JP2009278837A - Induced-power transmission system - Google Patents

Induced-power transmission system Download PDF

Info

Publication number
JP2009278837A
JP2009278837A JP2008130243A JP2008130243A JP2009278837A JP 2009278837 A JP2009278837 A JP 2009278837A JP 2008130243 A JP2008130243 A JP 2008130243A JP 2008130243 A JP2008130243 A JP 2008130243A JP 2009278837 A JP2009278837 A JP 2009278837A
Authority
JP
Japan
Prior art keywords
antenna
power
circuit
power transmission
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008130243A
Other languages
Japanese (ja)
Inventor
Hideo Kikuchi
秀雄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikuchi Hideo
Original Assignee
Kikuchi Hideo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikuchi Hideo filed Critical Kikuchi Hideo
Priority to JP2008130243A priority Critical patent/JP2009278837A/en
Publication of JP2009278837A publication Critical patent/JP2009278837A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an induced-power transmission system transmitting power to a remote device at a large interval from a power device with a high transmission efficiency and being capable of transmitting a large power by low suppressing a voltage applied to electronic parts of a device subjected to power feeding in this case. <P>SOLUTION: In the induced-power transmission system, a transmission antenna and a receiving antenna have capacities connecting both ends of coil-shaped wirings, a resonance circuit is composed of the capacities and the inductances of the coil-shaped wirings and coils for the transmission antenna and the receiving antenna are arranged at a distance of twice or less of the diameters of the coils for both antennas. In the induced-power transmission system, a power circuit and a load circuit are connected in series in the intermediate section of the coil-shaped wirings, the output impedance of the power circuit is matched with a resistor induced to the transmission antenna, and the input impedance of the load circuit is matched with the resistor induced to the receiving antenna, thus transmitting the power from the power circuit to the load circuit. Such an induced-power transmission system is manufactured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電力を無線誘導手段を介して空間を越えて給電する誘導電力伝送システムに関する。   The present invention relates to an inductive power transmission system that feeds electric power across a space via wireless induction means.

従来、特許文献1で、電動車などへの応用を見込んで、空間を隔てて対向する電源装置の一次巻線から被給電装置の二次巻線に電力を供給する誘導電力伝送システムが提案されていた。この誘導電力伝送システムでは、電気端子を接触させないので、電気端子の接点の接触不良が発生しない利点がある。ここで、誘導電力伝送システムの電源装置の一次巻線に電流を流して電磁界を発生させ、その電磁界が遠隔装置の二次巻線に電磁誘導させて電力を伝達するが、特に、二次巻線の両端にコンデンサを接続して二次巻線のインダクタンスとコンデンサの容量とによる共振回路を形成し、その共振回路の共振を利用して二次巻線が電力を受け取る電力を大きくしていた。そして、その共振回路に並列に被給電装置を接続し、被給電装置に電力を供給する効率を向上させていた。また、この種の誘導電力伝送システムの応用製品として、歯ブラシや携帯電話などに非接触で電力を伝送するシステムが実用化されている。特許文献1では、一次巻線と被給電装置の二次巻線との距離は変えずに一定に保って電力を伝送し、歯ブラシや携帯電話では被給電装置をホルダーに設置して所定の一定位置に保持して電力を伝送していた。しかし、一次巻線と二次巻線の間隔が大きくなると電力の伝送効率が悪くなり、伝送する電力の大きさが小さくなってしまう問題があった。   Conventionally, Patent Literature 1 has proposed an induction power transmission system that supplies power from a primary winding of a power supply device facing a space to a secondary winding of a power-supplied device in anticipation of application to an electric vehicle or the like. It was. In this inductive power transmission system, since the electrical terminals are not brought into contact with each other, there is an advantage that contact failure of the contacts of the electrical terminals does not occur. Here, a current is passed through the primary winding of the power supply device of the induction power transmission system to generate an electromagnetic field, and the electromagnetic field is electromagnetically induced to the secondary winding of the remote device to transmit power. A capacitor is connected to both ends of the secondary winding to form a resonance circuit with the inductance of the secondary winding and the capacitance of the capacitor. The resonance of the resonance circuit is used to increase the power received by the secondary winding. It was. And the power supply apparatus was connected in parallel with the resonance circuit, and the efficiency which supplies electric power to the power supply apparatus was improved. In addition, as an application product of this type of inductive power transmission system, a system for transmitting power in a contactless manner to a toothbrush or a mobile phone has been put into practical use. In Patent Document 1, power is transmitted while keeping the distance between the primary winding and the secondary winding of the power-supplied device constant, and in a toothbrush or a mobile phone, the power-supplied device is installed in a holder and a predetermined constant The power was transmitted in the position. However, when the distance between the primary winding and the secondary winding is increased, there is a problem that the power transmission efficiency is deteriorated and the magnitude of the transmitted power is reduced.

特許文献2では、ICカードの被給電装置の二次巻線の位置を、リーダーライターの電源装置の一次巻線から空間を隔てた遠隔位置に置き、その一次巻線と二次巻線の間隔を一定位置に保持せずに、リーダーライターの電源装置からICカードの被給電装置(遠隔装置)に電力を供給する技術が開示されていた。その被給電装置の二次巻線の両端にコンデンサを接続し、二次巻線のインダクタンスとコンデンサとで共振回路を構成して受信する電力を大きくしていた。そして、一次巻線と二次巻線の間の距離が変わると電源装置から遠隔装置に供給される電力が変動する問題を解決することを課題とした。この課題を解決するために、電源装置を、電源回路と整合回路と一次巻線で構成して電力を送信した。また、ICカードの遠隔装置には、電力を受信する二次巻線と容量による共振回路を構成し、その共振回路に並列に可変インピーダンス回路を接続し、その先に整流回路から成る誘起電圧発生部を接続し、その先にICチップの負荷回路を接続した。そして、負荷回路に加わる電圧を検出してその電圧を安定させるべく可変インピーダンス回路を調整した。この構成により、負荷回路へ供給する電力を安定させた。しかし、電源回路から供給される電力のうち、負荷回路に供給される電力以外の電力は無駄に消費され、電源回路から負荷回路までの電力の伝送効率が良くない問題があった。   In Patent Document 2, the position of the secondary winding of the IC card power-supplied device is placed at a remote position with a space from the primary winding of the power supply device of the reader / writer, and the distance between the primary winding and the secondary winding. Has been disclosed in which power is supplied from a power supply device of a reader / writer to a power-supplied device (remote device) of an IC card without being held in a fixed position. A capacitor is connected to both ends of the secondary winding of the power-supplied device, and a resonance circuit is constituted by the inductance of the secondary winding and the capacitor to increase the received power. And it made it the subject to solve the problem that the electric power supplied from a power supply device to a remote device fluctuates, if the distance between a primary winding and a secondary winding changes. In order to solve this problem, the power supply device is configured by a power supply circuit, a matching circuit, and a primary winding to transmit power. In addition, the remote device of the IC card is configured with a secondary circuit that receives power and a resonant circuit with a capacity, and a variable impedance circuit is connected in parallel with the resonant circuit, and an induced voltage is generated ahead of the rectifier circuit. The IC chip load circuit was connected to the end. Then, the variable impedance circuit was adjusted to detect the voltage applied to the load circuit and stabilize the voltage. With this configuration, the power supplied to the load circuit is stabilized. However, of the power supplied from the power supply circuit, power other than the power supplied to the load circuit is consumed wastefully, and there is a problem that the power transmission efficiency from the power supply circuit to the load circuit is not good.

特許文献3では、特許文献2と同様にICカードにおいて、一次巻線と二次巻線の間隔が変化することにともなって変動するアンテナのインピーダンスを以下のように補正して電力の伝送効率を最大化させていた。すなわち、検出手段で電力伝送効率を検出して、電源装置と一次巻線のインピーダンスを、2つのコンデンサの容量を変化させるか、コンデンサとインダクタンスのパラメータを変化させるインピーダンス可変手段により整合するか、あるいは、二次巻線と被給電装置のインピーダンスを、同様な2つの回路素子のパラメータを変化させるインピーダンス可変手段により、電源回路から負荷回路に至る電力伝送経路のインピーダンスを整合させて、電力の伝送効率を良くした。   In Patent Document 3, as in Patent Document 2, in the IC card, the impedance of the antenna that fluctuates as the distance between the primary winding and the secondary winding changes is corrected as follows to improve the power transmission efficiency. It was maximized. That is, the power transmission efficiency is detected by the detection means, and the impedance of the power supply device and the primary winding is matched by changing the capacitance of the two capacitors, or by the impedance variable means for changing the parameters of the capacitor and the inductance, or The impedance of the secondary winding and the power-supplied device is matched with the impedance of the power transmission path from the power supply circuit to the load circuit by impedance variable means that changes the parameters of the two similar circuit elements, so that the power transmission efficiency Improved.

特許文献4では、特許文献2及び3と同様に、電源装置から物理的に大きな空間を隔てて配置された遠隔装置へ電力を伝送し、遠隔装置から、そのエネルギー受信状況を、電源装置側に通知し、その情報により電源装置が電力の供給を調整していた。すなわち、電源装置のコンデンサとインダクタンスとの2つの回路素子のパラメータを、パラメータ可変手段により変えることで、電源装置から遠隔装置に高い電力伝送効率で電力を供給していた。   In Patent Document 4, similarly to Patent Documents 2 and 3, power is transmitted from a power supply device to a remote device that is physically separated from a large space, and the energy reception status is transmitted from the remote device to the power supply device side. The power supply device adjusted the supply of power according to the information. That is, power is supplied from the power supply device to the remote device with high power transmission efficiency by changing the parameters of the two circuit elements of the capacitor and inductance of the power supply device by the parameter variable means.

以下に公知文献を記す。
特表平6−506099号公報 特開平10−145987号公報 特開2001−238372号公報 特表2006−517778号公報
The known literature is described below.
JP-T 6-506099 Japanese Patent Laid-Open No. 10-145987 JP 2001-238372 A JP-T-2006-517778

特許文献2から4では、一次巻線と二次巻線の間隔が変化する場合に対応して電力を伝送し、遠隔装置の二次巻線(あるいはスパイラルアンテナ)の両端にコンデンサを接続して二次巻線(スパイラルアンテナ)のインダクタンスとコンデンサから成る共振回路を共振させることで、一次巻線から二次巻線への電力の伝送効率を高くしていた。それらは、二次巻線の両端にコンデンサを接続した共振回路に並列に負荷回路を接続して電力を受信していた。そのうち、特許文献3では、一定の電力を効率良く伝送するように2つの回路素子のパラメータを変えて共振回路のインピーダンスを調整するが、その場合には、一次巻線と二次巻線の間の距離が大きくなると、二次巻線とコンデンサの並列共振回路のインピーダンスが高くなる。その場合に大きな電力を伝送しようとすると、並列共振回路のコンデンサに加わる電圧が高くなり、回路を構成する電子部品の許容電圧を超えて高くなってしまう。そのため、特許文献3では伝送できる電力の大きさに限界があり、ICカード向けなどの小電力の伝送の用途にのみ適用が限定されていた。特許文献4も同様な回路構成であり、同様に伝送できる電力の大きさに限界がある問題があった。   In Patent Documents 2 to 4, electric power is transmitted in response to a change in the interval between the primary winding and the secondary winding, and a capacitor is connected to both ends of the secondary winding (or spiral antenna) of the remote device. By resonating a resonance circuit composed of an inductance and a capacitor of the secondary winding (spiral antenna), the power transmission efficiency from the primary winding to the secondary winding is increased. They received power by connecting a load circuit in parallel with a resonant circuit having capacitors connected to both ends of the secondary winding. Among them, in Patent Document 3, the impedance of the resonance circuit is adjusted by changing the parameters of the two circuit elements so that constant power is efficiently transmitted. In that case, the impedance between the primary winding and the secondary winding is adjusted. As the distance increases, the impedance of the parallel resonance circuit of the secondary winding and the capacitor increases. In such a case, if a large amount of power is transmitted, the voltage applied to the capacitor of the parallel resonant circuit increases, exceeding the allowable voltage of the electronic components constituting the circuit. Therefore, in Patent Document 3, there is a limit to the amount of power that can be transmitted, and the application is limited only to the use of low power transmission such as for IC cards. Patent Document 4 also has a similar circuit configuration, and there is a problem that there is a limit to the amount of power that can be similarly transmitted.

そのため、本発明の第1の目的は、電源装置から大きな間隔を隔てた遠隔装置に電力を高い伝送効率で伝送し、その際に被給電装置の電子部品に加わる電圧を低く抑えることで大きな電力を伝送できる誘導電力伝送システムを得ることにある。   For this reason, the first object of the present invention is to transmit power with high transmission efficiency from a power supply device to a remote device at a large interval, and at that time, suppress the voltage applied to the electronic components of the power-supplied device to a low level. Is to obtain an inductive power transmission system capable of transmitting

また、特許文献3と特許文献4では、一次巻線と二次巻線の間隔の変動に対応して電力の伝送効率を高い効率に維持しようとすると、同時に2つの回路素子のパラメータを適切な値に調整することでインピーダンスを整合しなければならず、インピーダンスの整合手段が複雑であるので適用が難しい問題があった。そのため、本発明の第2の目的は、1つの回路素子のパラメータの調整のみで電源回路から負荷回路まで空間を隔てて大きな電力を伝送できる誘導電力伝送システムを得ることにある。   Further, in Patent Document 3 and Patent Document 4, if it is attempted to maintain high power transmission efficiency in response to fluctuations in the distance between the primary winding and the secondary winding, the parameters of the two circuit elements are simultaneously set appropriately. The impedance must be matched by adjusting the value, and there is a problem that it is difficult to apply because the impedance matching means is complicated. Therefore, a second object of the present invention is to obtain an inductive power transmission system capable of transmitting large power across a space from a power supply circuit to a load circuit only by adjusting parameters of one circuit element.

本発明は、この課題を解決するために、電源回路に接続した送信アンテナから、受信アンテナに接続した負荷回路まで空間を経由して電力を伝送するシステムにおいて、前記送信アンテナ及び前記受信アンテナがコイル状の配線の両端を結ぶ容量を有し、前記容量と前記コイル状の配線のインダクタンスで共振回路を構成し、前記送信アンテナと前記受信アンテナのコイルを、両アンテナのコイルの直径の2倍以下の距離を隔てて配置し、前記コイル状の配線の中間に直列に前記電源回路及び前記負荷回路を接続し、前記送信アンテナに誘導される抵抗に前記電源回路の出力インピーダンスを整合させ、前記受信アンテナに誘導される抵抗に前記負荷回路の入力インピーダンスを整合させて前記電源回路から前記負荷回路まで電力を伝送することを特徴とする誘導電力伝送システムである。   In order to solve this problem, the present invention provides a system in which power is transmitted via a space from a transmission antenna connected to a power supply circuit to a load circuit connected to the reception antenna, and the transmission antenna and the reception antenna are coils. Having a capacitance connecting both ends of the wire, and forming a resonance circuit with the capacitance and the inductance of the coiled wire, and the coil of the transmitting antenna and the receiving antenna is less than twice the diameter of the coils of both antennas The power supply circuit and the load circuit are connected in series in the middle of the coiled wiring, the output impedance of the power supply circuit is matched with the resistance induced in the transmission antenna, and the reception Power is transmitted from the power supply circuit to the load circuit by matching the input impedance of the load circuit to a resistance induced in the antenna. An induction power transmission system, wherein the door.

また、本発明の誘導電力伝送システムは、上記電源回路あるいは上記負荷回路に、1つの回路パラメータを可変にすることで整合インピーダンスを可変にしたインピーダンス整合手段を設置したことを特徴とする誘導電力伝送システムである。   The inductive power transmission system according to the present invention is characterized in that the power matching circuit or the load circuit is provided with impedance matching means in which matching impedance is made variable by changing one circuit parameter. System.

本発明は、両端を容量でつないだコイル状の送信アンテナに直列に接続した電源回路と、同様の受信アンテナに直列に接続した負荷回路のインピーダンスを電磁界がアンテナに誘導して発生する比較的低い値の誘導抵抗に整合させることで、効率良く空間を隔てたアンテナ間に電力を伝送できる効果がある。また、本発明は、任意の実数αに関して、そのインピーダンスをα倍からα分の1に変換して電力を伝送するインピーダンス変換回路が得られる効果がある。   In the present invention, the impedance of a power circuit connected in series to a coiled transmitting antenna having both ends connected by a capacitor and a load circuit connected in series to a similar receiving antenna is generated by induction of an electromagnetic field to the antenna. By matching with a low value of the inductive resistance, there is an effect that power can be efficiently transmitted between antennas spaced apart from each other. Further, the present invention has an effect of obtaining an impedance conversion circuit for transmitting power by converting the impedance of an arbitrary real number α from α times to 1 / α.

<本発明の原理>
図1(a)に、本発明の誘導電力伝送システムの送信アンテナ1と受信アンテナ2の平面図(XY面)を示し、図1(b)に側面図を示す。本発明の誘導電力伝送システムは、送信アンテナ1と受信アンテナ2を、両アンテナが共振する電磁界の波長λに比べて十分短い距離の空間を隔てて、両アンテナを共振させて非接触で電力を伝送するシステムである。本発明の特徴的な構成は、両アンテナはコイル(スパイラル)状の配線で形成し、そのコイルの両端は開放するかコンデンサで接続し、送信アンテナ1は、そのコイル状の配線の中間に直列に電源回路3を接続し、受信アンテナ2は、そのコイル状の配線の中間に直列に負荷回路4を接続する。電源回路3の接続する点をポート1とし、負荷回路の接続する点をポート2とする。送信アンテナ1のコイルの両端を接続する容量をC1とし、受信アンテナ2のコイルの両端を接続する容量をC2とする。送信アンテナ1のコイルの自己インダクタンスをL1とし、受信アンテナ2のコイルの自己インダクタンスをL2とすると、送信アンテナ1はL1とC1の共振回路になり、受信アンテナ2はL2とC2の共振回路になる。
<Principle of the present invention>
FIG. 1 (a) shows a plan view (XY plane) of the transmitting antenna 1 and the receiving antenna 2 of the inductive power transmission system of the present invention, and FIG. 1 (b) shows a side view. In the inductive power transmission system of the present invention, the transmitting antenna 1 and the receiving antenna 2 are separated from each other by a space having a sufficiently short distance compared to the wavelength λ of the electromagnetic field in which both antennas resonate, and both antennas resonate to generate power. It is a system that transmits. The characteristic configuration of the present invention is that both antennas are formed by coil (spiral) wiring, both ends of the coil are opened or connected by a capacitor, and the transmission antenna 1 is connected in series between the coiled wiring. The power supply circuit 3 is connected to the receiving antenna 2, and the load antenna 4 is connected in series between the coiled wires of the receiving antenna 2. A point to which the power supply circuit 3 is connected is referred to as port 1, and a point to which the load circuit is connected is referred to as port 2. The capacity for connecting both ends of the coil of the transmitting antenna 1 is C1, and the capacity for connecting both ends of the coil of the receiving antenna 2 is C2. If the self-inductance of the coil of the transmission antenna 1 is L1 and the self-inductance of the coil of the reception antenna 2 is L2, the transmission antenna 1 becomes a resonance circuit of L1 and C1, and the reception antenna 2 becomes a resonance circuit of L2 and C2. .

本発明の誘導電力伝送システムは、図2の回路図にモデル化でき、その回路は、送信アンテナ1と受信アンテナ2を角周波数ω=2πfで共振させ、両アンテナ間を、その相互インダクタンスMを介して非接触で電力を伝送する。アンテナのポートの設置位置は、アンテナの配線の中央に限定されず、アンテナの両端間を開放せずにコンデンサを設置する場合は、ポートの位置をそのコンデンサの近くのアンテナの先端部近くまで移動させることもできる。本発明は、この構成により、相互インダクタンスMがアンテナの自己シンダクタンスL1およびL2に比べて小さい場合も、効率良くエネルギーを伝送することを特徴とする。特に、本発明は、電源回路3と負荷回路が整合するインピーダンスが低いことを特徴とする。そのため、本発明は、電力を伝送するために回路素子に加わる電圧を低くでき、回路素子の寿命を長くできる効果がある。   The inductive power transmission system of the present invention can be modeled in the circuit diagram of FIG. 2, which resonates the transmitting antenna 1 and the receiving antenna 2 with an angular frequency ω = 2πf, and sets the mutual inductance M between the two antennas. Power is transmitted in a non-contact manner. The installation position of the antenna port is not limited to the center of the antenna wiring. When a capacitor is installed without opening both ends of the antenna, the port position is moved close to the tip of the antenna near the capacitor. It can also be made. According to this configuration, the present invention is characterized in that energy is efficiently transmitted even when the mutual inductance M is smaller than the self-inductances L1 and L2 of the antenna. In particular, the present invention is characterized in that the impedance at which the power supply circuit 3 and the load circuit are matched is low. Therefore, the present invention has an effect that the voltage applied to the circuit element for transmitting power can be lowered and the life of the circuit element can be extended.

図2の回路図のモデルで、送信アンテナ1に流れるアンテナ電流I1と、受信アンテナ2に流れるアンテナ電流I2が角周波数ωで時間変化し、電磁界を時間変化させ、アンテナに誘導電圧を発生させる。図2の電源回路3側から見た送信アンテナ1側の回路の入力インピーダンスには、受信アンテナ2のアンテナ電流I2が送信アンテナ1側に発生する誘導電圧E1に起因する見かけのインピーダンス(E1/I1)が加わっている。そのインピーダンス(E1/I1)の実数成分を誘導抵抗r1とすると、以下の式1から式3であらわせる。
r1=α・ωM・sin(β) (式1)
I2/I1≡α・exp(−jβ) (式2)
m≡M/√(L1×L2) (式3)
式1で用いるβは、式2による、送信アンテナ1のアンテナ電流I1と受信アンテナ2のアンテナ電流I2の高周波の位相角のずれ角βをあらわし、αは電流の比をあらわす。また、式3により、送信アンテナ1と受信アンテナ2の電磁誘導の結合係数mを、相互誘導係数Mから定義する。
In the model of the circuit diagram of FIG. 2, the antenna current I1 flowing through the transmitting antenna 1 and the antenna current I2 flowing through the receiving antenna 2 change with time at the angular frequency ω, change the electromagnetic field with time, and generate an induced voltage in the antenna. . The input impedance of the circuit on the transmission antenna 1 side viewed from the power supply circuit 3 side in FIG. 2 is an apparent impedance (E1 / I1) caused by the induced voltage E1 generated on the transmission antenna 1 side by the antenna current I2 of the reception antenna 2. ) Is added. When the real component of the impedance (E1 / I1) is an induction resistor r1, the following equations 1 to 3 are used.
r1 = α · ωM · sin (β) (Formula 1)
I2 / I1≡α · exp (−jβ) (Formula 2)
m≡M / √ (L1 × L2) (Formula 3)
Β used in Equation 1 represents a shift angle β between high-frequency phase angles of the antenna current I1 of the transmitting antenna 1 and the antenna current I2 of the receiving antenna 2 according to Equation 2, and α represents a ratio of currents. In addition, the coupling coefficient m of electromagnetic induction between the transmission antenna 1 and the reception antenna 2 is defined from the mutual induction coefficient M by Expression 3.

送信アンテナ1が直径Dの円形コイルで受信アンテナ2が直径Gの円形コイルの場合は、両コイル間の電磁誘導の結合係数mを理論的に厳密に計算した以下の式4を得た。
m=A×((−k+2/k)×K(k)−(2/k)×E(k)) (式4)
A=μ√(D×G/(L1×L2))/2
k=√(D×G/(((D+G)/2)+h)) (式5)
ここで、μは透磁率である。kは式5で定義し、K(k)は第1種完全楕円積分関数、E(k)は第2種完全楕円積分関数である。
In the case where the transmitting antenna 1 is a circular coil with a diameter D and the receiving antenna 2 is a circular coil with a diameter G, the following expression 4 was obtained in which the coupling coefficient m of electromagnetic induction between the two coils was theoretically strictly calculated.
m = A × ((− k + 2 / k) × K (k) − (2 / k) × E (k)) (Formula 4)
A = μ√ (D × G / (L1 × L2)) / 2
k = √ (D × G / (((D + G) / 2) 2 + h 2 )) (Formula 5)
Here, μ is the magnetic permeability. k is defined by Equation 5, K (k) is a first type complete elliptic integral function, and E (k) is a second type complete elliptic integral function.

電源回路3から送信アンテナ1(を含む)より先の回路に効率良く電力を伝送するため、電源回路3の出力インピーダンスZ1を送信アンテナ1の入力インピーダンスと等しくしてインピーダンスを整合する。電源回路3の出力インピーダンスZ1を誘導抵抗r1に等しくし、更に送信アンテナ1の入力インピーダンスの虚数成分を0にしてインピーダンスを整合させることで効率良く電力を伝送できる。同様に、受信アンテナ2の回路の出力インピーダンスの虚数成分を0にして負荷回路4の入力インピーダンスZ2に整合させることで、電源回路3から負荷回路4まで効率良く電力を伝送させる。このように全回路のインピーダンスを整合させて、アンテナ1の電磁界とアンテナ2の電磁界を共鳴させる。この受信アンテナ2の回路の出力インピーダンスの実数成分である誘導抵抗r2は、式1と同様に以下の式6であらわされる。
r2=(1/α)・ωM・sin(β) (式6)
In order to efficiently transmit power from the power supply circuit 3 to a circuit ahead of (including) the transmission antenna 1, the output impedance Z1 of the power supply circuit 3 is made equal to the input impedance of the transmission antenna 1 to match the impedance. By making the output impedance Z1 of the power supply circuit 3 equal to the induction resistor r1, and further matching the impedance by setting the imaginary number component of the input impedance of the transmission antenna 1 to 0, it is possible to efficiently transmit power. Similarly, the imaginary number component of the output impedance of the circuit of the receiving antenna 2 is set to 0 and matched with the input impedance Z2 of the load circuit 4, so that power can be efficiently transmitted from the power supply circuit 3 to the load circuit 4. In this way, the impedance of the entire circuit is matched to resonate the electromagnetic field of the antenna 1 and the electromagnetic field of the antenna 2. The induction resistance r2 which is a real component of the output impedance of the circuit of the receiving antenna 2 is expressed by the following expression 6 similarly to the expression 1.
r2 = (1 / α) · ωM · sin (β) (Formula 6)

ωMが小さい値の場合に、電源回路3の出力インピーダンスZ1を送信アンテナ1(を含む)より先の回路の入力インピーダンスに整合させ、かつ、受信アンテナ2の出力インピーダンスを負荷回路4の入力インピーダンスZ2に整合させる条件は以下の式7から式9であらわせる。
L1・C1=L2・C2≡1/ωo (式7)
(条件1:アンテナ電流間の位相差βが90度では無い場合)
ω=ωo/√(1+m・cos(β)) (式8)
(条件2:アンテナ電流間の位相差βが90度の場合)
ω=ωo (式9)
When ωM is a small value, the output impedance Z1 of the power supply circuit 3 is matched with the input impedance of the circuit ahead of (including) the transmission antenna 1 and the output impedance of the reception antenna 2 is changed to the input impedance Z2 of the load circuit 4 The conditions for matching are expressed by the following equations 7 to 9.
L1 · C1 = L2 · C2≡1 / ωo 2 (Formula 7)
(Condition 1: When the phase difference β between the antenna currents is not 90 degrees)
ω = ωo / √ (1 + m · cos (β)) (Formula 8)
(Condition 2: When the phase difference β between the antenna currents is 90 degrees)
ω = ωo (Formula 9)

(アンテナ電流間の位相差βが90度では無い場合)
アンテナ電流間の位相差βが90度では無い場合には、式7を満足するアンテナ系は、アンテナ電流2がアンテナ電流1の√(L1/L2)倍になり、送信アンテナ1に蓄積される電磁界のエネルギーと受信アンテナ2に蓄積される電磁界のエネルギーが等しくなる。そして、両アンテナが互いに電磁界エネルギーを交換して共鳴する。このとき、式1と式6は、式3であらわす結合係数mにかかわる以下の式10と式11になる。
r1=mωL1・sin(β) (式10)
r2=mωL2・sin(β) (式11)
式10と式11で示すように、インピーダンスを整合させるべき誘導抵抗r1とr2には、上限mωL1とmωL2がある。また、送信アンテナ1と受信アンテナ2が共鳴する角周波数ωは、式8のように角周波数ωoからずれている。
(When the phase difference β between the antenna currents is not 90 degrees)
When the phase difference β between the antenna currents is not 90 degrees, the antenna system that satisfies Expression 7 has the antenna current 2 multiplied by √ (L1 / L2) times the antenna current 1 and accumulated in the transmission antenna 1. The energy of the electromagnetic field is equal to the energy of the electromagnetic field stored in the receiving antenna 2. Both antennas resonate with each other by exchanging electromagnetic energy. At this time, Expression 1 and Expression 6 become the following Expression 10 and Expression 11 related to the coupling coefficient m expressed by Expression 3.
r1 = mωL1 · sin (β) (Equation 10)
r2 = mωL2 · sin (β) (Formula 11)
As shown in Expression 10 and Expression 11, there are upper limits mωL1 and mωL2 for the induction resistors r1 and r2 whose impedances should be matched. Further, the angular frequency ω at which the transmitting antenna 1 and the receiving antenna 2 resonate deviates from the angular frequency ωo as shown in Equation 8.

空芯コイルの送信アンテナ1と受信アンテナ2を対向させ遠ざけると、相互誘導係数Mが小さくなるので、式3で定義する結合係数mが小さくなる。そのとき、送信アンテナ1と受信アンテナ2それぞれの誘導抵抗r1とr2は式10と式11に従がって小さくなる。そのため、アンテナ間の距離が遠くなっても一定の電力Pwを、インピーダンスを整合させつつ伝送させる場合は、誘導抵抗rが小さくなり、ポート部分での電圧が低くなり、電力伝送回路の回路素子に加わる電圧が低くなり、電力伝送回路に損傷を与えない効果がある。   When the transmitting antenna 1 and the receiving antenna 2 of the air-core coil are opposed to each other and moved away from each other, the mutual induction coefficient M becomes small, so that the coupling coefficient m defined by Equation 3 becomes small. At that time, the induction resistances r1 and r2 of the transmission antenna 1 and the reception antenna 2 respectively become small according to the equations 10 and 11. Therefore, when the constant power Pw is transmitted while matching the impedance even when the distance between the antennas is increased, the inductive resistance r is decreased, the voltage at the port portion is decreased, and the circuit element of the power transmission circuit is reduced. The applied voltage is lowered, and there is an effect that the power transmission circuit is not damaged.

また、この現象を応用して、送信アンテナ1と受信アンテナ2の位置が安定せず電磁誘導の結合係数mが変動する場合にも誘導抵抗r1とr2を一定に保つ誘導電力伝送システムを構成することができる。それは、送信アンテナ1と受信アンテナ2間の距離の変化によるmの変化に応じて、共振角周波数ωを変え、βを変えることで、式10と式11による誘導抵抗r1とr2を常時一定値に保ち、その一定の誘導抵抗r1とr2に整合する電源回路3と負荷回路のインピーダンスZ1とZ2を設定することで得られる。そのために、電源回路3は、送信アンテナ1の電流I1を正帰還回路により電源回路3に正帰還させて、その電流I1を増幅して送信アンテナ1に出力する電源回路3の構成する。この回路により、結合係数mが変動しても、誘導電力伝送システムのインピーダンスを整合させるように角周波数ω=2πfを適応させて、常時効率良く電力を伝送できる効果がある。   In addition, by applying this phenomenon, an induction power transmission system that maintains the induction resistances r1 and r2 constant even when the positions of the transmission antenna 1 and the reception antenna 2 are not stable and the coupling coefficient m of electromagnetic induction fluctuates is configured. be able to. That is, by changing the resonance angular frequency ω and changing β according to the change in m due to the change in the distance between the transmitting antenna 1 and the receiving antenna 2, the inductive resistances r1 and r2 according to the equations 10 and 11 are always constant values. And the impedances Z1 and Z2 of the power supply circuit 3 and the load circuit matching the fixed induction resistances r1 and r2 are set. For this purpose, the power supply circuit 3 constitutes the power supply circuit 3 that positively feeds back the current I1 of the transmission antenna 1 to the power supply circuit 3 by a positive feedback circuit, and amplifies the current I1 and outputs it to the transmission antenna 1. Even if the coupling coefficient m fluctuates, this circuit has an effect that the angular frequency ω = 2πf is adapted so as to match the impedance of the inductive power transmission system, and power can be transmitted efficiently at all times.

ここで、送信アンテナ1から受信アンテナ2への電力伝送効率Peは、以下の式12で、アンテナ系の電力を伝送する誘導抵抗r1とr2と、送信アンテナ1の配線の実効的抵抗r3と受信アンテナ2の配線の実効的抵抗r4から計算できる。
Pe=(1−r4/r2)/(1+r3/r1) (式12)
アンテナのコイルの配線の厚さが表皮効果の表皮の厚さより厚い場合、配線の抵抗r3またはr4をrcとあらわすと、長さlenで幅Wのアンテナ配線の実効的抵抗rcは、アンテナ配線に流れる電流は、アンテナ配線の表裏面に流れ、また、アンテナ電流はアンテナ先端部分に近づくにつれ少なくなると考えると、以下の式13で計算できると考える。
rc=√(πfμ/σ)×len/(4W) (式13)
ここで、μは透磁率であり、1.26×10−6Ω秒/mである。σは配線の導電率であり、銅の場合は、5.81×10/(Ωm)である。ただし、アンテナの両端間を容量の大きなコンデンサで結合する場合は、アンテナ電流は、アンテナの両端を接続するコンデンサの大きな容量に流れ込むので、アンテナの先端部分に至るまで電流が減少しないので、アンテナの実行的抵抗rcは式13の2倍になると考える。
Here, the power transmission efficiency Pe from the transmission antenna 1 to the reception antenna 2 is expressed by the following equation 12, and induction resistances r1 and r2 for transmitting antenna system power, effective resistance r3 of the transmission antenna 1 wiring, and reception It can be calculated from the effective resistance r4 of the antenna 2 wiring.
Pe = (1-r4 / r2) / (1 + r3 / r1) (Formula 12)
When the thickness of the wiring of the antenna coil is larger than the thickness of the skin of the skin effect, when the resistance r3 or r4 of the wiring is represented by rc, the effective resistance rc of the antenna wiring having the length len and the width W is equal to the antenna wiring. Assuming that the flowing current flows on the front and back surfaces of the antenna wiring, and that the antenna current decreases as it approaches the tip of the antenna, it can be calculated by the following equation (13).
rc = √ (πfμ / σ) × len / (4W) (Formula 13)
Here, μ is a magnetic permeability and is 1.26 × 10 −6 Ωsec / m. σ is the electrical conductivity of the wiring, and in the case of copper, it is 5.81 × 10 7 / (Ωm). However, when coupling both ends of the antenna with a capacitor with a large capacity, the antenna current flows into the large capacity of the capacitor connecting both ends of the antenna, so the current does not decrease until reaching the tip of the antenna. It is assumed that the effective resistance rc is twice that of Equation 13.

式12によると、送信アンテナ1の実効的抵抗r3が誘導抵抗r1より小さく、受信アンテナ2の実効的抵抗r4が誘導抵抗r2より小さいほど電力の伝送効率Peが良くなる。アンテナ配線の実効的抵抗r3とr4が誘導抵抗r1とr2に比べて無視できるほど小さい場合はアンテナ間でほぼ100%近い効率で電力が伝送できると考える。また、送信アンテナ1と受信アンテナ2の形状を、ダイポールアンテナをコイル状に巻くことで、アンテナの自己インダクタンスL1およびL2をダイポールアンテナの場合より大きくする。それにより、式10と式11に従って誘導抵抗r1およびr2が大きくなるので、式12に従ってアンテナ系の電力伝送効率Peを大きくできる効果がある。   According to Equation 12, the transmission efficiency Pe of power is improved as the effective resistance r3 of the transmission antenna 1 is smaller than the induction resistance r1 and the effective resistance r4 of the reception antenna 2 is smaller than the induction resistance r2. When the effective resistances r3 and r4 of the antenna wiring are negligibly small compared to the induction resistances r1 and r2, it is considered that power can be transmitted between the antennas with almost 100% efficiency. Further, the antennas self-inductances L1 and L2 are made larger than those of the dipole antenna by winding the dipole antenna in a coil shape. As a result, the induction resistances r1 and r2 are increased in accordance with Expressions 10 and 11, so that the power transmission efficiency Pe of the antenna system can be increased in accordance with Expression 12.

(アンテナ電流間の位相差βが90度の場合)
アンテナ電流I1とアンテナ電流I2の位相が90度ずれている、すなわち、その位相差βが90度であり、sin(β)が1の場合には、式9のように、角周波数ω=ωoで共振し、以下の式14から式16の状態でアンテナ系が共鳴する。
r1=mω√(L1・L2)・α (式14)
r2=mω√(L1・L2)/α (式15)
I2/I1=−jα (式16)
この共鳴の場合は、式9で示すようにアンテナの共鳴の角周波数ω=2πfがωoに一致して共鳴するが、任意のアンテナ電流の比αで電力を伝送できる特徴がある。アンテナ電流の比αが任意であるという意味は、送信アンテナ1の電流I1を大きくして大きな電磁界を発生させれば、受信アンテナ2に流れる電流I2が小さくても良い効率で電力を伝送できることを意味する。逆に、受信アンテナ2に流れる電流I2が大きければ、送信アンテナ1の電流I1が小さくても良い効率で電力を伝送できることを意味する。
(When phase difference β between antenna currents is 90 degrees)
When the antenna current I1 and the antenna current I2 are 90 degrees out of phase, that is, when the phase difference β is 90 degrees and sin (β) is 1, the angular frequency ω = ωo And the antenna system resonates in the following formulas 14 to 16.
r1 = mω√ (L1 · L2) · α (Formula 14)
r2 = mω√ (L1 · L2) / α (Formula 15)
I2 / I1 = −jα (Formula 16)
In the case of this resonance, the angular frequency ω = 2πf of resonance of the antenna resonates in accordance with ωo as shown in Expression 9, but there is a feature that power can be transmitted at an arbitrary antenna current ratio α. The meaning that the ratio α of the antenna current is arbitrary means that if the current I1 of the transmitting antenna 1 is increased to generate a large electromagnetic field, power can be transmitted with an efficiency that allows the current I2 flowing through the receiving antenna 2 to be small. Means. Conversely, if the current I2 flowing through the receiving antenna 2 is large, it means that power can be transmitted with sufficient efficiency even if the current I1 of the transmitting antenna 1 is small.

この現象を利用することで、誘導電力伝送システムにおいて、空芯コイルによる送信アンテナ1の誘導抵抗r1と受信アンテナ2の誘導抵抗r2の値をアンテナ電流の比αで変えて、その誘導抵抗に整合させてインピーダンスを変えた電源回路3から負荷回路4に良い効率で電力を伝送できるインピーダンス変換回路が構築できる。すなわち、図2の回路図中で、電源回路3と送信アンテナ1の間に挿入するインピーダンス変換回路で、電源回路3のインピーダンスを負荷回路4のインピーダンスに変換するインピーダンス変換回路が構築できる。このインピーダンス変換回路用の送信アンテナ1と受信アンテナ2の位置を変えて結合係数mを変えて、それを補うようにαを変えてmαを一定にするように共鳴させれば、回路の1つのパラメータである結合係数mのみを変えるだけで、インピーダンスの値を、一定値であるω√(L1・L2)mαから、ω√(L1・L2)m/αに、1/αに変換できるインピーダンス変換回路が構築できる。このインピーダンス変換回路は、送信アンテナ1と受信アンテナ2の回路の1つのパラメータmを変えるだけでインピーダンス変換の割合の1/αを変えることができるので、回路パラメータの調整が簡単であり容易にインピーダンスを調整できる効果がある。 By utilizing this phenomenon, in the induction power transmission system, the value of the induction resistance r1 of the transmission antenna 1 and the induction resistance r2 of the reception antenna 2 due to the air-core coil is changed by the ratio α of the antenna current to match the induction resistance. Thus, it is possible to construct an impedance conversion circuit that can transmit power to the load circuit 4 from the power supply circuit 3 whose impedance is changed with good efficiency. That is, in the circuit diagram of FIG. 2, an impedance conversion circuit that converts the impedance of the power supply circuit 3 into the impedance of the load circuit 4 can be constructed by an impedance conversion circuit inserted between the power supply circuit 3 and the transmission antenna 1. If the position of the transmitting antenna 1 and the receiving antenna 2 for the impedance conversion circuit is changed to change the coupling coefficient m, and α is changed so as to compensate for the resonance so as to make mα constant, one of the circuits by simply changing only the coupling coefficient m is a parameter, it converts the value of the impedance from a constant value ω√ (L1 · L2) mα, the ω√ (L1 · L2) m / α, the 1 / alpha 2 Impedance conversion circuit can be constructed. Since this impedance conversion circuit can change 1 / α 2 of the ratio of impedance conversion only by changing one parameter m of the circuit of the transmission antenna 1 and the reception antenna 2, adjustment of the circuit parameter is simple and easy. There is an effect that the impedance can be adjusted.

<本発明の実施形態>
本発明の誘導電力伝送システムの実施形態は、図1の1巻きのコイル、図11の3巻きのコイル、図16の7巻きのコイルなどのコイル状の送信アンテナ1と受信アンテナ2を非接触で配置し、アンテナ間の空間中を電力伝送する誘導電力伝送システムである。アンテナのコイル状配線の中間にポートを設置し、図2に示す電源回路3あるいは受信回路4を接続するものである。送信アンテナ1と受信アンテナ2は、ポートを中間に設置したダイポールアンテナをコイル状(スパイラル状)に巻いて、そのアンテナの配線の両端(アンテナ端)を開放するか、あるいは両端を接続するコンデンサを設置した構造にする。アンテナの両端が開放されている場合も、アンテナの両端間に浮遊容量がある。そして、送信アンテナ1と受信アンテナ2のアンテナ電流の角周波数ωをωoに近い値にして共振させることで、効率良く電力を伝送する。第1の実施形態から第5の実施形態では、アンテナ電流間の位相差βは90度(=π/2)と異なる値で電力を伝送する。第1の実施形態で示す変形例3以外では、位相差βを90度に近くする。その場合は、ωoに近い値のωで誘導電力伝送システムのインピーダンスが整合し、式10と式11のあらわす誘導抵抗rの値は、近似的に以下の式17と式18であらわされる値になる。
r1≒mωL1 (式17)
r2≒mωL2 (式18)
このように、電源回路3の出力インピーダンスZ1を式17の誘導抵抗r1に整合させ、負荷回路4の負荷インピーダンスZ2を式18の誘導抵抗r2に整合させて電源回路3から負荷回路4まで電力Pwを伝送することで、電力を最大の効率で伝送する電力伝送システムが得られる。
<Embodiment of the present invention>
In the embodiment of the inductive power transmission system of the present invention, the coiled transmitting antenna 1 and the receiving antenna 2 such as the one-turn coil of FIG. 1, the three-turn coil of FIG. 11, and the seven-turn coil of FIG. And an inductive power transmission system that transmits power in the space between antennas. A port is installed in the middle of the coiled wiring of the antenna to connect the power supply circuit 3 or the receiving circuit 4 shown in FIG. The transmitting antenna 1 and the receiving antenna 2 are formed by winding a dipole antenna with a port in the middle in a coil shape (spiral shape) and opening both ends (antenna ends) of the antenna wiring, or connecting capacitors connecting both ends. Use an installed structure. Even when both ends of the antenna are open, stray capacitance exists between both ends of the antenna. Then, the antenna current of the transmitting antenna 1 and the receiving antenna 2 is resonated with a value close to ωo, thereby efficiently transmitting power. In the first to fifth embodiments, the phase difference β between the antenna currents is transmitted with a value different from 90 degrees (= π / 2). Except for the third modification shown in the first embodiment, the phase difference β is set close to 90 degrees. In that case, the impedance of the inductive power transmission system is matched with ω close to ωo, and the value of the induction resistance r expressed by Equation 10 and Equation 11 is approximately the value expressed by Equation 17 and Equation 18 below. Become.
r1≈mωL1 (Formula 17)
r2≈mωL2 (Formula 18)
In this way, the output impedance Z1 of the power supply circuit 3 is matched with the induction resistance r1 of Expression 17, and the load impedance Z2 of the load circuit 4 is matched with the induction resistance r2 of Expression 18, so that the power Pw from the power supply circuit 3 to the load circuit 4 is obtained. By transmitting the power, a power transmission system that transmits power with maximum efficiency can be obtained.

各実施形態の誘導電力伝送システムは、送信アンテナ1と受信アンテナ2の誘導抵抗r1とr2は、電磁界シミュレーションにより電力を最大の効率で伝送する電源回路3の出力インピーダンスZ1と負荷回路4の入力インピーダンスZ2の値を求めることで、それらに整合するアンテナの誘導抵抗rを求めることができる。以下の各実施形態では、送信アンテナ1と受信アンテナ2の間の空間を大きくあけて、両アンテナの電磁誘導の結合係数mを0.004ぐらいに小さくした場合でも、送信アンテナ1と受信アンテナ2を共鳴させてアンテナ間に良い効率で電力を伝送できる。そして、シミュレーションから得られた誘導抵抗r1とr2は、式17と式18であらわされるため、非接触で電力を最大の効率で伝送する回路のインピーダンスの整合条件を設計できる。なお、共鳴させる送信アンテナ1と受信アンテナ2の間の空間は、真空や空気以外の、例えば誘電体媒質を充填した回路の誘導電力伝送システムも使え、また、アンテナ間に常磁性体を充填することも可能である。   In the inductive power transmission system of each embodiment, the inductive resistors r1 and r2 of the transmitting antenna 1 and the receiving antenna 2 are input to the output impedance Z1 of the power supply circuit 3 and the load circuit 4 that transmit power with maximum efficiency by electromagnetic field simulation. By determining the value of the impedance Z2, it is possible to determine the induction resistance r of the antenna that matches them. In the following embodiments, even when the space between the transmission antenna 1 and the reception antenna 2 is widened and the electromagnetic induction coupling coefficient m of both antennas is reduced to about 0.004, the transmission antenna 1 and the reception antenna 2 The power can be transmitted between the antennas with good efficiency. Since the inductive resistances r1 and r2 obtained from the simulation are expressed by Expressions 17 and 18, it is possible to design the impedance matching condition of the circuit that transmits power with maximum efficiency without contact. In addition, the space between the transmitting antenna 1 and the receiving antenna 2 to be resonated can use an induction power transmission system of a circuit filled with a dielectric medium other than vacuum or air, for example, and a paramagnetic material is filled between the antennas. It is also possible.

<第1の実施形態>
以下、図1から図10により、本発明の第1の実施形態を説明する。図1では、送信アンテナ1は、幅が1mmで厚さが50μmの銅の配線でコイル径Dが46mmの1巻のコイルを形成した。この送信アンテナ1の自己インダクタンスL1は160nHであり、受信アンテナ2の自己インダクタンスL2は180nHである。この送信アンテナ1の配線の中間に電源回路3の端子(ポート1)を直列に接続して給電した。また、送信アンテナ1の両端をつなぐ外付けコンデンサで100pFの容量C1を設置した。100pFの容量C1の外付けコンデンサは、一辺の長さが34mmの正方形の電極を2つ平行に配置し0.1mmの空気の間隔をあけて形成した容量で実現できる。受信アンテナ2は、送信アンテナ1と同じく、幅が1mmで厚さが50μmの銅の配線により、コイル径Gが50mmの1巻のコイルを形成した。その受信アンテナ2の配線の中間に負荷回路4の端子(ポート2)を直列に接続した。また、受信アンテナ2の両端をつなぐ外付けコンデンサで90pFの容量C2を設置した。図1(b)の側面図のように、送信アンテナ1と受信アンテナ2は、アンテナのコイルの軸方向にアンテナ間隔hの距離を隔てて配置する。そして、電源回路3から負荷回路4へ電力を最大の効率で伝送する電源回路3の出力インピーダンスZ1を送信アンテナ1の誘導抵抗r1とし、負荷回路4の負荷インピーダンスZ2を受信アンテナ2の誘導抵抗r2とする。そして、電源回路3は、アンテナ回路が共鳴する角周波数ωの電流I1を送信アンテナ1の出力するように、出力電流I1を正帰還して増幅する電源回路に構成し、アンテナの共鳴角周波数ωで発振させる。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the transmission antenna 1 is formed of a single coil having a width of 1 mm and a thickness of 50 μm and a copper wire having a coil diameter D of 46 mm. The self-inductance L1 of the transmitting antenna 1 is 160 nH, and the self-inductance L2 of the receiving antenna 2 is 180 nH. The terminal (port 1) of the power supply circuit 3 was connected in series between the wires of the transmission antenna 1 to supply power. A capacitance C1 of 100 pF was installed with an external capacitor connecting both ends of the transmission antenna 1. An external capacitor with a capacitance C1 of 100 pF can be realized by a capacitance formed by arranging two square electrodes each having a side length of 34 mm in parallel with an air gap of 0.1 mm. As with the transmitting antenna 1, the receiving antenna 2 was formed of a single coil having a coil diameter G of 50 mm by copper wiring having a width of 1 mm and a thickness of 50 μm. The terminal (port 2) of the load circuit 4 was connected in series between the wires of the receiving antenna 2. In addition, a capacitance C2 of 90 pF was installed with an external capacitor connecting both ends of the receiving antenna 2. As shown in the side view of FIG. 1B, the transmitting antenna 1 and the receiving antenna 2 are arranged at an antenna interval h in the axial direction of the antenna coil. Then, the output impedance Z1 of the power supply circuit 3 that transmits power from the power supply circuit 3 to the load circuit 4 with the maximum efficiency is the induction resistance r1 of the transmission antenna 1, and the load impedance Z2 of the load circuit 4 is the induction resistance r2 of the reception antenna 2. And The power supply circuit 3 is configured as a power supply circuit that amplifies the output current I1 by positive feedback so that the current I1 of the angular frequency ω with which the antenna circuit resonates is output from the transmission antenna 1, and the resonance angular frequency ω of the antenna. Oscillate with

図3に、アンテナ間隔hを種々に変えてシミュレーションした結果の、電源回路3から負荷回路4までの電力の伝送のSパラメータ(S21)をdB(デシベル)であらわして縦軸に示す。その横軸は、電源回路が送信アンテナ1に流すアンテナ電流I1の周波数fをあらわすグラフを示す。図3(a)は、図1のアンテナ間隔hが1mmの場合を示し、図3(b)はh=10mmの場合を示し、図3(c)は、h=20mmの場合を示す。図3(a)で、アンテナ間隔hが1mmの場合は、送信アンテナ1の誘導抵抗r1が20Ωであり、受信アンテナ2の誘導抵抗r2が23Ωである。この誘導抵抗r1とr2に電源回路3と負荷回路4のインピーダンスZ1とZ2を一致させた場合にアンテナが共鳴して電力の伝送効率が最も良くなり、アンテナ電流I1の周波数fが40MHzの場合の電力の伝送効率は極めて良く電力を伝送できた。図3(b)で、アンテナ間隔hが10mmの場合は、r1=8Ωでr2=9Ωであり、図3(c)で、アンテナ間隔hが20mmの場合は、r1=4Ωでr2=4Ωである。図3(c)の、アンテナ間隔hが20mmの場合でも、S21は−0.3dBであり92%の電力を伝送できた。   FIG. 3 shows the S parameter (S21) of power transmission from the power supply circuit 3 to the load circuit 4 as a result of simulation by changing the antenna interval h in various ways in dB (decibel). The horizontal axis shows a graph representing the frequency f of the antenna current I1 that the power supply circuit passes through the transmitting antenna 1. 3A shows the case where the antenna interval h in FIG. 1 is 1 mm, FIG. 3B shows the case where h = 10 mm, and FIG. 3C shows the case where h = 20 mm. In FIG. 3A, when the antenna interval h is 1 mm, the induction resistance r1 of the transmission antenna 1 is 20Ω, and the induction resistance r2 of the reception antenna 2 is 23Ω. When the impedances Z1 and Z2 of the power supply circuit 3 and the load circuit 4 are made to coincide with the induction resistances r1 and r2, the antenna resonates to obtain the best power transmission efficiency, and the frequency f of the antenna current I1 is 40 MHz. The power transmission efficiency was extremely good and power could be transmitted. 3B, when the antenna interval h is 10 mm, r1 = 8Ω and r2 = 9Ω. In FIG. 3C, when the antenna interval h is 20 mm, r1 = 4Ω and r2 = 4Ω. is there. Even in the case where the antenna interval h in FIG. 3C is 20 mm, S21 was −0.3 dB, and 92% of power could be transmitted.

以上の場合は、アンテナ間隔hが1mm、10mm、20mmの場合とも、ほとんど100%近い効率で電力を伝送できた。電力伝送効率がほぼ100%となる周波数fには周波数帯域(共鳴周波数帯域)の帯域幅があり、それは、図3(a)の、アンテナ間隔hが1mmの場合は、35MHzから55MHzまでの周波数帯域であり、約20MHzの周波数帯域幅がある。この現象は、後で詳しく解析するが、送信アンテナ1と受信アンテナ2の結合係数mが大きくなるほど帯域幅が大きくなる。電力伝送効率がほぼ100%で飽和する周波数帯域は、アンテナ間隔hが大きくなるにつれて(結合係数mが小さくなるので)狭まり、図3(b)の、アンテナ間隔hが10mmの場合は、共鳴周波数帯域は36MHzから46MHzまでの約8MHzの周波数帯域幅になる。図3(c)の、アンテナ間隔hが20mmの場合は、共鳴周波数帯域は38MHzから41MHzまでの約3MHzの周波数帯域幅になる。   In the above case, even when the antenna interval h was 1 mm, 10 mm, and 20 mm, the power could be transmitted with almost 100% efficiency. The frequency f at which the power transmission efficiency is almost 100% has a frequency band (resonance frequency band), which is a frequency from 35 MHz to 55 MHz when the antenna interval h is 1 mm in FIG. The bandwidth is about 20 MHz. This phenomenon will be analyzed in detail later. As the coupling coefficient m between the transmitting antenna 1 and the receiving antenna 2 increases, the bandwidth increases. The frequency band in which the power transmission efficiency is saturated at approximately 100% narrows as the antenna interval h increases (because the coupling coefficient m decreases). When the antenna interval h is 10 mm in FIG. The band has a frequency bandwidth of about 8 MHz from 36 MHz to 46 MHz. When the antenna interval h in FIG. 3C is 20 mm, the resonance frequency band is a frequency bandwidth of about 3 MHz from 38 MHz to 41 MHz.

図4のグラフは、縦軸に、シミュレーションで得た誘導抵抗r1を(2πfL1)で割り算して無次元量にした値r1/(2πfL1)を黒丸印で示し、r2/(2πfL2)を白丸印で示す。実線は、両アンテナの結合係数mを計算する式4を1割程度の誤差で近似した近似式19による計算結果を示す。図4の縦軸の値0.1がr1又はr2の約4.3Ωに対応する。図4のグラフの横軸は、アンテナ間隔hを、コイル径Dとコイル径Gの積の平方根で割り算して無次元量にした(h/√(D×G))をあらわす。
m≒1.8EXP(−4.3√(0.04+√(1/k−1))) (式19)
近似式19のkは式5で計算される値である。図4で、実線で示す近似式19の結合係数mは、シミュレーション結果のr1/(2πfL1)およびr2/(2πfL2)と良く一致した。このように、シミュレーションから得た図4の黒丸印と白丸印であらわす縦軸のr/(2πfL)は、結合係数mの近似式19の計算結果の実線に近い値になった。これは、式17と式18が成り立つことを意味する。
In the graph of FIG. 4, on the vertical axis, a value r1 / (2πfL1) obtained by dividing the induction resistance r1 obtained by the simulation by (2πfL1) into a dimensionless amount is indicated by a black circle, and r2 / (2πfL2) is indicated by a white circle. It shows with. The solid line shows the calculation result by the approximate expression 19 obtained by approximating the expression 4 for calculating the coupling coefficient m of both antennas with an error of about 10%. The value 0.1 on the vertical axis in FIG. 4 corresponds to about 4.3Ω of r1 or r2. The horizontal axis of the graph in FIG. 4 represents the antenna interval h divided by the square root of the product of the coil diameter D and the coil diameter G to obtain a dimensionless amount (h / √ (D × G)).
m≈1.8 EXP (−4.3√ (0.04 + √ (1 / k 2 −1))) (Formula 19)
K in the approximate expression 19 is a value calculated by the expression 5. In FIG. 4, the coupling coefficient m of the approximate expression 19 indicated by a solid line is in good agreement with the simulation results r1 / (2πfL1) and r2 / (2πfL2). Thus, r / (2πfL) on the vertical axis represented by the black and white circles in FIG. 4 obtained from the simulation was a value close to the solid line of the calculation result of the approximate expression 19 of the coupling coefficient m. This means that Equations 17 and 18 hold.

図4から、h=1mmで(h/√(D×G))が0.02の場合は、mが0.5であり、h=10mmで(h/√(D×G))が0.2の場合はmが0.2であり、h=20mmで(h/√(D×G))が0.4の場合はmが0.1である。本実施形態では、周波数f=40MHzの電磁界の波長は約7.5mの波長であり、その周波数fで共振する送信アンテナ1と受信アンテナの間隔が20mmの場合は、その間隔は波長の375分の1であり、波長に比べて十分短い。また、図3(a)のグラフでは、h=1mmでm=0.5の場合の電力の伝送効率Peの周波数特性をSパラメータS21で示す。図3(b)のグラフでは、h=10mmでm=0.2の場合を示し、図3(c)のグラフでは、h=20mmでm=0.1の場合を示す。図3のこれらのグラフでは、電力の伝送効率Peが飽和する周波数fの帯域の上限は、ほぼf/fo=1/√(1−m)であり、下限は、ほぼf/fo=1/√(1+m)になっている。このため、結合係数mを大きくすると、電力の伝送効率Peが飽和する周波数fの帯域幅の割合f/foが結合係数m程度の幅を確保できる効果がある。それゆえ、結合係数mを大きくすると、送信アンテナ1から受信アンテナ2への電力伝送効率Peを飽和させる周波数帯域幅を大きくでき、両アンテナの共振周波数同士を緩い精度で一致させれば十分であり、両アンテナ回路の製造と調整が容易になる効果がある。   From FIG. 4, when h = 1 mm and (h / √ (D × G)) is 0.02, m is 0.5, and when h = 10 mm, (h / √ (D × G)) is 0. In the case of .2, m is 0.2, and when h = 20 mm and (h / √ (D × G)) is 0.4, m is 0.1. In the present embodiment, the wavelength of the electromagnetic field having the frequency f = 40 MHz is a wavelength of about 7.5 m. When the distance between the transmitting antenna 1 and the receiving antenna that resonates at the frequency f is 20 mm, the distance is 375 of the wavelength. It is a fraction of the time and is sufficiently shorter than the wavelength. In the graph of FIG. 3A, the frequency characteristic of the power transmission efficiency Pe when h = 1 mm and m = 0.5 is indicated by S parameter S21. The graph of FIG. 3B shows a case where h = 10 mm and m = 0.2, and the graph of FIG. 3C shows a case where h = 20 mm and m = 0.1. In these graphs of FIG. 3, the upper limit of the band of the frequency f at which the power transmission efficiency Pe is saturated is approximately f / fo = 1 / √ (1-m), and the lower limit is approximately f / fo = 1 / m. √ (1 + m). For this reason, when the coupling coefficient m is increased, the bandwidth ratio f / fo of the frequency f at which the power transmission efficiency Pe is saturated has an effect of ensuring a width of about the coupling coefficient m. Therefore, if the coupling coefficient m is increased, the frequency bandwidth for saturating the power transmission efficiency Pe from the transmitting antenna 1 to the receiving antenna 2 can be increased, and it is sufficient to match the resonance frequencies of both antennas with a low degree of accuracy. This has the effect of facilitating the manufacture and adjustment of both antenna circuits.

本実施形態で、電力の伝送効率Peが飽和する周波数fの帯域幅の割合f/foが結合係数m程度の幅を確保できるので、誘導電力伝送システムの送信アンテナ1と受信アンテナ2の結合係数mを0.004以上に設定して電力を伝送すると、周波数fの帯域幅が共振周波数の0.4%以上の幅を確保することができる。そのため、結合係数mを0.004以上にすることが望ましい。そうすれば、誘導電力伝送システムに用いる部品の特性のバラツキを0.4%以内にして送信アンテナ1と受信アンテナ2の共振周波数のバラツキを0.4%以内にすることが比較的容易にできるので、この両アンテナの共振周波数のずれを電力を伝送するのに支障が無い程度の範囲内に収めることができる効果が得られる。   In this embodiment, since the bandwidth ratio f / fo of the frequency f at which the power transmission efficiency Pe is saturated can secure a width of about the coupling coefficient m, the coupling coefficient of the transmission antenna 1 and the reception antenna 2 of the induction power transmission system is secured. When power is transmitted with m set to 0.004 or more, the bandwidth of the frequency f can be secured at 0.4% or more of the resonance frequency. For this reason, it is desirable that the coupling coefficient m is 0.004 or more. By doing so, it is relatively easy to make the variation in the characteristics of the components used in the inductive power transmission system within 0.4% and the variation in the resonance frequency between the transmitting antenna 1 and the receiving antenna 2 within 0.4%. Therefore, it is possible to obtain an effect that the difference between the resonance frequencies of the two antennas can be kept within a range that does not hinder the transmission of power.

また、電力Pwを伝送する場合に、容量C1に加わる電圧V1と容量C2に加わる電圧V2は、次の式20と式21であらわされる。
V1≒√(Pw/m)×(L1/C1)(1/4) (式20)
V2≒√(Pw/m)×(L2/C2)(1/4) (式21)
ここで、電力Pw=100Wを伝送する場合でアンテナ系の結合係数mが0.1の場合は、L1=160nH、C1=100pFを式20に代入すると、V1=200Vである。L2=180nH、C2=90pFを式21に代入するとV2=211vである。そのため、容量C1とC2は平均で200V及び211Vの電圧(電圧のピークはその√2倍)に耐えなければならない。しかし、このように高い電圧が発生する箇所はアンテナの両端間だけで良く、そこに用いる容量C1とC2のみを高い耐電圧の部品で構成すれば良い。
Further, when transmitting the power Pw, the voltage V1 applied to the capacitor C1 and the voltage V2 applied to the capacitor C2 are expressed by the following Expression 20 and Expression 21.
V1≈√ (Pw / m) × (L1 / C1) (1/4) (Formula 20)
V2≈√ (Pw / m) × (L2 / C2) (1/4) (Formula 21)
Here, when the power Pw = 100 W is transmitted and the coupling coefficient m of the antenna system is 0.1, when L1 = 160 nH and C1 = 100 pF are substituted into Equation 20, V1 = 200V. Substituting L2 = 180 nH and C2 = 90 pF into Equation 21, V2 = 211v. For this reason, the capacitors C1 and C2 must withstand voltages of 200 V and 211 V on average (voltage peaks are √2 times that). However, the location where such a high voltage is generated only needs to be between both ends of the antenna, and only the capacitors C1 and C2 used there may be configured with high withstand voltage components.

本実施形態では、電源回路の端子(ポート1)では、アンテナ系の結合係数mが0.1の場合は、電源回路3と負荷回路4のインピーダンスを整合するアンテナの誘導抵抗r1とr2が約4Ωであるので、100Wの電力Pwを伝送する場合は、電源回路3と負荷回路4に20ボルトの電圧をかけ5アンペアの電流を流すことになり、電源回路3と負荷回路4の回路部分に発生する電圧は低いので、その部分で用いる回路部品は耐電圧をさほど高くする必要が無い効果がある。このように、本実施形態の誘導電力伝送システムは、電力を伝送するために誘導抵抗rに整合する電源回路3の出力インピーダンスZ1及び負荷回路4の入力インピーダンスZ2を小さくできる効果がある。そのため、所定の電力を伝送するために、電源回路3の出力端子のポート1及び負荷回路4の入力端子のポート2の電圧を低くできるので電力伝送回路の安全性が高い効果がある。   In this embodiment, when the antenna system coupling coefficient m is 0.1 at the terminal (port 1) of the power supply circuit, the induction resistances r1 and r2 of the antenna that match the impedances of the power supply circuit 3 and the load circuit 4 are about Since it is 4Ω, when transmitting the power Pw of 100 W, a voltage of 20 volts is applied to the power supply circuit 3 and the load circuit 4 and a current of 5 amperes flows, and the circuit portion of the power supply circuit 3 and the load circuit 4 flows. Since the generated voltage is low, there is an effect that the circuit component used in the portion does not need to have a high withstand voltage. As described above, the inductive power transmission system of this embodiment has an effect of reducing the output impedance Z1 of the power supply circuit 3 and the input impedance Z2 of the load circuit 4 that match the inductive resistance r in order to transmit power. Therefore, in order to transmit predetermined power, the voltage of the output terminal port 1 of the power supply circuit 3 and the input terminal port 2 of the load circuit 4 can be lowered, so that the power transmission circuit is highly safe.

本実施形態では、非接触でアンテナ間隔hがアンテナ径の40%の20mm(h/√(D×G)が0.4)でありアンテナの結合係数mが0.1の場合でも、92%の高い電力伝送効率Peが得られる効果がある。このため、応用例として、生体の組織を隔てて、生体内に縦横50mmで厚さが50μmの薄くて生体内で占有する体積が小さく埋め込み易い受信アンテナ2と負荷回路4から成る装置を埋め込み、生体外の送信アンテナ1から20mm以下の厚さの生体組織を隔てて生体内に埋め込んだ受信アンテナ2に40MHの電磁界を共鳴させることにより効率良く電力を伝送する装置を製造できる。なお、このアンテナの寸法は50mmに限定されず、アンテナの共振周波数も40MHzに限定されず、更に、アンテナの形状も1巻きのアンテナに限定されず多数巻きのコイル状あるいはスパイラル状のアンテナを用いることができる。   In the present embodiment, even when the antenna interval h is 20 mm (h / √ (D × G) is 0.4) which is 40% of the antenna diameter without contact and the antenna coupling coefficient m is 0.1, it is 92%. The high power transmission efficiency Pe can be obtained. For this reason, as an application example, a device composed of a receiving antenna 2 and a load circuit 4 is embedded in a living body, separating the living tissue and having a thin and small volume of 50 μm in length and width of 50 μm and occupied in the living body. A device that efficiently transmits electric power can be manufactured by resonating a 40 MH electromagnetic field to the receiving antenna 2 embedded in the living body with a living tissue having a thickness of 20 mm or less separated from the transmitting antenna 1 outside the living body. The size of the antenna is not limited to 50 mm, the resonance frequency of the antenna is not limited to 40 MHz, and the shape of the antenna is not limited to a single-turn antenna, and a multi-turn coiled or spiral antenna is used. be able to.

(変形例1)
変形例1として、図1の第1の実施形態の送信アンテナ1と受信アンテナ2の両端を結ぶ容量がほぼ4倍で、C1が400pFでC2が360pFの外付けコンデンサで接続する。これらの容量C1とC2のコンデンサにはアルミ電解コンデンサ等を用いることもできる。この場合は、共振周波数fが先の実施形態の半分の20MHzになる。そして、電力伝送効率の周波数特性は、図3の周波数軸の周波数を半分にしたグラフになる。また、変形例1での、縦軸にr/(2πfL)=mをあらわし、横軸を(h/√(D×G))にしたグラフは、周波数fが2分の1になるとともに誘導抵抗が2分の1になり、結局、図4と同じグラフであらわせる。なお、変形例1では、アンテナの両端間の容量C1とC2をほぼ4倍の容量にしたので、式20と式21に従って、電力Pwが100Wの電力を伝送する場合の、容量C1とC2の耐電圧は、先の実施例の約0.7倍の140V程度に低下する。
(Modification 1)
As a first modification, the capacitance connecting the both ends of the transmitting antenna 1 and the receiving antenna 2 of the first embodiment of FIG. 1 is approximately four times, and C1 is 400 pF and C2 is 360 pF. An aluminum electrolytic capacitor or the like can also be used as the capacitors having the capacitances C1 and C2. In this case, the resonance frequency f is 20 MHz, which is half of the previous embodiment. The frequency characteristic of the power transmission efficiency is a graph in which the frequency on the frequency axis in FIG. 3 is halved. Further, in the first modification, the graph in which the vertical axis represents r / (2πfL) = m and the horizontal axis represents (h / √ (D × G)) is induced when the frequency f is halved. The resistance is halved, and the result is the same graph as in FIG. In the first modification, the capacities C1 and C2 between both ends of the antenna are approximately four times the capacity. Therefore, according to the formulas 20 and 21, the capacities C1 and C2 when the power Pw is 100 W are transmitted. The withstand voltage is reduced to about 140 V, which is about 0.7 times that of the previous embodiment.

(変形例2)
変形例2の誘導電力伝送システムは、図5のように送信アンテナ1と受信アンテナ2の縦横の径Dが同じ寸法の50mmのアンテナを用いる。このアンテナの自己インダクタンスはL1=L2=L=176nHである。そのアンテナの両端間を結ぶ外付けコンデンサの容量C1とC2を100pFにすると、アンテナ電流が37MHzの周波数fで共振する。送信アンテナ1に対して受信アンテナ2を図5(a)の面の方向に縦(Y方向)と横(X方向)へのずれ距離dを0にすると、シミュレーションの結果、図6に示す誘導抵抗rが発生した。図6は、縦軸に誘導抵抗rを無次元量のr/(2πfL)であらわし、横軸にアンテナ間隔hをイル径で割り算した値の無次元量の(h/D)であらわすグラフを示す。このグラフの縦軸の値0.1は誘導抵抗rの4.1Ωに対応する。図6のグラフの横軸は、アンテナの軸方向のアンテナ間隔hを2mmから50mm(h/D=0.1)まで種々に変えた場合をあらわす。図6のグラフの黒丸印はシミュレーションから得たrをあらわし、実線は、近似式19による結合係数mの計算結果を示すが、両者は良く一致した。図6で、(h/D)が1の場合に結合係数mが約0.02になった。また、(h/D)が2になる場合は、シミュレーションの結果の誘導抵抗rは0.24Ωになり、結合係数mに相当するr/(2πfL)は0.006になった。そして電力伝送効率Peは、22%あった。このようにmが0.006程度あれば、電力伝送効率Peの飽和する周波数fの帯域幅が共振周波数foの0.6%程度あるので、0.6%程度の特性のバラツキのある部品を使っても、送信アンテナ1と受信アンテナ2の共振周波数のバラツキを許容範囲内に留めることができる。そのため、直径Dのコイルの送信アンテナ1と受信アンテナ2の間隔hをアンテナのコイルの直径Dの2倍以下にすることで、実用的な誘導電力伝送システムが構成できる。
(Modification 2)
The inductive power transmission system of Modification 2 uses a 50 mm antenna in which the vertical and horizontal diameters D of the transmission antenna 1 and the reception antenna 2 are the same as shown in FIG. The self-inductance of this antenna is L1 = L2 = L = 176 nH. When the capacitances C1 and C2 of the external capacitors connecting both ends of the antenna are set to 100 pF, the antenna current resonates at a frequency f of 37 MHz. When the shift distance d between the transmission antenna 1 and the reception antenna 2 in the vertical (Y direction) and horizontal (X direction) directions in the plane of FIG. Resistance r was generated. FIG. 6 is a graph in which the vertical axis represents the inductive resistance r as a dimensionless amount r / (2πfL), and the horizontal axis represents the dimensionless amount (h / D) as a value obtained by dividing the antenna interval h by the diameter. Show. A value of 0.1 on the vertical axis of this graph corresponds to an induction resistance r of 4.1Ω. The horizontal axis of the graph of FIG. 6 represents a case where the antenna interval h in the axial direction of the antenna is variously changed from 2 mm to 50 mm (h / D = 0.1). The black circles in the graph of FIG. 6 indicate r obtained from the simulation, and the solid line indicates the calculation result of the coupling coefficient m by the approximate expression 19, but both agree well. In FIG. 6, when (h / D) is 1, the coupling coefficient m is about 0.02. When (h / D) was 2, the inductive resistance r as a result of the simulation was 0.24Ω, and r / (2πfL) corresponding to the coupling coefficient m was 0.006. The power transmission efficiency Pe was 22%. Thus, if m is about 0.006, the bandwidth of the frequency f at which the power transmission efficiency Pe is saturated is about 0.6% of the resonance frequency fo. Even if it is used, the variation in the resonance frequency between the transmitting antenna 1 and the receiving antenna 2 can be kept within an allowable range. Therefore, a practical inductive power transmission system can be configured by setting the distance h between the transmitting antenna 1 and the receiving antenna 2 of the coil having a diameter D to be not more than twice the diameter D of the coil of the antenna.

図7のグラフは、共振周波数fが37MHzの場合の、電力伝送効率Peをあらわす。横軸は図6と同じく(h/D)である。図7の電力伝送効率Peは(h/D)が大きくなるとともに低下する。その理由は、(h/D)が大きくなるとともに結合係数mが小さくなり、式10と式11であらわされる誘導抵抗r1とr2が小さくなり、式12の電力伝送効率Peが小さくなるからである。図7から、幅1mmの銅の配線では、アンテナ間隔hをコイル径Dと同じ距離の50mm離した場合(h/D=1の場合)でも、電力伝送効率が約75%あり、十分効率良く電力を伝送できた。また、電力伝送効率Peの式12に従って、アンテナコイルの巻き数を増してインダクタンスLを大きくすることにより、アンテナの配線の導通抵抗に比して誘導抵抗rを大きくでき、電力伝送効率Peを大きくできる効果がある。一方、式12によると、アンテナの両端を大きな容量C1とC2のコンデンサで接続すると、共振角周波数ωが小さくなり、それにより誘導抵抗rが小さくなるので、電力伝送効率Peが小さくなる。   The graph of FIG. 7 represents the power transmission efficiency Pe when the resonance frequency f is 37 MHz. The horizontal axis is (h / D) as in FIG. The power transmission efficiency Pe in FIG. 7 decreases as (h / D) increases. The reason is that as (h / D) increases, the coupling coefficient m decreases, the induction resistances r1 and r2 expressed by Expressions 10 and 11 decrease, and the power transmission efficiency Pe of Expression 12 decreases. . From FIG. 7, the copper wiring with a width of 1 mm has a power transmission efficiency of about 75% even when the antenna distance h is 50 mm apart from the coil diameter D (when h / D = 1), which is sufficiently efficient. I was able to transmit power. In addition, by increasing the number of turns of the antenna coil and increasing the inductance L according to Equation 12 of the power transmission efficiency Pe, the induction resistance r can be increased compared to the conduction resistance of the antenna wiring, and the power transmission efficiency Pe is increased. There is an effect that can be done. On the other hand, according to Equation 12, when both ends of the antenna are connected by capacitors having large capacitances C1 and C2, the resonance angular frequency ω is reduced, thereby reducing the inductive resistance r, thereby reducing the power transmission efficiency Pe.

この送信アンテナ1と受信アンテナ2の両端を4倍の容量である400pFの容量C1及びC2の外付けコンデンサで接続すると、共振周波数fが変形例2の2分の1の約20MHzになる。そして、図6における、縦軸にr/(2πfL)=mをあらわし、横軸を(h/D)にして誘導抵抗rをあらわすグラフは、周波数fが約2分の1の20MHzでのグラフになり、また誘導抵抗も約2分の1になるので、結局、同じ図6のグラフになる。   When both ends of the transmission antenna 1 and the reception antenna 2 are connected by external capacitors having a capacitance C1 and C2 of 400 pF, which is four times the capacitance, the resonance frequency f becomes about 20 MHz, which is a half of the second modification. In FIG. 6, the graph showing the induction resistance r with r / (2πfL) = m on the vertical axis and (h / D) on the horizontal axis is a graph at 20 MHz where the frequency f is about one half. In addition, since the inductive resistance is also reduced to about one half, the same graph of FIG. 6 is obtained.

変形例2の誘導電力伝送システムは、以下の装置に応用できる。家屋内の電源回路3から電力を周波数が約37MHzの高周波電流によりコイル径Dが50mmの送信アンテナ1に供給して、家屋の壁に配線のための孔をあけずに、50mm程度の厚さの壁を隔てて対向する家屋外の受信アンテナ2に約75%の効率で電力を送信し、家屋外の照明装置や表示装置などの負荷回路4に電力を供給する装置が製造できる。アンテナの径Dを大きくすると、アンテナ間隔hを大きくでき、共振周波数fは下がる。また、共振周波数fは、アンテナの巻数を変えたり、アンテナの両端を容量C1及びC2が大きいコンデンサで接続することでも変えられる。   The inductive power transmission system of Modification 2 can be applied to the following devices. The power is supplied from the power supply circuit 3 in the house to the transmitting antenna 1 having a coil diameter D of 50 mm by a high frequency current having a frequency of about 37 MHz, and a thickness of about 50 mm is provided without making a hole for wiring on the wall of the house. A device can be manufactured that transmits electric power to the receiving antenna 2 outside the house facing each other across the wall with an efficiency of about 75% and supplies the electric power to the load circuit 4 such as a lighting device or a display device outside the house. When the antenna diameter D is increased, the antenna interval h can be increased, and the resonance frequency f is decreased. The resonance frequency f can also be changed by changing the number of turns of the antenna or connecting both ends of the antenna with capacitors having large capacitances C1 and C2.

(変形例3)
変形例3の誘導電力伝送システムは、送信アンテナ1と受信アンテナ2の位置が安定せず電磁誘導の結合係数mが変動する場合にも誘導抵抗r1とr2を一定に保つ誘導電力伝送システムを構成する。図8(a)に、h=10mm(h/D=0.2)の場合の、電源回路3と負荷回路4のインピーダンスZを変えた場合の電力伝送効率Peをあらわす。この場合は、アンテナの結合係数mは0.22である。図8(a)の横軸は、無次元量のZ/(2πfL)によってインピーダンスZをあらわし、横軸の値0.1がZの4.1Ωに対応する。図8(a)において、実線は、周波数fを37MHzに固定した場合の電力伝送効率Peをあらわし、破線は、アンテナ電流の周波数fを、最大の電力を伝送する周波数fに適合させて変えた場合の電力の伝送効率Peをあらわす。
(Modification 3)
The inductive power transmission system of Modification 3 constitutes an inductive power transmission system that keeps the induction resistances r1 and r2 constant even when the positions of the transmitting antenna 1 and the receiving antenna 2 are not stable and the coupling coefficient m of electromagnetic induction varies. To do. FIG. 8A shows the power transmission efficiency Pe when the impedance Z of the power supply circuit 3 and the load circuit 4 is changed when h = 10 mm (h / D = 0.2). In this case, the antenna coupling coefficient m is 0.22. The horizontal axis of FIG. 8A represents the impedance Z by a dimensionless amount of Z / (2πfL), and the horizontal axis value 0.1 corresponds to Z of 4.1Ω. In FIG. 8A, the solid line represents the power transmission efficiency Pe when the frequency f is fixed to 37 MHz, and the broken line represents the frequency f of the antenna current changed to match the frequency f that transmits the maximum power. In this case, the power transmission efficiency Pe is shown.

図8(b)には、図8(a)のグラフの横軸に示す特定のインピーダンスZに電源回路3と負荷回路のインピーダンスZを固定した電力伝送効率Peの周波数特性をSパラメータ(S21)のデシベル(dB)表示であらわす。図8(a)のように、Z/(2πfL)が結合係数mの値の0.22より大きくなると電力伝送効率Peが低下する。一方、Z/(2πfL)が結合係数mの値の0.22より小さい場合は、以下の2つの場合に分かれる。一つは、伝送する電力の周波数fをfo=37MHzに固定する場合は、電力伝送効率Peは、Z/(2πfL)が結合係数mより小さくなるにつれて低下する。図8(b)の電力伝送効率Peの周波数特性の2つのピークの間の谷間の位置がfo=37MHzである。一方、Z/(2πfL)に応じて、アンテナ電流の周波数fを、図8(b)のグラフの最大の電力伝送効率Peのピークの位置の周波数fに適合させて変える場合は、図8(a)の破線で示すように、電力伝送効率Peは飽和した値に維持することができる。   FIG. 8B shows the frequency characteristics of the power transmission efficiency Pe in which the impedance Z of the power supply circuit 3 and the load circuit is fixed to the specific impedance Z shown on the horizontal axis of the graph of FIG. Is expressed in decibels (dB). As shown in FIG. 8A, when Z / (2πfL) is larger than the coupling coefficient m value of 0.22, the power transmission efficiency Pe decreases. On the other hand, when Z / (2πfL) is smaller than 0.22 which is the value of the coupling coefficient m, it is divided into the following two cases. One is that when the frequency f of the power to be transmitted is fixed to fo = 37 MHz, the power transmission efficiency Pe decreases as Z / (2πfL) becomes smaller than the coupling coefficient m. The position of the valley between the two peaks of the frequency characteristic of the power transmission efficiency Pe in FIG. 8B is fo = 37 MHz. On the other hand, when the frequency f of the antenna current is changed in accordance with Z / (2πfL) in accordance with the frequency f at the peak position of the maximum power transmission efficiency Pe in the graph of FIG. As indicated by the broken line in a), the power transmission efficiency Pe can be maintained at a saturated value.

変形例3の誘導電力伝送システムは、この効果を利用して、送信アンテナ1と受信アンテナ2間の距離の変化によるmの変化に応じて、共振角周波数ωを変えることで、式10と式11による誘導抵抗r1とr2を常時一定値に保ち、その一定の誘導抵抗r1とr2に整合する電源回路3と負荷回路のインピーダンスZ(Z1とZ2)を設定する。そのために、電源回路3は、送信アンテナ1の電流I1を正帰還回路により電源回路3に正帰還させて、その電流I1を増幅して送信アンテナ1に出力する電源回路3の構成する。また、結合係数mの値の変化に適応させて電力の伝送効率を飽和させられる結合係数mの値の範囲は、電源回路3と負荷回路のインピーダンスZを(2πfL)で割り算した値以上の結合係数mの値である。この誘導電力伝送システムの送信アンテナ1と受信アンテナ2の配置が、この値の結合係数m以上であるならば、その結合係数mの値の変化に角周波数ω=2πfを式8に従って適応させて、電力伝送効率Peを常時飽和値に維持して効率良く電力を伝送できる効果がある。   The inductive power transmission system of Modification 3 uses this effect to change the resonance angular frequency ω according to the change in m due to the change in the distance between the transmission antenna 1 and the reception antenna 2, thereby 11, the inductive resistances r1 and r2 are always kept constant, and the impedance Z (Z1 and Z2) of the power supply circuit 3 and the load circuit matching the constant inductive resistances r1 and r2 is set. For this purpose, the power supply circuit 3 constitutes the power supply circuit 3 that positively feeds back the current I1 of the transmission antenna 1 to the power supply circuit 3 by a positive feedback circuit, and amplifies the current I1 and outputs it to the transmission antenna 1. The range of the value of the coupling coefficient m that can be adapted to the change in the value of the coupling coefficient m to saturate the power transmission efficiency is a coupling that is equal to or greater than the value obtained by dividing the impedance Z of the power supply circuit 3 and the load circuit by (2πfL). The value of the coefficient m. If the arrangement of the transmitting antenna 1 and the receiving antenna 2 of this inductive power transmission system is equal to or greater than the coupling coefficient m of this value, the angular frequency ω = 2πf is adapted to the change in the value of the coupling coefficient m according to Equation 8. There is an effect that the power transmission efficiency Pe can be maintained at a saturated value at all times and the power can be transmitted efficiently.

(変形例4)
変形例4の誘導電力伝送システムは、図5に示す送信アンテナ1と受信アンテナ2のコイルの軸を図5(a)の縦(Y)と横(X)方向にずれ距離dでずらす誘導電力伝送システムである。送信アンテナ1と受信アンテナ2の両端を容量C1とC2が100pFの外付けコンデンサで接続し、アンテナ間隔hは2mmに固定する。この場合のアンテナ回路の共振周波数fは、変形例1と同じ37MHzになる。図9に、この共振周波数f=37MHzにおけるシミュレーション結果の誘導抵抗rを黒丸印で、縦軸に無次元量のr/(2πfL)であらわし、横軸にコイルのずれ距離dを無次元量(d/D)であらわすグラフを示す。縦軸の値0.1がrの4.1Ωに対応する。図9のように、コイルの位置を水平方向にずらすと、アンテナに現われるインピーダンスrが低下する。この原因は、コイルの位置をずらすと、コイル同士の電磁誘導の結合係数mが小さくなる為である。
(Modification 4)
The inductive power transmission system of Modification 4 is an inductive power that shifts the axes of the coils of the transmitting antenna 1 and the receiving antenna 2 shown in FIG. 5 in the vertical (Y) and horizontal (X) directions in FIG. It is a transmission system. Both ends of the transmitting antenna 1 and the receiving antenna 2 are connected by an external capacitor having capacitances C1 and C2 of 100 pF, and the antenna interval h is fixed to 2 mm. In this case, the resonance frequency f of the antenna circuit is 37 MHz, which is the same as in the first modification. In FIG. 9, the inductive resistance r of the simulation result at the resonance frequency f = 37 MHz is indicated by black circles, the vertical axis is a dimensionless amount r / (2πfL), and the horizontal axis is the coil displacement distance d. A graph represented by d / D) is shown. A value of 0.1 on the vertical axis corresponds to 4.1Ω of r. As shown in FIG. 9, when the position of the coil is shifted in the horizontal direction, the impedance r appearing at the antenna decreases. This is because the coupling coefficient m of electromagnetic induction between the coils decreases when the position of the coils is shifted.

図10に、電源回路3から負荷回路4までの電力伝送効率Peを縦軸にあらわし、横軸をコイルのずれ距離dを無次元量(d/D)であらわすグラフを示す。図10から、(d/D)が0.4以下、すなわち、コイルのずれ距離dがコイル径の4割である20mm以下ならば90%以上の電力伝送効率があり、十分効率良く電力を伝送できる。コイルのずれ距離dが(d/D)=0.66になる位置では電力伝送効率が略0になる。この位置では、一方のアンテナのコイルが発生して他方のアンテナのコイルを横切る磁界の方向がアンテナのコイル内の場所により反転して磁界の正負が逆になるため、磁界の総和が0になり、誘導電圧及び結合係数mが0になる為と考える。図10のように、(d/D)が0.8を超えると電力伝送効率が回復して来る。   FIG. 10 is a graph in which the power transmission efficiency Pe from the power supply circuit 3 to the load circuit 4 is represented on the vertical axis, and the horizontal axis represents the coil shift distance d in a dimensionless amount (d / D). From FIG. 10, if (d / D) is 0.4 or less, that is, if the coil displacement distance d is 20 mm or less, which is 40% of the coil diameter, there is a power transmission efficiency of 90% or more, and power is transmitted sufficiently efficiently. it can. At a position where the coil shift distance d is (d / D) = 0.66, the power transmission efficiency is substantially zero. At this position, the coil of one antenna is generated and the direction of the magnetic field crossing the coil of the other antenna is reversed depending on the location in the coil of the antenna so that the polarity of the magnetic field is reversed. This is because the induced voltage and the coupling coefficient m become zero. As shown in FIG. 10, when (d / D) exceeds 0.8, the power transmission efficiency is restored.

この送信アンテナ1と受信アンテナ2のコイルの軸を横方向にのみ、アンテナの径D=50mmの2倍の距離の100mmずらすと、誘導抵抗rが0.23Ωになり、アンテナ系のコイルの結合係数mと等しいr/(2πfL)が0.005になり、電力伝送効率Peが20%の効率で電力を伝送できる。このように、アンテナのコイルの軸をずらす距離をアンテナの径Dの2倍以下にすることで、アンテナの結合係数mが0.005以下になるので、電力伝送効率Peの飽和する周波数fの帯域幅が共振周波数foの0.5%程度あるので、0.5%程度の特性のバラツキのある部品を使っても、送信アンテナ1と受信アンテナ2の共振周波数のバラツキを許容範囲内に留めることができる。そのため、直径Dのコイルの送信アンテナ1と受信アンテナ2の間隔dを、コイルの直径Dのを2倍以下にすることで実用的な誘導電力伝送システムが構築できる。   If the axes of the coils of the transmission antenna 1 and the reception antenna 2 are shifted 100 mm, which is twice the distance of the antenna diameter D = 50 mm, only in the horizontal direction, the induction resistance r becomes 0.23Ω, and the coupling of the antenna system coils R / (2πfL) equal to the coefficient m is 0.005, and the power transmission efficiency Pe can be transmitted with an efficiency of 20%. In this way, the antenna coupling coefficient m becomes 0.005 or less by setting the distance by which the axis of the coil of the antenna is shifted to twice or less of the diameter D of the antenna, so that the frequency f at which the power transmission efficiency Pe saturates is reduced. Since the bandwidth is about 0.5% of the resonance frequency fo, the variation in the resonance frequency between the transmission antenna 1 and the reception antenna 2 is kept within the allowable range even if a component having a characteristic variation of about 0.5% is used. be able to. Therefore, a practical inductive power transmission system can be constructed by setting the distance d between the transmitting antenna 1 and the receiving antenna 2 of the coil having a diameter D to be not more than twice the diameter D of the coil.

この変形例4の効果を利用することで、50mm程度の厚さの壁を隔てて対向する家屋内の送信アンテナ1と家屋外の受信アンテナ2との間に電力を伝送する誘導電力伝送システムが、以下のように改善できる。すなわち、屋内の電源装置3から家屋外の照明装置や表示装置などの負荷回路4に電力を伝送する際に、家屋の壁の厚さのバラツキによりアンテナ系の結合係数mがばらつく問題を、アンテナを軸に垂直方向にずらすことで結合係数mを所定の値に調整することができ解決できる。これにより、固定したインピーダンスZを有する電源回路3と負荷回路4にアンテナの誘導抵抗を整合させて効率良く電力を伝送できる誘導電力伝送システムが構築できる。   An inductive power transmission system that transmits power between a transmitting antenna 1 in a house and a receiving antenna 2 outside the house facing each other across a wall having a thickness of about 50 mm by using the effect of the fourth modification. It can be improved as follows. That is, when power is transmitted from the indoor power supply device 3 to the load circuit 4 such as a lighting device or a display device outside the house, the problem that the coupling coefficient m of the antenna system varies due to the variation in the wall thickness of the house. The coupling coefficient m can be adjusted to a predetermined value by shifting in the direction perpendicular to the axis. Thereby, an induction power transmission system capable of efficiently transmitting power by matching the induction resistance of the antenna to the power supply circuit 3 and the load circuit 4 having the fixed impedance Z can be constructed.

<第2の実施形態>
図11に、3巻きのコイルの送信アンテナ1と受信アンテナ2を用いた第2の実施形態の誘導電力伝送システムを示す。図11(a)にアンテナの平面図を示し、図11(b)に側面図を示し、図11(c)に、電力伝送効率Peの周波数特性のグラフを示す。このグラフは電磁界シミュレーションにより得た。第1の実施形態と同様に、図11(b)の側面図のように、送信アンテナ1のコイルと受信アンテナ2のコイルをコイル面に平行にアンテナ間隔hで離して配置し、図11(a)の平面図のように、送信アンテナ1の配線の中間に電源回路3から給電する端子(ポート1)を設置し、受信アンテナ2の配線の中間に負荷回路4の端子(ポート2)を設置する。本実施形態では、図11に示すように、送信アンテナ1及び受信アンテナ2として、幅が1mmで厚さが50μmの銅の配線で直径Dが54mmの3巻のコイルを形成し、そのコイルの両端を開放し、コイルの中間にポートを接続したアンテナを用いる。この開放した両端間の浮遊容量をC1とC2とする。なお、両アンテナのコイルの軸を縦(Y)方向と横(X)方向とにずれ距離dを7mmずらして配置する。
<Second Embodiment>
FIG. 11 shows an inductive power transmission system according to a second embodiment using a three-coil transmission antenna 1 and a reception antenna 2. FIG. 11A shows a plan view of the antenna, FIG. 11B shows a side view, and FIG. 11C shows a graph of frequency characteristics of the power transmission efficiency Pe. This graph was obtained by electromagnetic field simulation. Similarly to the first embodiment, as shown in the side view of FIG. 11B, the coil of the transmitting antenna 1 and the coil of the receiving antenna 2 are arranged in parallel with the coil surface and separated by an antenna interval h. As shown in the plan view of a), a terminal (port 1) for feeding power from the power supply circuit 3 is installed in the middle of the wiring of the transmitting antenna 1, and a terminal (port 2) of the load circuit 4 is installed in the middle of the wiring of the receiving antenna 2. Install. In this embodiment, as shown in FIG. 11, as the transmitting antenna 1 and the receiving antenna 2, three winding coils having a diameter D of 54 mm and a copper wiring having a width of 1 mm and a thickness of 50 μm are formed. Use an antenna with both ends open and a port connected in the middle of the coil. The stray capacitance between the open ends is defined as C1 and C2. The coil axes of both antennas are arranged with a shift distance d of 7 mm in the vertical (Y) direction and the horizontal (X) direction.

電磁界シミュレーションの結果、アンテナの共振周波数は146MHzになり、送信アンテナ1の自己インダクタンスL1と受信アンテナ2の自己インダクタンスL2は、ともに1.2μHであった。本実施形態では、アンテナの配線のコイルが3巻であり、第1の実施形態のコイルの巻き数の3倍あるので、このアンテナのコイルの自己インダクタンスL=L1=L2は、第1の実施形態のコイルの巻き数の3倍ある巻き数比の二乗に近い約7倍に大きくなった。また、共振周波数f=146MHzとアンテナのコイルの自己インダクタンスL=1.2μHから計算すると、アンテナのコイルの両端間に発生する浮遊容量C1とC2の容量は約1pFある。図11(c)には、アンテナ間隔hが1mmの場合の電力伝送効率Peの周波数特性のグラフを示す。この場合の両アンテナの結合係数mは約0.6である。ただし、アンテナのコイルの両端を開放した場合は、後の図15で示すように、r/(2πfL)は、アンテナのコイルの式4あるいは式19で計算する結合係数mの(2/π)倍になると考える。図11(c)では、共振周波数146MHz前後に、図3(a)と同様に電力伝送効率Peが飽和する周波数帯域の幅を持つ周波数特性のグラフを得た。   As a result of the electromagnetic field simulation, the resonance frequency of the antenna was 146 MHz, and the self-inductance L1 of the transmitting antenna 1 and the self-inductance L2 of the receiving antenna 2 were both 1.2 μH. In this embodiment, the number of coils of the antenna wiring is three, which is three times the number of turns of the coil of the first embodiment, so that the self-inductance L = L1 = L2 of the coil of this antenna is The number of turns of the coil of the form is three times as large as about seven times the square of the turn ratio. Further, when calculated from the resonance frequency f = 146 MHz and the self-inductance L = 1.2 μH of the antenna coil, the stray capacitances C1 and C2 generated between both ends of the antenna coil are about 1 pF. FIG. 11C shows a graph of frequency characteristics of the power transmission efficiency Pe when the antenna interval h is 1 mm. In this case, the coupling coefficient m of both antennas is about 0.6. However, when both ends of the antenna coil are opened, r / (2πfL) is (2 / π) of the coupling coefficient m calculated by Equation 4 or Equation 19 of the antenna coil, as shown in FIG. I think it will double. In FIG. 11C, a graph of frequency characteristics having a frequency band width at which the power transmission efficiency Pe is saturated is obtained around the resonance frequency of 146 MHz in the same manner as in FIG.

(変形例5)
図12(a)に、変形例5の誘導電力伝送システムの送信アンテナ1と受信アンテナ2の平面図を示し、図12(b)に側面図を示す。図12(c)に、電力伝送効率Peの周波数特性のグラフを示す。変形例5の誘導電力伝送システムでは、送信アンテナ1のコイルと受信アンテナ2のコイルの軸を7mmのずれ距離dで横(X)方向にのみずらして、縦(Y)方向にはずらさずに、両アンテナの縦(Y)方向の配線同士をXY面に垂直方向に1mmの間隔hを隔てて重ねて配置する。この場合の両アンテナの結合係数mは、図11の場合と大差無く0.6程度である。図12(c)に、この場合の電力伝送効率Peの周波数特性のグラフを示す。電力伝送効率Peが飽和する周波数帯域が、共振周波数146MHzの前後にあるが、その周波数帯域幅は、上限周波数が図11(c)の場合よりかなり高い400MHz近くまでの広い周波数帯域幅が得られた。このように電力伝送効率Peが飽和する周波数帯域幅が広くなった原因は、両アンテナの縦(Y)方向の複数の配線同士が対向することで、配線同士が容量結合することで電力伝送効率Peが飽和する周波数帯域幅が広げられる効果が得られると考える。そのため、誘導電力伝送システムは、電力伝送効率Peの飽和する周波数帯域幅を広くするために、両アンテナのコイルの軸を重ねて配置して送信アンテナ1と受信アンテナ2の全部の配線を対向させることが望ましい。
(Modification 5)
FIG. 12A shows a plan view of the transmitting antenna 1 and the receiving antenna 2 of the inductive power transmission system of Modification Example 5, and FIG. 12B shows a side view. FIG. 12C shows a graph of frequency characteristics of the power transmission efficiency Pe. In the inductive power transmission system of the fifth modification, the axes of the coils of the transmitting antenna 1 and the receiving antenna 2 are shifted only in the horizontal (X) direction by a shift distance d of 7 mm, without shifting in the vertical (Y) direction. The vertical (Y) direction wirings of both antennas are arranged so as to overlap each other with an interval h of 1 mm perpendicular to the XY plane. In this case, the coupling coefficient m of both antennas is about 0.6 without much difference from the case of FIG. FIG. 12C shows a graph of frequency characteristics of the power transmission efficiency Pe in this case. The frequency band in which the power transmission efficiency Pe is saturated is around the resonance frequency of 146 MHz, and the frequency bandwidth is a wide frequency band up to nearly 400 MHz, which is considerably higher than that in the case of FIG. 11C. It was. The reason why the frequency bandwidth at which the power transmission efficiency Pe saturates becomes wider is that the plurality of wirings in the longitudinal (Y) direction of both antennas face each other, and the wirings are capacitively coupled to each other. It is considered that the effect of widening the frequency bandwidth at which Pe is saturated is obtained. Therefore, in order to widen the frequency bandwidth at which the power transmission efficiency Pe saturates, the inductive power transmission system arranges the axes of the coils of both antennas so that all the wires of the transmitting antenna 1 and the receiving antenna 2 face each other. It is desirable.

図13に、第2の実施形態の誘導電力伝送システムの3巻きのコイル状のアンテナの間隔hを6mmあけた場合の、送信アンテナ1から受信アンテナ2への電力伝送効率Peの周波数特性のグラフを示す。この図13には、両アンテナのコイルの軸を一致させた場合のグラフと、変形例5のように両コイルの軸をY方向に7mmずらした場合と、最初の例のように両コイルの軸をY方向に7mmずらし、かつ、X方向に6mmずらした場合のグラフを併記した。アンテナの間隔hを6mmあけた場合は、アンテナのコイルの軸を少しずらしても、電力伝送効率Peが飽和する周波数帯域はさほど変わらなかった。このことから、この場合の電力伝送効率Peが飽和する周波数帯域幅は、配線同士が対向することによる容量結合の影響よりも、むしろ、コイルの巻き数が多くなったことによる効果が大きいと考える。第2の実施形態の3巻きのアンテナ系の結合係数mも近似式19で計算できる。間隔hを6mmあけると、アンテナ径Dが54mmであるからh/Dが約0.1である。この場合は、式19の計算結果をあらわす図3を見ると、結合係数mが約0.35程度であることがわかる。第1の実施形態の場合では、この値の結合係数mの誘導電力伝送システム場合では、電力の伝送効率Peが飽和する周波数fの帯域の上限は、fo=146MHzとして、f=1/√(1−m)×fo=約181MHzとなったが、第2の実施形態では、周波数の上限が第1の実施形態より大きくなり、周波数の帯域幅が広くなった。このようにアンテナ間の間隔hが6mmと比較的大きい場合でも、コイルの巻き数が多い第2の実施形態では、周波数の帯域幅が広くなる効果がある。この現象を利用して、誘導電力伝送システムのアンテナのコイルの巻き数を多くすることで、アンテナ間に伝送する電力伝送効率が飽和する周波数帯域を広げる効果を得、送信アンテナ1から受信アンテナに安定して電力を伝送できる効果がある。   FIG. 13 is a graph of the frequency characteristics of the power transmission efficiency Pe from the transmitting antenna 1 to the receiving antenna 2 when the interval h between the three coiled antennas of the inductive power transmission system of the second embodiment is 6 mm. Indicates. FIG. 13 shows a graph in which the axes of the coils of both antennas are matched, a case in which the axes of both coils are shifted by 7 mm in the Y direction as in Modification 5, and a case in which both coils are in the same manner as in the first example. A graph in which the axis is shifted 7 mm in the Y direction and 6 mm in the X direction is also shown. When the antenna interval h was 6 mm, the frequency band at which the power transmission efficiency Pe was saturated did not change much even if the antenna coil axis was slightly shifted. From this, the frequency bandwidth at which the power transmission efficiency Pe is saturated in this case is considered to have a large effect due to the increase in the number of turns of the coil, rather than the influence of capacitive coupling due to the wirings facing each other. . The coupling coefficient m of the three-turn antenna system of the second embodiment can also be calculated by the approximate expression 19. If the distance h is 6 mm, the antenna diameter D is 54 mm, so h / D is about 0.1. In this case, looking at FIG. 3 showing the calculation result of Equation 19, it can be seen that the coupling coefficient m is about 0.35. In the case of the first embodiment, in the case of the inductive power transmission system having the coupling coefficient m of this value, the upper limit of the band of the frequency f at which the power transmission efficiency Pe is saturated is fo = 146 MHz, and f = 1 / √ ( 1−m) × fo = about 181 MHz, but in the second embodiment, the upper limit of the frequency is larger than that of the first embodiment, and the frequency bandwidth is widened. Thus, even when the distance h between antennas is relatively large at 6 mm, the second embodiment having a large number of coil turns has an effect of widening the frequency bandwidth. By using this phenomenon, by increasing the number of turns of the coil of the antenna of the induction power transmission system, an effect of widening the frequency band in which the power transmission efficiency transmitted between the antennas is saturated can be obtained. There is an effect that power can be transmitted stably.

(変形例6)
変形例6の誘導電力伝送システムは、変形例5と同様に図12(a)のように、送信アンテナ1のコイルと受信アンテナ2を配置するが、それぞれのアンテナのコイルの配線の両端は外付けコンデンサで接続する。それらの容量C1とC2を280pFにする。この場合は、容量C1とC2のコンデンサが大きいので、共振周波数fは、浮遊容量のみの場合の146MHzから9MHzにまで下がった。図14に、この共振周波数fが9MHzの場合のシミュレーション結果を示す。図14(a)のグラフは、縦軸に、黒丸印で、シミュレーション結果の誘導抵抗rを無次元量であらわしたr/(2πfL)をあらわし、実線で、近似式19で計算される結合係数mの値をあらわす。そして、横軸には、アンテナ間隔hをコイルの直径Dで割り算した値(h/D)をあらわす。シミュレーション結果のr/(2πfL)は近似式19による結合係数mの計算結果と概ね一致した。また、r/(2πfL)の値は、実施形態2での3巻きのコイルのアンテナの場合と、実施形態1での1巻きのコイルのアンテナの場合とで大差が無かった。
(Modification 6)
In the inductive power transmission system of Modification 6, as in Modification 5, the coil of the transmission antenna 1 and the reception antenna 2 are arranged as shown in FIG. 12A, but both ends of the wiring of the coil of each antenna are external. Connect with an attached capacitor. Their capacitances C1 and C2 are set to 280 pF. In this case, since the capacitors C1 and C2 are large, the resonance frequency f is decreased from 146 MHz in the case of only the stray capacitance to 9 MHz. FIG. 14 shows a simulation result when the resonance frequency f is 9 MHz. In the graph of FIG. 14A, the vertical axis represents black circles, and r / (2πfL) representing the inductive resistance r as a dimensionless quantity as a simulation result. The solid line represents the coupling coefficient calculated by the approximate expression 19. Represents the value of m. The horizontal axis represents a value (h / D) obtained by dividing the antenna interval h by the coil diameter D. The r / (2πfL) of the simulation result almost coincided with the calculation result of the coupling coefficient m by the approximate expression 19. Further, the value of r / (2πfL) was not significantly different between the case of the three-turn coil antenna in the second embodiment and the case of the one-turn coil antenna in the first embodiment.

図14(b)に、この誘導電力伝送システムの電源回路3から負荷回路4までの電力伝送効率Peを縦軸であらわし、横軸にアンテナ間隔hを無次元量(h/D)であらわすグラフを示す。図14(b)から、アンテナ間隔hをコイル径Dの6割程度離した場合(h/D=0.6の場合)でも、電力伝送効率が約90%あり十分効率良く電力を伝送できる。図14(b)の電力伝送効率Peは、第1の実施形態の変形例2での図7の電力伝送効率Peと大差無い結果を得た。本変形例6では、共振周波数fが第1の実施形態の変形例2の図7の4分の1程度に小さい9MHzなので、式10と式11に従う誘導抵抗r1とr2は小さくなり、式12に従う電力伝送効率Peが小さくなる不利益があった。一方、アンテナ配線のコイルの巻き数を3倍の3巻きにすることでアンテナコイルのインダクタンスL1とL2を第1の実施形態の変形例2の7倍の1.2μHに大きくすることで、電力伝送効率Peを大きくする利益があり、結果的に第1の実施形態の変形例2の図7と同等の、良い電力伝送効率Peが得られた。この変形例6で、容量C1とC2だけを小さくして共振周波数fを高くすれば、式12に従って電力伝送効率Peを高くできる。   FIG. 14B is a graph in which the power transmission efficiency Pe from the power supply circuit 3 to the load circuit 4 of this inductive power transmission system is represented by the vertical axis, and the antenna interval h is represented by a dimensionless amount (h / D) on the horizontal axis. Indicates. From FIG. 14B, even when the antenna interval h is separated by about 60% of the coil diameter D (when h / D = 0.6), the power transmission efficiency is about 90% and power can be transmitted sufficiently efficiently. The power transmission efficiency Pe in FIG. 14B was not significantly different from the power transmission efficiency Pe in FIG. 7 in the second modification of the first embodiment. In the sixth modification, since the resonance frequency f is 9 MHz, which is as low as about a quarter of FIG. 7 of the second modification of the first embodiment, the induction resistances r1 and r2 according to the expressions 10 and 11 are reduced, and the expression 12 There is a disadvantage that the power transmission efficiency Pe according to the above becomes smaller. On the other hand, by increasing the number of turns of the coil of the antenna wiring to 3 times 3 times, the inductance L1 and L2 of the antenna coil is increased to 1.2 μH, which is 7 times that of the second modification of the first embodiment. There is a benefit of increasing the transmission efficiency Pe, and as a result, a good power transmission efficiency Pe equivalent to FIG. 7 of the second modification of the first embodiment is obtained. In the sixth modification, if only the capacitors C1 and C2 are reduced and the resonance frequency f is increased, the power transmission efficiency Pe can be increased according to Equation 12.

(変形例7)
変形例7の誘導電力伝送システムは、図12(a)の送信アンテナ1及び受信アンテナ2の両端を開放して浮遊容量のみでつなぐ。この場合は、共振周波数fが146MHzになる。この誘導電力伝送システムのシミュレーション結果を図15に示す。図15(a)に、縦軸に、黒丸印で、シミュレーション結果の誘導抵抗rを無次元量のr/(2πfL)であらわし、点線で近似式19の値×(2/π)をあらわすグラフを示す。このグラフの横軸は、アンテナ間隔hを無次元量の(h/D)であらわす。この変形例7のように、アンテナの両端を開放した場合は、アンテナの両端間を外部コンデンサで接続した場合とは異なり、アンテナの端部に近づくにつれアンテナ電流が小さくなる電流分布になる。そのアンテナ電流の平均値がアンテナの配線の中間のポートでの電流値の(2/π)倍になるため、近似式19の結合係数mの計算結果に(2/π)を掛け算した値を点線のグラフであらわした。その結果がシミュレーション結果のr/(2πfL)に良く一致した。また、図15(b)には、縦軸に電源回路3から負荷回路4までの電力伝送効率Peをあらわし、横軸にアンテナ間隔hを無次元量(h/D)であらわすグラフを示す。図15(b)から、アンテナ間隔hをコイル径Dの8割程度離した場合(h/D=0.8の場合)でも、電力伝送効率Peが約90%あり十分効率良く電力を伝送できる。
(Modification 7)
In the inductive power transmission system according to the modified example 7, both ends of the transmission antenna 1 and the reception antenna 2 in FIG. In this case, the resonance frequency f is 146 MHz. The simulation result of this inductive power transmission system is shown in FIG. FIG. 15A is a graph in which the vertical axis represents the inductive resistance r of the simulation result as a dimensionless amount r / (2πfL) with a black circle on the vertical axis, and the value of the approximate expression 19 × (2 / π) with a dotted line. Indicates. The horizontal axis of this graph represents the antenna interval h as a dimensionless amount (h / D). Unlike the case where both ends of the antenna are connected by an external capacitor when both ends of the antenna are opened as in Modification 7, the current distribution becomes smaller as the end of the antenna is approached. Since the average value of the antenna current is (2 / π) times the current value at the intermediate port of the antenna wiring, the value obtained by multiplying the calculation result of the coupling coefficient m in the approximate expression 19 by (2 / π) is This is represented by a dotted line graph. The result agreed well with r / (2πfL) of the simulation result. FIG. 15B shows a graph in which the vertical axis represents the power transmission efficiency Pe from the power supply circuit 3 to the load circuit 4, and the horizontal axis represents the antenna interval h as a dimensionless quantity (h / D). From FIG. 15B, even when the antenna interval h is separated by about 80% of the coil diameter D (when h / D = 0.8), the power transmission efficiency Pe is about 90% and power can be transmitted sufficiently efficiently. .

(変形例8)
変形例8の誘導電力伝送システムは、半導体集積回路チップ内に形成する。すなわち、第2の実施形態の図12(a)のアンテナの寸法を1000分の1に縮小した、外形が縦横54μm程度のコイル(スパイラル)状のアンテナを半導体の製造工程で製造する。この誘導電力伝送システムは、半導体チップ中で上下方向で対向した配線層に形成したアンテナ間に効率良く電力を伝送する。この場合は、送信アンテナ1と受信アンテナ2として、幅が1μmで厚さが0.5μmの銅の配線の矩形のコイルを、コイルの一辺の大きさDが54μmの3巻のコイルに形成した。また、変形例7と同様に、アンテナのコイルの両端は開放する。送信アンテナ1のコイルと受信アンテナ2のコイルは、コイル軸を水平方向に7μmのずれ距離dでずらした。このアンテナのコイルの自己インダクタンスLは1000分の1の1.3nHになり、このアンテナのコイルの開放された両端間には、1000分の1の約0.001pFの浮遊容量C1とC2が発生し、アンテナの共振周波数fは1000倍の約150GHzになった。変形例8の場合も、図15(a)のグラフの関係が成り立ち、しかも、同じ縦軸の値に対する誘導抵抗rは変形例7と同じになった。また、電力伝送効率Peは、図15(b)より悪化したが、アンテナ間隔hをコイル径Dの2割程度(h/D=0.2)離した場合でも電力伝送効率Peが約80%あり十分効率良く電力を伝送でき、また、h/D=0.6の場合でも電力伝送効率Peが約40%あった。電力伝送効率Peが低くなるのは、共振周波数が高くなると表皮効果によって銅配線の抵抗が大きくなるため、アンテナの損失が増えるためである。また、アンテナ間隔h=1μm(結合係数mが0.6)の場合は、誘導抵抗rは図12(c)における値とほぼ同じ480Ωになり、電力伝送効率Peのグラフは、図12(c)のグラフの周波数を1000倍したグラフになった。このように、半導体集積回路内でもこの誘導電力伝送システムが効率良く電力を伝送できる。
(Modification 8)
The inductive power transmission system of Modification 8 is formed in a semiconductor integrated circuit chip. That is, a coil (spiral) antenna having an outer shape of about 54 μm in length and width is manufactured in a semiconductor manufacturing process, in which the size of the antenna of FIG. 12A of the second embodiment is reduced to 1/1000. This inductive power transmission system efficiently transmits power between antennas formed on wiring layers facing each other in the vertical direction in a semiconductor chip. In this case, a rectangular coil of copper wiring having a width of 1 μm and a thickness of 0.5 μm was formed as a transmission coil 1 and a reception antenna 2 into a three-turn coil having a side D of 54 μm in size. . Further, similarly to the modified example 7, both ends of the coil of the antenna are opened. The coil of the transmitting antenna 1 and the coil of the receiving antenna 2 were shifted in the horizontal direction by a deviation distance d of 7 μm. The self-inductance L of this antenna coil is 1 / 1000th of 1.3 nH, and stray capacitances C1 and C2 of about 1 / 1000th of about 0.001 pF are generated between the open ends of the coil of this antenna. The resonance frequency f of the antenna is about 150 GHz, which is 1000 times. Also in the case of the modification 8, the relationship of the graph of FIG. 15A is established, and the induction resistance r for the same vertical axis value is the same as that of the modification 7. The power transmission efficiency Pe is worse than that in FIG. 15B, but the power transmission efficiency Pe is about 80% even when the antenna interval h is separated by about 20% of the coil diameter D (h / D = 0.2). The power can be transmitted sufficiently efficiently, and the power transmission efficiency Pe is about 40% even when h / D = 0.6. The reason why the power transmission efficiency Pe is lowered is that when the resonance frequency is increased, the resistance of the copper wiring is increased due to the skin effect, and the loss of the antenna is increased. When the antenna interval is h = 1 μm (coupling coefficient m is 0.6), the induction resistance r is 480Ω which is almost the same as the value in FIG. 12C, and the graph of the power transmission efficiency Pe is shown in FIG. ) Is a graph obtained by multiplying the frequency of the graph in FIG. Thus, the inductive power transmission system can efficiently transmit power even in a semiconductor integrated circuit.

(変形例9)
変形例9の誘導電力伝送システムは、第2の実施形態の図12(a)の3巻きのコイル状のアンテナの寸法を約6倍の300mmに拡大し、厚さ50μmで幅が10mmの配線を3巻きした送信アンテナ1と受信アンテナ2を対向させてアンテナ間に電力を伝送する。各アンテナコイルの配線の両端に容量C1とC2が100pFの外付けコンデンサを接続する場合は、共振周波数fが7.3MHzになる。また、各アンテナのコイルのインダクタンスL1とL2は4.9μHである。アンテナ間隔hをアンテナの寸法D程度に300mm離した場合では、両アンテナの結合係数mが約0.02になる。その配置では、誘導抵抗r1とr2が約4Ωになるが、整合した回路での電力伝送効率Peは約94%になり、効率良く電力が伝送できる。この電力伝送効率Peは、第1の実施形態の変形例2における75%の電力伝送効率より効率が良い。電力伝送効率が良くなる原因は、第1の実施形態よりもアンテナの巻き数が増すことで、アンテナコイルのインダクタンスLが大きくなるからである。この構成の誘導電力伝送システムにより、電力を充電して動力として利用する車両などに、電力供給設備の電源回路3から電力を周波数が約7.3MHzの高周波電流により、幅10mmの銅の配線による3巻きの矩形のコイルの直径Dが300mmの送信アンテナ1に供給して、300mm程度の距離を隔てて対向する車両の受信アンテナ2に約94%の効率で電力を送信し、その車両の充電池などの負荷回路4に電力を供給する誘導電力伝送システムを構成できる。
(Modification 9)
In the inductive power transmission system of Modification 9, the size of the three-turn coiled antenna shown in FIG. 12A of the second embodiment is increased by about 6 times to 300 mm, the wiring is 50 μm thick and 10 mm wide. The transmitting antenna 1 and the receiving antenna 2 wound three times are opposed to each other, and power is transmitted between the antennas. When an external capacitor having capacitances C1 and C2 of 100 pF is connected to both ends of the wiring of each antenna coil, the resonance frequency f is 7.3 MHz. The inductances L1 and L2 of the coils of each antenna are 4.9 μH. When the antenna interval h is about 300 mm apart from the antenna dimension D, the coupling coefficient m of both antennas is about 0.02. In this arrangement, the inductive resistances r1 and r2 are about 4Ω, but the power transmission efficiency Pe in the matched circuit is about 94%, and the power can be transmitted efficiently. The power transmission efficiency Pe is more efficient than the 75% power transmission efficiency in the second modification of the first embodiment. The reason why the power transmission efficiency is improved is that the inductance L of the antenna coil is increased by increasing the number of turns of the antenna as compared with the first embodiment. With the inductive power transmission system having this configuration, the power is supplied from the power supply circuit 3 of the power supply facility to the vehicle that is charged with power and used as power by a high-frequency current having a frequency of about 7.3 MHz, and a copper wiring with a width of 10 mm. A three-turn rectangular coil having a diameter D of 300 mm is supplied to the transmitting antenna 1, and power is transmitted to the receiving antenna 2 of the opposite vehicle at a distance of about 300 mm with an efficiency of about 94%. An inductive power transmission system that supplies power to the load circuit 4 such as a battery can be configured.

<第3の実施形態:トランス回路>
第3の実施形態の誘導電力伝送システムは、共鳴電磁界の波長より十分近い距離に設置した送信アンテナ1と受信アンテナ2のコイルの巻き数を変えることで両アンテナの誘導インピーダンスを異ならせるトランス回路である。すなわち、送信アンテナ1と受信アンテナ2を、コイルの巻き数を変えて自己インダクタンスL1とL2を変えることにより、アンテナのコイルの誘導抵抗r1とr2を、式10と式11に従ってL1とL2に比例して変えることができる。
r1=mωL1・sin(β) (式10’)
r2=mωL2・sin(β) (式11’)
ω=ωo/√(1+m・cos(β)) (式8’)
誘導抵抗r1は、(L2/L1)=(1/α)倍の誘導抵抗r2に変換される。
<Third Embodiment: Transformer Circuit>
The inductive power transmission system of the third embodiment is a transformer circuit that makes the inductive impedances of both antennas different by changing the number of turns of the coils of the transmitting antenna 1 and the receiving antenna 2 installed at a distance sufficiently close to the wavelength of the resonant electromagnetic field. It is. That is, by changing the self-inductances L1 and L2 of the transmitting antenna 1 and the receiving antenna 2 by changing the number of turns of the coil, the induction resistances r1 and r2 of the antenna coil are proportional to L1 and L2 according to Equations 10 and 11. Can be changed.
r1 = mωL1 · sin (β) (Equation 10 ′)
r2 = mωL2 · sin (β) (Formula 11 ′)
ω = ωo / √ (1 + m · cos (β)) (Formula 8 ′)
The induction resistance r1 is converted into an induction resistance r2 that is (L2 / L1) = (1 / α 2 ) times.

この現象を利用して、図2の回路図で、誘導抵抗r1に整合させた電源回路3の出力インピーダンスZ1を、(L2/L1)倍の誘導抵抗r2に整合させた負荷回路4の負荷インピーダンスZ2に変換するトランス回路を構成することができる。このトランス回路で変換できる電源回路3のインピーダンスZ1は、0からmωL1までの範囲である。空芯コイルの送信アンテナ1と受信アンテナ2を対向させ近づけると、結合係数mが大きくなり、インピーダンス変換できるインピーダンスの値の上限mωL1とmωL2が大きくなるため、送信アンテナ1と受信アンテナ2は近づける方が望ましい。このトランス部品を用い、送信アンテナ1の自己インダクタンスL1と受信アンテナ2の自己インダクタンスL2を、アンテナのコイルの巻数を変えて調整する。アンテナのコイルの自己インダクタンスLは、概ね巻数の二乗に比例して変わる。こうして、両アンテナの自己インダクタンスLを調整することで、異なるインピーダンスZ1を持つ電源回路3と負荷回路4のインピーダンスZ2を変換して、電源回路3から負荷回路4へ効率良く電力を伝送するトランス回路を構成することができる。   By utilizing this phenomenon, in the circuit diagram of FIG. 2, the load impedance of the load circuit 4 in which the output impedance Z1 of the power supply circuit 3 matched with the induction resistance r1 is matched with the induction resistance r2 of (L2 / L1) times. A transformer circuit for converting to Z2 can be configured. The impedance Z1 of the power supply circuit 3 that can be converted by this transformer circuit is in the range from 0 to mωL1. When the transmitting antenna 1 and the receiving antenna 2 of the air-core coil are placed close to each other, the coupling coefficient m increases, and the upper limit mωL1 and mωL2 of the impedance value that can be impedance-converted increases. Is desirable. Using this transformer component, the self-inductance L1 of the transmitting antenna 1 and the self-inductance L2 of the receiving antenna 2 are adjusted by changing the number of turns of the antenna coil. The self-inductance L of the antenna coil changes approximately in proportion to the square of the number of turns. Thus, by adjusting the self-inductance L of both antennas, the transformer circuit that efficiently converts the impedance Z2 of the power circuit 3 and the load circuit 4 having different impedances Z1 and the load circuit 4 to efficiently transmit power from the power circuit 3 to the load circuit 4 Can be configured.

ここで、cos(β)を負にする共鳴条件の場合は、式8の共振角周波数ωはωoより高い周波数にシフトし、受信アンテナ2の電流I2は送信アンテナ1の電流I1を打ち消すように逆向きに流れる。この条件を満たす共振周波数は、電力伝送効率PeをS21であらわす図8(b)の左側のグラフでの周波数特性の2山のグラフの、周波数が高い側のS21のピークを与える周波数である。この周波数では、送信アンテナ1と受信アンテナ2の総体のアンテナ系が外部に出す電磁界が小さくなり、このトランス回路の発生する不要電磁波ノイズ(EMI)が小さくなる効果がある。また、cos(β)が正の共鳴条件の場合は、共振角周波数ωはωoより低い周波数にシフトする。この条件を満たす共振周波数は、図8(b)の左側のグラフでの周波数特性の2山のグラフの、周波数が低い側のS21のピークを与える周波数である。この周波数では、受信アンテナ2の電流I2は送信アンテナ1の電流I1と同じ方向に流れ、送信アンテナ1と受信アンテナ2の総体のアンテナ系が外部に出す電磁界が大きくなる。その一方、このトランス回路は、1つの送信アンテナ1のコイルの軸に軸が重なる複数の受信アンテナ2のコイルを並列に設置して、それらの複数の受信アンテナ2とそれに接続する負荷回路4に同時に、電源回路1から電力を伝送できる効果がある。   Here, in the case of the resonance condition in which cos (β) is negative, the resonance angular frequency ω of Expression 8 is shifted to a frequency higher than ωo, and the current I2 of the receiving antenna 2 cancels the current I1 of the transmitting antenna 1 It flows in the opposite direction. The resonance frequency that satisfies this condition is a frequency that gives the peak of S21 on the higher frequency side of the two peaks of the frequency characteristics in the graph on the left side of FIG. 8B in which the power transmission efficiency Pe is represented by S21. At this frequency, the electromagnetic field emitted from the entire antenna system of the transmitting antenna 1 and the receiving antenna 2 is reduced, and unnecessary electromagnetic noise (EMI) generated by the transformer circuit is reduced. When cos (β) is a positive resonance condition, the resonance angular frequency ω is shifted to a frequency lower than ωo. The resonance frequency satisfying this condition is a frequency that gives the peak of S21 on the lower frequency side of the two peaks of the frequency characteristics in the left graph of FIG. 8B. At this frequency, the current I2 of the receiving antenna 2 flows in the same direction as the current I1 of the transmitting antenna 1, and the electromagnetic field that the collective antenna system of the transmitting antenna 1 and the receiving antenna 2 outputs to the outside increases. On the other hand, in this transformer circuit, coils of a plurality of receiving antennas 2 whose axes overlap with the axis of the coil of one transmitting antenna 1 are installed in parallel, and the plurality of receiving antennas 2 and a load circuit 4 connected thereto are connected. At the same time, there is an effect that power can be transmitted from the power supply circuit 1.

この、空芯コイルの送信アンテナ1と受信アンテナ2で構成するトランス回路は、従来の磁性体のコアを有するトランス回路に比べ、重量を軽減できる効果がある。また、磁性体のコアを用いる従来のトランス回路が、そのコアの材料の周波数特性による制約で使えなかった高周波でも、コアの材料に制約されずに有効に動作させることができる効果がある。   The transformer circuit constituted by the transmitting antenna 1 and the receiving antenna 2 of the air-core coil has an effect that the weight can be reduced as compared with a transformer circuit having a conventional magnetic core. In addition, a conventional transformer circuit using a magnetic core can be effectively operated without being restricted by the core material even at high frequencies that cannot be used due to the restriction due to the frequency characteristics of the core material.

<第4の実施形態>
図16(a)に、本発明の第4の実施形態の誘導電力伝送システムのアンテナの平面図を示す。これは、送信アンテナ1と受信アンテナ2を7巻きのコイル状アンテナにした。図16(b)にシミュレーション結果の、電力伝送効率Peの周波数特性のグラフを示す。第1の実施形態と同様に、送信アンテナ1に電源回路3を接続し、受信アンテナ2に負荷回路4を接続する。図16では、送信アンテナ1及び受信アンテナ2として、幅が1mmで厚さが50μmの銅の配線で形成したコイル径Dが47mmの7巻のコイルのアンテナを形成し、アンテナの両端は開放する。そのアンテナの両端間の浮遊容量をC1とC2とする。アンテナ1の配線の中間に電源回路3から給電する端子(ポート1)を設置し、受信アンテナ2の配線の中間に負荷回路4の端子(ポート2)を設置する。送信アンテナ1のコイルと受信アンテナ2のコイルは、コイル面に平行にアンテナ間隔hを5mm離して配置する。すなわち、h/Dが約0.1の場合を示す。更に、両アンテナのコイルの軸をずらさない場合と、両アンテナのコイルの軸をY方向に5mmずらす場合と、X方向とY方向ともに5mmずらした場合、の3つの場合のシミュレーション結果を図16(b)に示す。このグラフでは、電力伝送効率Peが飽和する周波数帯域幅が140MHzから210MHzまであるが、この周波数帯域幅は、同じ(h/D)=0.1の場合における、第2の実施形態の図12の3巻きのコイルのアンテナでの図13の周波数帯域幅より広くなった。この原因は、誘導電力伝送システムのスパイラル形のアンテナの巻き数を多くすることで、電力伝送効率Peの飽和する周波数帯域幅を広くする効果が得られたためと考える。
<Fourth Embodiment>
FIG. 16A shows a plan view of an antenna of the inductive power transmission system according to the fourth embodiment of the present invention. This made the transmitting antenna 1 and the receiving antenna 2 into a coiled antenna of 7 turns. FIG. 16B shows a graph of frequency characteristics of the power transmission efficiency Pe as a simulation result. As in the first embodiment, the power supply circuit 3 is connected to the transmission antenna 1 and the load circuit 4 is connected to the reception antenna 2. In FIG. 16, as the transmitting antenna 1 and the receiving antenna 2, a 7-coil antenna having a coil diameter D of 47 mm formed by copper wiring having a width of 1 mm and a thickness of 50 μm is formed, and both ends of the antenna are open. . The stray capacitance between both ends of the antenna is C1 and C2. A terminal (port 1) for supplying power from the power supply circuit 3 is installed in the middle of the wiring of the antenna 1, and a terminal (port 2) of the load circuit 4 is installed in the middle of the wiring of the receiving antenna 2. The coil of the transmitting antenna 1 and the coil of the receiving antenna 2 are arranged in parallel to the coil surface with an antenna interval h of 5 mm. That is, the case where h / D is about 0.1 is shown. Further, FIG. 16 shows simulation results in three cases: when the axes of the coils of both antennas are not shifted, when the axes of the coils of both antennas are shifted by 5 mm in the Y direction, and when both the X and Y directions are shifted by 5 mm. Shown in (b). In this graph, the frequency bandwidth in which the power transmission efficiency Pe is saturated ranges from 140 MHz to 210 MHz. This frequency bandwidth is the same as in the case of (h / D) = 0.1 in FIG. This was wider than the frequency bandwidth of FIG. This is considered to be because the effect of widening the frequency bandwidth at which the power transmission efficiency Pe is saturated was obtained by increasing the number of turns of the spiral antenna of the inductive power transmission system.

<第5の実施形態>
図17(a)に、本発明の第5の実施形態の誘導電力伝送システムの送信アンテナ1と受信アンテナ2の平面図を示す。本実施形態は、同一平面上に20mm隔てて並べて置いた厚さ50μmで幅1mmの銅の配線を巻いたコイル状の送信アンテナ1と受信アンテナ2から成る誘導電力伝送システムである。各アンテナは、縦横47mmの矩形状で、紙面に垂直方向に1mmの間隔をあけて2組の7巻きの銅の渦巻き状コイルを平行させる。この両アンテナのコイルの軸はX方向にアンテナの直径の67/47≒1.4倍離れている。送信アンテナ1のコイルの配線の中間には電源回路3の端子のポート1を設置し、受信アンテナ2のコイルの配線の中間には負荷回路4の端子のポート2を設置し、コイルの両端は開放する。このアンテナは8.9μHの自己インダクタンスLを持ち、アンテナのコイルの開放した両端が5pFの浮遊容量でつながれていて、周波数f=23.8MHzで共振する。このアンテナを構成する平行する2組の渦巻き状コイル間には比較的大きな5pFという浮遊容量が発生し、その容量が両コイルの開放端間を接続する。平行する2組の渦巻き状コイル間の間隔が狭いほどこの浮遊容量の値が大きくなる。
<Fifth Embodiment>
FIG. 17A is a plan view of the transmitting antenna 1 and the receiving antenna 2 of the inductive power transmission system according to the fifth embodiment of the present invention. The present embodiment is an inductive power transmission system comprising a coiled transmitting antenna 1 and a receiving antenna 2 wound with copper wiring having a thickness of 50 μm and a width of 1 mm placed on the same plane and spaced 20 mm apart. Each antenna has a rectangular shape of 47 mm in length and width, and two sets of seven copper spiral coils are parallel with a space of 1 mm in the direction perpendicular to the paper surface. The axes of the coils of both antennas are 67 / 47≈1.4 times the antenna diameter in the X direction. The port 1 of the terminal of the power supply circuit 3 is installed in the middle of the coil wiring of the transmitting antenna 1, the port 2 of the terminal of the load circuit 4 is installed in the middle of the wiring of the coil of the receiving antenna 2, and both ends of the coil are Open. This antenna has a self-inductance L of 8.9 μH, the open ends of the antenna coil are connected by a stray capacitance of 5 pF, and resonates at a frequency f = 23.8 MHz. A relatively large stray capacitance of 5 pF is generated between two parallel sets of spiral coils constituting the antenna, and the capacitance connects between the open ends of both coils. The value of this stray capacitance increases as the distance between the two sets of spiral coils in parallel decreases.

シミュレーションの結果、このアンテナの誘導抵抗r1=r2=rは7Ωであり、結合係数mは、誘導抵抗から計算すると、m=r/(2πfL)=0.013である。図17(b)に、送信アンテナ1から受信アンテナ2への電力伝送効率PeをS21であらわした、S21の周波数特性を示す。この誘導抵抗rにインピーダンスZを整合させて電力を伝送することでS21は−0.73dBが得られ、電力伝送効率Peが約85%の効率良い電力伝送できる。この程度にアンテナの軸をずらしても、良い効率で電力が伝送できる誘導電力伝送システムが得られた。このアンテナの電力伝送効率Peを式12で計算すると約0.84になり、電磁界シミュレーションの結果と良く一致する。   As a result of simulation, the induction resistance r1 = r2 = r of this antenna is 7Ω, and the coupling coefficient m is m = r / (2πfL) = 0.013 when calculated from the induction resistance. FIG. 17B shows the frequency characteristics of S21 in which the power transmission efficiency Pe from the transmitting antenna 1 to the receiving antenna 2 is represented by S21. By transmitting the power by matching the impedance Z to the induction resistance r, S21 can be −0.73 dB, and the power transmission efficiency Pe can be efficiently transmitted with about 85%. An inductive power transmission system capable of transmitting power with good efficiency even when the antenna axis is shifted to this extent was obtained. When the power transmission efficiency Pe of this antenna is calculated by Expression 12, it is about 0.84, which is in good agreement with the result of the electromagnetic field simulation.

また、送信アンテナ1のコイルの同一平面上に送信アンテナ1の周囲の四方に間隔を隔てて複数の受信アンテナ2を設置し、送信アンテナ1から複数の受信アンテナ2に同時に電力を伝送する電力伝送システムを構築できる。そのように受信アンテナ2が複数ある場合は、送信アンテナ1に直列に接続する電源回路3のインピーダンスZ1を、各受信アンテナ2の送信アンテナ1への結合係数mの総和に(ωL1)を掛け算した値に調整して整合させることができる。   In addition, a plurality of receiving antennas 2 are installed on the same plane of the coil of the transmitting antenna 1 at four intervals around the transmitting antenna 1, and power is transmitted from the transmitting antenna 1 to the plurality of receiving antennas 2 simultaneously. You can build a system. When there are a plurality of receiving antennas 2 as described above, the impedance Z1 of the power supply circuit 3 connected in series to the transmitting antenna 1 is multiplied by the sum of the coupling coefficients m of each receiving antenna 2 to the transmitting antenna 1 by (ωL1). It can be adjusted to match the value.

(変形例10)
変形例10の誘導電力伝送システムは、図17(a)の各アンテナの構成要素の2組のコイルの紙面に垂直方向の間隔を、先の実施形態の場合の4倍の4mmの間隔をあけ、そのアンテナの両端を開放する。この誘導電力伝送システムを電磁界シミュレーションした結果、共振周波数fは、先の実施形態の2倍弱の40.1MHzで共振し、アンテナの誘導抵抗r1=r2=rは2倍以上の18Ωになった。この誘導抵抗rにインピーダンスZを整合させて電力を伝送すると電力伝送効率PeをあらわすS21は−0.46dBになり、約90%の電力伝送効率Peが得られた。共振周波数fが2倍近く大きくなったのは、アンテナの両端の間の浮遊容量C1とC2が4分の1程度に小さくなったことが原因である。電力伝送効率Peが大きくなったのは、共振周波数fが大きくなったので、式10と式11に従って誘導抵抗r1とr2が大きくなったので式12で計算される電力伝送効率Peが大きくなったためである。また、その各アンテナ毎に、アンテナを構成する2つのコイルの間隔を更に8mmに大きくすると、アンテナの共振周波数fは更に大きな値の51.4MHzになり、各アンテナの誘導抵抗r1=r2=rがより大きな値の34Ωになり、S21は−0.32dBになり約93%の電力伝送効率Peで電力を伝送した。
(Modification 10)
In the inductive power transmission system according to the modified example 10, an interval in the vertical direction is formed on the paper surface of the two sets of coils of each antenna component in FIG. 17A, and an interval of 4 mm, which is four times that in the previous embodiment. Open both ends of the antenna. As a result of electromagnetic field simulation of this induction power transmission system, the resonance frequency f resonates at 40.1 MHz, which is slightly less than twice that of the previous embodiment, and the induction resistance r1 = r2 = r of the antenna becomes 18Ω, which is twice or more. It was. When electric power is transmitted by matching the impedance Z with the induction resistor r, S21 representing the electric power transmission efficiency Pe becomes −0.46 dB, and the electric power transmission efficiency Pe of about 90% is obtained. The reason why the resonance frequency f has increased by a factor of two is that the stray capacitances C1 and C2 between both ends of the antenna have decreased to about a quarter. The reason why the power transmission efficiency Pe is increased is that the resonance frequency f is increased, so that the induction resistances r1 and r2 are increased according to the equations 10 and 11, and therefore the power transmission efficiency Pe calculated by the equation 12 is increased. It is. For each antenna, if the distance between the two coils constituting the antenna is further increased to 8 mm, the resonance frequency f of the antenna becomes a larger value of 51.4 MHz, and the induction resistance r1 = r2 = r of each antenna. Became a larger value of 34Ω, and S21 became −0.32 dB, and electric power was transmitted with a power transmission efficiency Pe of about 93%.

(変形例11)
変形例11の誘導電力伝送システムは、第4の実施形態の図16(a)の縦横47mmの7巻きのコイルの送信アンテナ1と受信アンテナ2を、図17(a)のような形に同一平面上に20mm隔てて配置する。このアンテナ系は115MHzで共振し、電磁界シミュレーションの結果のアンテナの誘導抵抗rは、r=r1=r2=14Ωになり、この誘導抵抗rにインピーダンスZを整合させて電力を伝送するとS21は−0.49dBが得られ、約89%の電力伝送効率Peが得られた。変形例10の各アンテナを2つのコイルで構成しそのコイルの間隔を8mmにした場合のPe=93%よりも本変形例11の電力伝送効率Peが低かった。その原因は、変形例11のアンテナコイルの巻き数が7巻きであり、変形例10のアンテナのコイルの巻き数の14よりも巻き数が少なかったため、電力伝送効率Peが少なくなったと考える。
(Modification 11)
In the inductive power transmission system according to the modification 11, the transmitting antenna 1 and the receiving antenna 2 of the seven-turn coil of 47 mm in length and breadth in FIG. 16A of the fourth embodiment are the same as in FIG. 17A. It arrange | positions 20 mm apart on a plane. This antenna system resonates at 115 MHz, and the induction resistance r of the antenna as a result of the electromagnetic field simulation is r = r1 = r2 = 14Ω. When power is transmitted by matching the impedance Z to this induction resistance r, S21 is − 0.49 dB was obtained, and a power transmission efficiency Pe of about 89% was obtained. The power transmission efficiency Pe of this modification 11 was lower than Pe = 93% when each antenna of the modification 10 was composed of two coils and the interval between the coils was 8 mm. The reason is that the number of turns of the antenna coil of the modification 11 is 7, and the number of turns is 14 less than the number of turns of the coil of the antenna of the modification 10. Therefore, it is considered that the power transmission efficiency Pe is reduced.

(変形例12)
変形例12の誘導電力伝送システムは、図16の送信アンテナ1と受信アンテナ2それぞれに、同じ形状のアンテナを、間隔Gapを隔てて平行に非接触で設置することで、送信アンテナ1を、電源回路3と接続する本体アンテナと、それに間隔Gapを隔てて平行する補助アンテナとから構成したアレーアンテナを用いる。このアレーアンテナの概観は、変形例10の各アンテナを構成する2つのコイルを本体アンテナと補助アンテナとに切り離した上で、補助アンテナを左右に反転した形にしたアンテナを持つ誘導電力伝送システムである。すなわち、補助アンテナは、本体アンテナのポートが短絡された本体アンテナと同じ形で、本体アンテナに平行するコイル状に形成する。この各アレーアンテナを図17(a)のような形に同一平面上に20mm隔てて配置する。電磁界シミュレーションの結果、図18のように、各アレーアンテナ毎のアンテナ要素の間隔Gapの大きさによりアレーアンテナの共振周波数fが115MHzより105MHzに至るまで小さくなり、また、アレーアンテナの誘導抵抗rは、補助アンテナを設置しない場合の14Ωに比べて4倍程度の64Ωから50Ωに大きくなる。
(Modification 12)
In the inductive power transmission system of Modification 12, the transmitting antenna 1 is connected to the power supply antenna 1 and the receiving antenna 2 of FIG. An array antenna composed of a main body antenna connected to the circuit 3 and an auxiliary antenna parallel to the circuit gap is used. An overview of this array antenna is an inductive power transmission system having an antenna in which the two antennas constituting each antenna of Modification 10 are separated into a main body antenna and an auxiliary antenna, and the auxiliary antenna is inverted left and right. is there. That is, the auxiliary antenna is formed in a coil shape parallel to the main body antenna in the same shape as the main body antenna in which the port of the main body antenna is short-circuited. The array antennas are arranged in the shape as shown in FIG. 17A on the same plane with a distance of 20 mm. As a result of the electromagnetic field simulation, as shown in FIG. 18, the resonance frequency f of the array antenna decreases from 115 MHz to 105 MHz due to the size of the gap Gap between the antenna elements for each array antenna, and the induction resistance r of the array antenna Increases from 64Ω, which is about four times, to 50Ω, compared to 14Ω when the auxiliary antenna is not installed.

図18の結果は、(1)アレーアンテナのアンテナ要素の間隔Gapが0.5mmの場合、共振周波数fが約112MHzで、誘導抵抗が64Ωになる。また、(2)アンテナ要素の間隔Gapが2mmの場合、共振周波数fが約108MHzで、誘導抵抗が58Ωになる。そして、(3)アンテナ要素の間隔Gapが7mmの場合、共振周波数fが約106MHzで、誘導抵抗が50Ωになる。このように、アレーアンテナのアンテナ要素の間隔Gapが0.5mmから約7mmまで変わる場合は、間隔Gapが大きくなるとアレーアンテナの共振周波数fが大きくなる。一方、アンテナ要素の間隔Gapが7mm以上に大きくなると、この傾向が逆になり、共振周波数fは間隔Gapとともに大きくなり、間隔Gapが十分大きくなると、共振周波数fは115MHzに収束する。また、電力伝送効率Peは、間隔Gapが0.5mmから7mmまでの場合は、約94%になり、電力の損失率が半分になる良い電力伝送効率が得られる効果があった。この原因は、本体アンテナと補助アンテナが並列にほぼ同じ大きさの電流が流れ、それらの電流の発生する電磁界が重なって強め合って、強い電磁界を発生することにより電力の伝送効率が向上したためと考える。また、アレーアンテナ構造の送信アンテナ1と受信アンテナ2は、そのアンテナのコイルの軸をずらして離して配置する場合に限らず、アンテナのコイルの軸方向に軸をほぼ重ねて離して配置する場合でも、同様に良い電力伝送効率Peで電力を伝送できる効果がある。   The results of FIG. 18 are as follows: (1) When the gap Gap between the antenna elements of the array antenna is 0.5 mm, the resonance frequency f is about 112 MHz and the induction resistance is 64Ω. (2) When the gap Gap between the antenna elements is 2 mm, the resonance frequency f is about 108 MHz and the induction resistance is 58Ω. (3) When the gap Gap between the antenna elements is 7 mm, the resonance frequency f is about 106 MHz and the induction resistance is 50Ω. Thus, when the gap Gap of the antenna elements of the array antenna changes from 0.5 mm to about 7 mm, the resonance frequency f of the array antenna increases as the gap Gap increases. On the other hand, when the gap Gap between the antenna elements is increased to 7 mm or more, this tendency is reversed, and the resonance frequency f increases with the gap Gap. When the gap Gap is sufficiently large, the resonance frequency f converges to 115 MHz. Further, the power transmission efficiency Pe is about 94% when the gap Gap is 0.5 mm to 7 mm, and there is an effect that a good power transmission efficiency can be obtained in which the power loss rate is halved. The cause is that the main antenna and the auxiliary antenna have approximately the same current in parallel, and the electromagnetic fields generated by these currents overlap and strengthen each other to generate a strong electromagnetic field, thereby improving the power transmission efficiency. I think it was because I did it. In addition, the transmitting antenna 1 and the receiving antenna 2 having the array antenna structure are not limited to the case where the axes of the coil of the antenna are shifted and separated, but the case where the axes are substantially overlapped and separated in the axial direction of the coil of the antenna. However, there is an effect that power can be transmitted with the same high power transmission efficiency Pe.

<第6の実施形態>
第6の実施形態の誘導電力伝送システムは、送信アンテナ1と受信アンテナ2で構成する誘導電力伝送システムをインピーダンス変換回路5として用いる。すなわち、アンテナ電流I1とアンテナ電流I2の位相差βを90度ずらしcos(β)を0にし、共振角周波数ωをωoにして、先の式14から式16の状態でアンテナ系を共鳴させる。こうすることで、図2の回路図で、電源回路3を送信アンテナ1のポート1に接続し、負荷回路4を受信アンテナ2のポート2に接続し、任意のαで、電源回路3の出力インピーダンスZ1をωM・αにし、負荷回路4の負荷インピーダンスZ2をr2=ωM/αにし、インピーダンスを変換して電源回路3から負荷回路4に電力を伝送することができる効果がある。
<Sixth Embodiment>
The inductive power transmission system according to the sixth embodiment uses an inductive power transmission system including a transmission antenna 1 and a reception antenna 2 as the impedance conversion circuit 5. That is, the phase difference β between the antenna current I1 and the antenna current I2 is shifted by 90 degrees, cos (β) is set to 0, the resonance angular frequency ω is set to ωo, and the antenna system is resonated in the state of Expressions 14 to 16. In this way, in the circuit diagram of FIG. 2, the power supply circuit 3 is connected to the port 1 of the transmission antenna 1, the load circuit 4 is connected to the port 2 of the reception antenna 2, and the output of the power supply circuit 3 at an arbitrary α. The impedance Z1 is set to ωM · α, the load impedance Z2 of the load circuit 4 is set to r2 = ωM / α, the impedance is converted, and power can be transmitted from the power supply circuit 3 to the load circuit 4.

図19(a)は、本実施形態のインピーダンス変換回路5を用いない場合の、送信アンテナ1と受信アンテナ2の平面図を示す。図19(a)では、送信アンテナ1のコイルのインダクタンスL1と受信アンテナ2のコイルのインダクタンスL2が同じインダクタンスL=L1=L2の場合を示す。図19(a)のように送信アンテナ1と受信アンテナ2が結合係数mで電磁結合して相互誘導係数M=Moを持つとする。その場合に、両アンテナを共振角周波数ω=ωo=1/√(L1・L2)で共鳴させると、式17と式18により、誘導抵抗r1とr2がωMoになるので、電源回路3の出力インピーダンスZ1と負荷回路4の入力インピーダンスZ2をωMoに整合させて効率良く電力を伝送できる。   FIG. 19A is a plan view of the transmission antenna 1 and the reception antenna 2 when the impedance conversion circuit 5 of the present embodiment is not used. FIG. 19A shows a case where the inductance L1 of the coil of the transmission antenna 1 and the inductance L2 of the coil of the reception antenna 2 are the same, L = L1 = L2. As shown in FIG. 19A, it is assumed that the transmission antenna 1 and the reception antenna 2 are electromagnetically coupled with a coupling coefficient m and have a mutual induction coefficient M = Mo. In this case, when both antennas are made to resonate at the resonance angular frequency ω = ωo = 1 / √ (L1 · L2), the induction resistances r1 and r2 become ωMo according to the equations 17 and 18, so that the output of the power supply circuit 3 The power can be efficiently transmitted by matching the impedance Z1 and the input impedance Z2 of the load circuit 4 to ωMo.

次に、図19(b)に本実施形態の誘導電力伝送システムで構成するインピーダンス変換回路5の構成と使用例の平面図を示す。図19(b)の電源回路3と送信アンテナ1の間に本実施形態のインピーダンス変換回路5を挿入する。この回路で、送信アンテナ1のコイルと受信アンテナ2のコイルの位置が変動すると、送信アンテナ1と受信アンテナ2の相互誘導係数MがMoより小さい値に変動する。ここで、相互誘導係数MがMo/αに小さくなった場合は、受信アンテナ2の誘導抵抗r2を、負荷回路のインピーダンスの固定値のωMo=ωM×αに整合すると、送信アンテナ1の誘導抵抗r1は、式14と式15に従い、ωM/α=ωoMo/αになる。電源回路のインピーダンスの固定値のωMo=ωM×αを、この送信アンテナの誘導抵抗r1のωM/αに変換するために、インピーダンス変換回路5を構成する送信アンテナと受信アンテナ間の距離を可変にしてアンテナ間の相互インダクタンスMを可変にする。そして、インピーダンス変換回路5は、その相互インダクタンスMをMo/αに調整することで、電源回路のインピーダンスの固定値のωMo=ωM×αを、インピーダンス変換回路5の送信アンテナの誘導抵抗r3にし、それを、インピーダンス変換回路5の受信アンテナの誘導抵抗の値ωM/αに変換する。これにより、その誘導抵抗の値を、そのインピーダンス変換回路5に接続する送信アンテナ1の誘導抵抗r1に整合させ、電源回路3から負荷回路4までの全回路のインピーダンスを整合して効率良く電力を伝送する。このように、送信アンテナ1と受信アンテナ2の距離が変動して相互誘導係数Mが変化しても、その変化によるインピーダンスの変動を、インピーダンス変換回路5が、共鳴の角周波数ωを一定に保ったままで、アンテナ間の距離という1つのパラメータを調整するだけで相互誘導係数Mを可変にして、適正な値にインピーダンスを変換して整合させることができる。 Next, FIG. 19B shows a plan view of the configuration and usage example of the impedance conversion circuit 5 configured in the inductive power transmission system of the present embodiment. The impedance conversion circuit 5 of this embodiment is inserted between the power supply circuit 3 and the transmission antenna 1 in FIG. In this circuit, when the positions of the coil of the transmission antenna 1 and the coil of the reception antenna 2 fluctuate, the mutual induction coefficient M of the transmission antenna 1 and the reception antenna 2 fluctuates to a value smaller than Mo. Here, when the mutual induction coefficient M is reduced to Mo / α, when the induction resistance r2 of the reception antenna 2 is matched with ωMo = ωM × α, which is a fixed value of the impedance of the load circuit, the induction resistance of the transmission antenna 1 r1 in accordance with equation 14 and equation 15, becomes ωM / α = ωoMo / α 2 . In order to convert the fixed value ωMo = ωM × α of the impedance of the power supply circuit into ωM / α of the induction resistance r1 of the transmission antenna, the distance between the transmission antenna and the reception antenna constituting the impedance conversion circuit 5 is made variable. The mutual inductance M between the antennas is made variable. Then, the impedance conversion circuit 5 adjusts the mutual inductance M to Mo / α so that the fixed value ωMo = ωM × α of the impedance of the power supply circuit becomes the induction resistance r3 of the transmission antenna of the impedance conversion circuit 5, This is converted into the induction resistance value ωM / α of the receiving antenna of the impedance conversion circuit 5. As a result, the value of the induction resistance is matched with the induction resistance r1 of the transmitting antenna 1 connected to the impedance conversion circuit 5, and the impedance of all the circuits from the power supply circuit 3 to the load circuit 4 is matched to efficiently supply power. To transmit. As described above, even if the distance between the transmitting antenna 1 and the receiving antenna 2 varies and the mutual induction coefficient M varies, the impedance conversion circuit 5 keeps the resonance angular frequency ω constant. The mutual induction coefficient M can be made variable by adjusting only one parameter such as the distance between the antennas, and the impedance can be converted to an appropriate value for matching.

(変形例13)
変形例13の誘導電力伝送システムは、本実施形態の、図19(b)のインピーダンス変換回路5を、誘導電力伝送システム以外の手段で構成する。すなわわち、変形例13のインピーダンス変換回路は、それが接続する誘導電力伝送システムの共振周波数の電磁界の波長の4分の1の長さの伝送線路で構成する。そして、その伝送線路の特性インピーダンスを1つのパラメータを調整するだけで可変にする構成にする。その特性インピーダンスの可変手段は、2つの帯状の線路を平行させて構成する伝送線路の線路幅を可変にして構成することができる。あるいは、2つの帯状の線路を平行させて構成する伝送線路の線路の間隔を可変にして構成することができる。
(Modification 13)
In the inductive power transmission system of Modification 13, the impedance conversion circuit 5 of FIG. 19B of this embodiment is configured by means other than the inductive power transmission system. In other words, the impedance conversion circuit of the modification 13 is configured by a transmission line having a length that is a quarter of the wavelength of the electromagnetic field of the resonance frequency of the inductive power transmission system to which it is connected. And the characteristic impedance of the transmission line is made variable by adjusting only one parameter. The characteristic impedance varying means can be configured by varying the line width of a transmission line configured by paralleling two strip-shaped lines. Alternatively, it is possible to configure the transmission line having a variable interval between two strip-shaped lines in parallel.

<第7の実施形態>
第7の実施形態の誘導電力伝送システムは、図20のように、第5の実施形態の第17(a)のアンテナのポート1あるいはポート2が接続するアンテナの給電点に並列に、例えば、13mm□のループ配線6を追加する。このループ配線6の配置は、そのポートからそのループ配線6に流れ込む電流がループ配線6を回転する方向が、それ以外のコイルの配線にそのポートから流れ込む電流がそのコイルを回転する方向と逆向きに回転するように配置する。このループ配線6を追加することで、共振周波数でアンテナのポートに誘起する誘導抵抗rは16Ωになった。この値は第5の実施形態の7Ωの誘導抵抗の約2倍になった。この誘導抵抗rは、アンテナ間の距離が近くなり結合係数mが増すと逆に小さくなる。このループ配線6の面積を大きくすることで誘導抵抗rを大きくでき、誘導抵抗rの値をループ配線6の面積により自由に変えて利用しやすい適度な大きさに設定することができる効果がある。
<Seventh Embodiment>
In the inductive power transmission system of the seventh embodiment, as shown in FIG. 20, in parallel with the feeding point of the antenna to which the port 1 or port 2 of the antenna of the 17th (a) of the fifth embodiment is connected, for example, Add 13mm square loop wiring 6. The arrangement of the loop wiring 6 is such that the direction in which the current flowing from the port into the loop wiring 6 rotates the loop wiring 6 is opposite to the direction in which the current flowing into the other coil wiring from the port rotates the coil. Arrange to rotate. By adding the loop wiring 6, the induction resistance r induced at the antenna port at the resonance frequency is 16Ω. This value is about twice the inductive resistance of 7Ω in the fifth embodiment. The inductive resistance r becomes smaller as the distance between the antennas becomes closer and the coupling coefficient m increases. By increasing the area of the loop wiring 6, the induction resistance r can be increased, and the value of the induction resistance r can be freely changed according to the area of the loop wiring 6 and set to an appropriate size that can be easily used. .

本発明の誘導電力伝送システムは、ディスプレイ装置等に、家屋の壁を隔てて誘導エネルギーを供給する用途に適用できる。また、生体への非侵襲なシステム構成で、生体内に埋め込んだ電子装置にエネルギーを供給する用途に適用できる。また、半導体集積回路内で集積回路の配線層間で電力を非接触で伝送する用途に適用できる。更に、車両などに電力供給設備から非接触で電力を供給する用途に適用できる。   INDUSTRIAL APPLICABILITY The inductive power transmission system of the present invention can be applied to an application for supplying inductive energy across a wall of a house to a display device or the like. In addition, the non-invasive system configuration for a living body can be applied to an application for supplying energy to an electronic device embedded in the living body. Further, the present invention can be applied to a use in which electric power is transmitted in a non-contact manner between wiring layers of an integrated circuit within a semiconductor integrated circuit. Furthermore, the present invention can be applied to an application for supplying electric power to a vehicle or the like from a power supply facility in a contactless manner.

本発明の第1の実施形態の送信アンテナと受信アンテナの平面図および側面図である。It is the top view and side view of a transmitting antenna and a receiving antenna of a 1st embodiment of the present invention. 本発明の誘導電力給電回路の回路図である。It is a circuit diagram of the induction power feeding circuit of the present invention. 本発明の第1の実施形態の電力伝送効率PeをSパラメータ(S21)であらわしたグラフである。It is the graph which represented the power transmission efficiency Pe of the 1st Embodiment of this invention by S parameter (S21). 本発明の第1の実施形態のアンテナ間隔hによる誘導抵抗rのグラフである。It is a graph of the induction resistance r by the antenna space | interval h of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例2から変形例4の送信アンテナと受信アンテナの平面図および側面図である。It is the top view and side view of a transmitting antenna and a receiving antenna of the modification 2 to the modification 4 of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例2のアンテナ間隔hによる誘導抵抗rのグラフである。It is a graph of the induction resistance r by the antenna space | interval h of the modification 2 of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例2のアンテナ間隔hによる電力伝送効率Peのグラフである。It is a graph of the power transmission efficiency Pe by the antenna space | interval h of the modification 2 of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例3の電源回路と負荷回路のインピーダンスZによる電力伝送効率のグラフである。It is a graph of the power transmission efficiency by the impedance Z of the power supply circuit and load circuit of the modification 3 of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例4のアンテナのずれ距離dによる誘導抵抗rのグラフである。It is a graph of the induction resistance r by the deviation | shift distance d of the antenna of the modification 4 of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例4のアンテナのずれ距離dによる電力伝送効率Peのグラフである。It is a graph of the power transmission efficiency Pe by the deviation | shift distance d of the antenna of the modification 4 of the 1st Embodiment of this invention. 本発明の第2の実施形態の送信アンテナと受信アンテナの平面図および側面図と電力伝送効率Peの周波数特性のグラフである。It is the graph of the frequency characteristic of the power transmission efficiency Pe of the top view and side view of a transmitting antenna and a receiving antenna of the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例5の送信アンテナと受信アンテナの平面図および側面図と電力伝送効率の周波数特性のグラフである。It is the graph of the frequency characteristic of the power transmission efficiency of the top view and side view of a transmitting antenna and a receiving antenna of the modification 5 of the 2nd Embodiment of this invention. 本発明の第2の実施形態と変形例5の電力伝送効率の周波数特性のグラフである。It is a graph of the frequency characteristic of the power transmission efficiency of the 2nd Embodiment of this invention and the modification 5. (a)本発明の第2の実施形態の変形例6のアンテナ間隔hによる誘導抵抗rのグラフである。(b)本発明の第2の実施形態の変形例6のアンテナ間隔hによる電力伝送効率Peのグラフである。(A) It is a graph of the induction resistance r by the antenna space | interval h of the modification 6 of the 2nd Embodiment of this invention. (B) It is a graph of the power transmission efficiency Pe by the antenna space | interval h of the modification 6 of the 2nd Embodiment of this invention. (a)本発明の第2の実施形態の変形例7のアンテナ間隔hによる誘導抵抗rのグラフである。(b)本発明の第2の実施形態の変形例7のアンテナ間隔hによる電力伝送効率Peのグラフである。(A) It is a graph of the induction resistance r by the antenna space | interval h of the modification 7 of the 2nd Embodiment of this invention. (B) It is a graph of the power transmission efficiency Pe by the antenna space | interval h of the modification 7 of the 2nd Embodiment of this invention. (a)本発明の第4の実施形態のアンテナの平面図である。(b)本発明の第4の実施形態の電力伝送効率の周波数特性のグラフである。(A) It is a top view of the antenna of the 4th Embodiment of this invention. (B) It is a graph of the frequency characteristic of the power transmission efficiency of the 4th Embodiment of this invention. (a)本発明の第5の実施形態の送信アンテナと受信アンテナの平面図および側面図である。(b)本発明の第5の実施形態の電力伝送効率の周波数特性のグラフである。(A) It is the top view and side view of a transmitting antenna and a receiving antenna of the 5th Embodiment of this invention. (B) It is a graph of the frequency characteristic of the power transmission efficiency of the 5th Embodiment of this invention. 本発明の第5の実施形態の変形例12におけるアレイアンテナ構造のアンテナを用いた場合の電力伝送効率の周波数特性のグラフである。It is a graph of the frequency characteristic of the power transmission efficiency at the time of using the antenna of the array antenna structure in the modification 12 of the 5th Embodiment of this invention. (a)本発明の送信アンテナと受信アンテナを示す平面図である。(b)本発明の第6の実施形態のインピーダンス変換回路を示す平面図である。(A) It is a top view which shows the transmitting antenna and receiving antenna of this invention. (B) It is a top view which shows the impedance conversion circuit of the 6th Embodiment of this invention. 本発明の第7の実施形態の送信アンテナと受信アンテナの平面図および側面図である。It is the top view and side view of a transmitting antenna and a receiving antenna of a 7th embodiment of the present invention.

符号の説明Explanation of symbols

1・・・送信アンテナ
2・・・受信アンテナ
3・・・電源回路
4・・・負荷回路
5・・・インピーダンス変換回路
6・・・ループ配線
C1、C2・・・容量
d・・・ずれ距離
D・・・送信アンテナ径
G・・・受信アンテナ径
h・・・アンテナ間隔
I1、I2・・・アンテナ電流
L1、L2・・・自己インダクタンス
r、r1、r2、r3・・・誘導抵抗
Z1、Z2・・・インピーダンス
DESCRIPTION OF SYMBOLS 1 ... Transmission antenna 2 ... Reception antenna 3 ... Power supply circuit 4 ... Load circuit 5 ... Impedance conversion circuit 6 ... Loop wiring C1, C2 ... Capacitance d ... Deviation distance D ... Transmitting antenna diameter G ... Receiving antenna diameter h ... Antenna spacing I1, I2 ... Antenna currents L1, L2 ... Self-inductance r, r1, r2, r3 ... Inductive resistance Z1, Z2: Impedance

Claims (2)

電源回路に接続した送信アンテナから、受信アンテナに接続した負荷回路まで空間を経由して電力を伝送するシステムにおいて、前記送信アンテナ及び前記受信アンテナがコイル状の配線の両端を結ぶ容量を有し、前記容量と前記コイル状の配線のインダクタンスで共振回路を構成し、前記送信アンテナと前記受信アンテナのコイルを、両アンテナのコイルの直径の2倍以下の距離を隔てて配置し、前記コイル状の配線の中間に直列に前記電源回路及び前記負荷回路を接続し、前記送信アンテナに誘導される抵抗に前記電源回路の出力インピーダンスを整合させ、前記受信アンテナに誘導される抵抗に前記負荷回路の入力インピーダンスを整合させて前記電源回路から前記負荷回路まで電力を伝送することを特徴とする誘導電力伝送システム。   In a system for transmitting power via a space from a transmission antenna connected to a power supply circuit to a load circuit connected to a reception antenna, the transmission antenna and the reception antenna have a capacity for connecting both ends of a coiled wiring, A resonance circuit is configured by the inductance of the capacitor and the coiled wiring, and the coils of the transmitting antenna and the receiving antenna are arranged with a distance of not more than twice the diameter of the coils of both antennas. The power circuit and the load circuit are connected in series in the middle of the wiring, the output impedance of the power circuit is matched to the resistance induced to the transmitting antenna, and the input of the load circuit to the resistance induced to the receiving antenna Inductive power transmission system characterized in that impedance is matched to transmit power from the power supply circuit to the load circuit 請求項1に記載の誘導電力伝送システムにおいて、前記電源回路あるいは前記負荷回路に、1つの回路パラメータを可変にすることで整合インピーダンスを可変にしたインピーダンス整合手段を設置したことを特徴とする誘導電力伝送システム。   2. The inductive power transmission system according to claim 1, wherein impedance matching means for changing a matching impedance by changing one circuit parameter is installed in the power supply circuit or the load circuit. Transmission system.
JP2008130243A 2008-05-18 2008-05-18 Induced-power transmission system Pending JP2009278837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130243A JP2009278837A (en) 2008-05-18 2008-05-18 Induced-power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130243A JP2009278837A (en) 2008-05-18 2008-05-18 Induced-power transmission system

Publications (1)

Publication Number Publication Date
JP2009278837A true JP2009278837A (en) 2009-11-26

Family

ID=41443727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130243A Pending JP2009278837A (en) 2008-05-18 2008-05-18 Induced-power transmission system

Country Status (1)

Country Link
JP (1) JP2009278837A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011654A (en) * 2008-06-27 2010-01-14 Sony Corp Power transmitter, power supplying device, and power receiving device
JP2010132023A (en) * 2008-12-02 2010-06-17 Showa Aircraft Ind Co Ltd Non-contact electricity feeding device
JP2010158151A (en) * 2008-12-01 2010-07-15 Toyota Industries Corp Contactless power transmission apparatus
JP2011147213A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Electric power transmission system and power feeder for vehicle
JP2011166994A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Power supplying device and vehicle power supplying system
JP2012039692A (en) * 2010-08-04 2012-02-23 Yazaki Corp Noncontact power transmission apparatus
JP2012050209A (en) * 2010-08-25 2012-03-08 Nec Tokin Corp Non-contact power transmission system
JP2013021862A (en) * 2011-07-13 2013-01-31 Yazaki Corp Power feeding system design method
JP2013158227A (en) * 2012-01-03 2013-08-15 Hideo Kikuchi Inductive power transmission system
US8704534B2 (en) 2010-08-25 2014-04-22 Samsung Electronics Co., Ltd. Method and apparatus of tracking of resonant impedance in resonance power transfer system
WO2014087889A1 (en) * 2012-12-07 2014-06-12 日産自動車株式会社 Non-contact power supply apparatus and method for controlling same
JP2014161177A (en) * 2013-02-20 2014-09-04 Nitto Denko Corp Portable device and charging apparatus therefor, and portable device charging system
JP2014207796A (en) * 2013-04-15 2014-10-30 日産自動車株式会社 Non-contact power feeding device, and method of controlling the same
KR101453975B1 (en) * 2012-11-28 2014-11-03 김준열 Method for linking batteryless device using near field magnetic coupling
CN107771282A (en) * 2015-06-22 2018-03-06 布利斯脱大学 Wireless ultrasound wave sensor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561886B2 (en) * 2008-06-27 2010-10-13 ソニー株式会社 Power transmission device, power feeding device, and power receiving device
US8319489B2 (en) 2008-06-27 2012-11-27 Sony Corporation Power transfer device, power supply device and power receiving device
JP2010011654A (en) * 2008-06-27 2010-01-14 Sony Corp Power transmitter, power supplying device, and power receiving device
JP2010158151A (en) * 2008-12-01 2010-07-15 Toyota Industries Corp Contactless power transmission apparatus
JP2010132023A (en) * 2008-12-02 2010-06-17 Showa Aircraft Ind Co Ltd Non-contact electricity feeding device
JP2011147213A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Electric power transmission system and power feeder for vehicle
CN102712267A (en) * 2010-01-12 2012-10-03 丰田自动车株式会社 Power transmission system and power supply device for vehicles
US9421877B2 (en) 2010-01-12 2016-08-23 Toyota Jidosha Kabushiki Kaisha Power transmission system and power supply device for vehicles
JP2011166994A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Power supplying device and vehicle power supplying system
JP2012039692A (en) * 2010-08-04 2012-02-23 Yazaki Corp Noncontact power transmission apparatus
US8704534B2 (en) 2010-08-25 2014-04-22 Samsung Electronics Co., Ltd. Method and apparatus of tracking of resonant impedance in resonance power transfer system
JP2012050209A (en) * 2010-08-25 2012-03-08 Nec Tokin Corp Non-contact power transmission system
JP2013021862A (en) * 2011-07-13 2013-01-31 Yazaki Corp Power feeding system design method
JP2013158227A (en) * 2012-01-03 2013-08-15 Hideo Kikuchi Inductive power transmission system
KR101453975B1 (en) * 2012-11-28 2014-11-03 김준열 Method for linking batteryless device using near field magnetic coupling
WO2014087889A1 (en) * 2012-12-07 2014-06-12 日産自動車株式会社 Non-contact power supply apparatus and method for controlling same
JPWO2014087889A1 (en) * 2012-12-07 2017-01-05 日産自動車株式会社 Non-contact power feeding apparatus and control method thereof
JP2014161177A (en) * 2013-02-20 2014-09-04 Nitto Denko Corp Portable device and charging apparatus therefor, and portable device charging system
US10483800B2 (en) 2013-02-20 2019-11-19 Nitto Denko Corporation Portable device, charging device for same, and charging system for portable device
JP2014207796A (en) * 2013-04-15 2014-10-30 日産自動車株式会社 Non-contact power feeding device, and method of controlling the same
CN107771282A (en) * 2015-06-22 2018-03-06 布利斯脱大学 Wireless ultrasound wave sensor
CN107771282B (en) * 2015-06-22 2024-04-19 布利斯脱大学 Wireless ultrasonic sensor

Similar Documents

Publication Publication Date Title
JP5054113B2 (en) Inductive power transmission circuit
JP2009278837A (en) Induced-power transmission system
Kim et al. Asymmetric coil structures for highly efficient wireless power transfer systems
JP2010063324A (en) Induced power transmission circuit
US10158256B2 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
JP5934934B2 (en) Wireless power transmission system
JP5685766B2 (en) Wireless power transceiver and wireless power system
JP6288519B2 (en) Wireless power transmission system
JP6074745B2 (en) Wireless power transmission system and power transmission device
JP6172607B2 (en) Wireless power transmission device
WO2011083594A1 (en) Non-contact power transmission device and near-field antenna for same
US20110266884A1 (en) Electric power transmission apparatus and noncontact electric power transmission system
KR102125917B1 (en) Wireless power transmitting device
CN104521100B (en) Contactless power transmission device, electric supply installation and current-collecting device
Le-Huu et al. Dual-band free-positioning transmitting coil for multiple-receiver wireless power transfer
JP5354874B2 (en) Inductive power supply system
WO2014132480A1 (en) Wireless power transmission device, method for adjusting load fluctuation response of input impedance in wireless power transmission device, and method for manufacturing wireless power transmission device
JP2012135066A (en) Inductive power transmission system
JP5981203B2 (en) Power transmission system
JP6858151B2 (en) Wireless power supply device and its impedance adjustment method
JP6981334B2 (en) Composite antenna device and electronic equipment
WO2024009485A1 (en) Power transmission coil
JP6350777B2 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
JP6567329B2 (en) Resonator
KR102199329B1 (en) Multi-layer wire structure for high efficiency wireless communication