JP2009270754A - Combustion method and combustion device of waste fluid - Google Patents

Combustion method and combustion device of waste fluid Download PDF

Info

Publication number
JP2009270754A
JP2009270754A JP2008120888A JP2008120888A JP2009270754A JP 2009270754 A JP2009270754 A JP 2009270754A JP 2008120888 A JP2008120888 A JP 2008120888A JP 2008120888 A JP2008120888 A JP 2008120888A JP 2009270754 A JP2009270754 A JP 2009270754A
Authority
JP
Japan
Prior art keywords
combustion
heat
evaporator
waste liquid
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008120888A
Other languages
Japanese (ja)
Other versions
JP4542171B2 (en
Inventor
Minoru Morita
稔 守田
Yoshinobu Sato
吉信 佐藤
Keiichi Saiki
佳一 齋喜
Atsushi Hidari
淳 左
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kankyo Engineering Ltd
Original Assignee
Tsukishima Kankyo Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kankyo Engineering Ltd filed Critical Tsukishima Kankyo Engineering Ltd
Priority to JP2008120888A priority Critical patent/JP4542171B2/en
Publication of JP2009270754A publication Critical patent/JP2009270754A/en
Application granted granted Critical
Publication of JP4542171B2 publication Critical patent/JP4542171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively use heat quantity generated during combustion of waste fluid for electric power generation and contribute to reduction in CO<SB>2</SB>. <P>SOLUTION: In this waste fluid combustion facility, waste fluid is supplied to a combustion furnace 1 and burned, and combustion exhaust gas of the combustion furnace 1 is blown out into a cooling tank 4 storing cooling dissolution water CW to make the combustion exhaust gas and the cooling dissolution water CW come into direct contact with each other. A circulation system of working fluid is constituted by a low heat evaporator 20, an intermediate heat evaporator 21, an expansion turbine 22, a power generator 23, a condenser 25 and a booster pump 26 in this order. The waste fluid combustion facility is further provided with a heat exchanger 27. Humidified gas of the combustion exhaust gas is used for a heating source of the low heat evaporator 20 and a heating medium is made to flow on the outer wall of the combustion furnace 1 to protect the passage wall of the combustion furnace 1. Heat of the heating medium after flowing is used for a heating source of the intermediate heat evaporator 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、廃液の燃焼方法及びその燃焼装置に係り、例えば有機物や有害物質を含有するためにそのまま排出することができない廃液を燃焼させて無害化処理するための廃液の燃焼方法および燃焼装置に関するものである。   The present invention relates to a waste liquid combustion method and a combustion apparatus therefor, for example, a waste liquid combustion method and a combustion apparatus for detoxifying a waste liquid that cannot be discharged as it is because it contains organic substances and harmful substances. Is.

液状廃棄物すなわち廃液は、その大部分が水分であって残余が有機物や無機物であり、石油化学工業を始めとするあらゆる産業分野、および民生分野において発生するが、そのうち、例えば有機物、あるいは有害物質を含有するためにそのまま系外に放出することができない廃液は、無害化処理を行わなければならない。そして、このような無害化処理の一手段として、廃液を燃焼炉に噴霧して高温で燃焼させることによる高温酸化処理、すなわち焼却処理があり、大量の廃液を処理することができるため多用されている。   Liquid waste, or liquid waste, is mostly water and the remainder is organic or inorganic, and is generated in all industrial fields including the petrochemical industry, and in the consumer sector. Waste liquid that cannot be discharged out of the system as it is because it contains must be detoxified. And as one means of such detoxification treatment, there is a high-temperature oxidation treatment by spraying waste liquid into a combustion furnace and burning it at a high temperature, that is, incineration treatment, and it is frequently used because a large amount of waste liquid can be treated. Yes.

本出願人は、このように廃液を燃焼させて処理するための燃焼方法として、特許文献1に開示されているように、上記燃焼炉の外壁部分にジベンジルトルエンや高分子オイル等の熱媒を循環させてその温度や炉内表面温度を制御することにより、燃焼炉の内壁に内張りされた耐火物の寿命の延長を図ることを提案した。すなわち、この燃焼方法においては、燃焼炉の外壁部分がジャケット構造とされて上述のような熱媒が供給可能とされており、この熱媒の温度を制御することによって炉内壁をその表面温度が適当な範囲となるように冷却することにより、廃液中のアルカリ分に由来するアルカリ溶融塩を炉内壁の内張り耐火物表面にコーティングして自己保護膜を形成し、この耐火物の浸食を防いでその寿命の延長を図っている。
しかるに、こうして燃焼炉に供給された熱媒は、上述のように炉内壁の上記耐火物を冷却してその表面温度を制御する代わりに自身は加熱されて燃焼炉から返送され、その循環経路の途中で冷却されて再び燃焼炉に戻されることになるが、燃焼炉から返送された熱媒の温度は高温であるため、そのエネルギーを回収して有効利用することが重要となる。
ところが、上記従来の燃焼方法においては、熱媒自体が上述のようにジベンジルトルエンや高分子オイルのような化合物であるため、これを燃焼装置の系外に抜き出してそのエネルギーを利用するといったことは困難であって、利用の用途も限定されざるを得ず、例えば燃焼炉から返送された高温の熱媒は、この燃焼装置の系内において、上記循環経路の途中で、またはその一部が抜き出されて、冷却水との間で熱交換されたり、あるいは直接的に、燃焼炉に供給される廃液を加熱して蒸発濃縮するための加熱源として用いられる程度であった。
そこで、本出願人は、特許文献2に開示されているように、廃液の燃焼によって生じたエネルギーをより直接的かつ効率的に、しかも多目的に利用することが可能な廃液の燃焼方法および燃焼装置として、廃液の燃焼炉の外壁に冷却水を通水して、燃焼炉を冷却し、冷却後の加熱された冷却水を蒸気として回収する、たとえばボイラの蒸気として回収することを提案し、その有効性を確認済みである。
As a combustion method for burning and treating the waste liquid in this way, the present applicant has disclosed a heat medium such as dibenzyltoluene or polymer oil on the outer wall portion of the combustion furnace as disclosed in Patent Document 1. It was proposed to extend the life of the refractory lined on the inner wall of the combustion furnace by controlling the temperature and surface temperature inside the furnace. That is, in this combustion method, the outer wall portion of the combustion furnace has a jacket structure so that the above-mentioned heat medium can be supplied, and the surface temperature of the inner wall of the furnace is controlled by controlling the temperature of the heat medium. By cooling to an appropriate range, an alkali molten salt derived from the alkali content in the waste liquid is coated on the refractory surface of the inner wall of the furnace wall to form a self-protecting film, preventing erosion of this refractory. The service life is extended.
However, the heat medium supplied to the combustion furnace in this way is heated and returned from the combustion furnace instead of cooling the refractory on the inner wall of the furnace and controlling the surface temperature as described above. Although it is cooled in the middle and returned to the combustion furnace again, since the temperature of the heat medium returned from the combustion furnace is high, it is important to recover the energy and use it effectively.
However, in the conventional combustion method, since the heat medium itself is a compound such as dibenzyltoluene or polymer oil as described above, it is extracted from the system of the combustion device and used for its energy. For example, the high-temperature heat medium returned from the combustion furnace is partway in the circulation path or part of the high-temperature heat medium returned from the combustion furnace. It was extracted and exchanged heat with cooling water or directly used as a heating source for heating and evaporating and concentrating waste liquid supplied to the combustion furnace.
Therefore, as disclosed in Patent Document 2, the applicant of the present invention is a waste liquid combustion method and combustion apparatus that can use energy generated by combustion of waste liquid more directly, efficiently, and for multiple purposes. As proposed, the cooling water is passed through the outer wall of the waste liquid combustion furnace to cool the combustion furnace, and the heated cooling water after cooling is recovered as steam, for example, recovered as boiler steam, Validity has been confirmed.

他方、特許文献3には、廃液の燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図った後の湿ガスのもっているエネルギーを、吸収式ヒートポンプと組み合わせて有効に利用することを提案している。
特許第3394085公報 特開2003−222320号公報 特開平8−261600号公報
On the other hand, in Patent Document 3, the combustion exhaust gas of the waste liquid combustion furnace is ejected into a cooling tank containing cooling dissolved water, and the wet gas after the direct contact between the combustion exhaust gas and the cooling dissolved water is achieved. We propose to use the energy we have effectively in combination with an absorption heat pump.
Japanese Patent No. 3394085 JP 2003-222320 A JP-A-8-261600

上記のように、従来は、個別的な蒸気の利用に留まり、エネルギーの利用効率は十分には高くはない。
そこで、本発明者らは、廃液燃焼の際に発生する熱量(エネルギー)は膨大なものであり、燃焼炉の外壁に冷却水などの熱媒体を流通して、流通後の加熱された熱媒体のもっているエネルギーと、燃焼排ガスと冷却溶解水との直接接触を図った後の湿ガスのもっているエネルギーとの両者を有効に電力発生に利用できれば、CO2発生の削減に寄与するとともに、省エネルギーになるのではないかと着目した。
したがって、本発明の主たる課題は、廃液燃焼の際に発生する熱量を有効に電力発生に利用して、省エネルギーが十分に達成できる高い廃液の燃焼方法及びその燃焼装置を提供することにある。
As described above, conventionally, the use of individual steam is limited, and the efficiency of energy use is not sufficiently high.
Therefore, the present inventors have produced an enormous amount of heat (energy) during the combustion of the waste liquid, and circulated a heat medium such as cooling water on the outer wall of the combustion furnace, and heated the heat medium after distribution. If both the energy of the gas and the energy of the wet gas after direct contact between the combustion exhaust gas and the cooling dissolved water can be used effectively for power generation, it will contribute to the reduction of CO 2 generation and energy saving. I focused on the possibility of becoming.
Accordingly, a main object of the present invention is to provide a high waste liquid combustion method and a combustion apparatus thereof that can sufficiently achieve energy saving by effectively utilizing the amount of heat generated during waste liquid combustion for generating electric power.

他の課題は、機器の構成として簡素であり、投資する設備費に対して十分に高い省エネルギーを示す燃焼方法及びその燃焼装置を提供することにある。
さらに別に課題は、以下の説明から明らかになるであろう。
Another object is to provide a combustion method and a combustion apparatus thereof that have a simple configuration of equipment and exhibit sufficiently high energy savings with respect to invested equipment costs.
Further challenges will become apparent from the description below.

上記課題を解決した本発明は次記のとおりである。
<請求項1記載の発明>
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で有機作動媒体の循環系が構成され、さらに、膨張タービンと凝縮器との間と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とする、
ことを特徴とする廃液の燃焼方法。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The low-level heat evaporator, the expansion turbine and generator, the condenser, and the booster pump constitute the organic working medium circulation system in this order, and further between the expansion turbine and the condenser, between the booster pump and the low-pressure pump. There is a heat exchanger that exchanges heat with the heat evaporator,
The wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A waste liquid combustion method characterized by the above.

<請求項2記載の発明>
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、中位熱蒸発器と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で有機作動媒体の循環系が構成され、さらに、膨張タービンと凝縮器との間と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とし、
前記燃焼炉の外壁に熱媒体を流通して前記燃焼炉の路壁の保護を図り、流通後の熱媒体のもっている熱を、前記中位熱蒸発器の加熱源とする、
ことを特徴とする廃液の燃焼方法。
<Invention of Claim 2>
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The lower thermal evaporator, the intermediate thermal evaporator, the expansion turbine and the generator, the condenser, and the booster pump constitute an organic working medium circulation system in this order, and further, the expansion turbine and the condenser. And a heat exchanger for exchanging heat between the booster pump and the lower heat evaporator,
Wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A heat medium is circulated through the outer wall of the combustion furnace to protect the road wall of the combustion furnace, and the heat of the heat medium after the distribution is used as a heating source for the intermediate heat evaporator.
A waste liquid combustion method characterized by the above.

(請求項1及び請求項2記載の発明についての作用効果)
廃液の燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図った後の飽和湿潤ガス(湿ガス)を加熱源として、いわゆるランキンサイクルによって、膨張タービンを駆動して発電することができないかと鋭意検討したところ、効率的な発電を行うことができることを知見したものである。すなわち、湿ガスがもっている熱により蒸発器により有機作動媒体を加熱し、膨張タービンを駆動して発電するものである。
(Effects of the Inventions of Claims 1 and 2)
Saturated wet gas (wet gas) after injecting the combustion exhaust gas of the waste liquid combustion furnace into a cooling tank containing cooling dissolved water and making direct contact between the combustion exhaust gas and the cooling dissolved water is used as a heating source. As a result of earnest study as to whether or not the expansion turbine can be driven to generate power by the so-called Rankine cycle, it has been found that efficient power generation can be performed. That is, the organic working medium is heated by the evaporator with the heat of the wet gas, and the expansion turbine is driven to generate electric power.

ここで、湿ガスは、一般的な水−水蒸気系で作動させるランキンサイクルとは大きく異なる温度−熱量変化を示す。すなわち、湿ガスの温度変化を図6に示す。図6は、典型的な廃液燃焼の条件の分解温度950℃、冷却槽の出口圧力が、0.113MPaの場合における温度−熱量変化を示したのもので、縦軸は温度を、横軸は時間当たりの熱量である。そして、水−水蒸気系の加熱ガス及び湿ガスに対して、たとえば24.8Mkal/hの熱量を与えた場合、   Here, the wet gas exhibits a temperature-caloric change greatly different from the Rankine cycle operated in a general water-steam system. That is, the temperature change of the wet gas is shown in FIG. FIG. 6 shows the temperature-calorie change when the decomposition temperature is 950 ° C. and the outlet pressure of the cooling tank is 0.113 MPa under typical waste liquid combustion conditions. The vertical axis represents temperature and the horizontal axis represents time per hour. The amount of heat. For example, when a heat amount of 24.8 Mkal / h is given to the heating gas and the wet gas of the water-steam system,

これを説明すると、水−水蒸気系の加熱ガスの温度−熱量変化は、ほぼ一様に変化する(ほぼ一様な熱量の放出変化を示す。)。これに対し、湿ガスの場合には、図6の「湿ガス熱量変化」曲線が参照されるように、温度低下に伴って、水蒸気の凝縮を開始するが、約80℃まで大きな熱量を保有したまま緩慢に変化し、その後は急激に熱量を放出する傾向を示す。   Explaining this, the temperature-calorie change of the water-steam heating gas changes almost uniformly (indicating a substantially uniform release change of the calorie). On the other hand, in the case of wet gas, as shown in the “humid gas calorie change” curve in FIG. 6, condensation of water vapor starts with a decrease in temperature, but a large amount of heat is retained up to about 80 ° C. It shows a tendency to release heat rapidly after that.

そして、加熱ガスを利用して蒸発器(熱交換器)により加熱するランキンサイクルを構成する場合、加熱ガスの温度−熱量変化に対して温度差を取る必要があるために、図6の「加熱ガス蒸発器(1)」の線で示すような条件で蒸発操作をするように設定する必要がある。   When the Rankine cycle is heated by the evaporator (heat exchanger) using the heating gas, it is necessary to take a temperature difference with respect to the temperature-calorie change of the heating gas. It is necessary to set so that the evaporation operation is performed under the conditions indicated by the line of “gas evaporator (1)”.

これに対し、湿ガスを利用して蒸発器(熱交換器)により加熱するランキンサイクルを構成する場合、湿ガスは、約80℃まで大きな熱量を保有したまま緩慢に変化するので、湿ガスの温度−熱量変化に対して必要な温度差を取りながら、図6の「湿ガス蒸発器(2)」の線で示すような条件で蒸発操作をするように設定することができる。すなわち、ランキンサイクルでの凝縮器から蒸発器へ供給されるまでに必要な予熱は、「湿ガス熱量変化」曲線の温度が急激に低下する領域とほぼ同様な変化割合で行うことができ、この予熱後、低位蒸発器において、作動媒体の蒸発に必要な大量な熱量を、湿ガスによって、必要な温度差を確保しながら加熱を行うことができる。   On the other hand, when the Rankine cycle is heated by the evaporator (heat exchanger) using the wet gas, the wet gas changes slowly while holding a large amount of heat up to about 80 ° C. It is possible to set so that the evaporation operation is performed under the conditions as indicated by the line of “wet gas evaporator (2)” in FIG. 6 while taking a necessary temperature difference with respect to the temperature-heat quantity change. In other words, the preheating necessary until the evaporator is supplied from the condenser to the evaporator in the Rankine cycle can be performed at a change rate almost the same as the region where the temperature of the “wet gas calorie change” curve rapidly decreases. After preheating, in the lower evaporator, a large amount of heat necessary for the evaporation of the working medium can be heated by the wet gas while ensuring a necessary temperature difference.

以上の説明から判るように、本発明の方法によれば、湿ガスは、凝縮の初期から約15℃の温度低下で全利用可能な熱の約70〜80%を放出でき、これを作動媒体の蒸発に利用することができる。その後の急速な温度低下は、作動媒体の予熱に利用することで、ほぼ完全な熱回収が可能となる。したがって、湿ガスの熱を作動媒体の加熱に著しい高い効率をもって加熱することができる。   As can be seen from the above description, according to the method of the present invention, the wet gas can release about 70-80% of the total available heat at a temperature drop of about 15 ° C. from the beginning of the condensation, which is used as the working medium. Can be used to evaporate. Subsequent rapid temperature drop is used for preheating the working medium, so that almost complete heat recovery is possible. Therefore, the heat of the wet gas can be heated with extremely high efficiency in heating the working medium.

ここで、作動媒体の蒸発圧力が低いために、膨張タービンでの有効なエンタルピー落差は大きくはない。しかし、膨張タービンでの発電量は、作動媒体の蒸発量に大きく支配される。本発明における湿ガスは、その温度は約86℃〜92℃で、利用する温度としてさほど高くはない(「低位熱」と呼べるものである)が、湿ガスの量は燃焼排ガスの量と同量程度で容積的に大きく、しかも、水蒸気の潜熱としてもっている熱量は膨大である。その結果、作動媒体を大量に蒸発させることができ、もって、膨張タービンでの発電量が大きくなるのである。   Here, since the evaporation pressure of the working medium is low, the effective enthalpy drop in the expansion turbine is not large. However, the power generation amount in the expansion turbine is largely governed by the evaporation amount of the working medium. The wet gas in the present invention has a temperature of about 86 ° C. to 92 ° C. and is not so high as a temperature to be used (this can be called “low heat”), but the amount of the wet gas is the same as the amount of the combustion exhaust gas. The amount of heat that is large in volume and large as the latent heat of water vapor is enormous. As a result, a large amount of the working medium can be evaporated, and the power generation amount in the expansion turbine is increased.

一方、廃液の燃焼炉の外壁に冷却水を通水して、燃焼炉を冷却し、冷却後の加熱された冷却水は、約95℃〜100℃の温度をもった蒸気(以下これを「加熱排蒸気」ともいう。この加熱排蒸気は「中位熱」と呼べる温度をもっているものである)として回収することができる。ただし、加熱排蒸気の量は湿ガスの量の約10〜15%であり少ない。しかし、加熱排蒸気量が少ないとしても、図6に「湿ガスの中位熱蒸発器(3)」として図示するように、作動流体の温度上昇分として有効に熱回収できる。   On the other hand, cooling water is passed through the outer wall of the waste liquid combustion furnace to cool the combustion furnace, and the heated cooling water after cooling is steam having a temperature of about 95 ° C. to 100 ° C. (hereinafter referred to as “ It is also called “heated exhaust steam.” This heated exhaust steam has a temperature that can be called “medium heat”) and can be recovered. However, the amount of heated exhaust steam is about 10 to 15% of the amount of wet gas and is small. However, even if the amount of heated exhaust steam is small, heat can be effectively recovered as the temperature rise of the working fluid, as shown in FIG.

<請求項3記載の発明>
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、この低位熱蒸発器における蒸発ベーパーについて気液分離する分離部と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で多成分作動媒体の第1の循環系が構成され、
前記分離部で分離された低濃度作動媒体が前記膨張タービンから前記凝縮器への間においてタービン排気と合流される第2の循環系が構成され、
さらに、前記第2の循環系と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とする、
ことを特徴とする廃液の燃焼方法。
<Invention of Claim 3>
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The low-temperature heat evaporator, the separation unit that performs gas-liquid separation on the evaporation vapor in the low-temperature heat evaporator, the expansion turbine and the generator, the condenser, and the booster pump in this order in the first circulation of the multi-component working medium The system is constructed,
A second circulation system in which the low-concentration working medium separated by the separation unit joins with turbine exhaust between the expansion turbine and the condenser is configured;
Furthermore, a heat exchanger for exchanging heat between the second circulation system and between the booster pump and the lower heat evaporator is provided,
The wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A waste liquid combustion method characterized by the above.

<請求項4記載の発明>
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、中位熱蒸発器と、この中位熱蒸発器における蒸発ベーパーについて気液分離する分離部と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で多成分作動媒体の第1の循環系が構成され、
前記分離部で分離された低濃度作動媒体が前記膨張タービンから前記凝縮器への間においてタービン排気と合流される第2の循環系が構成され、
さらに、前記第2の循環系と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とし、
前記燃焼炉の外壁に熱媒体を流通して前記燃焼炉の路壁の保護を図り、流通後の熱媒体のもっている熱を、前記中位熱蒸発器の加熱源とする、
ことを特徴とする廃液の燃焼方法。
<Invention of Claim 4>
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
A low-temperature heat evaporator, a medium-temperature heat evaporator, a separation unit that performs gas-liquid separation on the evaporation vapor in the medium-temperature heat evaporator, an expansion turbine and a generator, a condenser, and a booster pump in this order. A first circulation system of the component working medium is configured;
A second circulation system in which the low-concentration working medium separated by the separation unit joins with turbine exhaust between the expansion turbine and the condenser is configured;
Furthermore, a heat exchanger for exchanging heat between the second circulation system and between the booster pump and the lower heat evaporator is provided,
Wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A heat medium is circulated through the outer wall of the combustion furnace to protect the road wall of the combustion furnace, and the heat of the heat medium after the distribution is used as a heating source for the intermediate heat evaporator.
A waste liquid combustion method characterized by the above.

(請求項4及び請求項5作用効果)
本発明における作動媒体の例としては後述するが、有機作動媒体の場合、その蒸発温度は一定の決まった温度である。したがって、有機作動媒体の蒸発温度を湿ガスの入口温度に接近させたとしても、発電効率を高めることはできない。
(Claims 4 and 5)
Although an example of the working medium in the present invention will be described later, in the case of an organic working medium, the evaporation temperature is a fixed fixed temperature. Therefore, even if the evaporation temperature of the organic working medium is brought close to the inlet temperature of the wet gas, the power generation efficiency cannot be increased.

しかし、作動媒体が多成分の媒体、たとえば水・アンモニアとすると、吸収剤と冷媒にように、蒸発中でも成分の変化があるので、多成分作動媒体の蒸発温度を湿ガスの入口温度に接近させることができる。また、蒸発器の出口では、作動媒体が完全に蒸発しないので、冷媒を蒸発させ残った希薄液を、膨張タービンの排気と混合し凝縮圧力を低下させることができ、膨張タービンでのエンタルピー落差を大きくすることができ(ローレンツの法則)、発電効率が高いものとなる。   However, if the working medium is a multi-component medium such as water / ammonia, there are changes in the components even during evaporation, like the absorbent and refrigerant, so the evaporating temperature of the multi-component working medium is brought close to the inlet temperature of the wet gas. be able to. In addition, since the working medium does not completely evaporate at the outlet of the evaporator, the diluted liquid remaining after evaporation of the refrigerant can be mixed with the exhaust of the expansion turbine to reduce the condensation pressure, reducing the enthalpy drop in the expansion turbine. It can be increased (Lorentz's law), and the power generation efficiency is high.

<請求項5記載の発明>
前記低位熱蒸発器を通った後の湿ガスは、発生器、凝縮器、蒸発器及び吸収器を有する吸収式ヒートポンプの前記発生器に導き、吸収式ヒートポンプを駆動し、その吸収式ヒートポンプの前記蒸発器と、前記作動媒体の循環系の凝縮器とを兼用した請求項1〜4のいずれか1項に記載の廃液の燃焼方法。
<Invention of Claim 5>
The wet gas after passing through the lower heat evaporator leads to the generator of the absorption heat pump having a generator, a condenser, an evaporator and an absorber, drives the absorption heat pump, and the absorption heat pump The waste liquid combustion method according to any one of claims 1 to 4, wherein both the evaporator and the condenser in the circulation system of the working medium are used.

(作用効果)
前述のように、湿ガスは、温度は低いものの生成容量が大きい。そこで、低位熱蒸発器で加熱するに必要な量をもってしても余熱がある。そこで、吸収式ヒートポンプを駆動して、他の熱源に利用する(たとえばボイラの熱源として利用する。)ことができるほか、吸収式ヒートポンプの蒸発器と、作動媒体の循環系の凝縮器とを兼用すると、一層、機器構成が簡素なものとなる。
(Function and effect)
As described above, wet gas has a large generation capacity although its temperature is low. Therefore, there is residual heat even with the amount necessary for heating with the lower heat evaporator. Therefore, the absorption heat pump can be driven and used as another heat source (for example, as a heat source for a boiler). In addition, the absorption heat pump evaporator and the working medium circulation system condenser are combined. This further simplifies the device configuration.

<請求項6記載の発明>
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で有機作動媒体の循環系が構成され、さらに、膨張タービンと凝縮器との間と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスが、前記低位熱蒸発器の加熱源とする構成とした、
ことを特徴とする廃液の燃焼装置。
<Invention of Claim 6>
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The low-level heat evaporator, the expansion turbine and generator, the condenser, and the booster pump constitute the organic working medium circulation system in this order, and further between the expansion turbine and the condenser, between the booster pump and the low-pressure pump. There is a heat exchanger that exchanges heat with the heat evaporator,
The wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source for the lower thermal evaporator.
A waste liquid combustion apparatus.

(作用効果)
請求項1の発明と同様な作用効果を奏する。
(Function and effect)
The same effects as those of the first aspect of the invention can be achieved.

<請求項7記載の発明>
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、中位熱蒸発器と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で有機作動媒体の循環系が構成され、さらに、膨張タービンと凝縮器との間と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスが、前記低位熱蒸発器の加熱源とし、
前記燃焼炉の外壁に熱媒体を流通して前記燃焼炉の路壁の保護を図り、流通後の熱媒体のもっている熱を、前記中位熱蒸発器の加熱源とする構成とした、
ことを特徴とする廃液の燃焼装置。
<Invention of Claim 7>
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The lower thermal evaporator, the intermediate thermal evaporator, the expansion turbine and the generator, the condenser, and the booster pump constitute an organic working medium circulation system in this order, and further, the expansion turbine and the condenser. And a heat exchanger for exchanging heat between the booster pump and the lower heat evaporator,
The wet gas after direct contact of the combustion exhaust gas with the cooled dissolved water is used as a heating source of the lower thermal evaporator,
A heat medium is circulated through the outer wall of the combustion furnace to protect the road wall of the combustion furnace, and the heat of the heat medium after the circulation is used as a heating source of the intermediate heat evaporator.
A waste liquid combustion apparatus.

(作用効果)
請求項2の発明と同様な作用効果を奏する。
(Function and effect)
The same effects as those of the invention of claim 2 are achieved.

<請求項8記載の発明>
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、この低位熱蒸発器における蒸発ベーパーについて気液分離する分離部と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で多成分作動媒体の第1の循環系が構成され、
前記分離部で分離された低濃度作動媒体が前記膨張タービンから前記凝縮器への間においてタービン排気と合流される第2の循環系が構成され、
さらに、前記第2の循環系と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とする構成とした、
ことを特徴とする廃液の燃焼装置。
<Invention of Claim 8>
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The low-temperature heat evaporator, the separation unit that performs gas-liquid separation on the evaporation vapor in the low-temperature heat evaporator, the expansion turbine and the generator, the condenser, and the booster pump in this order in the first circulation of the multi-component working medium The system is constructed,
A second circulation system in which the low-concentration working medium separated by the separation unit joins with turbine exhaust between the expansion turbine and the condenser is configured;
Furthermore, a heat exchanger for exchanging heat between the second circulation system and between the booster pump and the lower heat evaporator is provided,
The wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source for the lower thermal evaporator,
A waste liquid combustion apparatus.

(作用効果)
請求項3の発明と同様な作用効果を奏する。
(Function and effect)
The same effects as those of the invention of claim 3 are achieved.

<請求項9記載の発明>
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、中位熱蒸発器と、この中位熱蒸発器における蒸発ベーパーについて気液分離する分離部と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で多成分作動媒体の第1の循環系が構成され、
前記分離部で分離された低濃度作動媒体が前記膨張タービンから前記凝縮器への間においてタービン排気と合流される第2の循環系が構成され、
さらに、前記第2の循環系と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とし、
前記燃焼炉の外壁に熱媒体を流通して前記燃焼炉の路壁の保護を図り、流通後の熱媒体のもっている熱を、前記中位熱蒸発器の加熱源とする構成とした、
ことを特徴とする廃液の燃焼装置。
<Invention of Claim 9>
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
A low-temperature heat evaporator, a medium-temperature heat evaporator, a separation unit that performs gas-liquid separation on the evaporation vapor in the medium-temperature heat evaporator, an expansion turbine and a generator, a condenser, and a booster pump in this order. A first circulation system of the component working medium is configured;
A second circulation system in which the low-concentration working medium separated by the separation unit joins with turbine exhaust between the expansion turbine and the condenser is configured;
Furthermore, a heat exchanger for exchanging heat between the second circulation system and between the booster pump and the lower heat evaporator is provided,
Wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A heat medium is circulated through the outer wall of the combustion furnace to protect the road wall of the combustion furnace, and the heat of the heat medium after the circulation is used as a heating source of the intermediate heat evaporator.
A waste liquid combustion apparatus.

(作用効果)
請求項4の発明と同様な作用効果を奏する。
(Function and effect)
The same effects as those of the invention of claim 4 are achieved.

以上説明したように、本発明によれば、廃液燃焼の際に発生する熱量を有効に電力発生に利用して、省エネルギーが十分に達成できる高い廃液の燃焼方法及びその燃焼装置を提供することができる。   As described above, according to the present invention, it is possible to provide a high waste liquid combustion method and its combustion apparatus capable of sufficiently achieving energy saving by effectively utilizing the amount of heat generated during waste liquid combustion for power generation. it can.

(廃液の燃焼装置の基本的構成)
図1は、本発明の廃液の燃焼装置の実施形態例を示すものである。
燃焼炉1は縦型円筒状をなし、その頂部中央には助燃バーナー(たとえばボルテックスバーナー)2が設けられていて、この助燃バーナー2からは灯油等の補助燃料Fが燃焼用空気(図示せず)によって下向きに燃焼炉1内に噴射されて燃焼させられるとともに、この助燃バーナー2の周りの燃焼炉1の肩部には、廃液Wを燃焼炉1内に噴霧する複数(ただし、図1には1つしか描かれていない)のノズル3…が周方向に等間隔に、かつ円筒状をなす燃焼炉1の中心線に向けて斜め下向きに設けられている。 これらのノズル3…から燃焼炉1内に噴霧された廃液Wが、上記助燃バーナー2の補助燃料Fの燃焼によって燃焼させられる。
(Basic configuration of waste liquid combustion equipment)
FIG. 1 shows an embodiment of the waste liquid combustion apparatus of the present invention.
The combustion furnace 1 has a vertical cylindrical shape, and an auxiliary combustion burner (for example, a vortex burner) 2 is provided at the center of the top, and auxiliary fuel F such as kerosene is burned from the auxiliary combustion burner 2 (not shown). ) Are injected downward into the combustion furnace 1 and burned, and a plurality of waste liquids W are sprayed into the combustion furnace 1 around the auxiliary burner 2 (however, in FIG. 1) No. 1 nozzles 3 are provided at equal intervals in the circumferential direction and obliquely downward toward the center line of the cylindrical combustion furnace 1. The waste liquid W sprayed into the combustion furnace 1 from these nozzles 3 is burned by the combustion of the auxiliary fuel F of the auxiliary burner 2.

また、この燃焼によって生じた排ガスは、燃焼炉1の下部に移行し、燃焼炉1のダウンカマー1Aを通って、冷却溶解水CWを収容した冷却槽4中に噴出され、燃焼排ガスと冷却溶解水CWとの直接接触が図られる。冷却槽4は、中央周辺にリング堰4Aが形成され、ダウンカマー1Aの先端を噴出された排ガスは、矢印線で示すように、冷却溶解水CWを巻き上げながらリング堰4Aを乗り越える。かかる激しい気液の混相流は、集塵機能及び撹拌機能を発揮し、排ガスに同伴されたダスト成分及び溶融流下した塩類の大部分が捕捉され、溶解され、アルカリ液のオーバーフロー4Bとして装置外へ排出され、適宜の処理を受ける。
溶解液と分離した湿ガスGは、後に説明するように、低位熱蒸発器20の加熱源として利用される。
Further, the exhaust gas generated by this combustion moves to the lower part of the combustion furnace 1, passes through the downcomer 1 </ b> A of the combustion furnace 1, and is jetted into the cooling tank 4 containing the cooling / dissolving water CW. Direct contact with water CW is achieved. In the cooling tank 4, a ring weir 4A is formed around the center, and the exhaust gas ejected from the tip of the downcomer 1A climbs over the ring weir 4A while winding up the cooling dissolved water CW as indicated by the arrow line. Such a vigorous gas-liquid mixed-phase flow exhibits a dust collection function and a stirring function, and most of the dust components and molten salts entrained in the exhaust gas are captured, dissolved, and discharged out of the apparatus as an alkaline liquid overflow 4B. And receive appropriate processing.
The wet gas G separated from the solution is used as a heating source of the lower thermal evaporator 20 as will be described later.

他方、燃焼炉1の内壁部分5Aには耐火材よりなる内張りがなされている一方、この耐火物に接する外壁5部分は二重壁のジャケット構造とされて内部に燃焼炉1の下部から上部に至る空間5Bが形成されており、この空間5Bには燃焼炉1の外部に備えられた冷却手段6によって冷却水C、すなわち水が供給されて通水され、冷却手段6との間で循環可能とされている。この冷却手段6は、上記外壁5のジャケットに供給された冷却水Cの液面レベルよりも高い位置に設けられて燃焼炉1との間で循環させられる冷却水Cを保持するヘッドタンク7と、このヘッドタンク7から燃焼炉1に冷却水Cを供給するポンプ8とを備えたものであり、ヘッドタンク7に保持された冷却水Cはポンプ8によって燃焼炉1の外壁5がなすジャケット構造の前記空間5Bに流通させられ、内壁部分5Aの上記耐火物を冷却する代わりに自身は加熱されてヘッドタンク7へと返送され、循環させられる。   On the other hand, the inner wall portion 5A of the combustion furnace 1 has a lining made of a refractory material, while the outer wall 5 portion in contact with the refractory has a double-walled jacket structure so that the inner portion of the combustion furnace 1 extends from the lower portion to the upper portion. A space 5 </ b> B is formed, and cooling water C, that is, water is supplied to the space 5 </ b> B by the cooling means 6 provided outside the combustion furnace 1, and can be circulated between the cooling means 6. It is said that. The cooling means 6 is provided at a position higher than the liquid level of the cooling water C supplied to the jacket of the outer wall 5 and has a head tank 7 for holding the cooling water C circulated with the combustion furnace 1. And a pump 8 for supplying cooling water C from the head tank 7 to the combustion furnace 1, and the cooling water C held in the head tank 7 is formed by a jacket structure formed by the outer wall 5 of the combustion furnace 1 by the pump 8. Instead of cooling the refractory in the inner wall portion 5A, it is heated and returned to the head tank 7 and circulated.

そして、本実施形態ではこの冷却手段6のヘッドタンク7に、こうして燃焼炉1から返送されて該燃焼炉1の耐火物を冷却する代わりに加熱されることにより発生した冷却水Cの蒸気Sは、蒸気回収管10を通って、中位熱蒸発器21の加熱源とされる。   In the present embodiment, the steam S of the cooling water C generated by being returned to the head tank 7 of the cooling means 6 from the combustion furnace 1 and heated instead of cooling the refractory in the combustion furnace 1 is The steam recovery pipe 10 is used as a heating source for the intermediate heat evaporator 21.

このように構成された廃液Wの燃焼装置および該装置を用いた廃液Wの燃焼方法においては、この廃液Wが供給されて燃焼させられる燃焼炉1の外壁5に冷却水Cが通水されて該燃焼炉1が冷却されるため、その内壁部分の耐火物の浸食が抑えられるのは勿論のこと、こうして燃焼炉1を冷却した後の加熱された冷却水Cが上記回収手段9によってヘッドタンク7から蒸気Sとして回収される。   In the waste liquid W combustion apparatus configured as described above and the waste liquid W combustion method using the apparatus, the cooling water C is passed through the outer wall 5 of the combustion furnace 1 to which the waste liquid W is supplied and burned. Since the combustion furnace 1 is cooled, erosion of the refractory on the inner wall portion thereof is suppressed, and the heated cooling water C after the combustion furnace 1 is cooled in this way is recovered by the head tank by the recovery means 9. 7 is recovered as steam S.

ヘッドタンク7から回収された冷却水Cの蒸気Sすなわち水蒸気は、気体であるために伝熱係数が大きく、従ってこれを中位熱蒸発器21の熱源として利用する場合において熱交換効率を高めることが可能となる。従って、上記構成の廃液Wの燃焼装置および燃焼方法によれば、燃焼炉1において廃液Wの燃焼によって生じたエネルギーをより効率的に利用することが可能となり、CO2の発生量の削減にも貢献することが可能となる。 The steam S of the cooling water C recovered from the head tank 7, that is, the steam, has a large heat transfer coefficient because it is a gas. Therefore, when this is used as the heat source of the intermediate heat evaporator 21, the heat exchange efficiency is increased. Is possible. Therefore, according to the combustion apparatus and the combustion method of the waste liquid W having the above-described configuration, the energy generated by the combustion of the waste liquid W in the combustion furnace 1 can be used more efficiently, and the generation amount of CO 2 can be reduced. It is possible to contribute.

この実施の形態では、冷却水Cの蒸気Sを中位熱蒸発器21の加熱源としたが、この例に代えて、特許第3394085公報に記載のように、ジベンジルトルエンや高分子オイルなどの熱媒体を、中位熱蒸発器21の加熱源とすることもできる。   In this embodiment, the steam S of the cooling water C is used as the heating source of the intermediate heat evaporator 21, but instead of this example, dibenzyltoluene, polymer oil, etc., as described in Japanese Patent No. 3394085 This heat medium can also be used as a heating source for the intermediate heat evaporator 21.

(第1の実施の形態:請求項1記載の発明の実施の形態)
第1の実施の形態は、作動媒体として有機媒体を好適に使用できる例である。この有機媒体としは、たとえば次記のものを例示できる。
(1)HFC(ハイドロフルオロカーボン)系冷媒:R23、R32、R125、R134a、R143a、R152a、R227ea
(2)PFC(パーフルオロカーボン)系冷媒:R218
(3)自然冷媒:R290(プロパン)、R600(ブタン)、R600a(イソブタン)
(First Embodiment: Embodiment of the Invention of Claim 1)
The first embodiment is an example in which an organic medium can be suitably used as a working medium. Examples of the organic medium include the following.
(1) HFC (hydrofluorocarbon) refrigerant: R23, R32, R125, R134a, R143a, R152a, R227ea
(2) PFC (perfluorocarbon) refrigerant: R218
(3) Natural refrigerant: R290 (propane), R600 (butane), R600a (isobutane)

本発明においては、たとえば図2に示すように、低位熱蒸発器20と、望ましくはさらに中位熱蒸発器21と、膨張タービン22及び発電機23と、凝縮器25と、昇圧ポンプ26とがこの順で作動媒体の循環系が構成されている。
さらに、膨張タービン22と凝縮器25との間と、昇圧ポンプ26と低位熱蒸発器20との間と、で熱交換する熱交換器27が設けられている。
In the present invention, as shown in FIG. 2, for example, the lower thermal evaporator 20, preferably further the intermediate thermal evaporator 21, the expansion turbine 22, the generator 23, the condenser 25, and the booster pump 26 are provided. The working medium circulation system is configured in this order.
Furthermore, a heat exchanger 27 that exchanges heat between the expansion turbine 22 and the condenser 25 and between the booster pump 26 and the lower heat evaporator 20 is provided.

前記燃焼排ガスを前記冷却溶解水CWと直接接触を図った後の湿ガスGの蒸気S1は、供給管路11を通して低位熱蒸発器20の加熱源とされる。加熱済みの蒸気は、たとえば他の用途に利用される。   The steam S1 of the wet gas G after direct contact of the combustion exhaust gas with the cooled dissolved water CW is used as a heating source of the lower thermal evaporator 20 through the supply line 11. The heated steam is used for other purposes, for example.

他方、燃焼炉1の外壁に熱媒体を流通して燃焼炉の路壁の保護を図り、冷却後の加熱された熱媒体のもっている熱を、中位熱蒸発器21の加熱源とする。この実施の形態では、熱媒体として、ヘッドタンク7で分離された蒸気回収管10を通る加熱排蒸気S2を、中位熱蒸発器21の加熱源とするものである。加熱済みの蒸気は、回収管34からタンク28に回収され、ポンプ29によりヘッドタンク7へと返送される。   On the other hand, a heat medium is circulated through the outer wall of the combustion furnace 1 to protect the road wall of the combustion furnace, and the heat of the heated heat medium after cooling is used as a heating source for the intermediate heat evaporator 21. In this embodiment, the heated exhaust steam S2 passing through the steam recovery pipe 10 separated by the head tank 7 is used as the heating source of the intermediate heat evaporator 21 as the heat medium. The heated steam is recovered from the recovery pipe 34 to the tank 28 and returned to the head tank 7 by the pump 29.

作動媒体は、低位熱蒸発器20及び中位熱蒸発器21により加熱され、高温ベーパー30Aとして膨張タービン22に投入され、発電機23を駆動する。膨張タービン22の排気31は、凝縮器25において凝縮され、返送路32を通して、昇圧ポンプ26により低位熱蒸発器20へと送給される。その際に、熱交換器27において、熱交換が図られ、膨張タービン22の排気31温度の低下が行われ、膨張タービン22の効率を高めるようにしてある。
なお、低位熱蒸発器20及び又は中位熱蒸発器21内の圧力は、必要な操作温度に対応して、圧力調整手段により調整できるものである。
The working medium is heated by the lower heat evaporator 20 and the middle heat evaporator 21 and is charged into the expansion turbine 22 as the high temperature vapor 30 </ b> A to drive the generator 23. Exhaust gas 31 of the expansion turbine 22 is condensed in the condenser 25, and is sent to the lower thermal evaporator 20 through the return path 32 by the booster pump 26. At that time, heat exchange is performed in the heat exchanger 27, the temperature of the exhaust 31 of the expansion turbine 22 is lowered, and the efficiency of the expansion turbine 22 is increased.
The pressure in the lower heat evaporator 20 and / or the middle heat evaporator 21 can be adjusted by pressure adjusting means corresponding to the required operating temperature.

(第2の実施の形態:請求項3記載の発明の実施の形態)
第2の実施の形態は、作動媒体として、吸収式ヒートポンプの吸収剤と冷媒として利用されている多成分のものを好適に使用でき、この作動媒体としは、たとえば水−アンモニアのほかR134a(トリニトロフルオロエタノール)を例示できる。
実施の形態においては、たとえば図3に示すように、低位熱蒸発器20と、望ましくはさらに中位熱蒸発器21及び分離部36と、膨張タービン22及び発電機23と、凝縮器25と、昇圧ポンプ26とがこの順で作動媒体の第1の循環系が構成されている。
分離部36で分離された低濃度作動媒体が、膨張タービン22から凝縮器25への間の合流点24において、タービン排気と合流される第2の循環系33が構成され、さらに、第2の循環系33と、昇圧ポンプ26と低位熱蒸発器20との間と、で熱交換する熱交換器27が設けられている。
他の構成は、第1の実施の形態と同様である。
(Second Embodiment: Embodiment of the Invention of Claim 3)
In the second embodiment, a multi-component medium that is used as an absorbent and a refrigerant of an absorption heat pump can be suitably used as the working medium. Examples of the working medium include water-ammonia and R134a (tri-atom). Nitrofluoroethanol).
In the embodiment, for example, as shown in FIG. 3, the lower thermal evaporator 20, desirably the intermediate thermal evaporator 21 and the separator 36, the expansion turbine 22 and the generator 23, the condenser 25, The booster pump 26 and the first circulation system of the working medium are configured in this order.
A second circulation system 33 in which the low-concentration working medium separated by the separation unit 36 is merged with the turbine exhaust at the junction 24 between the expansion turbine 22 and the condenser 25 is formed. A heat exchanger 27 that exchanges heat between the circulation system 33 and the booster pump 26 and the lower heat evaporator 20 is provided.
Other configurations are the same as those of the first embodiment.

前記燃焼排ガスを前記冷却溶解水CWと直接接触を図った後の湿ガスGの蒸気S1は、低位熱蒸発器20の加熱源とされる。加熱済みの蒸気は、たとえば他の用途に利用される。   The steam S1 of the wet gas G after the combustion exhaust gas is brought into direct contact with the cooling dissolved water CW is used as a heating source for the lower thermal evaporator 20. The heated steam is used for other purposes, for example.

他方、燃焼炉1の外壁に熱媒体を流通して燃焼炉の路壁の保護を図り、冷却後の加熱された熱媒体のもっている熱を、中位熱蒸発器21の加熱源とする。   On the other hand, a heat medium is circulated through the outer wall of the combustion furnace 1 to protect the road wall of the combustion furnace, and the heat of the heated heat medium after cooling is used as a heating source for the intermediate heat evaporator 21.

第2の実施の形態では、作動媒体は低位熱蒸発器20及び中位熱蒸発器21により加熱され、高温ベーパーは、分離部36を通って膨張タービン22に投入され、発電機23を駆動する。膨張タービン22の排気31は、凝縮器25において凝縮され媒体液となる。   In the second embodiment, the working medium is heated by the lower thermal evaporator 20 and the intermediate thermal evaporator 21, and the high temperature vapor is input to the expansion turbine 22 through the separation unit 36 to drive the generator 23. . The exhaust 31 of the expansion turbine 22 is condensed in the condenser 25 to become a medium liquid.

他方、分離部36で分離された低濃度の希薄媒体液は、熱交換器27において、熱交換が図られた後、膨張タービン22の排気31と、合流点24合流され、膨張タービン22の背圧を下げ、膨張タービン22の効率を高めるようにしてある。
凝縮器25において凝縮された媒体液は、返送路32を通して、昇圧ポンプ26により低位熱蒸発器20へと送給される。
On the other hand, the low-concentration diluted medium liquid separated by the separation unit 36 is subjected to heat exchange in the heat exchanger 27, and then merged with the exhaust 31 of the expansion turbine 22 and the merge point 24. The pressure is lowered to increase the efficiency of the expansion turbine 22.
The medium liquid condensed in the condenser 25 is sent to the lower thermal evaporator 20 by the booster pump 26 through the return path 32.

この実施の形態において、図3には、中位熱蒸発器21として、単一のシェル内に中位熱蒸発器部分と分離部部分とが組み込まれたものを図示してあるが、分離部36が分離されたものであってもよい。この説明のように、請求項3の発明は、中位熱蒸発器21と分離部36とが一体的に両者が組み合わされた単一の機器である場合もののほか、物理的に分離しているもののも包含するものである。   In this embodiment, FIG. 3 shows an intermediate heat evaporator 21 in which a middle heat evaporator portion and a separation portion are incorporated in a single shell. 36 may be separated. As described above, the invention according to claim 3 is physically separated in addition to the case where the intermediate heat evaporator 21 and the separation unit 36 are a single device in which both are integrally combined. It also includes things.

(第3の実施の形態:請求項5記載の発明の実施の形態)
湿ガスは、温度は低いものの生成容量が大きい。そこで、低位熱蒸発器20で加熱するに必要な量をもってしても余熱がある。そこで、吸収式ヒートポンプを駆動して、他の熱源に利用することができる。この例を第3の実施の形態の応用例として図4に示す。
すなわち、低位熱蒸発器を通った後の湿ガスは、発生器(再生器)40、凝縮器41、蒸発器42及び吸収器43を有する吸収式ヒートポンプの前記発生器に40導き、吸収式ヒートポンプを駆動する。この実施の形態は、吸収式ヒートポンプの蒸発器と、作動媒体の循環系の凝縮器25とを兼用したものである。すなわち、吸収式ヒートポンプの凝縮器を、作動媒体の循環系の凝縮器25を適用したものである。
(Third Embodiment: Embodiment of the Invention of Claim 5)
The wet gas has a large generation capacity although its temperature is low. Therefore, there is residual heat even with the amount necessary for heating with the lower heat evaporator 20. Therefore, the absorption heat pump can be driven and used as another heat source. This example is shown in FIG. 4 as an application example of the third embodiment.
That is, the wet gas after passing through the lower heat evaporator is led 40 to the generator of the absorption heat pump having the generator (regenerator) 40, the condenser 41, the evaporator 42 and the absorber 43, and the absorption heat pump. Drive. In this embodiment, the evaporator of the absorption heat pump and the condenser 25 of the circulating system of the working medium are combined. That is, the condenser 25 of the absorption heat pump is applied with the condenser 25 of the circulating system of the working medium.

吸収式ヒートポンプの動作は明らかであろうが、改めて説明すると、発生器に40で発生したベーパーは、凝縮器43に供給され、そこでの凝縮液は凝縮器25に導かれる。凝縮器25では、ベーパーの蒸発が行われる。蒸発したベーパーは吸収器41に直接又は図示しない機械的圧縮機により圧縮昇圧されて供給されるようになっている。
吸収器41と発生器40との間には、循環ポンプ46による、濃厚液供給管路と希薄液返送管路との間で熱交換器44による熱交換が図られている。また、凝縮器25から凝縮液も熱交換器45により熱交換が図られている。
Although the operation of the absorption heat pump will be apparent, again, the vapor generated in the generator 40 is supplied to the condenser 43, and the condensate therein is led to the condenser 25. In the condenser 25, vapor is evaporated. The evaporated vapor is supplied to the absorber 41 after being compressed or pressurized directly or by a mechanical compressor (not shown).
Between the absorber 41 and the generator 40, heat exchange is performed by the heat exchanger 44 between the concentrated liquid supply line and the diluted liquid return line by the circulation pump 46. Further, heat is also exchanged from the condenser 25 to the condensate by the heat exchanger 45.

(他の例)
上記の実施の形態例では、溶解液と分離した湿ガスGは、供給管路11を通して、直接的に低位熱蒸発器20の加熱源として利用される。しかるに、湿ガスGによって、低位熱蒸発器20の腐食や伝熱係数の低下などが懸念される場合には、図5に示すように、湿ガスをベンチュリースクラバーなどの除塵器12により除塵し、清浄の湿ガスを供給管路11を通して、低位熱蒸発器20の加熱源として利用することもできる。13は白煙防止装置であり、煙突(図示せず)に連なっている。
(Other examples)
In the above embodiment, the wet gas G separated from the solution is directly used as a heating source for the lower thermal evaporator 20 through the supply pipe 11. However, when there is a concern about corrosion of the lower heat evaporator 20 or a decrease in heat transfer coefficient due to the wet gas G, the wet gas is removed by a dust remover 12 such as a venturi scrubber as shown in FIG. Clean wet gas can also be used as a heating source for the lower thermal evaporator 20 through the supply line 11. A white smoke prevention device 13 is connected to a chimney (not shown).

(実施例1)
図2の形態による例である。石油化学工場からの、発熱量15070kJ/kgの有機物2804kgを含む廃液を11700kg/hrで廃液燃焼炉(分解炉)に供給し、発熱量40600kJ/kgの助燃油を1485kg/hrで供給して、約950℃の温度で熱分解し、それを水で急冷し72190kg/hrの湿ガスと0.081MPaの加熱排蒸気4518kg/hrを得た。この場合、分解炉への全入熱は28370kWthであった。低位熱蒸発器20の入口温度は90℃、出口温度は78℃、中位熱蒸発器21の蒸発温度は95℃とした。凝縮器の凝縮温度を40℃として、両蒸発器の回収熱で作動媒体のイソペンタンを蒸発させ、圧力0.47MPa,流量172800kg/hrのベーパーをえて、これで発電機付の膨張タービンを駆動した。
その結果、発電端の出力で1504kW、循環ポンプに22kWの電力を必要とし、送電端の出力が1482kWの発電を行うことができることを確認した。排熱の入熱に対する発電効率は約5.2%であった。
Example 1
It is an example by the form of FIG. A waste liquid containing 2804 kg of organic matter having a calorific value of 15070 kJ / kg from a petrochemical factory is supplied to a waste liquid combustion furnace (decomposition furnace) at 11700 kg / hr, an auxiliary combustion oil having a calorific value of 40600 kJ / kg is supplied at 1485 kg / hr, Pyrolysis was performed at a temperature of about 950 ° C., and it was quenched with water to obtain 72190 kg / hr wet gas and 0.081 MPa heated exhaust steam 4518 kg / hr. In this case, the total heat input to the cracking furnace was 28370 kWth. The inlet temperature of the lower thermal evaporator 20 was 90 ° C., the outlet temperature was 78 ° C., and the evaporation temperature of the middle thermal evaporator 21 was 95 ° C. The condensation temperature of the condenser was set to 40 ° C., and the isopentane as the working medium was evaporated with the recovered heat of both evaporators to obtain a vapor having a pressure of 0.47 MPa and a flow rate of 172800 kg / hr. .
As a result, it was confirmed that 1504 kW was required for the output of the power generation end, 22 kW of power was required for the circulation pump, and that the output of the power transmission end could generate 1482 kW. The power generation efficiency for exhaust heat input was about 5.2%.

(比較例1:図2に形態で、湿ガスを低位熱蒸発器20の熱源とした例)
図2の中位熱蒸発器21を使用しない例である。発電量は、発電端の出力で1370kW、送電端の出力が1348kWの発電であった。この場合の発電量は、実施例1に比較して約89%であった。
(Comparative Example 1: Example in which wet gas is used as the heat source of the lower thermal evaporator 20 in the form shown in FIG. 2)
It is an example which does not use the middle heat evaporator 21 of FIG. The power generation amount was 1370 kW at the power generation end output and 1348 kW output at the power transmission end. The amount of power generation in this case was about 89% compared to Example 1.

(比較例2:図2に形態で、加熱排蒸気を中位熱蒸発器21の熱源とした例)
図2の低位熱蒸発器20を使用しない例である。発電量は、発電端の出力で195kW、送電端の出力が173kWの発電であった。この場合の発電量は、実施例1に比較して約13%であった。
(Comparative Example 2: Example in which heated exhaust steam is used as a heat source of the intermediate heat evaporator 21 in the form shown in FIG. 2)
This is an example in which the lower thermal evaporator 20 of FIG. 2 is not used. The amount of power generation was 195 kW at the power generation end output and 173 kW output at the power transmission end. The amount of power generation in this case was about 13% compared to Example 1.

(実施例2)
図3に形態による例である。作動媒体として水−アンモニアを使用した。他の操業条件は、実施例1と実質的に同一とした。ただし、湿ガスの低位熱蒸発器20の入口温度は90℃、出口温度は76℃、加熱排蒸気の中位熱蒸発器21の入口温度は95℃、出口温度は95℃とした。
その結果、動力回生機付き循環ポンプの運転に120kWの電力を必要としたほか、発電端の出力で1580kW、送電端の出力が1460kWの発電を行うことができることを確認した。
(Example 2)
FIG. 3 shows an example according to the form. Water-ammonia was used as the working medium. Other operating conditions were substantially the same as in Example 1. However, the inlet temperature of the lower heat evaporator 20 of wet gas was 90 ° C., the outlet temperature was 76 ° C., the inlet temperature of the middle heat evaporator 21 of the heated exhaust steam was 95 ° C., and the outlet temperature was 95 ° C.
As a result, it was confirmed that 120 kW of electric power was required for the operation of the circulating pump with a power regenerator, and that it was possible to generate power of 1580 kW at the output of the power generation end and 1460 kW at the output of the power transmission end.

(比較例3:図3に形態で、湿ガスを低位熱蒸発器20の熱源とした例)
この場合の発電量は、実施例1に比較して約89%であった。
(Comparative Example 3: Example in which the wet gas is used as the heat source of the lower heat evaporator 20 in the form shown in FIG. 3)
The amount of power generation in this case was about 89% compared to Example 1.

(比較例4:図3に形態で、加熱排蒸気を中位熱蒸発器21の熱源とした例)
この場合の発電量は、実施例1に比較して約13%であった。
(Comparative Example 4: Example in which the heated exhaust steam is a heat source of the intermediate heat evaporator 21 in the form shown in FIG. 3)
The amount of power generation in this case was about 13% compared to Example 1.

本発明に係る廃液の燃焼装置の基本的構成の実施形態を示す図である。It is a figure which shows embodiment of the fundamental structure of the waste liquid combustion apparatus which concerns on this invention. 第1の実施形態を示す図である。It is a figure which shows 1st Embodiment. 第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment. 第3の実施形態を示す図である。It is a figure which shows 3rd Embodiment. 湿ガスの前処理の実施形態を示す図である。It is a figure which shows embodiment of the pre-processing of wet gas. 温度−熱量変化示す図である。It is a figure which shows temperature-heat amount change.

符号の説明Explanation of symbols

1…燃焼炉、4…冷却槽、5…外壁、5A…内壁部分、5B…空間、6…冷却手段、7…ヘッドタンク、10…蒸気回収管、20…低位熱蒸発器、21…中位熱蒸発器、22…膨張タービン、23…発電機、25…凝縮器、26…昇圧ポンプ、27…熱交換器、W…廃液、F…補助燃料、C…冷却水、S,S1,S2…蒸気。 DESCRIPTION OF SYMBOLS 1 ... Combustion furnace, 4 ... Cooling tank, 5 ... Outer wall, 5A ... Inner wall part, 5B ... Space, 6 ... Cooling means, 7 ... Head tank, 10 ... Steam recovery pipe, 20 ... Low thermal evaporator, 21 ... Middle Thermal evaporator, 22 ... expansion turbine, 23 ... generator, 25 ... condenser, 26 ... booster pump, 27 ... heat exchanger, W ... waste liquid, F ... auxiliary fuel, C ... cooling water, S, S1, S2 ... steam.

Claims (9)

廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で有機作動媒体の循環系が構成され、さらに、膨張タービンと凝縮器との間と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とする、
ことを特徴とする廃液の燃焼方法。
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The low-level heat evaporator, the expansion turbine and generator, the condenser, and the booster pump constitute the organic working medium circulation system in this order, and further between the expansion turbine and the condenser, between the booster pump and the low-pressure pump. There is a heat exchanger that exchanges heat with the heat evaporator,
The wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A waste liquid combustion method characterized by the above.
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、中位熱蒸発器と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で有機作動媒体の循環系が構成され、さらに、膨張タービンと凝縮器との間と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とし、
前記燃焼炉の外壁に熱媒体を流通して前記燃焼炉の路壁の保護を図り、流通後の熱媒体のもっている熱を、前記中位熱蒸発器の加熱源とする、
ことを特徴とする廃液の燃焼方法。
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The lower thermal evaporator, the intermediate thermal evaporator, the expansion turbine and the generator, the condenser, and the booster pump constitute an organic working medium circulation system in this order, and further, the expansion turbine and the condenser. And a heat exchanger for exchanging heat between the booster pump and the lower heat evaporator,
Wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A heat medium is circulated through the outer wall of the combustion furnace to protect the road wall of the combustion furnace, and the heat of the heat medium after the distribution is used as a heating source for the intermediate heat evaporator.
A waste liquid combustion method characterized by the above.
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、この低位熱蒸発器における蒸発ベーパーについて気液分離する分離部と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で多成分作動媒体の第1の循環系が構成され、
前記分離部で分離された低濃度作動媒体が前記膨張タービンから前記凝縮器への間においてタービン排気と合流される第2の循環系が構成され、
さらに、前記第2の循環系と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とする、
ことを特徴とする廃液の燃焼方法。
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The low-temperature heat evaporator, the separation unit that performs gas-liquid separation on the evaporation vapor in the low-temperature heat evaporator, the expansion turbine and the generator, the condenser, and the booster pump in this order in the first circulation of the multi-component working medium The system is constructed,
A second circulation system in which the low-concentration working medium separated by the separation unit joins with turbine exhaust between the expansion turbine and the condenser is configured;
Furthermore, a heat exchanger for exchanging heat between the second circulation system and between the booster pump and the lower heat evaporator is provided,
The wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A waste liquid combustion method characterized by the above.
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、中位熱蒸発器と、この中位熱蒸発器における蒸発ベーパーについて気液分離する分離部と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で多成分作動媒体の第1の循環系が構成され、
前記分離部で分離された低濃度作動媒体が前記膨張タービンから前記凝縮器への間においてタービン排気と合流される第2の循環系が構成され、
さらに、前記第2の循環系と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とし、
前記燃焼炉の外壁に熱媒体を流通して前記燃焼炉の路壁の保護を図り、流通後の熱媒体のもっている熱を、前記中位熱蒸発器の加熱源とする、
ことを特徴とする廃液の燃焼方法。
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
A low-temperature heat evaporator, a medium-temperature heat evaporator, a separation unit that performs gas-liquid separation on the evaporation vapor in the medium-temperature heat evaporator, an expansion turbine and a generator, a condenser, and a booster pump in this order. A first circulation system of the component working medium is configured;
A second circulation system in which the low-concentration working medium separated by the separation unit joins with turbine exhaust between the expansion turbine and the condenser is configured;
Furthermore, a heat exchanger for exchanging heat between the second circulation system and between the booster pump and the lower heat evaporator is provided,
Wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A heat medium is circulated through the outer wall of the combustion furnace to protect the road wall of the combustion furnace, and the heat of the heat medium after the distribution is used as a heating source for the intermediate heat evaporator.
A waste liquid combustion method characterized by the above.
前記低位熱蒸発器を通った後の湿ガスは、発生器、凝縮器、蒸発器及び吸収器を有する吸収式ヒートポンプの前記発生器に導き、吸収式ヒートポンプを駆動し、その吸収式ヒートポンプの前記蒸発器と、前記作動媒体の循環系の凝縮器とを兼用した請求項1〜4のいずれか1項に記載の廃液の燃焼方法。   The wet gas after passing through the lower heat evaporator leads to the generator of the absorption heat pump having a generator, a condenser, an evaporator and an absorber, drives the absorption heat pump, and the absorption heat pump The waste liquid combustion method according to any one of claims 1 to 4, wherein both the evaporator and the condenser in the circulation system of the working medium are used. 廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で有機作動媒体の循環系が構成され、さらに、膨張タービンと凝縮器との間と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスが、前記低位熱蒸発器の加熱源とする構成とした、
ことを特徴とする廃液の燃焼装置。
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The low-level heat evaporator, the expansion turbine and generator, the condenser, and the booster pump constitute the organic working medium circulation system in this order, and further between the expansion turbine and the condenser, between the booster pump and the low-pressure pump. There is a heat exchanger that exchanges heat with the heat evaporator,
The wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source for the lower thermal evaporator.
A waste liquid combustion apparatus.
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、中位熱蒸発器と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で有機作動媒体の循環系が構成され、さらに、膨張タービンと凝縮器との間と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスが、前記低位熱蒸発器の加熱源とし、
前記燃焼炉の外壁に熱媒体を流通して前記燃焼炉の路壁の保護を図り、流通後の熱媒体のもっている熱を、前記中位熱蒸発器の加熱源とする構成とした、
ことを特徴とする廃液の燃焼装置。
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The lower thermal evaporator, the intermediate thermal evaporator, the expansion turbine and the generator, the condenser, and the booster pump constitute an organic working medium circulation system in this order, and further, the expansion turbine and the condenser. And a heat exchanger for exchanging heat between the booster pump and the lower heat evaporator,
The wet gas after direct contact of the combustion exhaust gas with the cooled dissolved water is used as a heating source of the lower thermal evaporator,
A heat medium is circulated through the outer wall of the combustion furnace to protect the road wall of the combustion furnace, and the heat of the heat medium after the circulation is used as a heating source of the intermediate heat evaporator.
A waste liquid combustion apparatus.
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、この低位熱蒸発器における蒸発ベーパーについて気液分離する分離部と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で多成分作動媒体の第1の循環系が構成され、
前記分離部で分離された低濃度作動媒体が前記膨張タービンから前記凝縮器への間においてタービン排気と合流される第2の循環系が構成され、
さらに、前記第2の循環系と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とする構成とした、
ことを特徴とする廃液の燃焼装置。
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
The low-temperature heat evaporator, the separation unit that performs gas-liquid separation on the evaporation vapor in the low-temperature heat evaporator, the expansion turbine and the generator, the condenser, and the booster pump in this order in the first circulation of the multi-component working medium The system is constructed,
A second circulation system in which the low-concentration working medium separated by the separation unit joins with turbine exhaust between the expansion turbine and the condenser is configured;
Furthermore, a heat exchanger for exchanging heat between the second circulation system and between the booster pump and the lower heat evaporator is provided,
The wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source for the lower thermal evaporator,
A waste liquid combustion apparatus.
廃液を燃焼炉に供給して燃焼するとともに、前記燃焼炉の燃焼排ガスを、冷却溶解水を収容した冷却槽中に噴出させ、前記燃焼排ガスと前記冷却溶解水との直接接触を図る廃液燃焼設備において、
低位熱蒸発器と、中位熱蒸発器と、この中位熱蒸発器における蒸発ベーパーについて気液分離する分離部と、膨張タービン及び発電機と、凝縮器と、昇圧ポンプとがこの順で多成分作動媒体の第1の循環系が構成され、
前記分離部で分離された低濃度作動媒体が前記膨張タービンから前記凝縮器への間においてタービン排気と合流される第2の循環系が構成され、
さらに、前記第2の循環系と、昇圧ポンプと低位熱蒸発器との間と、で熱交換する熱交換器が設けられており、
前記燃焼排ガスを前記冷却溶解水と直接接触を図った後の湿ガスを、前記低位熱蒸発器の加熱源とし、
前記燃焼炉の外壁に熱媒体を流通して前記燃焼炉の路壁の保護を図り、流通後の熱媒体のもっている熱を、前記中位熱蒸発器の加熱源とする構成とした、
ことを特徴とする廃液の燃焼装置。
Waste liquid combustion equipment for supplying waste liquid to a combustion furnace for combustion, and for injecting combustion exhaust gas from the combustion furnace into a cooling tank containing cooling dissolved water so as to make direct contact between the combustion exhaust gas and the cooling dissolved water In
A low-temperature heat evaporator, a medium-temperature heat evaporator, a separation unit that performs gas-liquid separation on the evaporation vapor in the medium-temperature heat evaporator, an expansion turbine and a generator, a condenser, and a booster pump in this order. A first circulation system of the component working medium is configured;
A second circulation system in which the low-concentration working medium separated by the separation unit joins with turbine exhaust between the expansion turbine and the condenser is configured;
Furthermore, a heat exchanger for exchanging heat between the second circulation system and between the booster pump and the lower heat evaporator is provided,
Wet gas after direct contact of the combustion exhaust gas with the cooling dissolved water is used as a heating source of the lower thermal evaporator,
A heat medium is circulated through the outer wall of the combustion furnace to protect the road wall of the combustion furnace, and the heat of the heat medium after the circulation is used as a heating source of the intermediate heat evaporator.
A waste liquid combustion apparatus.
JP2008120888A 2008-05-07 2008-05-07 Waste liquid combustion method and combustion apparatus therefor Active JP4542171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120888A JP4542171B2 (en) 2008-05-07 2008-05-07 Waste liquid combustion method and combustion apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120888A JP4542171B2 (en) 2008-05-07 2008-05-07 Waste liquid combustion method and combustion apparatus therefor

Publications (2)

Publication Number Publication Date
JP2009270754A true JP2009270754A (en) 2009-11-19
JP4542171B2 JP4542171B2 (en) 2010-09-08

Family

ID=41437473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120888A Active JP4542171B2 (en) 2008-05-07 2008-05-07 Waste liquid combustion method and combustion apparatus therefor

Country Status (1)

Country Link
JP (1) JP4542171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210233A (en) * 2010-03-30 2010-09-24 Tsukishima Kankyo Engineering Ltd Combustion power generating method of waste, and its combustion facility
CN110410805A (en) * 2019-07-17 2019-11-05 江苏新东风化工科技有限公司 A kind of acrylate waste oil incineration system and its burning process

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252486A (en) * 1975-10-24 1977-04-27 Babcock Hitachi Kk Method of treating wastewater
JPS5879583A (en) * 1981-11-04 1983-05-13 Tsukishima Kikai Co Ltd Treatment for waste water
JPH06129212A (en) * 1992-10-12 1994-05-10 Nkk Corp Exhaust gas disposal system during burning of garbage
JPH0894050A (en) * 1994-09-29 1996-04-12 Hitachi Eng Co Ltd Exhaust heat utilizing generator
JPH08193505A (en) * 1995-01-13 1996-07-30 Hitachi Ltd Power generating system using refuse burning exhaust heat
JPH08261600A (en) * 1995-03-22 1996-10-11 Asahi Eng Co Ltd Recovering method for exhaust heat
JPH10317918A (en) * 1997-05-20 1998-12-02 Ebara Corp Energy recovery method from combustible
JPH11264528A (en) * 1998-03-19 1999-09-28 Kubota Corp Waste treatment facility
JP2002233731A (en) * 2001-02-08 2002-08-20 Takuma Co Ltd Method and apparatus for treating waste gas
JP2003190741A (en) * 1996-05-17 2003-07-08 Avira Afvalverwerking Nv Method for removing toxic substance, particularly dioxins and apparatus
JP2003222320A (en) * 2002-01-30 2003-08-08 Tsukishima Kikai Co Ltd Combustion method and combustion device of waste fluid
JP2005098552A (en) * 2003-09-22 2005-04-14 Minoru Morita High-moisture waste incineration system with gas turbine
JP2006027942A (en) * 2004-07-15 2006-02-02 Sumitomo Chemical Co Ltd Method for producing alkali metal carbonate aqueous solution and production system therefor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252486A (en) * 1975-10-24 1977-04-27 Babcock Hitachi Kk Method of treating wastewater
JPS5879583A (en) * 1981-11-04 1983-05-13 Tsukishima Kikai Co Ltd Treatment for waste water
JPH06129212A (en) * 1992-10-12 1994-05-10 Nkk Corp Exhaust gas disposal system during burning of garbage
JPH0894050A (en) * 1994-09-29 1996-04-12 Hitachi Eng Co Ltd Exhaust heat utilizing generator
JPH08193505A (en) * 1995-01-13 1996-07-30 Hitachi Ltd Power generating system using refuse burning exhaust heat
JPH08261600A (en) * 1995-03-22 1996-10-11 Asahi Eng Co Ltd Recovering method for exhaust heat
JP2003190741A (en) * 1996-05-17 2003-07-08 Avira Afvalverwerking Nv Method for removing toxic substance, particularly dioxins and apparatus
JPH10317918A (en) * 1997-05-20 1998-12-02 Ebara Corp Energy recovery method from combustible
JPH11264528A (en) * 1998-03-19 1999-09-28 Kubota Corp Waste treatment facility
JP2002233731A (en) * 2001-02-08 2002-08-20 Takuma Co Ltd Method and apparatus for treating waste gas
JP2003222320A (en) * 2002-01-30 2003-08-08 Tsukishima Kikai Co Ltd Combustion method and combustion device of waste fluid
JP2005098552A (en) * 2003-09-22 2005-04-14 Minoru Morita High-moisture waste incineration system with gas turbine
JP2006027942A (en) * 2004-07-15 2006-02-02 Sumitomo Chemical Co Ltd Method for producing alkali metal carbonate aqueous solution and production system therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210233A (en) * 2010-03-30 2010-09-24 Tsukishima Kankyo Engineering Ltd Combustion power generating method of waste, and its combustion facility
CN110410805A (en) * 2019-07-17 2019-11-05 江苏新东风化工科技有限公司 A kind of acrylate waste oil incineration system and its burning process

Also Published As

Publication number Publication date
JP4542171B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
WO2010103692A1 (en) Method of generating electricity by burning waste and waste burning facility
JPH05321612A (en) Low pressure power generating method and device therefor
JP4284171B2 (en) Method and apparatus for producing electrical energy in a pulp mill
JP4155898B2 (en) High moisture waste incineration facility equipped with gas turbine
JP2005098552A5 (en)
JP6522085B1 (en) Heat recovery power generation equipment from flue gas and control method thereof
JP2009510383A (en) Steam generating boiler from flue gas under optimum conditions
JP4542171B2 (en) Waste liquid combustion method and combustion apparatus therefor
JP5518796B2 (en) Power generation system and power generation method
JP5524909B2 (en) Power generation system and power generation method
JP7290520B2 (en) ORC power generation system
JP5306272B2 (en) Waste combustion power generation method and combustion equipment therefor
JP2007526976A5 (en)
JP3725862B2 (en) Boiler blow water treatment method for exhaust gas treatment system in waste melting treatment facility
JP2016041939A (en) Waste power generation system
JP4823998B2 (en) Waste power generation method
JP6552588B2 (en) Heat recovery power generation facility from combustion exhaust gas and control method thereof
JP2003254678A (en) Method and device for cooling exhaust gas
JP2001029939A (en) Wastewater treatment facility
JP2003227605A (en) Incineration method for material to be disposed and incineration apparatus
JP4080755B2 (en) Waste liquid combustion apparatus and combustion method
JP2022170473A (en) Incineration system
JPH0626310A (en) Waste heat recovery method in wet sulfurization system
JPH05321611A (en) Refuse power plant
JP2022116882A (en) Thermal power generating unit and nuclear power generating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100114

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Ref document number: 4542171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250