱により、タールの改質反応に必要な反応温度を保持させることができる。タールの改質反応は吸熱反応であるため触媒温度が低下するが、この触媒の均一な酸化反応により、効果的に触媒を昇温させることができる。また、触媒の局所的な酸化反応(発熱)を抑制でき、触媒の熱的劣化を効果的に抑制できる。以下にタールの改質反応の反応式を示す。
(式4) CmHn+mHO→mCO+(m+n/2)H(吸熱反応)・・・(4)
(式5) CmHn+mCO→2mCO+n/2H(吸熱反応)・・・(5)
Thus, the reaction temperature necessary for the tar reforming reaction can be maintained by the heat generated by the uniform oxidation reaction of the catalyst. Since the tar reforming reaction is an endothermic reaction, the catalyst temperature decreases, but the catalyst can be effectively heated by the uniform oxidation reaction of the catalyst. Moreover, the local oxidation reaction (heat generation) of the catalyst can be suppressed, and the thermal deterioration of the catalyst can be effectively suppressed. The reaction formula of the tar reforming reaction is shown below.
(Formula 4) CmHn + mH 2 O → mCO + (m + n / 2) H 2 (endothermic reaction) (4)
(Formula 5) CmHn + mCO 22 mCO + n / 2H 2 (endothermic reaction) (5)

触媒の酸化反応の発熱によって、触媒の温度が上昇する。この上昇した温度は、触媒温度測定器24に測定され、制御装置26に送信される。制御装置26は、ステップS1からステップS3の動作を繰り返し、酸化剤の供給制御を行う。触媒の温度データが、反応温度範囲内で安定して推移していれば、酸化剤の供給を停止する制御を行うことができる。また、触媒の温度データが反応温度範囲の下限値を下回った場合に、酸化剤の供給制御を再び行なうようにできる。また、触媒の温度データが、反応温度範囲内で大きくばらつくような場合には、温度データが安定するように、酸化剤の流速(あるいは他のパラメータ)を随時設定するように制御できる。よって、触媒層の温度ムラが少なく、触媒性能を効果的に維持できる。   Due to the exothermic heat of the oxidation reaction of the catalyst, the temperature of the catalyst rises. This increased temperature is measured by the catalyst temperature measuring device 24 and transmitted to the control device 26. The control device 26 repeats the operations from step S1 to step S3 to perform supply control of the oxidant. If the temperature data of the catalyst is stably shifted within the reaction temperature range, it is possible to control to stop the supply of the oxidizing agent. Further, when the temperature data of the catalyst falls below the lower limit value of the reaction temperature range, the oxidant supply control can be performed again. Further, when the temperature data of the catalyst greatly varies within the reaction temperature range, the flow rate (or other parameter) of the oxidant can be controlled as needed so that the temperature data becomes stable. Therefore, the catalyst layer has little temperature unevenness, and the catalyst performance can be effectively maintained.

以下では、ガス化ガス温度が高温(例えば800℃以上)である場合について説明する。動作フローは図2と同様である。ガス化ガス温度が例えば800℃以上の場合、酸化剤とガス化ガスが接触すると、自己燃焼を起こす。この自己燃焼では、火炎を伴う不均一燃焼(燃焼反応)を起こし、火炎が生じると煤が発生してしまい上述で論じたような問題が生じる。以下にガス化ガスの燃焼反応(式6,7)と煤発生反応(式8,9)の反応式を示す。
(式6) H+1/2O→HO(発熱反応)・・・(6)
(式7) CmHn+O→mCO+n/2HO(発熱反応)・・・(7)
(式8) 2CO→CO+C・・・(8)
(式9) CmHn→mC+n/2H・・・(9)
Below, the case where gasification gas temperature is high temperature (for example, 800 degreeC or more) is demonstrated. The operation flow is the same as in FIG. When the gasification gas temperature is, for example, 800 ° C. or higher, self-combustion occurs when the oxidizing agent and the gasification gas come into contact with each other. In this self-combustion, non-uniform combustion (combustion reaction) accompanied by a flame is caused, and when a flame is generated, soot is generated, resulting in problems as discussed above. The reaction equations of the gasification gas combustion reaction (Formulas 6 and 7) and soot generation reaction (Formulas 8 and 9) are shown below.
(Formula 6) H 2 + 1 / 2O 2 → H 2 O (exothermic reaction) (6)
(Formula 7) CmHn + O 2 → mCO 2 + n / 2H 2 O (exothermic reaction) (7)
(Formula 8) 2CO → CO 2 + C (8)
(Formula 9) CmHn → mC + n / 2H 2 (9)

本実施形態では、ガス化ガスの温度が800℃以上であっても、酸化剤が高速に噴射され、分散層内で酸化剤と接触したガス化ガスが火炎を伴わない均一燃焼を促進している。火炎が生じないため煤の発生もない。よって、本実施形態では火炎および煤の発生を効果的に抑制することができる。   In the present embodiment, even when the temperature of the gasification gas is 800 ° C. or higher, the oxidant is injected at a high speed, and the gasification gas in contact with the oxidant in the dispersion layer promotes uniform combustion without a flame. Yes. There is no flame, so no soot is generated. Therefore, in this embodiment, generation | occurrence | production of a flame and soot can be suppressed effectively.

以上の動作フローにおいて、制御装置26は、触媒温度測定器24によって測定された温度データに基づいて、酸化剤の供給制御を行う構成を説明したが、これに制限されない。例えば、分散層温度測定器25で測定された温度データに基づいて、酸化剤の供給制御(例えば、流速等)を行える。また、触媒温度測定器24によって測定された温度データおよび分散層温度測定器25で測定された温度データに基づいて、酸化剤の供給制御(例えば、流速等)を行うことができる。   In the above operation flow, the control device 26 has been described as being configured to perform supply control of the oxidant based on the temperature data measured by the catalyst temperature measuring device 24, but is not limited thereto. For example, based on the temperature data measured by the dispersion layer temperature measuring device 25, supply control (for example, flow rate) of the oxidant can be performed. Further, based on the temperature data measured by the catalyst temperature measuring device 24 and the temperature data measured by the dispersed bed temperature measuring device 25, supply control (for example, flow rate) of the oxidant can be performed.

(実施例1)
木質系バイオマス燃料をガス化したガス化ガス2mN/hを集塵後に、タール分解装置に導入した。触媒層上部(ガス流れの上流側)では圧縮空気をノズルから0.15mN/hの供給量で添加した。そのときの(1)火炎の有無を目視(のぞき窓から目視)、(2)空気添加後のガス化ガスの温度(分散層内部のガス化ガスの温度)、触媒層の温度(熱伝対測定)、(3)煤の発生度合い(ガス化ガスのサンプリングによる確認)等の評価を行なった。条件として、空気の添加速度(流速)、分散層の有無、添加空気温度によるその影響について確認した。
Example 1
A gasified gas 2m 3 N / h obtained by gasifying a woody biomass fuel was collected and then introduced into a tar decomposition apparatus. In the upper part of the catalyst layer (upstream side of the gas flow), compressed air was added from the nozzle at a supply rate of 0.15 m 3 N / h. At that time, (1) visually check for the presence or absence of a flame (view through the viewing window), (2) the temperature of the gasification gas after the addition of air (temperature of the gasification gas inside the dispersion layer), the temperature of the catalyst layer (thermocouple) Measurement), (3) Evaluation of soot generation degree (confirmation by sampling of gasification gas) and the like. As conditions, the effect of air addition speed (flow rate), presence / absence of a dispersion layer, and temperature of the added air were confirmed.

(実験条件)
ガス化ガスの温度:700℃(空気添加前段の上流側の温度)
空気温度:常温、350℃
空気の流速:0.5、1.5、5.0、10.0m/sec
分散層:セラミックボール層
(Experimental conditions)
Gasification gas temperature: 700 ° C. (temperature upstream of the air addition stage)
Air temperature: Normal temperature, 350 ° C
Air flow rate: 0.5, 1.5, 5.0, 10.0 m / sec
Dispersion layer: Ceramic ball layer

実験結果を表1に示す。

Figure 2009280633
The experimental results are shown in Table 1.
Figure 2009280633

添加空気の流速が遅い、0.5、1.5m/secの場合、ノズル先端にてガス化ガスの燃焼による火炎の発生が観察され、分散層ありの場合を除き、火炎に伴い煤の発生やガス化ガスの温度の上昇がみられた。一方、添加空気の流速が速い、5.0、10.0m/secの場合、ノズル先端での火炎や煤の発生は観測されず、触媒層の温度の上昇がみられたことにより、目的とする触媒層での燃焼(酸化反応)が促進されたことが確認された。   When the flow rate of the additive air is slow, 0.5 and 1.5 m / sec, the generation of flame is observed at the tip of the nozzle due to the combustion of gasified gas. And the temperature of the gasification gas increased. On the other hand, when the flow rate of the additive air is high, 5.0, 10.0 m / sec, no flame or soot is observed at the nozzle tip, and the increase in the temperature of the catalyst layer is observed. It was confirmed that combustion (oxidation reaction) in the catalyst layer was promoted.

また、添加空気温度が350℃のときはガス化ガスが燃焼しやすい傾向がみられたが、空気流速を早くすることにより触媒燃焼が促進された。   In addition, when the added air temperature was 350 ° C., the gasified gas tended to burn easily, but catalytic combustion was promoted by increasing the air flow rate.

さらに、セラミックボールの分散層の存在により、添加空気が分散され(分散効果)、触媒燃焼が促進される結果となった。   Furthermore, due to the presence of the ceramic ball dispersion layer, the added air was dispersed (dispersion effect), and catalytic combustion was promoted.

(他の実施の形態)
(1)酸化剤供給手段23のノズル231を分散層の上流側に設置する場合に限定されず、ノズル231を分散層内部に設置することができ、あるいは分散層の上流側および分散層の内部の両方に設置することができる。
(2)上記実施形態において、ガス化設備としては、ガス化溶融炉や炭化・乾留設備などであってもよく、特に限定されない。
(3)本発明に適用できるガス化ガスとしては、各種有機系廃棄物の他、各種固形燃料、産業廃棄物などを燃焼して生成されたガス化ガスなどが挙げられる。
(Other embodiments)
(1) The present invention is not limited to the case where the nozzle 231 of the oxidant supply means 23 is installed on the upstream side of the dispersion layer, and the nozzle 231 can be installed inside the dispersion layer, or the upstream side of the dispersion layer and the inside of the dispersion layer. Can be installed in both.
(2) In the above embodiment, the gasification facility may be a gasification melting furnace, a carbonization / dry distillation facility, or the like, and is not particularly limited.
(3) As gasification gas applicable to this invention, the gasification gas produced | generated by burning various solid fuel, industrial waste, etc. other than various organic wastes etc. are mentioned.

本発明の一実施形態に係るタール分解装置を示す概略フロー図Schematic flowchart showing a tar decomposition apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る動作フローチャートOperation flowchart according to one embodiment of the present invention

符号の説明Explanation of symbols

1 ガス化設備
2 タール分解装置
21 反応器
22 分散器
23 酸化剤供給手段
231 ノズル
24 触媒温度測定器
25 分散層温度測定器
26 制御装置
3 ガス精製設備
4 ガス利用設備
DESCRIPTION OF SYMBOLS 1 Gasification equipment 2 Tar cracking device 21 Reactor 22 Disperser 23 Oxidant supply means 231 Nozzle 24 Catalyst temperature measuring device 25 Dispersed bed temperature measuring device 26 Control device 3 Gas purification equipment 4 Gas utilization equipment

Claims (7)

可燃性ガスのガス化ガス中に含まれるタール分を金属系触媒によって分解するタール分解方法であって、
前記触媒の前段に設けた分散層を介して酸化剤を供給することで、前記触媒の温度を当該触媒の反応温度範囲に制御することを特徴とするタール分解方法。
A tar decomposition method in which a tar content contained in a gasified gas of a combustible gas is decomposed by a metal catalyst,
A tar decomposition method, wherein the temperature of the catalyst is controlled within a reaction temperature range of the catalyst by supplying an oxidant through a dispersion layer provided in a preceding stage of the catalyst.
前記酸化剤によって前記触媒上で前記ガス化ガスを酸化し、前記触媒の温度を当該触媒の反応温度範囲に制御することを特徴とする請求項1に記載のタール分解方法。   The tar decomposition method according to claim 1, wherein the gasification gas is oxidized on the catalyst by the oxidizing agent, and the temperature of the catalyst is controlled within a reaction temperature range of the catalyst. 前記酸化剤によって前記ガス化ガスを均一燃焼し、前記触媒の温度を当該触媒の反応温度範囲に制御することを特徴とする請求項1または2に記載のタール分解方法。   The tar decomposition method according to claim 1 or 2, wherein the gasification gas is uniformly burned by the oxidizing agent, and the temperature of the catalyst is controlled within a reaction temperature range of the catalyst. 可燃性ガスのガス化ガス中に含まれるタール分を触媒によって分解するタール分解装置であって、
前記タール分解装置内部に設けられたタールを分解する金属系触媒層と、
前記金属系触媒層の温度を測定する触媒層温度測定手段と、
前記金属系触媒層の前段に設けられた分散層と、
前記酸化剤を供給する酸化剤供給手段と、
前記触媒層温度測定手段で測定される触媒層の温度を当該触媒の反応温度範囲になるように、前記分散層を介して前記酸化剤供給手段から供給する酸化剤の流速を制御する制御手段と、を有するタール分解装置。
A tar decomposition apparatus that decomposes a tar content contained in a combustible gas gas by a catalyst,
A metal-based catalyst layer for decomposing tar provided inside the tar decomposition apparatus;
A catalyst layer temperature measuring means for measuring the temperature of the metal catalyst layer;
A dispersion layer provided in front of the metal-based catalyst layer;
An oxidant supply means for supplying the oxidant;
Control means for controlling the flow rate of the oxidant supplied from the oxidant supply means via the dispersion layer so that the temperature of the catalyst layer measured by the catalyst layer temperature measurement means falls within the reaction temperature range of the catalyst; A tar decomposing apparatus.
前記分散層の温度を測定する分散層温度測定手段を、さらに有し、
前記制御手段は、前記分散層温度測定手段で測定される分散層の温度および前記触媒層温度測定手段で測定される触媒層の温度に基いて、当該触媒の温度を当該触媒の反応温度範囲になるように、酸化剤の流速を制御することを特徴とする請求項4に記載のタール分解装置。
A dispersion layer temperature measuring means for measuring the temperature of the dispersion layer;
The control means sets the temperature of the catalyst within the reaction temperature range of the catalyst based on the temperature of the dispersion layer measured by the dispersion layer temperature measuring means and the temperature of the catalyst layer measured by the catalyst layer temperature measuring means. The tar decomposition apparatus according to claim 4, wherein the flow rate of the oxidizing agent is controlled.
前記酸化剤供給手段を分散層の上流側に配置することを特徴とする請求項4または5に記載のタール分解装置。   6. The tar decomposition apparatus according to claim 4, wherein the oxidant supply means is disposed upstream of the dispersion layer. 前記酸化剤供給手段を分散層内部に配置することを特徴とする請求項4から6のいずれか1項に記載のタール分解装置。

The tar decomposition apparatus according to any one of claims 4 to 6, wherein the oxidant supply means is disposed inside the dispersion layer.

JP2008131091A 2008-05-19 2008-05-19 Tar decomposition method and tar decomposition apparatus Expired - Fee Related JP5610561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131091A JP5610561B2 (en) 2008-05-19 2008-05-19 Tar decomposition method and tar decomposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131091A JP5610561B2 (en) 2008-05-19 2008-05-19 Tar decomposition method and tar decomposition apparatus

Publications (2)

Publication Number Publication Date
JP2009280633A true JP2009280633A (en) 2009-12-03
JP5610561B2 JP5610561B2 (en) 2014-10-22

Family

ID=41451431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131091A Expired - Fee Related JP5610561B2 (en) 2008-05-19 2008-05-19 Tar decomposition method and tar decomposition apparatus

Country Status (1)

Country Link
JP (1) JP5610561B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111779A (en) * 2008-11-06 2010-05-20 Takuma Co Ltd Tar cracking method and tar cracking facility
JP2012102181A (en) * 2010-11-08 2012-05-31 Yasuharu Matsushita Reforming apparatus and reforming system
CN102816613A (en) * 2012-07-25 2012-12-12 中国科学院广州能源研究所 Homeothermal electrocatalysis assisted reforming purifying device for biomass fuel gas
JP2013194216A (en) * 2012-03-22 2013-09-30 Takuma Co Ltd Tar cracking method and tar cracking equipment
JP2014001256A (en) * 2012-06-15 2014-01-09 Ihi Corp Gasification gas generation plant and tar reformer
WO2014171393A1 (en) * 2013-04-15 2014-10-23 株式会社Ihi Gasification gas production system
US9315746B2 (en) 2010-11-08 2016-04-19 Ze Energy Inc. Gasification furnace, gasification system, reformer and reforming system
JP2016196520A (en) * 2015-04-02 2016-11-24 株式会社Ihi Tar reforming apparatus
CN107906543A (en) * 2017-12-20 2018-04-13 安徽省升泰节能科技服务有限公司 A kind of heat accumulating type tar disposes burner
WO2021069799A1 (en) * 2019-10-08 2021-04-15 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for removing impurities from gasification gas and use
WO2022201026A1 (en) * 2021-03-23 2022-09-29 Yanmar Holdings Co., Ltd. Method and apparatus for reducing contaminants in a burnable gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107694A (en) * 1988-10-18 1990-04-19 Mitsubishi Heavy Ind Ltd Apparatus for decomposing tar and ammonia in gas
JP2007099927A (en) * 2005-10-05 2007-04-19 Takuma Co Ltd Tar cracking system and cracking method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107694A (en) * 1988-10-18 1990-04-19 Mitsubishi Heavy Ind Ltd Apparatus for decomposing tar and ammonia in gas
JP2007099927A (en) * 2005-10-05 2007-04-19 Takuma Co Ltd Tar cracking system and cracking method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111779A (en) * 2008-11-06 2010-05-20 Takuma Co Ltd Tar cracking method and tar cracking facility
US9315746B2 (en) 2010-11-08 2016-04-19 Ze Energy Inc. Gasification furnace, gasification system, reformer and reforming system
JP2012102181A (en) * 2010-11-08 2012-05-31 Yasuharu Matsushita Reforming apparatus and reforming system
US10195582B2 (en) 2010-11-08 2019-02-05 Ze Energy Inc. Gasification furnace, gasification system, reformer and reforming system
KR101907380B1 (en) * 2010-11-08 2018-10-12 가부시키가이샤 제트이 에너지 Gasification furnace, gasification system, reforming device, and reforming system
JP2013194216A (en) * 2012-03-22 2013-09-30 Takuma Co Ltd Tar cracking method and tar cracking equipment
JP2014001256A (en) * 2012-06-15 2014-01-09 Ihi Corp Gasification gas generation plant and tar reformer
CN102816613A (en) * 2012-07-25 2012-12-12 中国科学院广州能源研究所 Homeothermal electrocatalysis assisted reforming purifying device for biomass fuel gas
CN105102592A (en) * 2013-04-15 2015-11-25 株式会社Ihi Gasification gas production system
JP2014205806A (en) * 2013-04-15 2014-10-30 株式会社Ihi Gasified gas generation system
AU2014254904B2 (en) * 2013-04-15 2016-09-15 Ihi Corporation Gasification gas production system
US9738841B2 (en) 2013-04-15 2017-08-22 Ihi Corporation Gasified gas production system
WO2014171393A1 (en) * 2013-04-15 2014-10-23 株式会社Ihi Gasification gas production system
JP2016196520A (en) * 2015-04-02 2016-11-24 株式会社Ihi Tar reforming apparatus
CN107906543A (en) * 2017-12-20 2018-04-13 安徽省升泰节能科技服务有限公司 A kind of heat accumulating type tar disposes burner
CN107906543B (en) * 2017-12-20 2024-04-12 南京硬核科技服务有限公司 Tar disposal burner
WO2021069799A1 (en) * 2019-10-08 2021-04-15 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for removing impurities from gasification gas and use
WO2022201026A1 (en) * 2021-03-23 2022-09-29 Yanmar Holdings Co., Ltd. Method and apparatus for reducing contaminants in a burnable gas

Also Published As

Publication number Publication date
JP5610561B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5610561B2 (en) Tar decomposition method and tar decomposition apparatus
JP6229863B2 (en) Oxygen blast furnace operation method
CN102089406B (en) Coal gasification furnace
CN102165046A (en) Generating clean syngas from biomass
AU2007347600A1 (en) Fuel gasification equipment
JP2007099927A (en) Tar cracking system and cracking method
US20230081521A1 (en) Treatment apparatus and treatment method for raw material
US10317070B2 (en) Integrated combustion device power saving system
AU2008250931B2 (en) A gas reformulation system comprising means to optimize the effectiveness of gas conversion
KR20070048149A (en) Method and apparatus of gasification under igcc system
JP2010111779A (en) Tar cracking method and tar cracking facility
JP2007271203A (en) Fluidized bed gasification furnace and its fluidized bed monitoring/controlling method
JP2018527547A (en) Reduction burner that allows oxidation reaction and reduction reaction to be separated and syngas recycling system using the same
JP2006152193A (en) Method and device for gasification treatment
JP5762109B2 (en) Tar decomposition method and tar decomposition equipment
JP2009102594A (en) Gasification furnace system
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2006071215A (en) Thermal decomposition gasification melting system and its temperature raising method
DK201970772A1 (en) Method and system for production of a hot burnable gas based on solid fuels
JP7118341B2 (en) Hydrogen production equipment
KR102653928B1 (en) Gasifier integrated with tar reformer
JP4933485B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
JP2004347274A (en) Waste treatment device
JP5969540B2 (en) Gasification combustion method for combustibles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140829

R150 Certificate of patent or registration of utility model

Ref document number: 5610561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees