JP2006071215A - Thermal decomposition gasification melting system and its temperature raising method - Google Patents

Thermal decomposition gasification melting system and its temperature raising method Download PDF

Info

Publication number
JP2006071215A
JP2006071215A JP2004257089A JP2004257089A JP2006071215A JP 2006071215 A JP2006071215 A JP 2006071215A JP 2004257089 A JP2004257089 A JP 2004257089A JP 2004257089 A JP2004257089 A JP 2004257089A JP 2006071215 A JP2006071215 A JP 2006071215A
Authority
JP
Japan
Prior art keywords
pyrolysis
pyrolysis gas
temperature
furnace
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004257089A
Other languages
Japanese (ja)
Other versions
JP4243764B2 (en
Inventor
Takahiro Marumoto
隆弘 丸本
Noriyuki Oyatsu
紀之 大谷津
Tetsuya Iwase
徹哉 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004257089A priority Critical patent/JP4243764B2/en
Publication of JP2006071215A publication Critical patent/JP2006071215A/en
Application granted granted Critical
Publication of JP4243764B2 publication Critical patent/JP4243764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste gasification melting system capable of completing temperature raising of the system in a short time and reducing the use of fuel excluding wastes. <P>SOLUTION: This thermal decomposition gasification melting system includes a fluidized bed-type thermal decomposition gasification furnace 3 for thermally decomposing wastes, a swivel melting furnace 6 connected with the thermal decomposition gasification furnace 3 through a pyrolysis gas flow channel 5, and burning the pyrolysis gas and char produced in the thermal decomposition gasification furnace 3 to obtain a high-temperature field to melt ash in the char, and an auxiliary fuel supply pipe 21 for supplying auxiliary fuel to the pyrolysis gas flow channel 5. The pyrolysis gas flow channel 5 can be cooled by switching a water-cooling mode and an air-cooling mode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一般ごみや産業廃棄物等を熱分解する熱分解ガス化炉及びガス化炉で生成した熱分解ガス及びチャーを燃焼し、高温場を得てチャー中の灰を溶融する溶融炉を具備した熱分解ガス化溶融システムとその昇温方法に関する。   The present invention relates to a pyrolysis gasification furnace that pyrolyzes general waste and industrial waste, etc., and a melting furnace that burns pyrolysis gas and char generated in the gasification furnace and obtains a high temperature field to melt the ash in the char The present invention relates to a pyrolysis gasification melting system and a temperature raising method thereof.

一般ごみ、産業廃棄物等の熱分解ガス化溶融システムは、燃料であるごみや廃棄物を流動床式ガス化炉へ供給し、空気不足の状態で熱分解ガス化させ、生成した熱分解ガス及び未燃カーボンと灰を主成分とするチャーを溶融炉で燃焼させることで、高温場を得てチャー中の灰を溶融スラグ化するものである。この過程でごみは減容化され、ダイオキシン類は高温場で完全に分解・無害化される。   Pyrolysis gasification and melting system for general waste, industrial waste, etc., is generated by supplying garbage and waste as fuel to a fluidized bed gasification furnace and pyrolyzing and gasifying it in a shortage of air. And the char which has unburned carbon and ash as a main component is burned with a melting furnace, a high temperature field is obtained and the ash in char is made into molten slag. During this process, waste is reduced in volume, and dioxins are completely decomposed and detoxified at high temperatures.

ガス化炉及び溶融炉にはそれぞれガス化炉起動バーナ及び溶融炉起動バーナが設置されており、システム起動時は灯油などを燃料とする起動バーナを用いて昇温する。通常、起動バーナは燃料に対して供給される空気量が予め設定されており(一般に空気比1.2程度)、出力調整器によって燃料量を増減し、炉内温度を上昇させる。   A gasification furnace start burner and a melting furnace start burner are installed in the gasification furnace and the melting furnace, respectively, and when the system is started, the temperature is raised using a start burner using kerosene or the like as fuel. Normally, the amount of air supplied to the fuel is set in advance in the start burner (generally, an air ratio of about 1.2), and the amount of fuel is increased or decreased by the output regulator to raise the furnace temperature.

ごみガス化溶融システムの特徴はごみの持つエネルギーによるガス化炉及び溶融炉の温度の維持にあるが、起動時には、灯油等の補助燃料を使用してガス化炉及び溶融炉を昇温する必要がある。これは、ガス化炉の温度を600℃程度まで上昇させないと、ごみが安定に熱分解ガス化されないためと、ごみ中の灰を溶融するために予め溶融炉の温度を灰の溶融温度(1300℃程度)以上に昇温する必要があるためである。   The characteristic of the waste gasification and melting system is that the temperature of the gasification furnace and melting furnace is maintained by the energy of the waste. At startup, it is necessary to raise the temperature of the gasification furnace and melting furnace using auxiliary fuel such as kerosene. There is. This is because, unless the temperature of the gasification furnace is raised to about 600 ° C., the waste is not stably pyrolyzed and gasified. This is because it is necessary to raise the temperature to about (° C.) or higher.

ここで、ガス化炉の昇温時には、ガス化炉起動バーナ用の燃焼空気及び流動化空気がガス化炉に供給され、ガス化炉起動バーナからの燃料と反応することで燃焼し、ガス化炉から多量の燃焼排ガス(通常600〜900℃)が排出される。この多量の燃焼排ガスは、ガス化炉と熱分解ガス流路で直結された溶融炉にそのまま流入する。一方、溶融炉においても溶融炉起動バーナへ燃焼用空気が供給されており、ガス化炉から送り込まれる燃焼排ガスと相まって、炉の温度が上昇しにくいという問題がある。これらの問題を解決する手段として下記の方法が考えられているが、何れも効果がないか、運用上の問題を抱えている。   Here, when the temperature of the gasification furnace is increased, combustion gas and fluidized air for the gasification furnace starting burner are supplied to the gasification furnace, and it is burned by reacting with fuel from the gasification furnace starting burner. A large amount of combustion exhaust gas (usually 600 to 900 ° C.) is discharged from the furnace. This large amount of combustion exhaust gas flows directly into the melting furnace directly connected to the gasification furnace through the pyrolysis gas flow path. On the other hand, in the melting furnace, combustion air is supplied to the melting furnace starting burner, and there is a problem that the temperature of the furnace is difficult to rise in combination with the combustion exhaust gas fed from the gasification furnace. The following methods are considered as means for solving these problems, but none of them are effective or have operational problems.

(1)起動時にガス化炉の燃焼排ガスを溶融炉に流入させないようにバイパスして、2つの炉を独立に昇温する方法:この方法によると、短時間かつ少ない燃料量で溶融炉の温度を1300℃以上にすることができる。しかしながら、起動時のガス化炉燃焼排ガスの温度及びごみガス化時の熱分解ガスの温度が600〜900℃と高い上、熱分解ガス中にはごみから発生する腐食性のある塩化水素が含まれているため、ガスの流路切り替えに使用できるような弁やダンパがなく、現実には使用できない。 (1) Bypassing the gasification furnace combustion exhaust gas so that it does not flow into the melting furnace at start-up, the temperature of the two furnaces is increased independently. Can be set to 1300 ° C. or higher. However, the temperature of the gasification furnace combustion exhaust gas at the time of start-up and the temperature of the pyrolysis gas at the time of waste gasification are as high as 600 to 900 ° C., and the pyrolysis gas contains corrosive hydrogen chloride generated from the waste. Therefore, there are no valves or dampers that can be used to switch the gas flow path, and it cannot be used in reality.

(2)溶融炉起動バーナの燃焼用空気を酸素富化して温度を上げる方法:高酸素用のバーナ及び酸素ボンベ、あるいは酸素富化装置が必要となるためコスト高となる。 (2) Method of raising the temperature by enriching the combustion air of the melting furnace starting burner with oxygen: a high oxygen burner and oxygen cylinder, or an oxygen enrichment device is required, resulting in high costs.

(3)ガス化炉燃焼排ガス中の酸素を溶融炉の燃焼に使用する方法:ガス化炉へはバーナ燃焼用空気以外に流動化空気等の多量の空気が供給されているため、ガス化炉の残酸素濃度は十数%と高い。ガス化炉燃焼排ガスの酸素を溶融炉の燃焼用酸素として利用すれば、溶融炉起動バーナの空気比を1未満に下げて全体のガス量を減らすことが可能となり、灯油量を増やさなくても溶融炉温度を上昇させることが可能である。しかしながら、通常のバーナは燃料に対して供給される空気比を予め設定しており(空気比1.2程度)、燃料量と空気量を独立して変えるためには、実際に現場でバーナの空気比設定を機械的に変えなければならないため、調節が難しく、臨機応変の対応ができない。 (3) Method of using oxygen in gasification furnace combustion exhaust gas for melting furnace melting: Gasification furnace is supplied with a large amount of air such as fluidized air in addition to burner combustion air. The residual oxygen concentration is as high as 10%. If oxygen in the gasification furnace combustion exhaust gas is used as combustion oxygen for the melting furnace, the air ratio of the melting furnace start burner can be lowered to less than 1 to reduce the total gas amount, without increasing the amount of kerosene. It is possible to raise the melting furnace temperature. However, a normal burner has a preset air ratio to the fuel (air ratio of about 1.2), and in order to change the fuel amount and air amount independently, Since the air ratio setting must be changed mechanically, it is difficult to adjust and it is not possible to respond flexibly.

(4)ガス化炉側に燃料を供給する方法:特許文献1に開示されているように、ガス化炉側に燃料を供給すれば、溶融炉の起動バーナを廃止でき、かつ、バーナ用空気を供給する必要がなくなるので、溶融炉の昇温が容易となる。しかしながら、ガス化炉へ燃料を供給する場合には、ガス化炉の温度を溶融炉並みに高くする必要があり、耐熱温度が溶融炉よりも低い耐火材を施工しているガス化炉では耐火材の溶損度合いが大きくなるという問題がある。 (4) Method of supplying fuel to the gasifier side: As disclosed in Patent Document 1, if fuel is supplied to the gasifier side, the start-up burner of the melting furnace can be abolished, and the burner air Therefore, it is easy to raise the temperature of the melting furnace. However, when fuel is supplied to the gasification furnace, the temperature of the gasification furnace needs to be as high as that of the melting furnace, and in a gasification furnace in which a refractory material having a heat resistant temperature lower than that of the melting furnace is applied, There is a problem that the degree of material damage is increased.

なお、特許文献2には、ごみガス化溶融装置において、ガス化炉と溶融炉それぞれの起動バーナにおける空気量を燃料量とは独立して調整する技術が開示されている。しかし、溶融炉に起動バーナを設置する費用を要する。   Patent Document 2 discloses a technique for adjusting the amount of air in the start burner of each of the gasification furnace and the melting furnace independently of the amount of fuel in the refuse gasification and melting apparatus. However, it is expensive to install a start-up burner in the melting furnace.

特開平9-236220号公報(第2頁〜第3頁)JP-A-9-236220 (pages 2 to 3) 特開2001-296013号公報(第5頁)JP 2001-296013 A (page 5)

本発明の課題は、上記の従来のごみガス化溶融システム起動時の課題に鑑み、システムの昇温を短時間で完了し、ごみ以外の燃料の使用量を少なくすることである。   An object of the present invention is to complete the temperature rise of the system in a short time and to reduce the amount of fuel used other than garbage in view of the problems at the time of starting the conventional garbage gasification and melting system.

上記の課題は、廃棄物を熱分解する熱分解ガス化炉と、前記熱分解ガス化炉に熱分解ガス流路を介して接続され、前記熱分解ガス化炉で生成された熱分解ガス及びチャーを燃焼し、高温場を得てチャー中の灰を溶融する溶融炉と、前記熱分解ガス流路へ補助燃料を供給する手段と、を具備してなり、前記熱分解ガス流路は水冷方式と空冷方式に切替えて冷却可能に構成されている熱分解ガス化溶融システムにより達成される。   The above problems include a pyrolysis gasification furnace for pyrolyzing waste, a pyrolysis gas generated in the pyrolysis gasification furnace connected to the pyrolysis gasification furnace through a pyrolysis gas flow path, and A melting furnace for burning the char to obtain a high temperature field and melting the ash in the char, and means for supplying auxiliary fuel to the pyrolysis gas channel, wherein the pyrolysis gas channel is water-cooled This is achieved by a pyrolysis gasification and melting system configured to be able to cool by switching between a system and an air cooling system.

溶融炉の型式は旋回式とするのが望ましい。   The type of the melting furnace is preferably a swivel type.

上記構成によれば、溶融炉の起動バーナが不要となり、溶融炉の燃焼ガス量を低減できる。さらに、熱分解ガス化炉(以下、ガス化炉という)から排出される酸素濃度の高い燃焼排ガスに補助燃料を供給することで、溶融炉に流入する排ガスの温度を効果的に上昇できるため、溶融炉を短時間で昇温することが可能となる。ガス化炉から排出される排ガス中には酸素が多く含まれており、熱分解ガス流路へ補助燃料を供給することで、高温のガスが得られる。しかしながら、熱分解ガス流路の耐火材が溶損する危険性があるので、起動時には、熱分解ガス流路の冷却方式を水冷方式に切替えて、耐火材の溶損を防止する。なお、ごみ単独運転、すなわち、熱分解ガス化運転時には、熱分解ガス流路を流通する熱分解ガスの温度が600〜800℃程度と低いので、熱分解ガス流路の冷却方式を空冷方式に切替えて放散熱量を低減する。   According to the said structure, the starting burner of a melting furnace becomes unnecessary and the amount of combustion gas of a melting furnace can be reduced. Furthermore, by supplying auxiliary fuel to combustion exhaust gas having a high oxygen concentration discharged from a pyrolysis gasification furnace (hereinafter referred to as gasification furnace), the temperature of the exhaust gas flowing into the melting furnace can be effectively increased. It is possible to raise the temperature of the melting furnace in a short time. The exhaust gas discharged from the gasification furnace contains a large amount of oxygen, and high temperature gas can be obtained by supplying auxiliary fuel to the pyrolysis gas flow path. However, since there is a risk of the refractory material in the pyrolysis gas flow path being melted, the cooling method of the pyrolysis gas flow path is switched to the water cooling method at the start-up to prevent the refractory material from being melted. In the case of single operation of garbage, that is, pyrolysis gasification operation, the temperature of the pyrolysis gas flowing through the pyrolysis gas passage is as low as about 600 to 800 ° C. Switch to reduce heat dissipation.

溶融炉の型式を旋回式とすれば、溶融炉の内壁に高温ガスを効果的に流通させることが可能となるので、上記効果に加え、溶融炉の昇温時間をさらに短縮できる。   If the type of the melting furnace is a swivel type, it is possible to effectively distribute the high temperature gas to the inner wall of the melting furnace, so that in addition to the above effects, the temperature raising time of the melting furnace can be further shortened.

本発明によれば、ガス化溶融システムの起動時間の短縮が図れると共に、燃料使用量が低減され、燃料費を節減できる。また、溶融炉へのバーナ設置が不要となるので、設備費を低減できる。   According to the present invention, the startup time of the gasification and melting system can be shortened, the amount of fuel used can be reduced, and the fuel cost can be reduced. Moreover, since it is not necessary to install a burner in the melting furnace, the equipment cost can be reduced.

以下、本発明の実施の形態につき、説明する。図1は、本発明を一般ごみ用の熱分解ガス化溶融システムに適用した場合の要部構成を示す系統図である。本実施の形態に係る熱分解ガス化溶融システムは、供給ホッパ1と給じん装置2を備えた流動床式熱分解ガス化炉(以下、ガス化炉という)3と、ガス化炉3に熱分解ガス流路5で接続された旋回式溶融炉6と、旋回式溶融炉(以下、溶融炉という)6後段に排ガスの完全燃焼のために設けられた2次燃焼室7と、2次燃焼室7に接続して設けられ排ガスからの熱回収を目的とする廃熱ボイラ8と、廃熱ボイラ8に接続して設けられた、ダイオキシン類の再合成を抑制するための排ガス温度減温装置9と、排ガス温度減温装置9の排ガス出側に接続して設けられた、ダストの捕集装置である集塵装置10と、集塵装置10の排ガス出側に、煙道を介して接続され、排ガスを大気に放出する煙突11と、を含んで構成されている。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a system diagram showing a main part configuration when the present invention is applied to a pyrolysis gasification melting system for general waste. A pyrolysis gasification melting system according to the present embodiment includes a fluidized bed pyrolysis gasification furnace (hereinafter referred to as a gasification furnace) 3 provided with a supply hopper 1 and a dust supply device 2, and heat is supplied to the gasification furnace 3. A revolving melting furnace 6 connected by a cracked gas flow path 5, a revolving combustion furnace (hereinafter referred to as a melting furnace) 6, a secondary combustion chamber 7 provided for complete combustion of exhaust gas, and a secondary combustion A waste heat boiler 8 connected to the chamber 7 for the purpose of heat recovery from the exhaust gas, and an exhaust gas temperature reducing device for suppressing the resynthesis of dioxins provided connected to the waste heat boiler 8 9, connected to the exhaust gas outlet side of the exhaust gas temperature reduction device 9, connected to the dust collector 10, which is a dust collector, and connected to the exhaust gas outlet side of the dust collector 10 via the flue And a chimney 11 that emits exhaust gas to the atmosphere.

熱分解ガス流路5は、その周囲を空冷/水冷切替式ジャケット15で囲まれており、空冷/水冷切替式ジャケット15には、水供給設備17、空気供給設備18がそれぞれ流量調整弁16を介して接続されていて、水冷方式と空冷方式を切替えて冷却できる構造となっている。また、熱分解ガス流路5には、燃料調整弁20を介装した補助燃料供給管21が接続され、溶融炉入口部において溶融炉6へ流入するガス温度を測定して出力する温度測定装置12と、温度測定装置12の出力を入力として前記燃料調整弁20の開度を制御する制御装置13が設けられている。補助燃料供給管21は、図示されていない補助燃料(灯油)供給源及び圧縮空気源に接続されている。   The pyrolysis gas flow path 5 is surrounded by an air cooling / water cooling switching jacket 15, and the air cooling / water cooling switching jacket 15 includes a water supply facility 17 and an air supply facility 18 each having a flow rate adjustment valve 16. It has a structure that can be cooled by switching between a water cooling method and an air cooling method. The pyrolysis gas flow path 5 is connected to an auxiliary fuel supply pipe 21 having a fuel adjustment valve 20 interposed therebetween, and measures and outputs the temperature of the gas flowing into the melting furnace 6 at the melting furnace inlet. 12 and a control device 13 for controlling the opening degree of the fuel regulating valve 20 by using the output of the temperature measuring device 12 as an input. The auxiliary fuel supply pipe 21 is connected to an auxiliary fuel (kerosene) supply source and a compressed air source which are not shown.

ガス化炉3、溶融炉6には、それぞれ温度測定装置12が設けられている。   A temperature measuring device 12 is provided in each of the gasification furnace 3 and the melting furnace 6.

ごみは供給ホッパ1から給じん装置2によりガス化炉3へ供給され、ガス化炉3へ供給されたごみは、ガス化炉底部に設置された散気管4から供給される流動化空気aにより流動媒体と共に流動化する。この過程でごみは部分燃焼し、熱分解されることで熱分解ガス及び未燃カーボンと灰を主成分とするチャーが生成される。生成された熱分解ガス及びチャーは熱分解ガス流路5を経て溶融炉6へ送られ、別途溶融炉6に供給される燃焼空気bと反応し燃焼する。溶融炉6内は灰の溶融温度以上に保たれており、チャー中の灰は溶融し、スラグcとなって回収される。   Garbage is supplied from the supply hopper 1 to the gasification furnace 3 by the dust supply device 2, and the waste supplied to the gasification furnace 3 is fluidized air a supplied from the diffuser pipe 4 installed at the bottom of the gasification furnace. Fluidize with fluid medium. In this process, the waste is partially combusted and pyrolyzed to produce pyrolysis gas, char that is mainly composed of unburned carbon and ash. The generated pyrolysis gas and char are sent to the melting furnace 6 through the pyrolysis gas flow path 5, and react with the combustion air b separately supplied to the melting furnace 6 to burn. The inside of the melting furnace 6 is maintained at a temperature equal to or higher than the melting temperature of ash, and the ash in the char is melted and recovered as slag c.

図2に本システムの起動操作及び各機器の温度変化を示すと共に、下記に起動操作方法を示す。
a・熱分解ガス流路5の冷却方式を水冷方式に切替え
b・ガス化炉3にごみを供給せずに、流動化空気aを供給しガス化炉起動バーナ14を起動
c・熱分解ガス流路5内の熱分解ガス温度が400℃を超えた時点で、熱分解ガス流路5に燃料f(灯油)を供給
d・溶融炉6内の温度が1300℃以上になるまで昇温
e・ガス化炉3の層温度が600℃を超えた時点でごみをガス化炉へ供給
f・ガス化炉起動バーナ14及び熱分解ガス流路5への燃料の供給を停止
g・通常のガス化運転へ移行後、熱分解ガス流路5内のガス温度が800℃以下で、熱分解ガス流路5を空冷方式に切替え
FIG. 2 shows the startup operation of this system and the temperature change of each device, and the startup operation method is shown below.
a. Switching the cooling system of the pyrolysis gas flow path 5 to the water cooling system b. Supplying the fluidized air a without supplying dust to the gasification furnace 3, and starting the gasification furnace starting burner 14. c. Pyrolysis gas When the pyrolysis gas temperature in the flow path 5 exceeds 400 ° C., the fuel f (kerosene) is supplied to the pyrolysis gas flow path d and the temperature is raised until the temperature in the melting furnace 6 becomes 1300 ° C. or higher.・ Gas is supplied to the gasifier when the layer temperature of the gasifier 3 exceeds 600 ° C. f ・ Supply of fuel to the gasifier start burner 14 and the pyrolysis gas passage 5 is stopped g. After the shift to the gasification operation, the pyrolysis gas passage 5 is switched to the air cooling system when the gas temperature in the pyrolysis gas passage 5 is 800 ° C. or lower.

熱分解ガス化炉3における安定な熱分解反応を維持するためには、あらかじめガス化炉流動層部を流動化させる必要がある。このため、ごみが供給されない起動時においてもガス化炉3へ流動化空気を供給する必要がある。起動直後は層温度が低く、層内媒体である砂の流動化に必要な空気の上昇速度を確保できないため、層は流動化していない。次に、ガス化炉起動バーナ14を起動する。ガス化炉起動バーナ14は層部分を効率的に加熱できるように、層表面に火炎が衝突するような位置・姿勢に設置されている。時間の経過に伴い、ガス化炉耐火壁及び流動媒体である砂の温度が上昇し、空気の上昇速度が増加するため、砂が流動化を開始する。   In order to maintain a stable pyrolysis reaction in the pyrolysis gasifier 3, it is necessary to fluidize the gasifier fluidized bed portion in advance. For this reason, it is necessary to supply fluidized air to the gasification furnace 3 even at the start-up time when no waste is supplied. Immediately after startup, the bed temperature is low and the rate of air rise required for fluidization of the sand, which is the medium in the bed, cannot be secured, so the bed is not fluidized. Next, the gasifier starting burner 14 is started. The gasifier starting burner 14 is installed at a position and posture such that a flame collides with the layer surface so that the layer portion can be efficiently heated. As time elapses, the temperature of the gasification furnace refractory wall and the sand that is the fluidized medium rises, and the rising speed of the air increases, so that the sand begins to fluidize.

熱分解ガス流路5を流通するガス化炉3からの燃焼排ガスの温度が、吹き込まれた灯油が安定して燃焼可能な温度である400℃以上になったら、補助燃料である灯油が熱分解ガス流路5に噴霧される。灯油の噴霧は圧縮空気で微粒化させる機構を採用し、噴霧液滴が短時間で蒸発するようにしてある。熱分解ガス流路5に吹き込まれた灯油は、ガス化炉3から排出される燃焼排ガス中の酸素(濃度10%程度)と反応し、高温の火炎を形成する。溶融炉6へ流入する排ガスの温度は、ガス化炉3の温度上昇と共に上昇し、最終的に1400℃程度に達する。溶融炉6を旋回式としているため、溶融炉内壁近傍を高温ガスが流通し、溶融炉6の内壁が効率良く加熱される。なお、起動時には熱分解ガス流路5が高温になるため、水冷方式に切替えている。このため、熱分解ガス流路5のガス温度が1600℃程度になっても熱分解ガス流路5の壁面が溶損することはない。   When the temperature of the combustion exhaust gas from the gasification furnace 3 flowing through the pyrolysis gas channel 5 becomes 400 ° C. or higher, which is the temperature at which the injected kerosene can be stably burned, the kerosene as the auxiliary fuel is pyrolyzed. Sprayed onto the gas flow path 5. The spraying of kerosene employs a mechanism of atomizing with compressed air so that the spray droplets evaporate in a short time. Kerosene blown into the pyrolysis gas channel 5 reacts with oxygen (concentration of about 10%) in the combustion exhaust gas discharged from the gasification furnace 3 to form a high-temperature flame. The temperature of the exhaust gas flowing into the melting furnace 6 increases as the temperature of the gasification furnace 3 rises, and finally reaches about 1400 ° C. Since the melting furnace 6 is a swivel type, high-temperature gas flows in the vicinity of the inner wall of the melting furnace, and the inner wall of the melting furnace 6 is efficiently heated. In addition, since the pyrolysis gas flow path 5 becomes high temperature at the time of starting, it switches to the water cooling system. For this reason, even if the gas temperature of the pyrolysis gas channel 5 reaches about 1600 ° C., the wall surface of the pyrolysis gas channel 5 does not melt.

溶融炉6の1300℃への昇温は高温のガスにより短時間で完了し、ガス化炉3の層温度が600℃程度になるのを待って、ガス化炉3へのごみ供給が開始される。ガス化炉3へのごみの供給が開始されれば、ごみのエネルギーでガス化炉3及び溶融炉6の温度保持が可能となるので、ガス化炉起動バーナ14及び熱分解ガス流路5への燃料供給が停止され、ごみ単独でのガス化溶融運転へ移行する。その後、熱分解ガス流路5のガス温度が800℃以下に低下した時点で、熱分解ガス流路5の冷却方式が水冷方式から空冷方式へ切替えられ、放散熱量が低減される。   The temperature increase to 1300 ° C. of the melting furnace 6 is completed in a short time with a high-temperature gas, and the supply of garbage to the gasification furnace 3 is started after the layer temperature of the gasification furnace 3 reaches about 600 ° C. The If the supply of waste to the gasification furnace 3 is started, the temperature of the gasification furnace 3 and the melting furnace 6 can be maintained with the energy of the waste, so that the gasification furnace start burner 14 and the pyrolysis gas flow path 5 are supplied. The fuel supply is stopped, and the operation shifts to the gasification and melting operation using only garbage. Thereafter, when the gas temperature in the pyrolysis gas channel 5 is lowered to 800 ° C. or lower, the cooling method of the pyrolysis gas channel 5 is switched from the water cooling method to the air cooling method, and the amount of heat dissipated is reduced.

本発明の実施の形態の要部構成を示す系統図である。It is a systematic diagram which shows the principal part structure of embodiment of this invention. 本発明の実施の形態に係る操作手順の例を示す補足説明図である。It is supplementary explanatory drawing which shows the example of the operation procedure which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 供給ホッパ
2 給じん装置
3 流動床式熱分解ガス化炉
4 散気管
5 熱分解ガス流路
6 旋回式溶融炉
7 2次燃焼室
8 廃熱ボイラ
9 排ガス温度減温装置
10 集塵装置
11 煙突
12 温度測定装置
13 制御装置
14 ガス化炉起動バーナ
16 流量調整弁
17 水供給設備
18 空気供給設備
20 燃料調整弁
21 補助燃料供給管
DESCRIPTION OF SYMBOLS 1 Supply hopper 2 Dust supply device 3 Fluidized bed type pyrolysis gasification furnace 4 Aeration pipe 5 Pyrolysis gas flow path 6 Swivel melting furnace 7 Secondary combustion chamber 8 Waste heat boiler 9 Exhaust gas temperature reduction device 10 Dust collector 11 Chimney 12 Temperature measurement device 13 Control device 14 Gasification furnace start burner 16 Flow rate adjustment valve 17 Water supply facility 18 Air supply facility 20 Fuel adjustment valve 21 Auxiliary fuel supply pipe

Claims (3)

廃棄物を熱分解する熱分解ガス化炉と、前記熱分解ガス化炉に熱分解ガス流路を介して接続され、前記熱分解ガス化炉で生成された熱分解ガス及びチャーを燃焼し、高温場を得てチャー中の灰を溶融する溶融炉と、前記熱分解ガス流路へ補助燃料を供給する手段と、を具備してなり、前記熱分解ガス流路は、水冷方式と空冷方式に切替えて冷却可能に構成されている熱分解ガス化溶融システム   A pyrolysis gasification furnace for pyrolyzing waste, and the pyrolysis gasification furnace connected to the pyrolysis gasification furnace through a pyrolysis gas flow path, and burning the pyrolysis gas and char generated in the pyrolysis gasification furnace; A melting furnace that melts the ash in the char by obtaining a high temperature field, and means for supplying auxiliary fuel to the pyrolysis gas flow path, wherein the pyrolysis gas flow path includes a water cooling system and an air cooling system. Pyrolysis gasification melting system that can be cooled by switching to 請求項1に記載の熱分解ガス化溶融システムにおいて、溶融炉が旋回式溶融炉であることを特徴とする熱分解ガス化溶融システム。   The pyrolysis gasification melting system according to claim 1, wherein the melting furnace is a swirl type melting furnace. ガス化炉起動バーナを備え、廃棄物を熱分解する流動床式の熱分解ガス化炉と、前記熱分解ガス化炉に熱分解ガス流路を介して接続され、前記熱分解ガス化炉で生成された熱分解ガス及びチャーを燃焼し、高温場を得てチャー中の灰を溶融する溶融炉と、前記熱分解ガス流路へ補助燃料を供給する手段と、を具備してなり、前記熱分解ガス流路は、水冷方式と空冷方式に切替えて冷却可能に構成されている熱分解ガス化溶融システムの起動時の昇温方法であって、
1・熱分解ガス流路の冷却方式を水冷方式に切替え、ガス化炉にごみを供給せずに、流動化空気を供給し、かつガス化炉起動バーナを起動する手順、
2・熱分解ガス流路内の熱分解ガス温度が400℃を超えた時点で、熱分解ガス流路に燃料供給を開始し、溶融炉内の温度が1300℃以上になるまで昇温する手順、
3・ガス化炉の層温度が600℃を超えた時点でガス化炉へのごみ供給を開始し、ガス化炉起動バーナ及び熱分解ガス流路への燃料の供給を停止する手順、
4・通常のガス化運転へ移行後、熱分解ガス流路内のガス温度が800℃以下で、熱分解ガス流路を空冷方式に切替える手順、
を有してなる熱分解ガス化溶融システムの起動時の昇温方法。
A fluidized bed type pyrolysis gasification furnace comprising a gasification furnace start burner and pyrolyzing waste, and connected to the pyrolysis gasification furnace via a pyrolysis gas flow path, Combusting the generated pyrolysis gas and char, obtaining a high temperature field and melting ash in the char, and means for supplying auxiliary fuel to the pyrolysis gas flow path, The pyrolysis gas flow path is a temperature raising method at the start of the pyrolysis gasification and melting system configured to be cooled by switching between a water cooling method and an air cooling method,
1. Procedure for switching the cooling method of the pyrolysis gas flow path to the water cooling method, supplying fluidized air without supplying waste to the gasifier, and starting the gasifier start burner,
2. Procedure for starting fuel supply to the pyrolysis gas channel when the temperature of the pyrolysis gas in the pyrolysis gas channel exceeds 400 ° C and raising the temperature until the temperature in the melting furnace reaches 1300 ° C or higher ,
3. Procedure for starting the supply of garbage to the gasifier when the bed temperature of the gasifier exceeds 600 ° C., and stopping the supply of fuel to the gasifier start burner and the pyrolysis gas flow path,
4. After shifting to normal gasification operation, the procedure is to switch the pyrolysis gas flow path to the air cooling system when the gas temperature in the pyrolysis gas flow path is 800 ° C or lower,
A temperature raising method at the start-up of the pyrolysis gasification melting system comprising:
JP2004257089A 2004-09-03 2004-09-03 Pyrolysis gasification melting system and its heating method Expired - Fee Related JP4243764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257089A JP4243764B2 (en) 2004-09-03 2004-09-03 Pyrolysis gasification melting system and its heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257089A JP4243764B2 (en) 2004-09-03 2004-09-03 Pyrolysis gasification melting system and its heating method

Publications (2)

Publication Number Publication Date
JP2006071215A true JP2006071215A (en) 2006-03-16
JP4243764B2 JP4243764B2 (en) 2009-03-25

Family

ID=36152034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257089A Expired - Fee Related JP4243764B2 (en) 2004-09-03 2004-09-03 Pyrolysis gasification melting system and its heating method

Country Status (1)

Country Link
JP (1) JP4243764B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102310068A (en) * 2010-06-30 2012-01-11 上海神工环保股份有限公司 Large-scale waste gasification treatment and energy recycling system
CN103375806A (en) * 2012-04-26 2013-10-30 月岛机械株式会社 Processed object moving method for pressurizing flowing furnace system
JP6063539B1 (en) * 2015-09-28 2017-01-18 株式会社プランテック Waste incinerator and its cooling method
CN110030559A (en) * 2019-05-06 2019-07-19 中国华能集团清洁能源技术研究院有限公司 A kind of refuse gasification boiler and its gasification process
CN114216124A (en) * 2021-11-02 2022-03-22 上海环境工程设计研究院有限公司 Waste circuit board recycling system and process
CN117000729A (en) * 2023-09-28 2023-11-07 珙县华洁危险废物治理有限责任公司成都分公司 Method for preparing secondary fly ash from shale gas drilling oil sludge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102310068A (en) * 2010-06-30 2012-01-11 上海神工环保股份有限公司 Large-scale waste gasification treatment and energy recycling system
CN103375806A (en) * 2012-04-26 2013-10-30 月岛机械株式会社 Processed object moving method for pressurizing flowing furnace system
JP6063539B1 (en) * 2015-09-28 2017-01-18 株式会社プランテック Waste incinerator and its cooling method
CN110030559A (en) * 2019-05-06 2019-07-19 中国华能集团清洁能源技术研究院有限公司 A kind of refuse gasification boiler and its gasification process
CN114216124A (en) * 2021-11-02 2022-03-22 上海环境工程设计研究院有限公司 Waste circuit board recycling system and process
CN117000729A (en) * 2023-09-28 2023-11-07 珙县华洁危险废物治理有限责任公司成都分公司 Method for preparing secondary fly ash from shale gas drilling oil sludge
CN117000729B (en) * 2023-09-28 2023-12-12 珙县华洁危险废物治理有限责任公司成都分公司 Method for preparing secondary fly ash from shale gas drilling oil sludge

Also Published As

Publication number Publication date
JP4243764B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP2007271203A (en) Fluidized bed gasification furnace and its fluidized bed monitoring/controlling method
JP2004084981A (en) Waste incinerator
JP2006105585A (en) Thermal decomposition device capable of feeding fusion exhaust gas into thermal decomposition furnace to heat directly waste, and thermal decomposition process using the same
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
CA2443542A1 (en) Slagging combustion furnace
JP2013190204A (en) Combustion control method for gasification melting system and the system
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
KR20090103319A (en) A Pyrolyser and Pyrolysis Process Using Exhaust Gas of Waste
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
JP2007078197A (en) Incinerator and incinerating method of waste
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP4105963B2 (en) Pyrolysis gasification melting system
JP4154371B2 (en) Thermal insulation method at the time of waste supply stop of fluidized bed type gasification melting furnace
JP2007271205A (en) Furnace situation monitoring/controlling method for melting furnace and its device
JP2004077118A (en) Operation method of waste gasifying melting furnace
JP4285760B2 (en) Operation control method of gasification and melting system and system
JP5044317B2 (en) Combustion chamber and combustion method for waste gasification and melting equipment
JPH0823028B2 (en) Coal gasifier
JP3868205B2 (en) Waste gasification combustion apparatus and combustion method
JP2005282910A (en) Combustion control method of waste gasifying melting furnace
JP2006097916A (en) Combustion control method of incinerator
JP2002228126A (en) Gasification melting device
JP2006097915A (en) Incineration facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees