JP2009275698A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2009275698A
JP2009275698A JP2009025100A JP2009025100A JP2009275698A JP 2009275698 A JP2009275698 A JP 2009275698A JP 2009025100 A JP2009025100 A JP 2009025100A JP 2009025100 A JP2009025100 A JP 2009025100A JP 2009275698 A JP2009275698 A JP 2009275698A
Authority
JP
Japan
Prior art keywords
oil supply
supply passage
shaft
lubricating oil
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009025100A
Other languages
Japanese (ja)
Other versions
JP5143041B2 (en
Inventor
Tadashi Hotta
忠資 堀田
Susumu Kusada
享 草田
Yoichiro Kawamoto
陽一郎 河本
Shigeki Iwanami
重樹 岩波
Hiroyasu Kato
裕康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2009025100A priority Critical patent/JP5143041B2/en
Priority to DE102009017037.5A priority patent/DE102009017037B4/en
Publication of JP2009275698A publication Critical patent/JP2009275698A/en
Application granted granted Critical
Publication of JP5143041B2 publication Critical patent/JP5143041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric compressor capable of maintaining proper lubrication of a bearing even when the number of revolution of a shaft is increased. <P>SOLUTION: The compressor is provided with: a housing 2; a compression mechanism part 4 arranged in the housing 2; the shaft 30 rotated/driven and rotating/driving the compression mechanism part 4; and a first bearing 13 and a second bearing 14 for rotatably supporting the shaft 30. The shaft 30 is provided with a main oil feeding passage 31 extending in an axial direction in the shaft 30; a first sub-oil feeding passage and a second sub-oil feeding passage 34 penetrated/extended to a sidewall of the shaft 30 in order to lubricate the first bearing 13 and the second bearing 14 respectively; and lubricant distribution members 35, 135 provided on the main oil feeding passage 31. The lubricant distribution member is provided with branch parts 40, 140 for branching the lubricant circulated through the main oil feeding passage 31 toward the first sub-oil feeding passage 33 and the second sub-oil feeding passage 34. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧縮機に関するものである。   The present invention relates to a compressor.

圧縮機はその密閉されたケーシングの内部に、シャフト、シャフトに連結された圧縮機構部、シャフトを回転可能に支持する主軸受及び副軸受、及び冷媒から潤滑油を分離するオイルセパレータ等を含んでいる。特許文献1は、そのような圧縮機を記載しており、その圧縮機のシャフトは、軸方向に貫通するオイル通路と、主軸受及び副軸受にそれぞれ給油するためにシャフト側壁を半径方向に貫通する二つの副給油路(径方向の孔)を有している。潤滑油は、オイルセパレータの下方に設けられた高圧貯油室から供給され、シャフトの、圧縮機構部に近い方の一端側から潤滑油通路に流入して前記二つの副給油路に所定の比率で分配されて流れるようになっている。なお、高圧貯油室から供給される潤滑油は、通常は冷媒を含み、且つこの冷媒が減圧発泡した気液2相状態の流体としてシャフトに流入する。   The compressor includes a sealed casing, a shaft, a compression mechanism connected to the shaft, a main bearing and a secondary bearing that rotatably support the shaft, and an oil separator that separates lubricating oil from the refrigerant. Yes. Patent Document 1 describes such a compressor, and a shaft of the compressor penetrates a shaft side wall in a radial direction in order to supply oil to an axially penetrating oil passage and a main bearing and a sub bearing. Two sub oil supply passages (radial holes). Lubricating oil is supplied from a high-pressure oil storage chamber provided below the oil separator, flows from one end of the shaft closer to the compression mechanism into the lubricating oil passage, and enters the two auxiliary oil supply passages at a predetermined ratio. It is distributed and flows. The lubricating oil supplied from the high-pressure oil storage chamber usually contains a refrigerant, and flows into the shaft as a gas-liquid two-phase fluid in which the refrigerant is foamed under reduced pressure.

特開2007−321588号公報JP 2007-321588 A

圧縮機においては、シャフトの回転数の増減にかかわらず軸受に対する適正な潤滑が維持されることが求められるが、特許文献1に示される圧縮機では、シャフトの回転数が増加すると、上流側の副給油路に流入する潤滑油が増加するように上流側と下流側の各副給油路に対する潤滑油の分配比が変化し、その結果下流側の副軸受の潤滑不足を招くことがあった。これは、シャフトが回転すると、冷媒を含有する潤滑油は、気相の冷媒と液相の潤滑油がシャフト主給油路の中心部と周辺部にそれぞれ遠心分離されるが、シャフトの回転数が高速になると、シャフト側壁に開口する上流側の第1副給油路への流れは、遠心力の影響を受けやすい液体の潤滑油の割合が多くなり、その結果下流側に流れる流体に含まれる液体の潤滑油の割合が減少すること等が理由と考えられる。   In a compressor, it is required that proper lubrication with respect to the bearing is maintained regardless of increase / decrease in the rotation speed of the shaft. However, in the compressor shown in Patent Document 1, when the rotation speed of the shaft increases, The distribution ratio of the lubricating oil to the upstream and downstream auxiliary oil supply passages changes so that the lubricating oil flowing into the auxiliary oil supply passages increases, and as a result, the downstream secondary bearings may become insufficiently lubricated. This is because when the shaft rotates, the lubricating oil containing the refrigerant is separated into a gas phase refrigerant and a liquid phase lubricating oil at the central portion and the peripheral portion of the shaft main oil supply passage, respectively. At high speed, the flow to the first auxiliary oil passage on the upstream side that opens to the side wall of the shaft increases the proportion of liquid lubricating oil that is susceptible to centrifugal force, and as a result, the liquid contained in the fluid that flows downstream The reason for this is that the ratio of the lubricating oil decreases.

本発明は前述した従来技術の課題に鑑みてなされたもので、その目的はシャフトの回転数が増加する場合でも軸受の適正な潤滑を維持できる圧縮機を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a compressor capable of maintaining proper lubrication of a bearing even when the number of rotations of a shaft increases.

本発明は、上記課題を達成するための技術的手段として、特許請求の範囲の各請求項に記載の圧縮機を提供する。   The present invention provides a compressor described in each of the claims as technical means for achieving the above object.

請求項1に記載の発明は、ハウジング(2)と、前記ハウジング(2)内に配設された、圧縮機構部(4)と、回転駆動されて前記圧縮機構部(4)を回転駆動するシャフト(30)と、前記シャフト(30)を回転可能に支持する第1軸受(13)及び第2軸受(14)とを具備する圧縮機であって、シャフト(30)は、該シャフト(30)内を軸方向に延びる主給油路(31)と、前記第1軸受(13)及び前記第2軸受(14)をそれぞれ潤滑するために該シャフト(30)の側壁を貫通して延びる第1副給油路(33)及び第2副給油路(34)と、前記主給油路(31)に設けられた潤滑油分配部材(35,135,235)とを備え、前記潤滑油分配部材は、前記主給油路(31)を流通する潤滑油を、前記第1副給油路(33)及び前記第2副給油路(34)に向けて分岐させる分岐部(40,140)を備えることを特徴とするものである。   According to the first aspect of the present invention, the housing (2), the compression mechanism portion (4) disposed in the housing (2), and the rotation mechanism is driven to rotate the compression mechanism portion (4). A compressor comprising a shaft (30), and a first bearing (13) and a second bearing (14) that rotatably support the shaft (30), wherein the shaft (30) is the shaft (30). ) A first oil supply passage (31) extending in the axial direction in the interior of the shaft (30) and through the side wall of the shaft (30) for lubricating the first bearing (13) and the second bearing (14), respectively. The auxiliary oil supply passage (33) and the second auxiliary oil supply passage (34), and the lubricating oil distribution member (35, 135, 235) provided in the main oil supply passage (31), the lubricating oil distribution member, Lubricating oil flowing through the main oil supply passage (31) is supplied to the first sub oil supply passage (3 ) And is characterized in further comprising a branch portion (40, 140) for branching toward the second sub-supply passage (34).

請求項1に記載の発明により、第1及び第2副給油路(33;34)へそれぞれ流れる潤滑油は、一つの分岐部(40,140)において分岐されるので互いにほぼ等しい気液割合を有し、その結果、シャフト(30)の回転数が増加した場合でも、第1及び第2副給油路へ供給される潤滑油の分配比はほぼ一定に維持され、各軸受(13,14)の適正な潤滑を維持することができる。   According to the first aspect of the present invention, the lubricating oil flowing to the first and second auxiliary oil supply passages (33; 34) is branched at one branch portion (40, 140), so that the gas-liquid ratio is substantially equal to each other. As a result, even when the rotational speed of the shaft (30) increases, the distribution ratio of the lubricating oil supplied to the first and second auxiliary oil supply passages is maintained substantially constant, and the bearings (13, 14). The proper lubrication can be maintained.

請求項2に記載の発明は、請求項1に記載の発明において、前記潤滑油分配手段(35,235)が、主給油路(31)内に設けられて前記主給油路(31)内部に第3給油通路(36,236)を形成し、前記第3給油路(36,236)の出口は、軸方向で第1副給油路(33)及び第2副給油路(34)の間に位置することを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the lubricating oil distribution means (35, 235) is provided in the main oil supply passage (31) and is provided in the main oil supply passage (31). A third oil supply passage (36, 236) is formed, and an outlet of the third oil supply passage (36, 236) is between the first auxiliary oil supply passage (33) and the second auxiliary oil supply passage (34) in the axial direction. It is characterized by being located.

これにより、第1副給油路(33)及び第2副給油路(34)へそれぞれ流れる潤滑油は、第1副給油路(33)及び第2副給油路(34)の間に形成された分岐部(40)において共通の第3給油路内の潤滑油から分岐されるので互いにほぼ等しい気液割合を有し、その結果前述した効果を得ることができる。また、第3給油路(36,236)の出口の位置を変えることにより様々な分配比を得ることが可能になる。   As a result, the lubricating oil flowing to the first auxiliary oil passage (33) and the second auxiliary oil passage (34) is formed between the first auxiliary oil passage (33) and the second auxiliary oil passage (34). Since the branch portion (40) is branched from the lubricating oil in the common third oil supply passage, they have substantially the same gas-liquid ratio, and as a result, the effects described above can be obtained. Further, various distribution ratios can be obtained by changing the position of the outlet of the third oil supply passage (36, 236).

請求項2に記載の発明における潤滑油分配部材(35,235)は、好適には、主給油路(31)内に嵌挿されて固定される大径軸部(35a)と、前記大径軸部(35a)より小径の小径軸部(35b)とからなる段付き円柱状に形成される。   The lubricating oil distribution member (35, 235) according to the second aspect of the present invention preferably includes a large-diameter shaft portion (35a) that is fitted and fixed in the main oil supply passage (31), and the large-diameter portion. It is formed in a stepped columnar shape including a small diameter shaft portion (35b) having a smaller diameter than the shaft portion (35a).

請求項4に記載の発明は、請求項1に記載の発明において、潤滑油分配部材(135)は、シャフト(30)の主給油路(31)内に嵌挿されて固定される外周面を有する略円柱状に形成されており、略円柱状の潤滑油分配部材(135)は、シャフト(30)の回転軸線(Ar)と同軸に形成された軸方向流路(137)と、前記軸方向流路(137)内の軸方向の同じ位置(140)においてそれぞれ径方向に分岐した第1分岐路(138)と第2分岐路(139)とが穿設されて構成され、第1分岐路(138)を流れる潤滑油が第1副給油路(33)に導かれ、第2分岐路(139)を流れる潤滑油が、第2副給油路に導かれることを特徴とするものである。   According to a fourth aspect of the present invention, in the first aspect of the present invention, the lubricating oil distribution member (135) has an outer peripheral surface fixed by being inserted into the main oil supply passage (31) of the shaft (30). The substantially cylindrical lubricating oil distribution member (135) has an axial flow path (137) formed coaxially with the rotation axis (Ar) of the shaft (30), and the shaft A first branch path (138) and a second branch path (139) branched in the radial direction at the same position (140) in the axial direction in the directional flow path (137) are formed, and the first branch is formed. The lubricating oil flowing through the passage (138) is led to the first sub oil supply passage (33), and the lubricating oil flowing through the second branch passage (139) is led to the second sub oil supply passage. .

これにより、第1副給油路(33)及び第2副給油路(34)へそれぞれ流れる潤滑油は、同じ位置(140)において共通の潤滑油から分岐されるので互いにほぼ等しい気液割合を有し、その結果、シャフト(30)の回転数が増加した場合でも、第1及び第2副給油路へ供給される潤滑油の分配比はほぼ一定に維持され、各軸受(13,14)の適正な潤滑を維持することができる。   As a result, the lubricating oil flowing to the first auxiliary oil passage (33) and the second auxiliary oil passage (34) is branched from the common lubricating oil at the same position (140), and therefore has substantially the same gas-liquid ratio. As a result, even when the rotational speed of the shaft (30) increases, the distribution ratio of the lubricating oil supplied to the first and second auxiliary oil supply passages is maintained substantially constant, and the bearings (13, 14) Proper lubrication can be maintained.

請求項5に記載の発明は、請求項4に記載の発明において、シャフト(30)のうち、潤滑油分配部材よりも下流側部分(31d)が上流側部分(31u)よりも小径であることを特徴とするものである。潤滑油分配部材(135)を主給油路内に形成される段差部に当接させることにより潤滑油分配部材(135)の固定時の位置決めが容易になる。また下流側部分(31d)を流れる潤滑油に作用する遠心力に基づく流れの抵抗を減少させたい場合にも好適である。   The invention according to claim 5 is the invention according to claim 4, wherein the downstream portion (31d) of the shaft (30) is smaller in diameter than the upstream portion (31u) of the lubricating oil distribution member. It is characterized by. Positioning the lubricating oil distribution member (135) when it is fixed is facilitated by bringing the lubricating oil distribution member (135) into contact with a step formed in the main oil supply passage. It is also suitable when it is desired to reduce the flow resistance based on the centrifugal force acting on the lubricating oil flowing through the downstream portion (31d).

請求項6に記載の発明は、請求項3に記載の発明において、圧縮機が、主給油路(31)内において軸方向に延設された流路面積低減部材(41)を更に具備し、第3給油路(36)の出口から第2副給油路(34)に通じる流路の少なくとも一部が、流路面積低減部材(41)の外周面と主給油路(31)の内周面との間に形成されることを特徴とするものである。   The invention according to claim 6 is the invention according to claim 3, wherein the compressor further comprises a flow path area reducing member (41) extending in the axial direction in the main oil supply passage (31), At least a part of the flow path leading from the outlet of the third oil supply path (36) to the second sub oil supply path (34) is the outer peripheral surface of the flow path area reducing member (41) and the inner peripheral surface of the main oil supply path (31). It is characterized by being formed between.

このように構成することにより、請求項1に記載の発明の場合よりもさらに潤滑油が第2副給油路(34)に流れやすくなる。これは、第2副給油路(34)へ至る流路断面積が流路面積低減部材(41)によって縮小されたことにより、第一には、ガス流速が増大して、環状オイル相の駆動力となる気液界面での剪断力が増大すること、及び第二には、主給油路内(31)の流動様式が環状流からスラグ流へ変化することが要因として考えられる。   By comprising in this way, lubricating oil becomes easier to flow into the 2nd sub oil supply path (34) than the case of the invention of Claim 1. This is because the gas flow velocity is increased and the annular oil phase is driven first, because the flow passage cross-sectional area leading to the second sub oil supply passage (34) is reduced by the flow passage area reduction member (41). It is conceivable that the shearing force at the gas-liquid interface, which is a force, increases, and secondly, the flow mode in the main oil supply passage (31) changes from an annular flow to a slag flow.

請求項9に記載の発明は、請求項3に記載の圧縮機において、潤滑油分配部材(235)の小径軸部(235b)が、第3給油路(236)が形成されたパイプ状部分(235b1)と第3給油路(236)の端から第2副給油路(34)側に延びる中実部分(235b2)とからなり、第3給油路(236)の出口(236d1,236d2)から第2副給油路(34)に通じる流路の少なくとも一部が、中実部分(235b2)の外周面と主給油路(31)の内周面との間に形成されることを特徴とするものである。   According to a ninth aspect of the present invention, in the compressor according to the third aspect, the small-diameter shaft portion (235b) of the lubricating oil distribution member (235) is a pipe-shaped portion in which the third oil supply passage (236) is formed ( 235b1) and a solid portion (235b2) extending from the end of the third oil supply passage (236) to the second sub oil supply passage (34) side, and from the outlet (236d1, 236d2) of the third oil supply passage (236). At least a part of the flow path leading to the two sub oil supply passages (34) is formed between the outer peripheral surface of the solid portion (235b2) and the inner peripheral surface of the main oil supply passage (31). It is.

これにより、請求項9に記載の発明は請求項6に記載の発明と同様に作用して、同様の効果が実現され得る。   Thus, the invention described in claim 9 operates in the same manner as the invention described in claim 6, and the same effect can be realized.

請求項12、13に記載のスクロール型の電動圧縮機では、電動機部をはさんで主軸受と副軸受が配置されるが、それら軸受間の距離が比較的離れていたとしても確実に給油でき、本発明はより有効である。   In the scroll-type electric compressor according to claims 12 and 13, the main bearing and the sub-bearing are arranged with the motor portion interposed therebetween, but even if the distance between the bearings is relatively long, the oil can be reliably supplied. The present invention is more effective.

請求項14では冷媒をCO2ガスとしたもので、CO2冷媒では圧力が一般の冷媒より高く、従って潤滑油中の冷媒溶解度が高い。減圧した潤滑油中のガス比率が高く気液二相状態の頻度が高く、より分配不良がおき易い状態となり本発明はより有効である。   According to the fourteenth aspect, the refrigerant is CO2 gas, and the pressure of the CO2 refrigerant is higher than that of a general refrigerant, and therefore the solubility of the refrigerant in the lubricating oil is high. The gas ratio in the decompressed lubricating oil is high, the frequency of the gas-liquid two-phase state is high, and the distribution failure is more likely to occur, and the present invention is more effective.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

本発明の第1の実施形態による電動圧縮機の縦断面図である。1 is a longitudinal sectional view of an electric compressor according to a first embodiment of the present invention. 第1の実施形態による電動圧縮機のシャフトの縦断面図である。It is a longitudinal cross-sectional view of the shaft of the electric compressor by 1st Embodiment. 本発明の第2の実施形態による電動圧縮機のシャフトの縦断面図である。It is a longitudinal cross-sectional view of the shaft of the electric compressor by the 2nd Embodiment of this invention. 第2の実施形態による電動圧縮機のシャフトの部分詳細縦断面図である。It is a partial detail longitudinal cross-sectional view of the shaft of the electric compressor by 2nd Embodiment. 本発明の第2の実施形態の変形例による電動圧縮機のシャフトの縦断面図である。It is a longitudinal cross-sectional view of the shaft of the electric compressor by the modification of the 2nd Embodiment of this invention. 第2の実施形態の変形例による電動圧縮機のシャフトの部分詳細縦断面図である。It is a partial detail longitudinal cross-sectional view of the shaft of the electric compressor by the modification of 2nd Embodiment. 本発明の第3の実施形態による電動圧縮機のシャフトの縦断面図である。It is a longitudinal cross-sectional view of the shaft of the electric compressor by the 3rd Embodiment of this invention. 第3の実施形態による電動圧縮機のシャフトの図7のA−A切断線による横断面図である。It is a cross-sectional view by the AA cut line of FIG. 7 of the shaft of the electric compressor by 3rd Embodiment. 第4の実施形態による電動圧縮機のシャフトの縦断面図である。It is a longitudinal cross-sectional view of the shaft of the electric compressor by 4th Embodiment. 第5の実施形態による電動圧縮機のシャフトの縦断面図である。It is a longitudinal cross-sectional view of the shaft of the electric compressor by 5th Embodiment. 第4の実施形態の変更例による電動圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the electric compressor by the example of a change of 4th Embodiment.

(第1の実施形態)
以下、本発明の好適な第1の実施形態の圧縮機について図面を参照しながら説明する。最初に前記圧縮機の全体的構造をその縦断面図である図1を参照して説明する。図1の圧縮機1はスクロール型の電動圧縮機であって、概ね円筒状に形成された密閉容器2内に電動機部3と圧縮機構部4とを収容し、外部の冷媒回路からの冷媒を圧縮機構部4において圧縮した後、その一端側に一体に取付けられたオイルセパレータ5において冷媒から潤滑油を分離して、冷媒を外部の冷媒回路へ送り出す一方で、分離した潤滑油をオイルセパレータ5の下方に設けられた高圧貯油室6に貯留し、貯留した潤滑油を圧縮機構部4及び後述する軸受等の可動部へ戻すように構成されている。また、本実施形態では、上記冷媒にはCO2が用いられるが、勿論他の組成の冷媒も本発明による圧縮機に適用できる。
(First embodiment)
Hereinafter, a compressor according to a preferred first embodiment of the present invention will be described with reference to the drawings. First, the overall structure of the compressor will be described with reference to FIG. A compressor 1 in FIG. 1 is a scroll-type electric compressor, and an electric motor unit 3 and a compression mechanism unit 4 are accommodated in a sealed container 2 formed in a substantially cylindrical shape, and refrigerant from an external refrigerant circuit is received. After compression in the compression mechanism section 4, the oil separator 5 integrally attached to one end thereof separates the lubricating oil from the refrigerant and sends the refrigerant to an external refrigerant circuit, while the separated lubricating oil is sent to the oil separator 5. Is stored in a high-pressure oil storage chamber 6 provided below, and the stored lubricating oil is returned to the compression mechanism portion 4 and a movable portion such as a bearing described later. In the present embodiment, CO2 is used as the refrigerant. Of course, refrigerants having other compositions can also be applied to the compressor according to the present invention.

圧縮機の密閉容器2は円筒ケース7と、この円筒ケース7の図1の左端側及び右端側にそれぞれ結合された有底円筒状の第1端部材8及び第2端部材9とから形成されている。また、右端側の第2端部材9の内側に高圧貯油室6の空間を形成するように略円板状の貯油室壁部材10が結合されている。この密閉容器2は、その中の圧力が冷媒の吐出圧力よりも低い所謂内部低圧式容器を形成している。   The hermetic container 2 of the compressor is formed of a cylindrical case 7 and a cylindrical first end member 8 and a second end member 9 which are coupled to the left end side and the right end side in FIG. ing. Further, a substantially disk-shaped oil storage chamber wall member 10 is coupled to form a space for the high-pressure oil storage chamber 6 inside the second end member 9 on the right end side. The sealed container 2 forms a so-called internal low-pressure container in which the pressure therein is lower than the refrigerant discharge pressure.

電動機部3は円筒ケース7の内周面に固定された固定子11と、回転子12とを具備しており、前記回転子12はシャフト30に固定されている。   The electric motor unit 3 includes a stator 11 fixed to the inner peripheral surface of the cylindrical case 7 and a rotor 12, and the rotor 12 is fixed to a shaft 30.

シャフト30は、その縦断面図である図2にも示されるように、内部に主給油路31を有するパイプ状に形成されており、また図の右端(一端)側に偏心したクランク部32とフランジ状の鍔部32aが設けられている。シャフト30は、その一端側を後述する軸受部材16に設けられた主軸受13によって及びその他端側を円筒ケース7の左端近くに設けられた円盤状の支持部材15に固定された副軸受14によって水平に支持されている。   As shown in FIG. 2 which is a longitudinal sectional view of the shaft 30, the shaft 30 is formed in a pipe shape having a main oil supply passage 31 therein, and is eccentric to the right end (one end) side of the drawing. A flange-shaped flange 32a is provided. One end of the shaft 30 is provided by a main bearing 13 provided on a bearing member 16 to be described later, and the other end is provided by a sub-bearing 14 fixed to a disk-like support member 15 provided near the left end of the cylindrical case 7. It is supported horizontally.

圧縮機構部4は、電動機部3に隣接する位置で円筒ケース7に固定された軸受部材16と、シャフト30のクランク部32により公転する可動スクロール17と、可動スクロール17に対向配置されるように円筒ケース7に固定されて可動スクロール17と共に作動室18を形成する固定スクロール19とを具備している。   The compression mechanism portion 4 is disposed so as to face the movable scroll 17, the bearing member 16 fixed to the cylindrical case 7 at a position adjacent to the motor portion 3, the movable scroll 17 revolving by the crank portion 32 of the shaft 30. A fixed scroll 19 which is fixed to the cylindrical case 7 and forms a working chamber 18 together with the movable scroll 17 is provided.

軸受部材16は、電動機部3側から固定スクロール19側に向かって、順次径が大きくなる3段円筒状をなしており、電動機部3に近い小径円筒部16aは前記主軸受13を構成し、該小径円筒部16aに隣接する中径円筒部16bはクランク部32を収容し、固定スクロール19に近い大径円筒部16cは内部に可動スクロール17を収容すると共に、円筒ケース7の内周面に焼き嵌めなどの固定手段によって固定されている。   The bearing member 16 has a three-stage cylindrical shape in which the diameter gradually increases from the motor unit 3 side to the fixed scroll 19 side, and the small-diameter cylindrical unit 16a close to the motor unit 3 constitutes the main bearing 13; The medium-diameter cylindrical portion 16b adjacent to the small-diameter cylindrical portion 16a accommodates the crank portion 32, and the large-diameter cylindrical portion 16c close to the fixed scroll 19 accommodates the movable scroll 17 therein and is formed on the inner peripheral surface of the cylindrical case 7. It is fixed by fixing means such as shrink fitting.

固定スクロール19と可動スクロール17は渦巻状の溝をそれぞれ有しており、この溝の噛み合いによって形成される複数の前記作動室18が体積を縮小することによって、固定スクロール19の渦巻状の溝の最外周側に連通する吸入室(図示省略)に供給された冷媒を圧縮するように構成されている。圧縮機構部4の作動室18に吐出口20で連通している吐出室21とオイルセパレータ5とが吐出管22によって接続されている。   Each of the fixed scroll 19 and the movable scroll 17 has a spiral groove, and the volume of the working chambers 18 formed by the engagement of the grooves is reduced to reduce the volume of the spiral groove of the fixed scroll 19. The refrigerant supplied to the suction chamber (not shown) communicating with the outermost peripheral side is configured to be compressed. A discharge chamber 21 connected to the working chamber 18 of the compression mechanism unit 4 through a discharge port 20 and the oil separator 5 are connected by a discharge pipe 22.

高圧貯油室6の底部から延びる送油管23が固定スクロール19の図の下側の内部に形成された潤滑油戻し通路24に接続されており、前記潤滑油戻し通路24は、固定スクロール19と可動スクロール17との摺動界面に通じている。また可動スクロール17は前記潤滑油戻し通路24に連続する一端を有する潤滑油通路25を可動スクロール17の内部に有しており、この潤滑油通路25の他端がシャフト30の一端と可動スクロール17のボス部の間の隙間26に開口している。   An oil feed pipe 23 extending from the bottom of the high-pressure oil storage chamber 6 is connected to a lubricating oil return passage 24 formed in the lower side of the fixed scroll 19 in the figure. The lubricating oil return passage 24 is movable with the fixed scroll 19. It leads to the sliding interface with the scroll 17. The movable scroll 17 has a lubricating oil passage 25 having one end continuous with the lubricating oil return passage 24 inside the movable scroll 17, and the other end of the lubricating oil passage 25 is connected to one end of the shaft 30 and the movable scroll 17. It opens in the clearance gap 26 between the boss | hub parts.

次にシャフト30をその縦断面図である図2を参照して説明する。シャフト30は、その回転軸線Arに同軸の円形中心穴として貫通形成された主給油路31を有しており、この主給油路31はシャフト30の一端(図2の右端)側に入口31aを有している。シャフト30は、主軸受13と副軸受14をそれぞれ潤滑するためにシャフト30の側壁を貫通して延びる第1副給油路33及び第2副給油路34を備えている。第1副給油路33は、主給油路31から主軸受13の軸受面に向かってシャフト30の側壁を半径方向に貫通する小孔部分33aと、シャフト30の外周面を軸方向に図の右方へ向けて延びる溝部分33bとから形成されている。第2副給油路34は副軸受14の軸受面に向かってシャフト30の側壁を半径方向に貫通する小孔から形成されている。また、本実施形態においては、第1副給油路33及び第2副給油路34は互いに180度で対向する角度位置に設けられているが、他の任意の角度位置に設けることも可能である。   Next, the shaft 30 will be described with reference to FIG. The shaft 30 has a main oil supply passage 31 formed as a circular center hole coaxial with the rotation axis Ar thereof. The main oil supply passage 31 has an inlet 31a on one end (the right end in FIG. 2) side of the shaft 30. Have. The shaft 30 includes a first sub oil supply passage 33 and a second sub oil supply passage 34 that extend through the side walls of the shaft 30 to lubricate the main bearing 13 and the sub bearing 14, respectively. The first sub oil supply passage 33 has a small hole portion 33a passing through the side wall of the shaft 30 in the radial direction from the main oil supply passage 31 toward the bearing surface of the main bearing 13, and the outer peripheral surface of the shaft 30 in the axial direction on the right side of the figure. It is formed from the groove part 33b extended toward the direction. The second sub oil supply passage 34 is formed of a small hole that penetrates the side wall of the shaft 30 in the radial direction toward the bearing surface of the sub bearing 14. Further, in the present embodiment, the first sub oil supply passage 33 and the second sub oil supply passage 34 are provided at angular positions facing each other at 180 degrees, but may be provided at other arbitrary angular positions. .

シャフト30は、主給油路31内に嵌挿されて固定された潤滑油分配部材35を具備しており、主給油路31は、潤滑油分配部材35によって上流側部分31uと下流側部分31dとに区画される。潤滑油分配部材35は、第1の実施形態では、大径軸部35aとそれに同軸の小径軸部35bとからなる段付き円柱状に形成されており、また回転軸線Arに沿って貫通形成された第3給油路36を備えている。第3給油路36は、本実施形態では大径軸部35aの内側の大径穴36aと小径軸部35bの内側の小径穴36bとから形成されている。潤滑油分配部材35は、大径軸部35aが小径軸部35bより主給油路31の入口31aに近くなる配置でシャフト30の主給油路31内に嵌挿されてロウ付け等によってシャフト30に固定されている。従って、第3給油路36の入口36cは、大径軸部35aの端面に開口し、出口36dは小径軸部35bの端面に開口している。また、潤滑油分配部材35は、軸方向に離間されている第1副給油路33と第2副給油路34との間に第3給油路36の出口36dが位置すると共に、第1副給油路33が主給油路31の下流側部分31dに開口するように配置されている。   The shaft 30 includes a lubricating oil distribution member 35 that is fitted and fixed in the main oil supply passage 31, and the main oil supply passage 31 is separated from the upstream portion 31 u and the downstream portion 31 d by the lubricating oil distribution member 35. It is divided into. In the first embodiment, the lubricating oil distribution member 35 is formed in a stepped columnar shape including a large-diameter shaft portion 35a and a small-diameter shaft portion 35b coaxial therewith, and is formed so as to penetrate along the rotation axis Ar. The third oil supply passage 36 is provided. In the present embodiment, the third oil supply passage 36 is formed by a large-diameter hole 36a inside the large-diameter shaft portion 35a and a small-diameter hole 36b inside the small-diameter shaft portion 35b. The lubricating oil distribution member 35 is inserted into the main oil supply passage 31 of the shaft 30 in such a manner that the large diameter shaft portion 35a is closer to the inlet 31a of the main oil supply passage 31 than the small diameter shaft portion 35b, and is attached to the shaft 30 by brazing or the like. It is fixed. Accordingly, the inlet 36c of the third oil supply passage 36 opens to the end surface of the large diameter shaft portion 35a, and the outlet 36d opens to the end surface of the small diameter shaft portion 35b. The lubricating oil distribution member 35 includes an outlet 36d of the third oil supply path 36 between the first auxiliary oil supply path 33 and the second auxiliary oil supply path 34 that are spaced apart in the axial direction, and the first auxiliary oil supply. The passage 33 is disposed so as to open to the downstream portion 31 d of the main oil supply passage 31.

次に、主軸受13及び副軸受14へ潤滑油がどのように流れるかについて説明する。通常、潤滑油には冷媒が混入しているが、本明細書では冷媒を含んだ潤滑油も「潤滑油」と呼称する。また、潤滑油は高圧貯油室6と各軸受が配置された比較的低圧の空間との間の圧力差に基づいて高圧貯油室6から各軸受へ向かって流れる。   Next, how the lubricating oil flows to the main bearing 13 and the sub bearing 14 will be described. Usually, the lubricant contains a refrigerant, but in this specification, the lubricant containing the refrigerant is also referred to as “lubricant”. Further, the lubricating oil flows from the high pressure oil storage chamber 6 toward each bearing based on a pressure difference between the high pressure oil storage chamber 6 and a relatively low pressure space in which each bearing is disposed.

潤滑油は、可動スクロール17の潤滑油通路25を流れるとき、可動スクロール17が公転運動をすることにより間歇的に減圧され、その結果潤滑油に含まれる冷媒が減圧発泡し、液相の潤滑油と気相の冷媒が混合した気液2相の状態で、図2の矢印で示されるように、シャフト30の一端側の入口31aから主給油路31の上流側部分31uに入る。シャフト30の主給油路31内に流入した潤滑油は潤滑油分配部材35の第3給油路36に流入してその出口36dからシャフト30の主給油路31の下流側部分31dに放出される。第3給油路36の出口36dが第1副給油路33と第2副給油路34との間に位置しているので、第3給油路36の出口36dの直ぐ下流側に第1副給油路33へ向かう流れと第2副給油路34へ向かう流れの分岐部40が形成される。第1副給油路33に流入した潤滑油は主軸受13を潤滑し、第2副給油路34に流入した潤滑油は副軸受14を潤滑する。   When the lubricating oil flows through the lubricating oil passage 25 of the movable scroll 17, the movable scroll 17 undergoes a revolving motion, whereby the pressure is intermittently reduced, and as a result, the refrigerant contained in the lubricating oil is decompressed and foamed, and the liquid-phase lubricating oil In the gas-liquid two-phase state in which the gas-phase refrigerant is mixed, it enters the upstream portion 31u of the main oil supply passage 31 from the inlet 31a on one end side of the shaft 30 as indicated by the arrow in FIG. The lubricating oil flowing into the main oil supply passage 31 of the shaft 30 flows into the third oil supply passage 36 of the lubricating oil distribution member 35 and is discharged from the outlet 36d to the downstream portion 31d of the main oil supply passage 31 of the shaft 30. Since the outlet 36d of the third oil supply path 36 is located between the first auxiliary oil supply path 33 and the second auxiliary oil supply path 34, the first auxiliary oil supply path is located immediately downstream of the outlet 36d of the third oil supply path 36. A branching portion 40 of the flow toward 33 and the flow toward the second sub oil supply passage 34 is formed. The lubricating oil that has flowed into the first sub oil supply passage 33 lubricates the main bearing 13, and the lubricating oil that has flowed into the second sub oil supply passage 34 lubricates the sub bearing 14.

このとき、第1及び第2副給油路34へ流れるそれぞれの潤滑油は、共通の第3給油路を通った潤滑油から直ぐ分岐されたものであるので回転数の如何にかかわらず互いにほぼ等しい気液割合を有しており、そのため第1副給油路33及び第2副給油路34にそれぞれ供給される潤滑油の分配比は、シャフト30の回転数が増加した場合でもほぼ一定に保たれる。   At this time, the respective lubricating oils flowing to the first and second sub oil supply passages 34 are branched immediately from the lubricating oil that has passed through the common third oil supply passage, and therefore are substantially equal to each other regardless of the rotational speed. Therefore, the distribution ratio of the lubricating oil supplied to the first sub oil supply passage 33 and the second sub oil supply passage 34 is kept substantially constant even when the rotation speed of the shaft 30 is increased. It is.

(第2の実施形態)
次に本発明の第2の実施形態による電動圧縮機についてそのシャフト30及び潤滑油分配部材135の縦断面図である図3及びその拡大詳細図である図4を参照して説明する。この実施形態の電動圧縮機は、潤滑油分配部材135が第1の実施形態の電動圧縮機のものと異なっている。
(Second Embodiment)
Next, an electric compressor according to a second embodiment of the present invention will be described with reference to FIG. 3 which is a longitudinal sectional view of the shaft 30 and the lubricating oil distribution member 135 and FIG. 4 which is an enlarged detailed view thereof. In the electric compressor of this embodiment, the lubricating oil distribution member 135 is different from that of the electric compressor of the first embodiment.

第2の実施形態における潤滑油分配部材135は、シャフト30の主給油路31内に嵌合する大きさの外径を有する略円柱状に形成されている。潤滑油分配部材135の内部には、図4の右端からシャフト30の回転軸線Arに一致する中心軸線Axに沿って途中まで軸方向に延びる円形断面を有する軸方向流路137と、前記軸方向流路137の末端部近くにおいて軸方向流路137に上方及び下方よりそれぞれ半径方向に交わる第1分岐路138及び第2分岐路139とが形成されている。第1分岐路138は、半径方向に延びる小径の第1小径流路138aと比較的大径の第1大径流路138bとから構成されている。第2分岐路139は半径方向へ延びる小径の第2小径流路139aと潤滑油分配部材35の外周部を軸方向下流側へ延びる溝状流路139bとから構成されている。また、軸方向流路137、第1分岐路138、及び第2分岐路139によって第3給油路136が構成され、第3給油路136の入口136cは軸方向流路137の入口に一致する。第3給油路136はこのように形成されているので、軸方向流137の末端部近くに流れの分岐部140が形成される。   The lubricating oil distribution member 135 in the second embodiment is formed in a substantially cylindrical shape having an outer diameter that fits into the main oil supply passage 31 of the shaft 30. Inside the lubricating oil distribution member 135 is an axial flow path 137 having a circular cross section extending in the axial direction from the right end of FIG. 4 to the middle along the central axis Ax coinciding with the rotational axis Ar of the shaft 30, and the axial direction Near the end of the flow path 137, a first branch path 138 and a second branch path 139 are formed in the axial flow path 137 so as to intersect with each other in the radial direction from above and below. The first branch path 138 includes a first small-diameter channel 138a having a small diameter extending in the radial direction and a first large-diameter channel 138b having a relatively large diameter. The second branch path 139 includes a second small-diameter channel 139a having a small diameter extending in the radial direction and a groove-shaped channel 139b extending on the outer peripheral portion of the lubricating oil distribution member 35 toward the downstream side in the axial direction. In addition, the third oil supply path 136 is configured by the axial flow path 137, the first branch path 138, and the second branch path 139, and the inlet 136 c of the third oil supply path 136 coincides with the inlet of the axial flow path 137. Since the third oil supply passage 136 is formed in this way, a flow branching portion 140 is formed near the end of the axial flow 137.

第2の実施形態における潤滑油分配部材135は、第1分岐路138がシャフト30の第1副給油路33に直結され、及び前記第2分岐路139の溝状流路139bがシャフト30の主給油路31の下流側部分31dに開口するようにシャフト30に固定される。   In the lubricating oil distribution member 135 in the second embodiment, the first branch passage 138 is directly connected to the first sub oil supply passage 33 of the shaft 30, and the groove-like passage 139 b of the second branch passage 139 is the main shaft 30. It is fixed to the shaft 30 so as to open to the downstream portion 31 d of the oil supply passage 31.

第2の実施形態における、シャフト30の一端側の入口31aから主給油路31の上流側部分31uに流入した潤滑油は、図中の矢印で表されるように、分配部材135の軸方向流路137に流入して、分岐部140において第1分岐路138と第2分岐路139へ分岐される。第1分岐路138へ分岐された潤滑油はシャフト30の第1副給油路33に流入して主軸受13を潤滑し、第2分岐路139へ分岐された潤滑油は第2分岐路139の溝状流路139bからシャフト30の主給油路31の下流側部分31dを通って第2副給油路34に流入して副軸受14を潤滑する。   In the second embodiment, the lubricating oil that has flowed from the inlet 31a on one end side of the shaft 30 into the upstream portion 31u of the main oil supply passage 31 flows in the axial direction of the distribution member 135 as shown by the arrows in the figure. It flows into the path 137 and branches into the first branch path 138 and the second branch path 139 at the branching section 140. The lubricating oil branched to the first branch passage 138 flows into the first sub oil supply passage 33 of the shaft 30 to lubricate the main bearing 13, and the lubricating oil branched to the second branch passage 139 passes through the second branch passage 139. The sub-bearing 14 is lubricated by flowing from the groove-shaped flow path 139 b through the downstream portion 31 d of the main oil supply passage 31 of the shaft 30 to the second sub oil supply passage 34.

第1及び第2分岐路138、139へそれぞれ流れる流体は、軸方向流路137内の一つの分岐部140で分岐されるので、つまり同じ軸方向の位置及び同じ内径における分岐部で分岐されるのでシャフト30の回転の影響を受けない互いに気液割合の等しい流体であり、このことにより前記分配比はシャフトの回転数が増加した場合でもほぼ一定に維持される。   The fluids flowing to the first and second branch paths 138 and 139 are branched at one branch section 140 in the axial flow path 137, that is, branched at a branch section at the same axial position and the same inner diameter. Therefore, the fluids have the same gas-liquid ratio and are not affected by the rotation of the shaft 30. Thus, the distribution ratio is maintained substantially constant even when the rotation speed of the shaft is increased.

(第2の実施形態の変形例)
次に、第2の実施形態の変形例についてそのシャフト30及び潤滑油分配部材135の縦断面図である図5及びその拡大詳細図である図6を参照して説明する。この変形例では、シャフト30の主給油路31は、その下流側部分31dの内径が上流側部分31uの内径より細く形成されており、潤滑油分配部材135は主給油路31の内径が変化する段付き部に潤滑油分配部材135の左端(下流端)が当接してシャフト30に固定されている。またこれにともなって、この変形例の潤滑油分配部材135はその左端に凹部135aを備えており、このことが前述した第2の実施形態における潤滑油分配部材135と異なっている。前記凹部135aは第2分岐路139の溝状流路139bの出口を拡大する様態で形成されている。
(Modification of the second embodiment)
Next, a modification of the second embodiment will be described with reference to FIG. 5 which is a longitudinal sectional view of the shaft 30 and the lubricating oil distribution member 135 and FIG. 6 which is an enlarged detailed view thereof. In this modification, the main oil supply passage 31 of the shaft 30 is formed such that the inner diameter of the downstream portion 31d is narrower than the inner diameter of the upstream portion 31u, and the lubricating oil distribution member 135 changes the inner diameter of the main oil supply passage 31. The left end (downstream end) of the lubricating oil distribution member 135 is in contact with the stepped portion and fixed to the shaft 30. Accordingly, the lubricating oil distribution member 135 of this modification is provided with a recess 135a at the left end thereof, which is different from the lubricating oil distribution member 135 in the second embodiment described above. The recess 135a is formed in such a manner that the outlet of the groove-shaped channel 139b of the second branch 139 is enlarged.

(第3の実施形態)
第3の実施形態についてそのシャフト230の縦断面図である図7及び図7のA−A切断線による横断面図である図8を参照して説明する。この実施形態の電動圧縮機のシャフト230は、潤滑油分配部材を具備していない。またシャフト230の主給油路231の中心軸線Axはシャフト230の回転軸線Arから第2副給油路234の方向へεだけ偏心して形成されている。また、本実施形態においては、第1副給油路233及び第2副給油路234は互いにほぼ180度で対向する角度位置に設けられる。
(Third embodiment)
A third embodiment will be described with reference to FIG. 7 which is a longitudinal sectional view of the shaft 230 and FIG. 8 which is a transverse sectional view taken along the line AA of FIG. The shaft 230 of the electric compressor of this embodiment does not include a lubricating oil distribution member. Further, the central axis Ax of the main oil supply passage 231 of the shaft 230 is formed to be eccentric from the rotation axis Ar of the shaft 230 by ε in the direction of the second auxiliary oil supply passage 234. Moreover, in this embodiment, the 1st sub oil supply path 233 and the 2nd sub oil supply path 234 are provided in the angular position which mutually opposes at about 180 degree | times.

この実施形態においては、シャフトが回転すると遠心力の作用により、主給油路231の入口231aから第2副給油路234まで潤滑油が流れ難くなる効果と、半径方向では第2副給油路234が開口している側の壁面に潤滑油が増えるという効果とが生じるが、それら二つの効果が相殺されて、第1副給油路233と第2副給油路234との分配比の変化を抑えることができる。   In this embodiment, when the shaft rotates, the effect of the centrifugal force causes the lubricating oil to hardly flow from the inlet 231a of the main oil supply passage 231 to the second auxiliary oil supply passage 234, and in the radial direction, the second auxiliary oil supply passage 234 is formed. There is an effect that the lubricating oil increases on the wall surface on the opening side, but these two effects are offset to suppress the change in the distribution ratio between the first sub oil supply path 233 and the second sub oil supply path 234. Can do.

(第4の実施形態)
次に本発明の第4の実施形態による電動圧縮機について、そのシャフト30及び潤滑油分配部材35の縦断面図である図9を参照して説明する。この実施形態の電動圧縮機は、シャフト30の主給油路31内に潤滑油分配部材35と同軸に延設された流路面積低減部材41をさらに具備することにおいて第1の実施形態の電動圧縮機と異なっているが、他の部分の構成は同じである。
(Fourth embodiment)
Next, an electric compressor according to a fourth embodiment of the present invention will be described with reference to FIG. 9 which is a longitudinal sectional view of the shaft 30 and the lubricating oil distribution member 35. The electric compressor of this embodiment further includes a flow passage area reducing member 41 that extends coaxially with the lubricating oil distribution member 35 in the main oil supply passage 31 of the shaft 30. Although it is different from the machine, the configuration of other parts is the same.

本実施形態における流路面積低減部材41は、略円柱状に形成されていて、その大部分が潤滑油分配部材35の小径軸部35bの外径に等しい外径を有していて、その一端側である図9の左側の端部のみが拡径している。流路面積低減部材41は、その左端部の拡径部分でシャフト30にロウ付け等で固定されている。また、流路面積低減部材41の他端と小径軸部35bの端との間には、潤滑油分配部材35の第3給油路36の出口36dを出た潤滑油が分岐部40で分岐して第1副給油路33及び第2副給油路34の方へそれぞれ流れるように、所定のスペースが形成されている。この結果、第2副給油路34に至る流れは流路面積低減部材41の外周面と主給油路31の内周面との間を流れる。   The flow path area reducing member 41 in the present embodiment is formed in a substantially cylindrical shape, and most of the flow path area reducing member 41 has an outer diameter equal to the outer diameter of the small-diameter shaft portion 35b of the lubricating oil distribution member 35. Only the end on the left side of FIG. The flow path area reducing member 41 is fixed to the shaft 30 by brazing or the like at the enlarged diameter portion at the left end portion thereof. Further, the lubricating oil that has exited the outlet 36d of the third oil supply passage 36 of the lubricating oil distribution member 35 is branched at the branching portion 40 between the other end of the flow path area reducing member 41 and the end of the small diameter shaft portion 35b. Thus, a predetermined space is formed so as to flow toward the first auxiliary oil passage 33 and the second auxiliary oil passage 34, respectively. As a result, the flow reaching the second sub oil supply passage 34 flows between the outer peripheral surface of the flow path area reducing member 41 and the inner peripheral surface of the main oil supply passage 31.

このように構成することにより潤滑油が第2副給油路にさらに流れやすくなることが期待でき、実際に本願発明者は、このように構成された電動圧縮機において、第2副給油路34への潤滑油の供給がシャフト30の高回転時においても十分維持されることを実験的に確認している。これは、第2副給油路34へ至る流路断面積が流路面積低減部材41によって縮小されたため、第一には、ガス流速が増大して、環状オイル相の駆動力となる気液界面での剪断力が増大すること、及び第二には、給油路内の流動様式が環状流からスラグ流へ変化することが要因として考えられる。   With this configuration, it can be expected that the lubricating oil will flow more easily into the second auxiliary oil supply passage. In fact, the inventor of the present application is directed to the second auxiliary oil supply passage 34 in the electric compressor thus configured. It has been experimentally confirmed that the supply of the lubricating oil is sufficiently maintained even when the shaft 30 rotates at a high speed. This is because the flow cross-sectional area leading to the second sub oil supply passage 34 is reduced by the flow passage area reducing member 41, and firstly, the gas-liquid interface that increases the gas flow velocity and becomes the driving force of the annular oil phase. The second factor is considered to be the increase in the shearing force at the first and second, and the change in the flow pattern in the oil supply passage from the annular flow to the slag flow.

ところで、第4の実施形態では流路面積低減部材41の外径と潤滑油分配部材35の小径軸部35bの外径は同一であったが、それらは互いに異なっていてもよい。   In the fourth embodiment, the outer diameter of the flow path area reducing member 41 and the outer diameter of the small-diameter shaft portion 35b of the lubricating oil distribution member 35 are the same, but they may be different from each other.

流路面積低減部材41は、第4の実施形態ではシャフト30とは別部材であったが、シャフト30と一体に形成されたものであってもよい。   The flow path area reducing member 41 is a separate member from the shaft 30 in the fourth embodiment, but may be formed integrally with the shaft 30.

(第5の実施形態)
次に本発明の第5の実施形態による電動圧縮機について、そのシャフト及び潤滑油分配部材235の縦断面図である図10を参照して説明する。この実施形態の電動圧縮機は、潤滑油分配部材が第4の実施形態における流路面積低減部材を一体に備えている点で第4の実施形態の電動圧縮機と異なるが、その他の構成は第4の実施形態の電動圧縮機のものと同様である。
(Fifth embodiment)
Next, an electric compressor according to a fifth embodiment of the present invention will be described with reference to FIG. 10 which is a longitudinal sectional view of the shaft and the lubricating oil distribution member 235. The electric compressor of this embodiment is different from the electric compressor of the fourth embodiment in that the lubricating oil distribution member is integrally provided with the flow path area reducing member in the fourth embodiment, but other configurations are the same. It is the same as that of the electric compressor of 4th Embodiment.

第5の実施形態における潤滑油分配部材235は、大径軸部235aと、それに同軸の小径軸部235bと、図10の左端側の大径固定端部235cとからなる段付き円柱状に形成されている。小径軸部235bは、回転軸線Arに沿って形成された第3給油路236を含むパイプ状部分235b1と、第3給油路236よりも図10の左側、即ち第2副給油路34側に延びる中実部分235b2とを備えている。第3給油路236は、本実施形態では大径軸部35aの内側の大径穴236aと小径軸部235bのパイプ状部分235b1の内側の小径穴236bとから形成されていて、該第3給油路236の末端近くにおいて2つの出口、即ち第1出口236d1及び236d2が、小径軸部235bのパイプ状部分235b1の壁面を半径方向に貫通して形成されている。潤滑油分配部材235は、大径軸部235a及び大径固定端部235cにおいてロウ付け等によってシャフト30に固定されている。   The lubricating oil distribution member 235 according to the fifth embodiment is formed in a stepped columnar shape including a large-diameter shaft portion 235a, a small-diameter shaft portion 235b coaxial therewith, and a large-diameter fixed end portion 235c on the left end side in FIG. Has been. The small-diameter shaft portion 235b extends to the left side in FIG. 10, that is, to the second sub oil supply passage 34 side from the pipe-like portion 235b1 including the third oil supply passage 236 formed along the rotation axis Ar. And a solid portion 235b2. In this embodiment, the third oil supply path 236 is formed by a large diameter hole 236a inside the large diameter shaft portion 35a and a small diameter hole 236b inside the pipe-shaped portion 235b1 of the small diameter shaft portion 235b. Near the end of the path 236, two outlets, that is, first outlets 236d1 and 236d2, are formed through the wall surface of the pipe-shaped portion 235b1 of the small diameter shaft portion 235b in the radial direction. The lubricating oil distribution member 235 is fixed to the shaft 30 by brazing or the like at the large diameter shaft portion 235a and the large diameter fixed end portion 235c.

第5の実施形態においても、第1の実施形態の場合と同様に、潤滑油は、図10の矢印で示されるように、主給油路31の上流側部分31uから潤滑油分配部材235の第3給油路236に流入して出口236d1、d2の手前で分岐されて第1副給油路33及び第2副給油路34へそれぞれ向かう流れが形成される。但し、出口236d1、d2のそれぞれの外側においても流れは第1副給油路33及び第2副給油路34へ向けて分岐されると考えられる。   Also in the fifth embodiment, as in the case of the first embodiment, the lubricating oil is supplied from the upstream portion 31u of the main oil supply passage 31 to the first lubricating oil distribution member 235 as shown by the arrows in FIG. 3 flows into the oil supply passage 236 and branches in front of the outlets 236d1 and d2, and flows toward the first auxiliary oil supply passage 33 and the second auxiliary oil supply passage 34 are formed. However, it is considered that the flow is branched toward the first sub oil supply passage 33 and the second sub oil supply passage 34 also on the outer sides of the outlets 236d1 and d2.

このように第2副給油路34に向かう流路断面積が中実部分235b2によって縮小されるので、第4の実施形態の場合と同様に潤滑油が第2副給油路にさらに流れやすくなる。   As described above, the cross-sectional area of the flow path toward the second sub oil supply path 34 is reduced by the solid portion 235b2, so that the lubricating oil can easily flow into the second sub oil supply path as in the case of the fourth embodiment.

第5の実施形態では潤滑油分配部材235の図10の左端に大径軸部235cが設けられていたが、潤滑油分配部材235は大径軸部235cを備えなくともよい。その場合、潤滑油分配部材は大径軸部235aだけでシャフト30に固定される。   In the fifth embodiment, the large-diameter shaft portion 235c is provided at the left end of FIG. 10 of the lubricating oil distribution member 235, but the lubricating oil distribution member 235 may not include the large-diameter shaft portion 235c. In that case, the lubricating oil distribution member is fixed to the shaft 30 only by the large-diameter shaft portion 235a.

第5の実施形態では潤滑油分配部材235の小径軸部235bの中実部分235b2は第3給油路236の端から第2副給油路34に達するまで延びていたが、第2副給油路34にまで達していなくてもよい。換言すると、主給油路31の下流側部分31dには中実部分235b2のない部分があってもよい。   In the fifth embodiment, the solid portion 235b2 of the small-diameter shaft portion 235b of the lubricating oil distribution member 235 extends from the end of the third oil supply path 236 until reaching the second sub oil supply path 34. It does not have to reach to. In other words, the downstream portion 31d of the main oil supply passage 31 may have a portion without the solid portion 235b2.

また図10に示された潤滑油分配部材235は、その小径軸部のパイプ状部分235b1の外径と中実部分235b2の外径は等しいものであるが、それらが互いに異なっていてもよい。   In the lubricating oil distribution member 235 shown in FIG. 10, the outer diameter of the pipe-shaped portion 235b1 and the outer diameter of the solid portion 235b2 of the small-diameter shaft portion are the same, but they may be different from each other.

第5の実施形態では、第3給油路236には2つの出口、即ち第1出口236d1及び236d2が設けられていたが、出口の数は1つ又は3以上であってもよい。
(その他の実施形態)
前述した実施形態においては、シャフトは主軸受及び副軸受という2個の軸受で軸支されていたが、本発明においてはシャフトが3個以上の軸受で軸支されてもよいことは明らかであろう。この場合、追加される軸受は主軸受と副軸受との間でシャフトを軸支し、また追加される軸受に対応して追加の副給油路がシャフトの側壁に設けられる。
In the fifth embodiment, two outlets, that is, first outlets 236d1 and 236d2 are provided in the third oil supply path 236, but the number of outlets may be one or three or more.
(Other embodiments)
In the embodiment described above, the shaft is supported by two bearings, ie, a main bearing and a sub-bearing. However, in the present invention, it is obvious that the shaft may be supported by three or more bearings. Let's go. In this case, the additional bearing pivotally supports the shaft between the main bearing and the secondary bearing, and an additional secondary oil supply passage is provided on the side wall of the shaft corresponding to the additional bearing.

また、前述した実施形態による圧縮機は、密閉型の横置きスクロール型電動圧縮であったが、本発明の実施形態は、開放型圧縮機、鉛直シャフトを有する圧縮機、斜板型圧縮機、又は電動機部を含まない圧縮機も可能である。   Further, the compressor according to the above-described embodiment was a hermetic horizontal scroll type electric compression, but the embodiment of the present invention is an open type compressor, a compressor having a vertical shaft, a swash plate type compressor, Or the compressor which does not include an electric motor part is also possible.

前記鉛直シャフトを有する縦置きタイプの圧縮機の例として、流路面積低減部材41を備える第4の実施形態の電動圧縮機を縦置きタイプに変更した変更例を図11に示す。図11の縦置きタイプの電動圧縮機ではオイルセパレータ5が密閉容器2の円筒ケース7の側方に配置されること、及び低圧側の貯油部が軸受部材16の大径円筒部16cの上面に形成されることにおいて水平(横)置きタイプの電動圧縮機と異なっているが、密閉容器2、電動機部3、圧縮機構部4、シャフト30、分配部材35、流路面積低減部材41等の大部分は横置きタイプの第4の実施形態の電動圧縮機と同様である。縦置きタイプの電動圧縮機の場合、主給油路31内を第2副給油路34に向けて上方に流れる潤滑油には逆方向に重力が作用するので、横置きタイプの場合に比べて第2副給油路34のへの潤滑油量確保の条件がより厳しくなるが、本願発明によれば条件のより厳しい縦置きタイプにおいても第2副給油路34への潤滑油量を確保することができる。   As an example of the vertical type compressor having the vertical shaft, FIG. 11 shows a modified example in which the electric compressor of the fourth embodiment including the flow path area reducing member 41 is changed to the vertical type. In the vertical type electric compressor of FIG. 11, the oil separator 5 is disposed on the side of the cylindrical case 7 of the hermetic container 2, and the oil storage part on the low pressure side is on the upper surface of the large-diameter cylindrical part 16 c of the bearing member 16. It is different from a horizontal (horizontal) type electric compressor in that it is formed, but the large size of the sealed container 2, the electric motor unit 3, the compression mechanism unit 4, the shaft 30, the distribution member 35, the flow path area reducing member 41, etc. The portion is the same as that of the electric compressor according to the fourth embodiment of the horizontal type. In the case of the vertical type electric compressor, gravity acts on the lubricating oil flowing upward in the main oil supply path 31 toward the second sub oil supply path 34, so that the first is compared to the horizontal type. Although the conditions for securing the amount of lubricating oil to the second auxiliary oil passage 34 become more severe, according to the present invention, it is possible to ensure the amount of lubricating oil to the second auxiliary oil passage 34 even in the vertical installation type where the conditions are more severe. it can.

30 シャフト
31 主給油路
31a 入口
31u 上流側部分
31d 下流側部分
33 第1副給油路
34 第2副給油路
35 潤滑油分配部材
36 第3給油路
36d 第3給油路出口
40 分岐部
30 Shaft 31 Main oil supply path 31a Inlet 31u Upstream part 31d Downstream part 33 First sub oil supply path 34 Second sub oil supply path 35 Lubricating oil distribution member 36 Third oil supply path 36d Third oil supply path outlet 40 Branch part

Claims (14)

ハウジング(2)と、
前記ハウジング(2)内に配設された、圧縮機構部(4)と、
回転駆動されて前記圧縮機構部(4)を回転駆動するシャフト(30)と、
前記シャフト(30)を回転可能に支持する第1軸受(13)及び第2軸受(14)とを具備する圧縮機であって、
前記シャフト(30)は、該シャフト(30)内を軸方向に延びる主給油路(31)と、前記第1軸受(13)及び前記第2軸受(14)をそれぞれ潤滑するために該シャフト(30)の側壁を貫通して延びる第1副給油路(33)及び第2副給油路(34)と、前記主給油路(31)に設けられた潤滑油分配部材(35,135,235)とを備え、
前記潤滑油分配部材は、前記主給油路(31)を流通する潤滑油を、前記第1副給油路(33)及び前記第2副給油路(34)に向けて分岐させる分岐部(40,140)を備えることを特徴とする、圧縮機。
A housing (2);
A compression mechanism (4) disposed in the housing (2);
A shaft (30) that is rotationally driven to rotationally drive the compression mechanism (4);
A compressor comprising a first bearing (13) and a second bearing (14) for rotatably supporting the shaft (30),
The shaft (30) includes a main oil passage (31) extending in the axial direction within the shaft (30), the first bearing (13), and the second bearing (14) to lubricate the shaft (30). 30) a first sub oil supply passage (33) and a second sub oil supply passage (34) extending through the side wall, and a lubricating oil distribution member (35, 135, 235) provided in the main oil supply passage (31). And
The lubricating oil distribution member branches a lubricating oil flowing through the main oil supply passage (31) toward the first sub oil supply passage (33) and the second sub oil supply passage (34) (40, 140), the compressor.
前記潤滑油分配部材(35,235)は、前記主給油路(31)内に設けられて前記主給油路(31)内部に第3給油通路(36,236)を形成し、
前記第3給油路(36,236)の出口は、軸方向で前記第1副給油路(33)及び前記第2副給油路(34)の間に位置することを特徴とする請求項1に記載の圧縮機。
The lubricating oil distribution member (35, 235) is provided in the main oil supply passage (31) to form a third oil supply passage (36, 236) in the main oil supply passage (31),
The outlet of the third oil supply passage (36, 236) is located between the first sub oil supply passage (33) and the second sub oil supply passage (34) in the axial direction. The compressor described.
前記潤滑油分配部材(35,235)は、前記主給油路(31)内に嵌挿されて固定される大径軸部(35a,235a)と、前記大径軸部(35a,235a)より小径の小径軸部(35b,235b)とからなる段付き円柱状に形成されていることを特徴とする、請求項2に記載の圧縮機。   The lubricating oil distribution member (35, 235) includes a large-diameter shaft portion (35a, 235a) that is fitted and fixed in the main oil supply passage (31), and the large-diameter shaft portion (35a, 235a). The compressor according to claim 2, wherein the compressor is formed in a stepped columnar shape including small-diameter shaft portions (35b, 235b). 前記潤滑油分配部材(135)は、前記シャフト(30)の前記主給油路(31)内に嵌挿されて固定される外周面を有する略円柱状に形成されており、
前記略円柱状の潤滑油分配部材(135)は、前記シャフト(30)の回転軸線(Ar)と同軸に形成された軸方向流路(137)と、前記軸方向流路(137)内の軸方向の同じ位置(140)においてそれぞれ径方向に分岐した第1分岐路(138)と第2分岐路(139)とが穿設されて構成され、
前記第1分岐路(138)を流れる潤滑油が前記第1副給油路(33)に導かれ、前記第2分岐路(139)を流れる潤滑油が、前記第2副給油路に導かれることを特徴とする、請求項1に記載の圧縮機。
The lubricating oil distribution member (135) is formed in a substantially cylindrical shape having an outer peripheral surface that is fitted and fixed in the main oil supply passage (31) of the shaft (30),
The substantially cylindrical lubricating oil distribution member (135) includes an axial flow path (137) formed coaxially with the rotation axis (Ar) of the shaft (30), and the axial flow path (137). A first branch path (138) and a second branch path (139) branched in the radial direction at the same position (140) in the axial direction are formed by being drilled,
Lubricating oil flowing through the first branch passage (138) is guided to the first sub oil supply passage (33), and lubricating oil flowing through the second branch passage (139) is guided to the second sub oil supply passage. The compressor according to claim 1, wherein
前記シャフト(30)のうち、前記潤滑油分配部材よりも下流側部分(31d)が上流側部分(31u)よりも小径であることを特徴とする、請求項4に記載の圧縮機。   The compressor according to claim 4, characterized in that, in the shaft (30), the downstream part (31d) of the lubricating oil distribution member has a smaller diameter than the upstream part (31u). 前記主給油路(31)内において軸方向に延設された流路面積低減部材(41)を更に具備する請求項3に記載の圧縮機であって、前記第3給油路(36)の出口から前記第2副給油路(34)に通じる流路の少なくとも一部が、前記流路面積低減部材(41)の外周面と前記主給油路(31)の内周面との間に形成されることを特徴とする、請求項3に記載の圧縮機。   The compressor according to claim 3, further comprising a flow passage area reducing member (41) extending in the axial direction in the main oil supply passage (31), wherein the outlet of the third oil supply passage (36) is provided. At least part of the flow path leading to the second sub oil supply passage (34) is formed between the outer peripheral surface of the flow passage area reducing member (41) and the inner peripheral surface of the main oil supply passage (31). The compressor according to claim 3, wherein 前記流路面積低減部材(41)の外径と前記潤滑油分配部材(35)の小径軸部(35b)の外径とが等しいことを特徴とする、請求項6に記載の圧縮機。   The compressor according to claim 6, wherein an outer diameter of the flow path area reducing member (41) is equal to an outer diameter of the small-diameter shaft portion (35b) of the lubricating oil distribution member (35). 前記流路面積低減部材(41)の外径と前記潤滑油分配部材(35)の小径軸部(35b)の外径とが異なることを特徴とする、請求項6に記載の圧縮機。   The compressor according to claim 6, wherein the outer diameter of the flow path area reducing member (41) is different from the outer diameter of the small-diameter shaft portion (35b) of the lubricating oil distribution member (35). 前記潤滑油分配部材(235)の小径軸部(235b)は、前記第3給油路(236)が形成されたパイプ状部分(235b1)と前記第3給油路(236)の端から第2副給油路(34)側に延びる中実部分(235b2)とからなり、
前記第3給油路(236)の出口(236d1,236d2)から前記第2副給油路(34)に通じる流路の少なくとも一部が、前記中実部分(235b2)の外周面と前記主給油路(31)の内周面との間に形成されることを特徴とする、請求項3に記載の圧縮機。
The small-diameter shaft portion (235b) of the lubricating oil distribution member (235) has a pipe-like portion (235b1) in which the third oil supply passage (236) is formed and a second sub-portion from the end of the third oil supply passage (236). It consists of a solid part (235b2) extending to the oil supply passage (34) side,
At least part of the flow path leading from the outlet (236d1, 236d2) of the third oil supply path (236) to the second sub oil supply path (34) is the outer peripheral surface of the solid part (235b2) and the main oil supply path. The compressor according to claim 3, wherein the compressor is formed between the inner peripheral surface of (31).
前記潤滑油分配部材(235)の小径軸部(235b)の前記中実部分(235b2)の外径と前記パイプ状部分(235b1)の外径とが等しいことを特徴とする、請求項9に記載の圧縮機。   The outer diameter of the solid portion (235b2) of the small-diameter shaft portion (235b) of the lubricating oil distribution member (235) is equal to the outer diameter of the pipe-shaped portion (235b1). The compressor described. 前記潤滑油分配部材(235)の小径軸部(235b)の前記中実部分(235b2)の外径と前記パイプ状部分(235b1)の外径とが異なることを特徴とする、請求項9に記載の圧縮機。   The outer diameter of the solid portion (235b2) of the small-diameter shaft portion (235b) of the lubricating oil distribution member (235) is different from the outer diameter of the pipe-shaped portion (235b1). The compressor described. 前記圧縮機構部(4)がスクロール型の圧縮機構部であることを特徴とする、請求項1〜11のいずれか一項に記載の圧縮機。   The compressor according to any one of claims 1 to 11, wherein the compression mechanism section (4) is a scroll type compression mechanism section. 前記圧縮機構部の、駆動源が電動機である請求項12に記載の圧縮機。   The compressor according to claim 12, wherein a drive source of the compression mechanism section is an electric motor. 作用冷媒が二酸化炭素であることを特徴とする、請求項13に記載の圧縮機。   The compressor according to claim 13, characterized in that the working refrigerant is carbon dioxide.
JP2009025100A 2008-04-14 2009-02-05 Compressor Expired - Fee Related JP5143041B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009025100A JP5143041B2 (en) 2008-04-14 2009-02-05 Compressor
DE102009017037.5A DE102009017037B4 (en) 2008-04-14 2009-04-09 Compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008105012 2008-04-14
JP2008105012 2008-04-14
JP2009025100A JP5143041B2 (en) 2008-04-14 2009-02-05 Compressor

Publications (2)

Publication Number Publication Date
JP2009275698A true JP2009275698A (en) 2009-11-26
JP5143041B2 JP5143041B2 (en) 2013-02-13

Family

ID=41152863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025100A Expired - Fee Related JP5143041B2 (en) 2008-04-14 2009-02-05 Compressor

Country Status (2)

Country Link
JP (1) JP5143041B2 (en)
DE (1) DE102009017037B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163227A (en) * 2010-02-10 2011-08-25 Nippon Soken Inc Compressor
JP2013032729A (en) * 2011-08-01 2013-02-14 Denso Corp Compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241909A (en) * 1975-09-29 1977-03-31 Hitachi Ltd All-closed electric compressor
JPS55100714U (en) * 1979-01-10 1980-07-14
JPS5949389A (en) * 1982-09-13 1984-03-21 Hitachi Ltd Oil feed device of scroll compressor
JPH05157079A (en) * 1991-06-10 1993-06-22 Carrier Corp Manufacture of driving shaft
JPH0666282A (en) * 1992-08-19 1994-03-08 Daikin Ind Ltd Lubrication pump device of compressor
JP2007321588A (en) * 2006-05-30 2007-12-13 Denso Corp Electric compressor
JP2008138578A (en) * 2006-12-01 2008-06-19 Hitachi Appliances Inc Scroll compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026262A (en) * 1989-11-28 1991-06-25 Carrier Corporation Multipiece eccentric shaft
JP6066282B2 (en) * 2012-12-06 2017-01-25 公立大学法人大阪市立大学 Image processing apparatus, image processing program, and image processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241909A (en) * 1975-09-29 1977-03-31 Hitachi Ltd All-closed electric compressor
JPS55100714U (en) * 1979-01-10 1980-07-14
JPS5949389A (en) * 1982-09-13 1984-03-21 Hitachi Ltd Oil feed device of scroll compressor
JPH05157079A (en) * 1991-06-10 1993-06-22 Carrier Corp Manufacture of driving shaft
JPH0666282A (en) * 1992-08-19 1994-03-08 Daikin Ind Ltd Lubrication pump device of compressor
JP2007321588A (en) * 2006-05-30 2007-12-13 Denso Corp Electric compressor
JP2008138578A (en) * 2006-12-01 2008-06-19 Hitachi Appliances Inc Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163227A (en) * 2010-02-10 2011-08-25 Nippon Soken Inc Compressor
JP2013032729A (en) * 2011-08-01 2013-02-14 Denso Corp Compressor

Also Published As

Publication number Publication date
DE102009017037A1 (en) 2009-11-12
JP5143041B2 (en) 2013-02-13
DE102009017037B4 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
CN105370576B (en) Compressor
WO2010087179A1 (en) Scroll compressor
JP2008008285A (en) Compressor
JP2007138868A (en) Scroll compressor
JP2009127614A (en) Scroll fluid machine and method of manufacturing the same
WO2018225155A1 (en) Scroll compressor and refrigeration cycle apparatus
JP5143041B2 (en) Compressor
JP5271679B2 (en) Scroll compressor
JP6762253B2 (en) Revolver and refrigeration cycle equipment
WO2016125228A1 (en) Compressor
CN103688057A (en) Compressor
WO2016170615A1 (en) Scroll compressor
JP2020045778A (en) Compressor
JP7263554B2 (en) scroll compressor
CN210135087U (en) Compressor with oil distribution member
JP5863436B2 (en) Fluid machinery
WO2020004359A1 (en) Compressor
JP5493958B2 (en) Compressor
JP2009127440A (en) Scroll compressor
JP2003286976A (en) Scroll compressor
JP5304679B2 (en) Compressor
JP2012149532A (en) Rotary fluid machine
CN111749899B (en) Compressor with oil distribution member
WO2023181141A1 (en) Horizontal scroll compressor and refrigeration cycle apparatus equipped with said horizontal scroll compressor
EP3315781B1 (en) Open type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees