JP2006027942A - Method for producing alkali metal carbonate aqueous solution and production system therefor - Google Patents

Method for producing alkali metal carbonate aqueous solution and production system therefor Download PDF

Info

Publication number
JP2006027942A
JP2006027942A JP2004207974A JP2004207974A JP2006027942A JP 2006027942 A JP2006027942 A JP 2006027942A JP 2004207974 A JP2004207974 A JP 2004207974A JP 2004207974 A JP2004207974 A JP 2004207974A JP 2006027942 A JP2006027942 A JP 2006027942A
Authority
JP
Japan
Prior art keywords
amount
cooling water
water
alkali metal
metal carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004207974A
Other languages
Japanese (ja)
Other versions
JP4555009B2 (en
Inventor
Yoshihiko Nakada
吉彦 中田
Yoshikane Otsuka
良兼 大塚
Hirofumi Koike
弘文 小池
Yoshio Hara
義夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON OXIRANE KK
Sumitomo Chemical Co Ltd
Original Assignee
NIPPON OXIRANE KK
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON OXIRANE KK, Sumitomo Chemical Co Ltd filed Critical NIPPON OXIRANE KK
Priority to JP2004207974A priority Critical patent/JP4555009B2/en
Publication of JP2006027942A publication Critical patent/JP2006027942A/en
Application granted granted Critical
Publication of JP4555009B2 publication Critical patent/JP4555009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where an organic compound is removed from organic compound-containing alkali waste water, and the recovery and effective utilization of alkali metal salt are attained, and to provide a production system therefor. <P>SOLUTION: Regarding the method where organic compound-containing alkali waste water is atomized and incinerated together with fuel and the air for combustion, so as to obtain alkali metal carbonate: (a) in the case the concentration of the alkali metal carbonate is higher than the upper limit value of the operation control target value, the quantity of cooling water to be injected is increased; (b-1) in the case it is lower than the lower limit value of the operation control target value, and the quantity of the cooling water to be injected is larger than the lowest quantity to be required, the quantity of the cooling water to be injected is reduced; and, (b-2) in the case the quantity of the cooling water to be injected is the lowest quantity to be required, the quantity of the air is increased, and the concentration of the alkali metal carbonate is controlled to the operation control target value, thus an alkali metal carbonate aqueous solution is produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化学工場、石油化学工場、廃棄物処理施設等から排出される有機化合物含有アルカリ性排水を噴霧焼却し、有機化合物を除去し、アルカリ性排水に含まれるアルカリ金属塩の回収、有効利用を図る方法及びその製造システムに関する。   The present invention sprays and incinerates organic compound-containing alkaline wastewater discharged from chemical factories, petrochemical factories, waste treatment facilities, etc., removes organic compounds, and recovers and effectively uses alkali metal salts contained in alkaline wastewater. And a manufacturing system thereof.

有機化合物を含有する排水を処理する方法として噴霧焼却法がある。この方法は、焼却炉において火焔中に排水を噴霧し焼却処理するものであり、複雑な操作を伴わず、安定した処理性が得られるという利点がある。化学工場などから排出される排水は、有機酸などの酸性物質を含むことが多く、そのため、カセイソーダなどでアルカリ中和してから、すなわち、アルカリ金属塩を含む排水としてから、噴霧焼却されており、この結果、ナトリウムなどのアルカリ金属の炭酸塩を含む溶液が得られる。
しかしながら、この溶液中の炭酸塩の濃度は、焼却する排水の量、および排水に含まれるアルカリ金属塩の濃度に依存して変動する。また、有機化合物が燃焼して水を生成するので排水中の有機化合物の量によっても、また、供給される冷却水の量によっても変動する。さらに、焼却条件によって冷却水の蒸発量が変動するなどの要因によっても変動する。
排水の有効利用の観点からは、焼却により得られた炭酸アルカリ金属塩水溶液を再利用すること、または製品として使用することが好ましい。このような場合、炭酸アルカリ金属塩の濃度をその用途等により、特定の濃度とすることが要求されることがある。
炭酸アルカリ金属塩の濃度を特定範囲とするためには、一般に得られた炭酸アルカリ金属塩水溶液をさらに水で希釈するか、または濃縮する方法が採られているが、希釈または濃縮の工程が必要になる。また、濃度調整のため冷却水量を変えることを開示するものもあるが(例えば特許文献1参照)、冷却水量の変動のみでは、広い範囲の製品濃度を調整することはできない。
As a method for treating waste water containing organic compounds, there is a spray incineration method. This method is one in which waste water is sprayed into a flame in an incinerator and incinerated, and there is an advantage that a stable processability can be obtained without complicated operations. Wastewater discharged from chemical factories often contains acidic substances such as organic acids. Therefore, after neutralizing with caustic soda, etc., that is, as wastewater containing alkali metal salts, it is spray incinerated. As a result, a solution containing an alkali metal carbonate such as sodium is obtained.
However, the concentration of carbonate in this solution varies depending on the amount of wastewater to be incinerated and the concentration of alkali metal salt contained in the wastewater. Further, since the organic compound burns to generate water, it varies depending on the amount of the organic compound in the waste water and also on the amount of cooling water supplied. Furthermore, it fluctuates due to factors such as the amount of evaporation of cooling water fluctuating depending on incineration conditions.
From the viewpoint of effective use of waste water, it is preferable to reuse the alkali metal carbonate aqueous solution obtained by incineration or use it as a product. In such a case, the concentration of the alkali metal carbonate may be required to be a specific concentration depending on the application.
In order to make the concentration of alkali metal carbonate in a specific range, a method of further diluting or concentrating the obtained alkali metal carbonate aqueous solution with water has been adopted, but a dilution or concentration step is necessary. become. Moreover, although some disclose changing the amount of cooling water for adjusting the concentration (see, for example, Patent Document 1), it is not possible to adjust the product concentration in a wide range only by changing the amount of cooling water.

特公昭50−2547号公報(第2頁)Japanese Patent Publication No.50-2547 (2nd page)

本発明は、炭酸アルカリ金属塩の濃度が所望の範囲となるような炭酸アルカリ金属塩水溶液の製造方法に係り、本発明によれば、濃度を特定範囲とするための水による希釈または濃縮のための設備を必要としない。
すなわち、本発明は、(1)有機化合物含有アルカリ性排水を燃料および燃焼用空気と共に噴霧焼却し、焼却ガスを得る第1工程、(2)焼却ガスに冷却水を注入し、固形分および水溶性成分を水相に、焼却排ガスを気相に分離する第2工程、(3)水相中の固形分中の粗固形分を沈降分離して、微固形分懸濁アルカリ性水を得、次工程に移送する第3工程、(4)移送された微固形分懸濁アルカリ性水中の懸濁微固形分を除去し、炭酸アルカリ金属塩を得る第4工程を含み、
第4工程において測定された炭酸アルカリ金属塩濃度が
(a)運転管理目標値の上限値より高い場合は、第2工程の冷却水注入量を増加させ、
(b−1)運転管理目標値の下限値より低い場合であって、第2工程の冷却水注入量が必要最低量より多い場合は、冷却水注入量を減少させ、
(b−2)第2工程の冷却注入量が必要最低量である場合は、第1工程の燃焼用空気量を増加させ、炭酸アルカリ金属塩濃度を運転管理目標値に制御する、炭酸アルカリ金属塩水溶液の製造方法である。
The present invention relates to a method for producing an aqueous alkali metal carbonate solution in which the concentration of the alkali metal carbonate is within a desired range, and according to the present invention, for dilution or concentration with water to bring the concentration to a specific range. No need for equipment.
That is, the present invention includes (1) a first step in which an organic compound-containing alkaline wastewater is spray-incinerated with fuel and combustion air to obtain an incineration gas, and (2) a cooling water is injected into the incineration gas to obtain a solid content and water-solubility Second step of separating components into aqueous phase and incineration exhaust gas into gas phase, (3) Precipitation separation of crude solid content in solid content in water phase to obtain fine solid suspended alkaline water, next step The third step of transferring to (4) the step of (4) removing the suspended fine solids in the transferred fine solid suspension alkaline water, and obtaining a fourth step of obtaining an alkali metal carbonate,
In the case where the alkali metal carbonate concentration measured in the fourth step is higher than the upper limit value of the (a) operation management target value, the cooling water injection amount in the second step is increased,
(B-1) When it is lower than the lower limit value of the operation management target value and the cooling water injection amount in the second step is larger than the necessary minimum amount, the cooling water injection amount is decreased,
(B-2) When the cooling injection amount in the second step is the minimum required amount, the amount of combustion air in the first step is increased, and the alkali metal carbonate concentration is controlled to the operation management target value. It is a manufacturing method of salt aqueous solution.

図1を参照して、まず、噴霧焼却処理について説明する。
アルカリ金属塩を含む有機化合物含有アルカリ性排水32は、噴霧焼却炉31に設けられた排水スプレーノズルから噴霧焼却炉31内に噴霧される。排水中の有機化合物の燃焼及び燃料の燃焼に必要な量の燃焼用空気34の一部は一次エアーとして、燃料33と共に焼却炉31に設けられた燃料バーナに供給され、残りは二次エアーとして炉内に直接供給される。燃料バーナの火焔温度は極めて高温であり、この火焔にむかって排水32を噴霧することにより、排水32中の水は急速に蒸発し、有機化合物は燃焼し、また、燃焼により生成した水も蒸発する。通常はアルカリ金属塩も燃焼し、燃焼酸化物が生成する。
焼却ガス35に含まれるアルカリ金属酸化物と一部のCO2は冷却水36に溶解し、炭酸アルカリ金属塩を含有する焼却排水38となる。ガス35は冷却水36と熱交換し、冷却水の一部を蒸発させ、この水蒸気を伴って焼却排ガス37として排出される。炭酸アルカリ金属塩を吸収した冷却水である焼却排水38は、粗固形分を沈降分離した後、フィルタープレス等の懸濁微固形分除去装置によって、微小な固形分を除去して、ソーダ製品39として再利用される。
なお、燃焼用空気は上記したとおり、一般的には、一次エアーと二次エアーとがあるが、図1では合わせて燃焼用空気34(量Z)として表示している。
First, the spray incineration process will be described with reference to FIG.
The organic compound-containing alkaline drainage 32 containing an alkali metal salt is sprayed into the spray incinerator 31 from a drain spray nozzle provided in the spray incinerator 31. A part of the combustion air 34 necessary for the combustion of the organic compound in the waste water and the combustion of the fuel is supplied as primary air to the fuel burner provided in the incinerator 31 together with the fuel 33, and the rest as secondary air. Supplied directly into the furnace. The flame temperature of the fuel burner is extremely high. By spraying the waste water 32 toward the fire, the water in the waste water 32 evaporates rapidly, the organic compound burns, and the water generated by the combustion also evaporates. To do. Usually, an alkali metal salt is also burned, and a combustion oxide is generated.
The alkali metal oxide and a part of CO 2 contained in the incineration gas 35 are dissolved in the cooling water 36 and become an incineration waste water 38 containing an alkali metal carbonate. The gas 35 exchanges heat with the cooling water 36, evaporates a part of the cooling water, and is discharged as an incineration exhaust gas 37 along with this water vapor. The incineration waste water 38, which is cooling water that has absorbed the alkali metal carbonate, settles and separates the crude solid content, and then removes the fine solid content by a suspended fine solid content removal device such as a filter press, soda product 39 As reused.
As described above, combustion air generally includes primary air and secondary air, but in FIG. 1, the combustion air is collectively displayed as combustion air 34 (amount Z).

上記において有機化合物含有アルカリ性排水32とは、化学工場等において取り扱われる種々の有機化合物を含有する排水をいう。有機化合物には酸性物質のものも、アルカリ性物質のものもあるが、化学工場などで取り扱われる有機化合物は有機酸を含むことが多く、全体としては酸性となることが多い。すなわち、有機化合物には、ブタン、ブテン、ブタジエン、イソプレン等の飽和・不飽和炭化水素類;ベンゼン、トルエン、キシレン、フェノール、エチルベンゼン、アセトフェノン等の環式炭化水素およびその誘導体;メチルベンジルアルコール、プロピレングリコール等のアルコール類の他、化学プロセスにおける副生成物であるギ酸、酢酸、安息息酸などの有機酸;その他、テトラメチルアンモニウム等のアルカリ性物質も含まれる。   In the above, the organic compound-containing alkaline wastewater 32 refers to wastewater containing various organic compounds handled in a chemical factory or the like. Although organic compounds include acidic substances and alkaline substances, organic compounds handled in chemical factories and the like often contain organic acids and are generally acidic as a whole. That is, organic compounds include saturated and unsaturated hydrocarbons such as butane, butene, butadiene, and isoprene; cyclic hydrocarbons such as benzene, toluene, xylene, phenol, ethylbenzene, and acetophenone, and derivatives thereof; methylbenzyl alcohol, propylene In addition to alcohols such as glycol, organic acids such as formic acid, acetic acid and benzoic acid, which are by-products in the chemical process; and alkaline substances such as tetramethylammonium are also included.

これらの全体として酸性の有機化合物を含む排水を排出する化学工場等では、カセイソーダや、それに類似のアルカリ性金属塩で中和処理を行う等の一次処理が行われており、排水全体としてはアルカリ性排水となるようにして排水処理プロセスに移送される。したがって、本発明における有機化合物含有アルカリ性排水にはカセイソーダ、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ成分が含まれ、通常pH8−10のアルカリ性を示す。
燃料としては通常、重油やプラント廃油等が用いられ、炉内燃焼温度は特に限定されないが、930−950度程度である。
噴霧焼却炉31の内面は、キャスターや耐火煉瓦等の耐火材で覆われており、アルミナ、シリカなどが含まれている。冷却水としては通常、工業用水が使用されている。
In chemical factories that discharge wastewater containing acidic organic compounds as a whole, primary treatment such as neutralization with caustic soda and similar alkaline metal salts is performed, and the wastewater as a whole is alkaline wastewater. Then, it is transferred to the wastewater treatment process. Accordingly, the organic compound-containing alkaline waste water in the present invention contains alkaline components such as caustic soda, sodium carbonate, sodium hydrogen carbonate, etc., and usually exhibits an alkalinity of pH 8-10.
As the fuel, heavy oil, plant waste oil or the like is usually used, and the combustion temperature in the furnace is not particularly limited, but is about 930-950 degrees.
The inner surface of the spray incinerator 31 is covered with a refractory material such as casters or refractory bricks, and contains alumina, silica and the like. Industrial water is usually used as the cooling water.

排水32に含まれるアルカリ金属塩がナトリウム塩であり、中和または焼却により生成する炭酸アルカリ金属塩が炭酸ナトリウム(Na2CO3)等であり(以後、製品ソーダと称する場合がある)、ソーダ製品39を得る場合を例にとり、本発明の炭酸アルカリ金属塩濃度の制御方法を説明する。
この場合、ソーダ製品39の濃度sは下記式によって示される。
s=a÷W=a÷(a+Ww) (1)
ここで、aは製品ソーダの量、Wはソーダ製品39の量、Wwはソーダ製品39中の水分量である。
上記式(1)中、製品ソーダの量aは、排水32の組成及び処理量により変動し、下記式(2)により示される。
a=ka×X (2)
ここで、kaは製品ソーダ量aを得るための係数であり、排水32中の組成に基づき計算される。Xは排水32の量である。複数の排水を同時に処理する場合は、それぞれをX1、X2…とし、以後の計算式、係数も同様に増やして計算する。
The alkali metal salt contained in the waste water 32 is a sodium salt, the alkali metal carbonate produced by neutralization or incineration is sodium carbonate (Na 2 CO 3 ) or the like (hereinafter sometimes referred to as product soda), soda Taking the case of obtaining the product 39 as an example, the method for controlling the alkali metal carbonate concentration of the present invention will be described.
In this case, the concentration s of the soda product 39 is expressed by the following equation.
s = a ÷ W = a ÷ (a + Ww) (1)
Here, a is the amount of product soda, W is the amount of soda product 39, and Ww is the amount of water in the soda product 39.
In the above formula (1), the quantity a of the product soda varies depending on the composition of the waste water 32 and the treatment amount, and is represented by the following formula (2).
a = ka × X (2)
Here, ka is a coefficient for obtaining the product soda amount a, and is calculated based on the composition in the waste water 32. X is the amount of waste water 32. When treating multiple wastewaters at the same time, set each to X1, X2, etc., and increase the calculation formulas and coefficients in the same way.

また、式(1)中、ソーダ製品39中の水分量Wwは、冷却水36の量をYとすると、Yから焼却ガス35との熱交換による蒸発量Yvを除いて次のように求められる。
Ww=Y−Yv (3)
Further, in the formula (1), the water content Ww in the soda product 39 is obtained as follows except that the amount of cooling water 36 is Y and the evaporation amount Yv by heat exchange with the incineration gas 35 is removed from Y. .
Ww = Y−Yv (3)

上記式(3)において、冷却水36の蒸発量Yvは、焼却ガス35が冷却水36に与えた熱量、すなわち、焼却ガス35中の水蒸気、炭酸ガスなどの種々のガスの顕熱(Q1+Q2+Q3+Q4+…)から、冷却水36が沸点に達するに必要な熱量Q0を差し引き、これを水の潜熱Cwで割って下記のとおり求めることができる。
Yv=(Q1+Q2+Q3+Q4+…−Q0)÷Cw (4)
焼却ガス35の主な成分は、水蒸気、炭酸ガス、窒素、酸素であり、これらの顕熱を求める計算式は、下記のとおりである。なお、焼却ガス35中のその他の気体の顕熱量が多い場合には、下記と同様に考慮して式(4)中に含める。また排水32中に含まれるNa等の金属塩の濃度が高く、その燃焼酸化物の顕熱や、水への溶解熱が無視できない場合にも、同様の考慮を行う。
In the above equation (3), the evaporation amount Yv of the cooling water 36 is the amount of heat given to the cooling water 36 by the incineration gas 35, that is, the sensible heat (Q1 + Q2 + Q3 + Q4 +...) Of various gases such as water vapor and carbon dioxide in the incineration gas 35. ), The amount of heat Q0 required for the cooling water 36 to reach the boiling point is subtracted, and this is divided by the latent heat Cw of the water to obtain as follows.
Yv = (Q1 + Q2 + Q3 + Q4 + ...− Q0) ÷ Cw (4)
The main components of the incineration gas 35 are water vapor, carbon dioxide gas, nitrogen, and oxygen, and the calculation formulas for obtaining these sensible heats are as follows. In addition, when there is much sensible heat amount of the other gas in the incineration gas 35, it considers similarly to the following and includes in Formula (4). The same consideration is also taken when the concentration of a metal salt such as Na contained in the waste water 32 is high and the sensible heat of the combustion oxide and the heat of dissolution in water cannot be ignored.

水蒸気の顕熱Q1
Q1=(k1x×X+k1f×F)×(T1−T2)×Cpv (5)
ここで、k1x×Xは排水32からの水蒸気量、k1f×Fは燃料33からの水蒸気量を示す。
k1xは、排水32の燃焼後の水蒸気量、すなわち、排水32中に含まれる水と、有機化合物などの可燃分bに含まれる水素分との燃焼により生成される水蒸気量を求める係数であり、排水32の組成に基づき計算される。排水32の組成に大幅な変動がなければ、代表的な組成から求めた値で代用してもよい。
Xは先に述べたとおり、排水32の量である。
k1fは、燃料33中に含まれる水素分の燃焼により生成される水蒸気量を決める係数であり、燃料33の組成に基づき計算される。燃料33の組成に大幅な変動がなければ、代表的な組成から求めた値で代用してもよい。
Fは燃料33の量である。複数の燃料を同時に使用する場合には、それぞれをF1、F2…とし、以後の計算式、係数も同様に増やして計算する。
T1は焼却ガス35の温度であり、T2は焼却ガス35が熱交換した後の焼却排ガス37の温度である。これは焼却排水38の温度と等しい。
CpvはT1〜T2での水蒸気の平均比熱である。
Steam sensible heat Q1
Q1 = (k1x x X + k1f x F) x (T1-T2) x Cpv (5)
Here, k1x × X represents the amount of water vapor from the waste water 32, and k1f × F represents the amount of water vapor from the fuel 33.
k1x is a coefficient for obtaining the amount of water vapor after the combustion of the waste water 32, that is, the amount of water vapor generated by the combustion of the water contained in the waste water 32 and the hydrogen content contained in the combustible component b such as an organic compound, Calculated based on the composition of the wastewater 32. If there is no significant variation in the composition of the drainage 32, a value obtained from a representative composition may be substituted.
X is the amount of the waste water 32 as described above.
k1f is a coefficient that determines the amount of water vapor generated by the combustion of the hydrogen content contained in the fuel 33, and is calculated based on the composition of the fuel 33. If there is no significant variation in the composition of the fuel 33, a value obtained from a representative composition may be substituted.
F is the amount of fuel 33. When a plurality of fuels are used at the same time, each of them is set to F1, F2,...
T1 is the temperature of the incineration gas 35, and T2 is the temperature of the incineration exhaust gas 37 after the incineration gas 35 exchanges heat. This is equal to the temperature of the incineration waste water 38.
Cpv is the average specific heat of water vapor at T1 to T2.

CO 2 の顕熱Q2
Q2=(k2x×X+k2f×F)×(T1−T2)×Cpc (6)
ここで、k2x×Xは排水32からのCO2量、k2f×Fは燃料33からのCO2量を示す。
k2xは、排水32の燃焼後のCO2量、すなわち、排水32中に含まれる可燃分bに含まれる炭素分の燃焼により生成されるCO2量を求める係数であり、排水32の組成に基づき計算される。排水32の組成に大幅な変動がなければ、代表的な組成から求めた値で代用してもよい。
Xは先に述べたとおり、排水32の量である。
k2fは、燃料33中に含まれる炭素分の燃焼により生成されるCO2量を求める係数であり、燃料33の組成に基づき計算される。燃料33の組成に大幅な変動がなければ、代表的な組成から求めた値で代用してもよい。
Fは先に述べたとおり、燃料33の量である。
T1およびT2も先に述べたとおり、それぞれ、焼却ガス35の温度、焼却排ガス37の温度である。
CpcはT1〜T2でのCO2の平均比熱である。
CO 2 sensible heat Q2
Q2 = (k2x x X + k2f x F) x (T1-T2) x Cpc (6)
Here, k2x × X represents the amount of CO 2 from the waste water 32, and k2f × F represents the amount of CO 2 from the fuel 33.
k2x is, amount of CO 2 after combustion of the waste water 32, i.e., a coefficient for determining the amount of CO 2 produced by combustion of the carbon component contained in the combustibles b contained in the waste water 32, based on the composition of the waste water 32 Calculated. If there is no significant variation in the composition of the drainage 32, a value obtained from a representative composition may be substituted.
X is the amount of the waste water 32 as described above.
k2f is a coefficient for obtaining the amount of CO 2 generated by the combustion of the carbon contained in the fuel 33, and is calculated based on the composition of the fuel 33. If there is no significant variation in the composition of the fuel 33, a value obtained from a representative composition may be substituted.
F is the amount of the fuel 33 as described above.
T1 and T2 are also the temperature of the incineration gas 35 and the temperature of the incineration exhaust gas 37, respectively, as described above.
Cpc is the average specific heat of CO 2 from T1 to T2.

N 2 の顕熱Q3
Q3=(k3×Z)×(T1−T2)×Cpn (7)
k3×Zは燃焼用空気34からのN2量を示す。
k3は、燃焼用空気34中のN2量を決める係数であり、供給した燃焼用空気34中のN2の比率から計算される。
Zは燃焼用空気34の量である。
T1およびT2は先に述べたとおり、それぞれ、焼却ガス35の温度、焼却排ガス37の温度である。
CpnはT1〜T2でのN2の平均比熱である。
N 2 sensible heat Q3
Q3 = (k3 x Z) x (T1-T2) x Cpn (7)
k3 × Z represents the amount of N 2 from the combustion air 34.
k3 is a coefficient that determines the amount of N 2 in the combustion air 34, and is calculated from the ratio of N 2 in the supplied combustion air 34.
Z is the amount of combustion air 34.
T1 and T2 are the temperature of the incineration gas 35 and the temperature of the incineration exhaust gas 37, respectively, as described above.
Cpn is the average specific heat of N 2 from T1 to T2.

O 2 の顕熱Q4
Q4=(k4z×Z−k4x×X−k4f×F)×(T1−T2)×Cpo (8)
k4z×Z−k4x×X−k4f×Fは燃焼用空気34からのO2量を示す。
k4zは、燃焼用空気34中のO2量を決める係数であり、供給した燃焼用空気34中のO2の比率から計算される。
Zは先に述べたとおり、燃焼用空気34の量である。
k4xは排水32の燃焼のために使用されるO2量を決める係数であり、排水32中に含まれる可燃分bの組成から完全燃焼に必要なO2量を計算して求める。排水32の組成の大幅な変動がなければ、代表的な組成から求めた値で代用してもよい。
Xは先に述べたとおり、排水32の量である。
k4fは燃料33の燃焼のために使用されるO2量を決める係数であり、燃料33の組成から完全燃焼に必要なO2量を計算して求める。燃料33の組成に大幅な変動がなければ、代表的な組成から求めた値で代用してもよい。
Fは先に述べたとおり、燃料33の量である。
T1およびT2は先に述べたとおり、それぞれ、焼却ガス35の温度、焼却排ガス37の温度である。
CpoはT1〜T2でのOの平均比熱である。
O 2 sensible heat Q4
Q4 = (k4z x Z-k4x x X-k4f x F) x (T1-T2) x Cpo (8)
k4z × Z−k4x × X−k4f × F represents the amount of O 2 from the combustion air 34.
k4z is a coefficient that determines the amount of O 2 in the combustion air 34, and is calculated from the ratio of O 2 in the supplied combustion air 34.
Z is the amount of combustion air 34 as described above.
k4x is a coefficient that determines the amount of O 2 used for the combustion of the waste water 32, and is obtained by calculating the amount of O 2 necessary for complete combustion from the composition of the combustible component b contained in the waste water 32. If there is no significant variation in the composition of the drainage 32, a value obtained from a representative composition may be substituted.
X is the amount of the waste water 32 as described above.
k4f is a coefficient that determines the amount of O 2 used for combustion of the fuel 33, and is obtained by calculating the amount of O 2 required for complete combustion from the composition of the fuel 33. If there is no significant variation in the composition of the fuel 33, a value obtained from a representative composition may be substituted.
F is the amount of the fuel 33 as described above.
T1 and T2 are the temperature of the incineration gas 35 and the temperature of the incineration exhaust gas 37, respectively, as described above.
Cpo is the average specific heat of O 2 from T1 to T2.

焼却ガス35に注入された冷却水36が沸点(焼却排ガス37の温度T2に等しい)に達するために必要な熱量Q0は下記式により求められる。
Q0=Y×(T2-T3)×Cpw (9)
Yは先に述べたとおり、冷却水36の量であり、T2も先に述べたとおり、焼却排ガス37の温度である。
T3は冷却水37の温度である。
CpwはT2〜T3での水の平均比熱である。
The amount of heat Q0 required for the cooling water 36 injected into the incineration gas 35 to reach the boiling point (equal to the temperature T2 of the incineration exhaust gas 37) is obtained by the following equation.
Q0 = Y × (T2-T3) × Cpw (9)
Y is the amount of the cooling water 36 as described above, and T2 is the temperature of the incineration exhaust gas 37 as described above.
T3 is the temperature of the cooling water 37.
Cpw is the average specific heat of water from T2 to T3.

以上から、式(1)に式(2)、式(3)及び式(4)を代入すると下記のとおりになる(ただし、式(4)において、燃焼ガス35の主な成分は、水蒸気、炭酸ガス、窒素、酸素であり、その他の気体やアルカリ金属酸化物の顕熱量は無視できるとした)。
s=a÷W=a÷(a+Ww)=a÷(a+Y−Yv)
=ka×X÷(ka×X+Y−(Q1+Q2+Q3+Q4−Q0)÷Cw) (10)
From the above, when Expression (2), Expression (3), and Expression (4) are substituted into Expression (1), the following is obtained (however, in Expression (4), the main component of the combustion gas 35 is water vapor, Carbon dioxide, nitrogen, and oxygen, and the sensible heat of other gases and alkali metal oxides was negligible).
s = a / W = a / (a + Ww) = a / (a + Y-Yv)
= Ka x X / (ka x X + Y-(Q1 + Q2 + Q3 + Q4-Q0) / Cw) (10)

式(10)にさらに式(5)〜式(9)を代入すると下記のとおりになる。
s=ka×X÷(A×Y+B×X+C×F+D×Z) (11)
ただし、上記式中、A、B、C、Dは下記のとおりに置いた。
A=1+(T2-T3)×Cpw÷Cw (12)
B=ka−(T1−T2)×(klx×Cpv+k2x×Cpc−k4x×Cpo)÷Cw (13)
C=−(T1−T2)×(klf×Cpv+k2f×Cpc−k4f×Cpo)÷Cw (14)
D=−(T1−T2)×(k3×Cpn+k4z×Cpo)÷Cw (15)
また、ka、X、Y、F、Zは先に述べたとおり、それぞれ、製品ソーダの量を得るための係数、排水32の量、冷却水36の量、燃料33の量、燃焼用空気34の量である。
Substituting Equations (5) to (9) into Equation (10) gives the following.
s = ka × X ÷ (A × Y + B × X + C × F + D × Z) (11)
However, in the above formula, A, B, C and D were set as follows.
A = 1 + (T2-T3) × Cpw ÷ Cw (12)
B = ka-(T1-T2) x (klx x Cpv + k2x x Cpc-k4x x Cpo) / Cw (13)
C = − (T1−T2) × (klf × Cpv + k2f × Cpc−k4f × Cpo) ÷ Cw (14)
D =-(T1-T2) x (k3 x Cpn + k4z x Cpo) / Cw (15)
Further, as described above, ka, X, Y, F, and Z are coefficients for obtaining the amount of product soda, the amount of drainage 32, the amount of cooling water 36, the amount of fuel 33, and the combustion air 34, respectively. Is the amount.

上記式から明らかなとおり、式(12)のY(冷却水36の量)の係数であるAは常に正であり、したがって、冷却水36の量Yを変動させることによって、他の種々の係数とは独立してソーダ製品39の濃度sを調整することができる。
また、式(15)のZ(燃焼用空気の量)の係数であるDは常に負であり、したがって、燃焼用空気34の量Zを変動させることによっても、他の種々の係数とは独立してソーダ製品39の濃度sを調整することができる。
ただし、冷却水36については、缶体40の保護のために供給必要な最低量Y以上の量は供給しなければならず、また、燃焼用空気34についても、排水32中の可燃分bと、燃料Fを完全燃焼させるのに必要な空気量Z0に最適空気比δを掛けた最適空気量Zδ以上の量は供給しなければならない。
Y0は、化学工場などのプラントごとに決められる値であり、通常、炉の製作メーカーにより指定される。
Z0は、排水32に含まれる可燃分bの組成及び燃料33の組成から求めた完全燃焼に必要なO2量と、供給した燃焼用空気34中のO2の比率から求めることができ、Z0=(k4x×X+k4f×F)÷k4zとして計算できる。排水32及び燃料33の組成に大幅な変動がなければ、代表的な組成から求めた値で代用してもよい。
通常、化学工場などのプラントではZδ=δ×Z0(δは最適空気比、Z0は上記の計算値)として、δ=1.2程度で最適空気量Zδを設定する。ただし、燃料や有機化合物含有アルカリ性排水の燃焼性が悪い場合などは1.3あるいはそれ以上で燃焼が最適になる場合もある。最適空気比であることは焼却ガスまたは焼却排ガスの残存O2濃度を監視することで確認できる。
As is apparent from the above equation, A in the equation (12), which is a coefficient of Y (amount of cooling water 36), is always positive. Therefore, by varying the amount Y of the cooling water 36, various other factors can be obtained. Independently, the concentration s of the soda product 39 can be adjusted.
Further, D, which is a coefficient of Z (amount of combustion air) in the equation (15), is always negative. Therefore, by varying the amount Z of the combustion air 34, it is independent of other various factors. Thus, the concentration s of the soda product 39 can be adjusted.
However, the cooling water 36, the minimum amount Y 0 or more necessary amount supplied for the protection of the can body 40 has to be supplied, also the combustion air 34, combustibles b in the waste water 32 Then, an amount equal to or larger than the optimum air amount Z δ obtained by multiplying the air amount Z 0 necessary for complete combustion of the fuel F by the optimum air ratio δ must be supplied.
Y 0 is a value determined for each plant such as a chemical factory, and is normally specified by a furnace manufacturer.
Z 0 can be determined and the amount of O 2 required for complete combustion obtained from the composition of the composition and the fuel 33 of combustibles b contained in the waste water 32, the ratio of O 2 in the combustion air 34 supplied, Z 0 = (k4x × X + k4f × F) ÷ k4z. If there is no significant variation in the composition of the waste water 32 and the fuel 33, a value obtained from a representative composition may be substituted.
Normally, in a plant such as a chemical factory, the optimum air amount Z δ is set at approximately δ = 1.2, where Z δ = δ × Z 0 (δ is the optimum air ratio, Z 0 is the above-mentioned calculated value). However, when the combustibility of the fuel or the organic compound-containing alkaline wastewater is poor, the combustion may be optimal at 1.3 or more. The optimum air ratio can be confirmed by monitoring the residual O 2 concentration of the incineration gas or incineration exhaust gas.

なお、噴霧燃焼させる排水32の量Xは、運転のための設定値であり、燃料33の量Fは排水量Xに対して炉内の燃焼温度を維持するために必要な量が定まる。   Note that the amount X of the waste water 32 to be spray-combusted is a set value for operation, and the amount F of the fuel 33 is determined to be the amount necessary to maintain the combustion temperature in the furnace with respect to the waste water amount X.

したがって、ソーダ製品39中の製品ソーダ量aの濃度の目標値の上限値をSH、下限値をSLとすると、以下のフローチャートに則り、運転条件を制御することができる。 Therefore, if the upper limit value of the target value of the concentration of the product soda amount a in the soda product 39 is S H and the lower limit value is S L , the operating conditions can be controlled according to the following flowchart.

Figure 2006027942
Figure 2006027942

例えば、s>SHの場合、すなわち、ソーダ製品39の濃度sが目標の上限値SHを超える場合、
s=ka×X÷(A×Y+B×X+C×F+D×Z) (11)
=α/(A×Y+β) (16)
(ただし、α=ka×X、β=B×X+C×F+D×Zであり、いずれも運転条件から予め求めた定数である。Aは正の数値である。)
であるから、sがSHとなるように、Y(冷却水36の量)の値を増加させて運転条件を決定すればよい。
For example, in the case of s> S H, that is, when the concentration s of soda products 39 exceeds the upper limit value S H of the target,
s = ka × X ÷ (A × Y + B × X + C × F + D × Z) (11)
= Α / (A × Y + β) (16)
(However, α = ka × X, β = B × X + C × F + D × Z, and both are constants obtained in advance from operating conditions. A is a positive numerical value.)
Since it is, s so is S H, Y values may be determined by operating conditions increasing the (amount of coolant 36).

また、例えば、s<SLの場合、すなわち、ソーダ製品39の濃度sが目標の上限値SLよりも低い場合、冷却水36の量Yが缶体の保護のために供給必要な最低量Yよりも大きければ、同様に上記式においてsがSLになるようにYの値を減少させ、運転条件を決定すればよい。
すでにYがY0よりも小さい場合、またYをY0まで減少させてもs<SLの場合は、YをY0に固定し、
s=α/(γ+D×Z) (17)
(ただし、αは上記と同じ、γ=A×Y+B×X+C×Fであり、いずれも運転条件から予め求めた定数である。Dは負の数値である。)
から、sがSLになるように燃焼用空気34の量Zの値を増加させ、運転条件を決定すればよい。
なお、排水32の濃度、量が変動する場合は、予め、排水32の組成等を分析し、各定数を基に製造条件を設定しておけばよい。
For example, when s <S L , that is, when the concentration s of the soda product 39 is lower than the target upper limit value S L , the amount Y of the cooling water 36 is the minimum amount that needs to be supplied for protecting the can body. is larger than Y 0, similarly s in the formula reduces the value of Y to be S L, it may be determined operating conditions.
If Y is already smaller than Y 0 , or if Y is reduced to Y 0 and s <S L then Y is fixed at Y 0
s = α / (γ + D × Z) (17)
(However, α is the same as above, γ = A × Y + B × X + C × F, both of which are constants obtained in advance from operating conditions. D is a negative numerical value.)
From this, the value of the amount Z of the combustion air 34 is increased so that s becomes S L , and the operating condition may be determined.
In addition, when the density | concentration and quantity of the waste_water | drain 32 are fluctuate | varied, the composition of the waste_water | drain 32 etc. should be analyzed previously and the manufacturing conditions should be set based on each constant.

噴霧焼却炉では省エネルギーのため、燃料消費量を削減することが重要であり、ソーダ濃度調整方法(1)に記載の制御は燃料消費量を少なくして、所定の製品ソーダの濃度sを得るための手法として最適である。すなわち、冷却水36が缶体保護のために必要な冷却水量Y0より少なくならない範囲であれば、製品ソーダの濃度sは冷却水36の量Yで調整するため、燃焼用空気34は最適空気比δでの運転が可能であり、燃料33の量Fは必要最小限となる。 In the spray incinerator, it is important to reduce the fuel consumption for energy saving, and the control described in the soda concentration adjustment method (1) reduces the fuel consumption to obtain a predetermined product soda concentration s. This is the most suitable method. That is, if the cooling water 36 is in a range that does not become less than the cooling water amount Y 0 necessary for protecting the can body, the concentration s of the product soda is adjusted by the amount Y of the cooling water 36, so the combustion air 34 is the optimum air. The operation at the ratio δ is possible, and the amount F of the fuel 33 is minimized.

同様に、ソーダ製品39中の製品ソーダ量aの濃度の目標値の上限値をSH、下限値をSLとすると、以下のフローチャートに則り、運転条件を制御することもできる。 Similarly, the upper limit value S H of the target value of the concentration of product soda content a in soda products 39, the lower limit value and S L, pursuant to the following flow chart, it is also possible to control the operating conditions.

Figure 2006027942
Figure 2006027942

例えば、s<SLの場合、すなわち、ソーダ製品39の濃度sが目標の上限値SLよりも低い場合、
s=α/(γ+D×Z) (17)
(ただし、αは上記と同じ、γ=A×Y+B×X+C×Fであり、いずれも運転条件から予め求めた定数である。Dは負の数値である。)
から、sがSLになるように燃焼用空気34の量Zの値を増加させ、運転条件を決定すればよい。
For example, when s <S L , that is, when the concentration s of the soda product 39 is lower than the target upper limit value S L ,
s = α / (γ + D × Z) (17)
(However, α is the same as above, γ = A × Y + B × X + C × F, both of which are constants obtained in advance from operating conditions. D is a negative numerical value.)
From this, the value of the amount Z of the combustion air 34 is increased so that s becomes S L , and the operating condition may be determined.

例えば、s>SHの場合、すなわち、ソーダ製品39の濃度sが目標の上限値SHを超える場合、燃料用空気の量Zが最適空気量Zδよりも大きければ、sがSHになるようにZの値を減少させ、運転条件を決定すればよい。
すでにZがZδ未満の場合、またZをZδまで減少させてもs>SHの場合は、ZをZδに固定し、
s=α/(A×Y+β) (16)
(ただし、α=ka×X、β=B×X+C×F+D×Zであり、いずれも運転条件から予め求めた定数である。Aは正の数値である。)
から、sがSHとなるように、Y(冷却水36の量)の値を増加させて運転条件を決定すればよい。
なお、排水32の濃度、量が変動する場合は、予め、排水32の組成等を分析し、各定数を基に製造条件を設定しておけばよい。
For example, in the case of s> S H, that is, when the concentration s of soda products 39 exceeds the upper limit value S H of the target, greater than the amount Z is the optimum air quantity Z [delta] of the fuel air, s in the S H The value of Z may be decreased so that the operating conditions can be determined.
Already in the case of Z is of less than Z [delta], also reduces the Z to Z δ s> S H, to secure the Z to Z [delta],
s = α / (A × Y + β) (16)
(However, α = ka × X, β = B × X + C × F + D × Z, and both are constants obtained in advance from operating conditions. A is a positive numerical value.)
From, s so is S H, Y values may be determined by operating conditions increasing the (amount of coolant 36).
In addition, when the density | concentration and quantity of the waste_water | drain 32 are fluctuate | varied, the composition of the waste_water | drain 32 etc. should be analyzed previously and the manufacturing conditions should be set based on each constant.

ソーダ濃度調整方法(2)の制御は、焼却排水38を要処理水として処理する場合などに、その処理量を最小とするための手法として最適である。すなわち、冷却水36は缶体保護のために必要な冷却水量Y0またはある一定量に固定し、焼却排水38の生成量を最小または一定量とするために、燃焼用空気34の量を調整する。燃焼用空気34の量が最適空気比δ未満にならない範囲であれば、冷却水を増やさないため、焼却排水の生成量が少ない運転が可能となる。また、焼却排水の生成量が少ないのでソーダ製品39として高濃度のものを得ることができる。 The control of the soda concentration adjusting method (2) is optimal as a method for minimizing the amount of treatment when the incineration waste water 38 is treated as the treatment water. That is, the cooling water 36 is fixed to a cooling water amount Y 0 necessary for protecting the can body or a certain fixed amount, and the amount of the combustion air 34 is adjusted in order to minimize the generation amount of the incineration waste water 38 or a constant amount. To do. If the amount of the combustion air 34 is within a range that does not become less than the optimum air ratio δ, the cooling water is not increased, so that an operation with a small amount of incineration wastewater can be performed. Further, since the amount of incinerated wastewater generated is small, a soda product 39 having a high concentration can be obtained.

上記のとおり、ソーダ製品の濃度は、焼却する排水の量、排水の組成、焼却条件など種々の要因により変動するにもかかわらず、本発明の方法によれば、冷却水の量と燃焼用空気の量の2つ量をコントロールすることにより、下流に濃縮/希釈設備などの濃度調整手段を用いずに、広い範囲の所望の製品濃度を有するソーダ製品が得られる。   As described above, the concentration of soda products varies depending on various factors such as the amount of wastewater to be incinerated, the composition of the wastewater, and the incineration conditions. By controlling two of these amounts, soda products having a wide range of desired product concentrations can be obtained without using concentration adjusting means such as a concentration / dilution facility downstream.

上記方法は、噴霧焼却炉、噴霧焼却炉に有機化合物含有アルカリ性排水を供給する排水供給路、燃料を供給する燃料供給路及び燃焼用空気を供給する空気供給路、焼却ガスに冷却水を供給する冷却水供給路、炭酸アルカリ金属塩濃度の指標を検出できる手段、例えば密度計(密度から製品ソーダ濃度を換算する)、炭酸アルカリ金属塩の濃度が目標値となるように冷却水の供給量を調節する冷却水調節系、炭酸アルカリ金属塩の濃度が目標値となるように燃焼用空気の供給量を調節する空気調節系、及び密度計により検出した炭酸アルカリ金属塩の濃度に基づき、冷却水調節系及び空気調節系におけるそれぞれの供給量の必要な増減量を算出し、冷却水調節系及び空気調節系を制御する制御系を含む炭酸アルカリ金属塩製造システムにより実施される。   The above method includes spray incinerator, drainage supply path for supplying organic compound-containing alkaline drainage to spray incinerator, fuel supply path for supplying fuel, air supply path for supplying combustion air, and cooling water for incineration gas. Cooling water supply path, means capable of detecting an indicator of alkali carbonate metal salt concentration, for example, a density meter (converting product soda concentration from density), the amount of cooling water supplied so that the concentration of alkali carbonate metal salt becomes the target value Cooling water adjustment system to adjust, cooling system to adjust the supply amount of combustion air so that the concentration of alkali carbonate metal salt becomes the target value, and cooling water based on the concentration of alkali carbonate metal salt detected by density meter Calculate the required increase / decrease amount of each supply amount in the regulation system and the air regulation system, and implement it by the alkali metal carbonate production system including the control system that controls the cooling water regulation system and the air regulation system. It is.

冷却水調節系は例えば流量調節バルブ等の流量調整装置を含み、空気調節系は例えばダンパ開閉装置またはコントロールバルブ等の流量調整装置を含み、それぞれ冷却水の量及び燃焼用空気の量を増減する。
上記システムはさらに好ましくは焼却ガスの温度T1、焼却排ガスの温度T2、冷却水の温度T3をそれぞれ測定する温度計を備える。制御系は、好ましくは、測定した焼却温度T1に基づき供給する燃料の増減量を算出し、これに基づき流量調節バルブ等の流量調整装置を含む燃料調節系を制御する。
The cooling water adjustment system includes a flow adjustment device such as a flow adjustment valve, and the air adjustment system includes a flow adjustment device such as a damper opening / closing device or a control valve, for example, to increase or decrease the amount of cooling water and the amount of combustion air, respectively. .
The system further preferably includes a thermometer for measuring the temperature T1 of the incineration gas, the temperature T2 of the incineration exhaust gas, and the temperature T3 of the cooling water. The control system preferably calculates the increase / decrease amount of the fuel to be supplied based on the measured incineration temperature T1, and controls the fuel adjustment system including a flow rate adjusting device such as a flow rate adjusting valve based on this.

制御系は式(11)から濃度sを算出できるように、すなわち、係数A、B、C及びDを算出するための種々のデータ、例えば製品ソーダ排水の組成から製品ソーダ量を得るための係数ka、排水からの水蒸気量を求める係数k1x、燃料からの水蒸気量を求める係数klfなど、種々のデータを有していてもよく、また、システムは焼却ガスの先に記載のとおり、温度T1、焼却排ガスの温度T2、冷却水の温度T3や、有機化合物含有アルカリ性排水の量Xなどの実測値を与えるための温度計や流量計などの種々の手段を有していてもよい。さらにこの分野において公知の有機化合物含有アルカリ性排水を事前に濃縮して焼却炉に供給する手段、焼却排ガスをこの濃縮に利用する手段等を含んでいてもよい。なお、この場合は濃縮後の有機化合物含有アルカリ性排水を基準として上記の運転条件の決定を行う。   The control system can calculate the concentration s from the equation (11), that is, various data for calculating the coefficients A, B, C and D, for example, the coefficient for obtaining the product soda amount from the composition of the product soda waste water. ka, coefficient k1x for determining the amount of water vapor from the waste water, coefficient klf for determining the amount of water vapor from the fuel, etc., the system may have various data such as the temperature T1, Various means such as a thermometer and a flow meter for giving measured values such as the temperature T2 of the incineration exhaust gas, the temperature T3 of the cooling water, and the amount X of the organic compound-containing alkaline waste water may be provided. Furthermore, a means for concentrating an organic compound-containing alkaline wastewater known in this field in advance and supplying it to the incinerator, a means for using the incineration exhaust gas for the concentration, and the like may be included. In this case, the above operating conditions are determined based on the concentrated organic compound-containing alkaline waste water.

また、本発明の方法では、第3工程と第4工程との間に、微固形分懸濁アルカリ性水の磁気処理工程を挟んでもよい。
先に述べたとおり、冷却水としては通常、工業用水が使用される。工業用水にはカルシウムイオンがふくまれる。このカルシウムイオンは焼却ガス中の炭酸ガスと反応して難溶性の炭酸カルシウム、炭酸水素カルシウム等を生成する。また、噴霧焼却に際して焼却炉の耐火物が一部損傷し、耐火物の成分が焼却ガスに同伴することがある。また、燃焼により発生した灰分も焼却ガスに同伴する。
これらの難溶性成分は第3工程において粗固形分として焼却炉下に設けたピットや粗固形分分離ピット等によって分離されるが、粗固形分分離後もその上澄み中には微細な固形分が含まれる。このため、第4工程において、フィルタープレス等を用いて懸濁微固形分を除去する。
ところが、この第4工程への移送中に、沈殿するに至らなかった難溶性成分がクラスターを形成し、配管、ポンプ、調節弁等の排水ラインに沈着することがある。
このため、第3工程と第4工程の間に磁気処理工程を挟むことができる。
Moreover, in the method of the present invention, a magnetic treatment step of fine solid suspended alkaline water may be sandwiched between the third step and the fourth step.
As described above, industrial water is usually used as the cooling water. Industrial water contains calcium ions. This calcium ion reacts with carbon dioxide in the incineration gas to produce poorly soluble calcium carbonate, calcium bicarbonate, and the like. In addition, the refractory of the incinerator may be partially damaged during spray incineration, and the components of the refractory may accompany the incineration gas. In addition, ash generated by combustion is also accompanied by incineration gas.
These hardly soluble components are separated in the third step as coarse solids by pits or coarse solids separation pits provided under the incinerator, but fine solids are still present in the supernatant after separation of the coarse solids. included. Therefore, in the fourth step, suspended fine solids are removed using a filter press or the like.
However, during the transfer to the fourth step, a hardly soluble component that has not been precipitated may form a cluster and may be deposited on drainage lines such as pipes, pumps, and control valves.
For this reason, a magnetic treatment process can be inserted between the third process and the fourth process.

その一例を図2にフロー図で示す。図2において、1は噴霧焼却炉、2は有機化合物含有アルカリ性排水、3は燃料、4は燃焼用空気、5は冷却水、13は粗固形分分離ピット、14は磁気処理装置、15はポンプ、16はレベル計、17は調節弁、18は中間タンク、19はポンプ、20はフィルタープレス等の懸濁微固形分除去装置、21は除去された微固形分、22はソーダ製品である。
磁気処理装置14は、例えば、第3工程と第4工程を繋ぐポンプのサンクション配管等に多数の磁石巻きつけるように取り付けたものである。
強力な磁気処理により焼却排水中のクラスターが破壊され、難溶性の炭酸カルシウムや耐火物屑などが配管に沈着しにくくなり、また破壊されたクラスターはフィルタープレス等の懸濁微固形分除去装置により有利に除去され、純度の高いソーダ製品を提供できる。
An example of this is shown in the flowchart of FIG. In FIG. 2, 1 is a spray incinerator, 2 is an organic compound-containing alkaline drainage, 3 is fuel, 4 is combustion air, 5 is cooling water, 13 is a crude solid content separation pit, 14 is a magnetic treatment device, and 15 is a pump. , 16 is a level meter, 17 is a control valve, 18 is an intermediate tank, 19 is a pump, 20 is a suspended solids removing device such as a filter press, 21 is a removed fine solids, and 22 is a soda product.
For example, the magnetic processing device 14 is attached so as to wind a large number of magnets around a suction pipe of a pump connecting the third process and the fourth process.
Powerful magnetic treatment destroys the clusters in the incineration wastewater, making it difficult for insoluble calcium carbonate and refractory debris to deposit on the pipes. The destroyed clusters are removed by suspended fine solids removal devices such as filter presses. A soda product which is advantageously removed and has a high purity can be provided.

その一例を挙げると下記のとおりである。
磁気処理装置14としてネオジウム磁石約100個をポンプ15のサクション部分の3B配管に巻きつけ固定した。冷却水として工業用水を約30T/H用い、約13T/Hの有機化合物含有アルカリ性排水を930−950度で噴霧焼却した。焼却炉の耐火物屑や炭酸カルシウム等の粗固形分を沈殿処理した後、フィルタープレスを用いて懸濁微固形分を分離して濃度約15%の炭酸ナトリウム水溶液を得た。この運転を約4ヶ月継続した後、ポンプ14から中間タンク18までの配管を開放点検したところ、配管内面には2〜3mm程度の硬いスケールは付着していたが、磁気処理装置の取り付け前に見られたような耐火物の屑を取り込んだ軟らかいスケールによる配管のつまりは見られなかった。さらに5ヶ月継続して同様の運転を続けたが、配管の詰まりもなく、安定的に排水の送液ができ、また、純度の高いソーダ製品を提供できた。
なお、冷却水として軟水を用いて炭酸カルシウムの生成を防止することもできる。
One example is as follows.
About 100 neodymium magnets were wound around the 3B pipe of the suction portion of the pump 15 as the magnetic processing device 14 and fixed. Industrial water was used as cooling water at about 30 T / H, and about 13 T / H organic compound-containing alkaline waste water was spray incinerated at 930-950 degrees. After precipitating crude solids such as refractory waste and calcium carbonate in an incinerator, the suspended fine solids were separated using a filter press to obtain a sodium carbonate aqueous solution having a concentration of about 15%. After this operation was continued for about 4 months, when the piping from the pump 14 to the intermediate tank 18 was inspected, a hard scale of about 2 to 3 mm was attached to the inner surface of the piping. There was no clogging of the piping with a soft scale that took in refractory debris as seen. The same operation was continued for another 5 months, but the piping was not clogged, the wastewater could be sent stably, and a high-purity soda product could be provided.
In addition, the production | generation of a calcium carbonate can also be prevented using soft water as cooling water.

また、本発明の方法は、第2工程の焼却排ガスを洗浄及びろ過して排出する工程を含んでもよく、好ましくは洗浄にはベンチュリースクラバーが、ろ過には排気フィルターが用いられる。
この洗浄水としてカルシウムイオンを含む硬水を用いると、焼却排ガス中に含まれる炭酸成分と反応して難溶性の炭酸カルシウム、炭酸水素カルシウム等を形成してベンチュリースクラバーや排気フィルターの詰まりの原因となる。そこで、これらの洗浄水として軟水を用いることにより上記の詰まりの問題を解決する。
In addition, the method of the present invention may include a step of washing and filtering the incineration exhaust gas in the second step, preferably using a venturi scrubber for washing and an exhaust filter for filtration.
If hard water containing calcium ions is used as this washing water, it reacts with the carbonic acid component contained in the incineration exhaust gas to form poorly soluble calcium carbonate, calcium hydrogen carbonate, etc., which causes clogging of the venturi scrubber and exhaust filter. . Therefore, the above clogging problem is solved by using soft water as the washing water.

その一例を図2にフロー図で示す。図2において、6はベンチュリースクラバー、7は補給水、8は循環ポンプ、9は排気フィルター、10は洗浄用循環水、11は循環水レベル調節計、12は排気ガスである。
排気フィルターはチューブ状のフィルターエレメントを含むもののほか、ラッシヒリング、ポールリング等の充填材を充填した充填塔方式のフィルターであってもよい。
軟水は、例えば、砂ろ過器と強酸性陽イオン交換樹脂を用いた軟水器とを含む軟水製造装置によって製造され、補給水7として洗浄用循環水10に補給される。洗浄用循環水10は、循環水レベル調節計11によって一定レベルに保たれ、余剰の水があれば、冷却水と共に燃焼ガスの冷却に用いてもよい。なお、この場合、上記式において冷却水の量Yはこの余剰水の量を含んで調整される。
An example of this is shown in the flowchart of FIG. In FIG. 2, 6 is a venturi scrubber, 7 is makeup water, 8 is a circulation pump, 9 is an exhaust filter, 10 is circulating water for cleaning, 11 is a circulating water level controller, and 12 is exhaust gas.
The exhaust filter may include a tube-type filter element, or a packed tower type filter filled with a filler such as a Raschig ring or a pole ring.
The soft water is produced by a soft water production apparatus including, for example, a sand filter and a water softener using a strongly acidic cation exchange resin, and is supplied to the cleaning circulating water 10 as make-up water 7. The circulating water for washing 10 is maintained at a constant level by the circulating water level controller 11 and, if there is excess water, it may be used for cooling the combustion gas together with the cooling water. In this case, in the above formula, the amount Y of the cooling water is adjusted to include the amount of the excess water.

一例として、上記磁気処理の場合と同様の運転条件でベンチュリースクラバー6及び排気フィルター9の洗浄循環水として約7T/Hの軟水を用い、有機化合物含有アルカリ性排水の噴霧焼却実験を行った。結果は、最も詰まりの懸念されていたベンチュリースクラバーの洗浄水吹き込みノズル、排気フィルターの詰まりもなく2ヶ月安定的に当該設備の運転が可能であった。   As an example, about 7 T / H soft water was used as washing circulating water for the venturi scrubber 6 and the exhaust filter 9 under the same operating conditions as in the magnetic treatment, and an organic compound-containing alkaline wastewater spray incineration experiment was conducted. As a result, it was possible to operate the equipment stably for two months without clogging of the washing water blowing nozzle and exhaust filter of the venturi scrubber, which was most concerned about clogging.

噴霧焼却炉において、有機化合物含有アルカリ性排水32(組成はC:8wt%、H:1wt%、O:3wt%、Na:3wt%、H2O:85wt%)を噴霧焼却処理し、ソーダ製品39を得る。ソーダ製品の濃度スペックはNa2CO3+NaHCO3=13±0.5wt%かつNa2CO3=8±2wt%とする。排水32の処理量は11000kg/hとする。燃料33にはプラントよりの副生油である燃料1(組成はC:78wt%、H:9wt%、O:13wt%)と燃料2(組成はC:84wt%、H:8wt%、O:8wt%)を使用し、それぞれの量をF1、F2とする(以後、燃料に関する記号は、本文中で使用した記号の後に添字1、2を付けて表記する)。 In the spray incinerator, the organic compound-containing alkaline wastewater 32 (composition is C: 8 wt%, H: 1 wt%, O: 3 wt%, Na: 3 wt%, H 2 O: 85 wt%) is spray incinerated to produce a soda product 39 Get. Concentration specifications of soda products are Na 2 CO 3 + NaHCO 3 = 13 ± 0.5 wt% and Na 2 CO 3 = 8 ± 2 wt%. The treatment amount of the waste water 32 is 11000 kg / h. As fuel 33, fuel 1 (composition is C: 78 wt%, H: 9 wt%, O: 13 wt%) and fuel 2 (composition are C: 84 wt%, H: 8 wt%, O: O2) 8wt%), and the respective amounts are F1 and F2 (hereinafter, fuel symbols are indicated by subscripts 1 and 2 after the symbols used in the text).

燃料33(燃料1と燃料2)の量Fは、排水32の処理量により変動するため、噴霧焼却炉に設置した温度計で焼却ガス35の温度T1を常時監視し、950℃となるようにコントロールバルブで自動制御する。なお、燃料1と燃料2の割合は適宜変動させてもよい。   Since the amount F of the fuel 33 (fuel 1 and fuel 2) varies depending on the treatment amount of the waste water 32, the temperature T1 of the incineration gas 35 is constantly monitored by a thermometer installed in the spray incinerator so that it becomes 950 ° C. Automatically controlled by control valve. Note that the ratio between the fuel 1 and the fuel 2 may be appropriately changed.

製品濃度sは式(11)で示される。
s=ka×X÷(A×Y+B×X+C×F+D×Z) (11)
ただし、上記式中、A、B、C、Dは下記のとおりである。
A=1+(T2-T3)×Cpw÷Cw (12)
B=ka−(T1−T2)×(klx×Cpv+k2x×Cpc−k4x×Cpo)÷Cw (13)
C=−(T1−T2)×(klf×Cpv+k2f×Cpc−k4f×Cpo)÷Cw (14)
D=−(T1−T2)×(k3×Cpn+k4z×Cpo)÷Cw (15)
The product concentration s is expressed by equation (11).
s = ka × X ÷ (A × Y + B × X + C × F + D × Z) (11)
However, in the above formula, A, B, C and D are as follows.
A = 1 + (T2-T3) × Cpw ÷ Cw (12)
B = ka-(T1-T2) x (klx x Cpv + k2x x Cpc-k4x x Cpo) / Cw (13)
C = − (T1−T2) × (klf × Cpv + k2f × Cpc−k4f × Cpo) ÷ Cw (14)
D =-(T1-T2) x (k3 x Cpn + k4z x Cpo) / Cw (15)

式(12)〜式(15)に、求め方を後述するCw、Cpwなどの数値を代入すると下記のとおりとなる。
A=1+(T2−T3)×Cpw÷Cw
=1+(T2−T3)×0.00185 (12−2)
(ただし、Cw=2260KJ/kg、Cpw=4.18KJ/kg・℃)
B=ka−(T1−T2)×(k1x×Cpv+k2x×Cpc−k4x×Cpo)÷Cw
=0.0806−(T1−T2)×0.000913 (13−2)
(ただし、ka=0.0806、k1x=0.94、k2x=0.29、k4x=0.26、Cpv=2.14KJ/kg・℃、Cpc=1.11KJ/kg・℃、Cpo=1.04KJ/kg・℃)
C1=−(T1−T2)×(k1f1×Cpv+k2f1×Cpc−k4f1×Cpo)÷Cw
=−(T1−T2)×0.000943 (14−2a)
(ただし、k1f1=0.81、k2f1=2.86、k4f1=2.67)
C2=−(T1−T2)×(k1f2×Cpv+k2f2×Cpc−k4f2×Cpo)÷Cw
=−(T1−T2)×0.000906 (14−2b)
(ただし、k1f2=0.72、k2f2=3.08、k4f2=2.80)
D=−(T1−T2)×(k3×Cpn+k4z×Cpo)÷Cw
=−(T1−T2)×0.000484 (15−2)
(ただし、k3=0.77、k4z=0.23、Cpn=1.11KJ/kg・℃)
Substituting numerical values such as Cw and Cpw, which will be described later, into Expressions (12) to (15), the following is obtained.
A = 1 + (T2−T3) × Cpw ÷ Cw
= 1 + (T2-T3) × 0.00185 (12-2)
(However, Cw = 2260KJ / kg, Cpw = 4.18KJ / kg ・ ℃)
B = ka- (T1-T2) x (k1x x Cpv + k2x x Cpc-k4x x Cpo) / Cw
= 0.0806-(T1-T2) x 0.000913 (13-2)
(However, ka = 0.0806, k1x = 0.94, k2x = 0.29, k4x = 0.26, Cpv = 2.14KJ / kg · ° C, Cpc = 1.11KJ / kg · ° C, Cpo = 1.04KJ / kg · ° C)
C1 = − (T1−T2) × (k1f1 × Cpv + k2f1 × Cpc−k4f1 × Cpo) ÷ Cw
=-(T1-T2) × 0.000943 (14-2a)
(However, k1f1 = 0.81, k2f1 = 2.86, k4f1 = 2.67)
C2 = − (T1−T2) × (k1f2 × Cpv + k2f2 × Cpc−k4f2 × Cpo) ÷ Cw
=-(T1-T2) × 0.000906 (14-2b)
(However, k1f2 = 0.72, k2f2 = 3.08, k4f2 = 2.80)
D = − (T1−T2) × (k3 × Cpn + k4z × Cpo) ÷ Cw
=-(T1-T2) × 0.000484 (15-2)
(However, k3 = 0.77, k4z = 0.23, Cpn = 1.11KJ / kg ・ ℃)

式(11)に上記を代入すると製品濃度sは式(18)のとおりである。
s=ka×X÷(A×Y+B×X+C×F+D×Z) (11)
=0.0806×X÷〔{1+(T2−T3)×0.00185}×Y+{0.0806−(T1−T2)×0.000913}×X−(T1−T2)×0.000943×F−(T1−T2)×0.000906×F−(T1−T2)×0.000484×Z)〕(18)
When the above is substituted into equation (11), the product concentration s is as shown in equation (18).
s = ka × X ÷ (A × Y + B × X + C × F + D × Z) (11)
= 0.0806 × X ÷ [{1+ (T2−T3) × 0.00185} × Y + {0.0806− (T1−T2) × 0.000913} × X− (T1−T2) × 0.000943 × F− (T1−T2) × 0.000906 × F− (T1−T2) × 0.000484 × Z)] (18)

式(18)から、排水32の量Xと、その燃焼に必要な燃料33の量F1、F2(自動制御によるT1を維持するのに必要な量)が決まれば、焼却ガス35の温度T1、焼却排ガス37の送出ラインに設置した温度計で測定した温度T2、冷却水36の供給ラインに設置した温度計で測定した温度T3を用いて、製品濃度sは燃焼用空気34の量Zと冷却水36の量Yで決定することができる。   If the amount X of the waste water 32 and the amounts F1 and F2 of the fuel 33 necessary for the combustion are determined from the equation (18), the temperature T1 of the incineration gas 35 is determined. Using the temperature T2 measured by the thermometer installed in the incineration exhaust gas 37 delivery line and the temperature T3 measured by the thermometer installed in the cooling water supply line, the product concentration s is the amount Z of the combustion air 34 and the cooling. It can be determined by the amount Y of water 36.

簡易的に計算する場合は以下の温度を使用し、A、B、C1、C2、Dを定数とすることもできる。
焼却ガス温度T1=950℃(設定値)
焼却排ガス温度T2=93℃(大幅な条件変更が無ければ大きな変動はない。)
冷却水温度T3=20℃(季節により見直す。)
In the case of simple calculation, the following temperatures can be used, and A, B, C1, C2, and D can be constants.
Incineration gas temperature T1 = 950 ° C (set value)
Incineration exhaust gas temperature T2 = 93 ° C (There will be no significant fluctuation unless there is a significant change in conditions.)
Cooling water temperature T3 = 20 ° C (review according to the season)

この場合、A、B、C1、C2、Dは下記のとおりとなる。
A=1.135、B=-0.702、C1=-0.808、C2=-0.776、D=-0.415
これを式(18)に代入すると下記のとおりとなる。
s=ka×X÷(A×Y+B×X+C×F+D×Z)
=0.0806×X÷(1.135×Y−0.702×X−0.808×F1−0.776×F2−0.415×Z) (19)
In this case, A, B, C1, C2, and D are as follows.
A = 1.135, B = -0.702, C1 = -0.808, C2 = -0.776, D = -0.415
Substituting this into equation (18) yields:
s = ka × X ÷ (A × Y + B × X + C × F + D × Z)
= 0.0806 × X ÷ (1.135 × Y−0.702 × X−0.808 × F1−0.776 × F2−0.415 × Z) (19)

この場合も、排水32の量Xと、その燃焼に必要な燃料33の量F1、F2(自動制御によるT1を維持するのに必要な量)が決まれば、製品濃度sは燃焼用空気34の量Zと冷却水36の量Yで決定することができる。   Also in this case, if the amount X of the waste water 32 and the amounts F1 and F2 of the fuel 33 necessary for the combustion are determined (the amounts necessary for maintaining T1 by automatic control), the product concentration s is determined by the combustion air 34. It can be determined by the amount Z and the amount Y of the cooling water 36.

燃焼用空気34の量Zが多いとT1を維持するための燃料消費量が多くなることから、噴霧焼却炉の省エネルギーの観点から燃焼用空気34の量Zは少ない方が望ましい。
そのため、式(18)または式(19)においてZを、完全燃焼に必要な空気量Zoに最適空気比δ(通常1.2程度、排水32や燃料33の性状により燃焼性の悪い場合には1.3やそれ以上にすることもある。)を乗じた最適空気量Zδに固定することが好ましい。これによって、製品濃度sがX、F1、F2、Yのみの関数で表され、XとF1、F2が決まれば、Yを調整するだけで所定の製品ソーダ濃度とすることができる。
When the amount Z of the combustion air 34 is large, the amount of fuel consumption for maintaining T1 increases. Therefore, it is desirable that the amount Z of the combustion air 34 is small from the viewpoint of energy saving of the spray incinerator.
Therefore, in Equation (18) or Equation (19), Z is the optimum air ratio δ (usually about 1.2 for the amount of air Zo required for complete combustion, 1.3 if the combustibility is poor due to the properties of the waste water 32 and fuel 33, and so on. It is preferable to fix it to the optimum air amount Z δ multiplied by. As a result, the product concentration s is expressed by a function of only X, F1, F2, and Y. If X, F1, and F2 are determined, it is possible to obtain a predetermined product soda concentration simply by adjusting Y.

なお、Zoは次式で計算することができる。
Zo=(k4x×X+k4f1×F1+k4f2×F2)÷k4z (20)
したがって、燃焼用空気の最適空気量Zδは下記式で示される。
Zδ=δ×Zo=δ×(k4x×X+k4f1×F1+k4f2×F2)÷k4z (21)
=1.2×(0.26×X+2.67×F1+2.80×F2)÷0.23
Zo can be calculated by the following equation.
Zo = (k4x x X + k4f1 x F1 + k4f2 x F2) / k4z (20)
Therefore, the optimum air amount Z δ of the combustion air is expressed by the following formula.
Z δ = δ × Zo = δ × (k4x × X + k4f1 × F1 + k4f2 × F2) ÷ k4z (21)
= 1.2 x (0.26 x X + 2.67 x F1 + 2.80 x F2) / 0.23

調整は、製品の送出ラインに設置した密度計(密度から製品ソーダ濃度を換算)で常時監視しながら製品のスペックの上下限内となるようにYの量を流量調節バルブを用いて自動(あるいは手動)で調整する。
排水32(あるいは燃料33)の流量や組成を変動させる場合には、事前に変動後のYの最適量を計算し、遅滞なく、流量調節バルブを制御してYの量を調整することでができるようにすることで、濃度変動が現れてからYの量を調整する従来の手法よりも短時間で安定した運転条件にすることが可能となる。
Adjustment is performed automatically by using a flow control valve to adjust the amount of Y so that it is within the upper and lower limits of the product specifications while constantly monitoring with a density meter (converted from product density to product soda concentration) installed in the product delivery line. Adjust manually.
When changing the flow rate or composition of the waste water 32 (or fuel 33), calculate the optimum amount of Y after the change in advance, and adjust the amount of Y by controlling the flow control valve without delay. By making it possible, it becomes possible to achieve stable operating conditions in a shorter time than the conventional method of adjusting the amount of Y after the concentration fluctuation appears.

ただし、焼却炉の保護のため、Yの量が必要流量Yo(実施例の焼却炉では20000kg/h)より少なくなる場合には、Y=Yo=20000kg/hに固定して運転する。
これを式(18)または(19)に代入すれば、製品濃度sがX、F1、F2、Zのみの関数で表され、XとF1、F2が決まれば、Zを調整することで所定の製品濃度とすることができる。
この場合にも調整は製品の送出ラインに設置した密度計(密度から製品ソーダ濃度を換算)で常時監視しながら製品ソーダのスペックの上下限内となるように、コントロールバルブを調整してZの量を自動(あるいは手動)で調整する。
大幅に排水32(あるいは燃料33)の流量や組成を変動させる場合には、事前に変動後のZの最適量を計算しておき、遅滞なく、コントロールバルブや送出ブロワーを制御してZの量を調整できるようにすることで、濃度変動が現れてからZの量を調整する従来の手法よりも短時間で安定した運転条件にすることが可能となる。
However, in order to protect the incinerator, when the amount of Y is less than the required flow rate Yo (20,000 kg / h in the incinerator of the embodiment), the operation is fixed at Y = Yo = 20000 kg / h.
By substituting this into the equation (18) or (19), the product concentration s can be expressed by a function of only X, F1, F2, and Z. If X, F1, and F2 are determined, Z can be adjusted to a predetermined value. It can be the product concentration.
In this case as well, adjustment is made by adjusting the control valve so that it is within the upper and lower limits of the product soda specifications while constantly monitoring with a density meter installed in the product delivery line (converting the product soda concentration from the density). Adjust the amount automatically (or manually).
When the flow rate or composition of the waste water 32 (or fuel 33) is changed significantly, the optimal amount of Z after the change is calculated in advance, and the amount of Z is controlled by controlling the control valve and the delivery blower without delay. By making the adjustment possible, it becomes possible to achieve stable operating conditions in a shorter time than the conventional method of adjusting the amount of Z after the concentration fluctuation appears.

本実施例において、排水32をX=11000kg/h噴霧焼却処理する場合、通常、燃料33としては燃料1がF1=1360kg/h、燃料2がF2=270kg/h必要である。
この場合に最適空気比δ=1.2で運転し、製品濃度s=13wt%とするためには、燃焼用空気34の最適空気量Zδは下記のようになる。
Zδ=δ×Zo
=δ×(k4x×X+k4f1×F1+k4f2×F2)÷k4z
= 1.2×(0.26×11000+2.67×1360+2.80×270)÷0.23
= 1.2×31509=37811kg/h
In the present embodiment, when the waste water 32 is subjected to spray incineration with X = 11000 kg / h, normally, as the fuel 33, the fuel 1 needs F1 = 1360 kg / h and the fuel 2 needs F2 = 270 kg / h.
In this case, in order to operate at the optimum air ratio δ = 1.2 and to obtain the product concentration s = 13 wt%, the optimum air amount Z δ of the combustion air 34 is as follows.
Z δ = δ × Zo
= Δ x (k4x x X + k4f1 x F1 + k4f2 x F2) / k4z
= 1.2 x (0.26 x 11000 + 2.67 x 1360 + 2.80 x 270) / 0.23
= 1.2 × 31509 = 37811kg / h

冷却水36の量Yは(19)に上記の数値を入れて計算すると下記のようになる。
s=0.0806×X÷(1.135×Y−0.702×X−0.808×F1−0.776×F2−0.415×Z)
0.13=0.0806×11000÷(1.135×Y−7722−1099−210−15692)
Y=27791kg/h
The amount Y of the cooling water 36 is calculated by adding the above numerical value to (19).
s = 0.0806 × X ÷ (1.135 × Y−0.702 × X−0.808 × F1−0.776 × F2−0.415 × Z)
0.13 = 0.0806 x 11000 ÷ (1.135 x Y-7722-1099-210-15692)
Y = 27791kg / h

次に、排水32をX=6000kg/h噴霧焼却処理する場合、通常、燃料33としては燃料1がF1=1360kg/h、燃料2がF2=90kg/h必要である。
この場合に最適空気比δ=1.2で運転し、製品ソーダ濃度s=13wt%とするためには、燃焼用空気34の最適空気量Zδは下記のとおりとなる。
Zδ=δ×Zo
=δ×(k4x×X+k4f1×F1+k4f2×F2)÷k4z
= 1.2×(0.26×6000+2.67×1360+2.80×90)÷0.23
= 1.2×23665=28398kg/h
Next, when the waste water 32 is subjected to spray incineration with X = 6000 kg / h, normally, as the fuel 33, the fuel 1 needs F1 = 1360 kg / h and the fuel 2 needs F2 = 90 kg / h.
In this case, in order to operate at the optimum air ratio δ = 1.2 and to make the product soda concentration s = 13 wt%, the optimum air amount Z δ of the combustion air 34 is as follows.
Z δ = δ × Zo
= Δ x (k4x x X + k4f1 x F1 + k4f2 x F2) / k4z
= 1.2 x (0.26 x 6000 + 2.67 x 1360 + 2.80 x 90) ÷ 0.23
= 1.2 × 23665 = 28398kg / h

冷却水36の量Yは(19)に数値を入れて計算すると下記のようになる。
s=0.0806×X÷(1.135×Y−0.702×X−0.808×F1−0.776×F2−0.415×Z)
0.13=0.0806×6000÷(1.135×Y−4212−1099−70−11785)
Y=18483kg/h
このYはYoより少ないため、Y=Yo=20000kg/hとし、燃焼用空気34の量Zを式(19)に基づき、調整する。
s=0.0806×X÷(1.135×Y−0.702×X−0.808×F1−0.776×F2−0.415×Z)
0.13=0.0806×6000÷(1.135×20000−4212−1099−70−0.415×Z)
Z=32769kg/h
(なおこの場合のδ=Z÷Zo=32769÷23665=1.38)
すなわち、排水32の処理量を6000kg/hに下げたケースでは、冷却水36の量を20000kg/hと固定し、燃焼用空気34を通常の最適空気比より高い1.38に上げることで、製品ソーダ濃度sをスペックである13wt%に維持する。
The amount Y of the cooling water 36 is calculated as follows when a numerical value is entered in (19).
s = 0.0806 × X ÷ (1.135 × Y−0.702 × X−0.808 × F1−0.776 × F2−0.415 × Z)
0.13 = 0.0806 × 6000 ÷ (1.135 × Y−4212−1099−70−11785)
Y = 18483kg / h
Since Y is less than Yo, Y = Yo = 20000 kg / h, and the amount Z of the combustion air 34 is adjusted based on the equation (19).
s = 0.0806 × X ÷ (1.135 × Y−0.702 × X−0.808 × F1−0.776 × F2−0.415 × Z)
0.13 = 0.0806 × 6000 ÷ (1.135 × 20000−4212−1099−70−0.415 × Z)
Z = 32769kg / h
(In this case, δ = Z ÷ Zo = 32769 ÷ 23665 = 1.38)
That is, in the case where the treatment amount of the waste water 32 is reduced to 6000 kg / h, the amount of the cooling water 36 is fixed at 20000 kg / h, and the combustion air 34 is raised to 1.38, which is higher than the normal optimum air ratio, so that the product soda The concentration s is maintained at 13 wt% which is the spec.

各係数の計算
各係数は以下のようにして求めることができる。
製品には炭酸ナトリウムと炭酸水素ナトリウムが含まれているが、その濃度スペックはNa2CO3+NaHCO3が13±0.5wt%かつNa2CO3が8±2wt%である。製品濃度に大幅な変動がなければ、その重量比率はほぼ一定であり、炭酸ナトリウム8:炭酸水素ナトリウム5の比率となる。そのため、それぞれの分子量から製品ソーダ量aを得るための係数kaを計算すると、ka=2.686×(Na濃度)で表され、Naを3wt%含む排水32の場合はka=0.0806となる。よって生成される製品量a=0.0806×Xで表される。
Calculation of each coefficient Each coefficient can be obtained as follows.
The product contains sodium carbonate and sodium bicarbonate, but the concentration specifications are 13 ± 0.5 wt% for Na 2 CO 3 + NaHCO 3 and 8 ± 2 wt% for Na 2 CO 3 . If there is no significant fluctuation in the product concentration, the weight ratio is almost constant, and the ratio is sodium carbonate 8: sodium bicarbonate 5. Therefore, when the coefficient ka for obtaining the product soda amount a from each molecular weight is calculated, it is represented by ka = 2.686 × (Na concentration), and in the case of the wastewater 32 containing 3 wt% Na, ka = 0.0806. Therefore, the product amount a generated is represented by 0.0806 × X.

本実施例での排水32と燃料33(燃料1と燃料2)の組成により決まる係数等は、燃焼化学式と分子量より計算する。なお、運転条件の変更時(あるいは定期的)には性状、組成を分析し、最適運転ができるように制御に用いる係数の見直しを実施する。
排水32の燃焼により生成される水蒸気は下記式で示されるので、係数k1x=0.94である。
0.85×X+(0.01×18/2)×X=0.94×X
排水32の燃焼により生成されるCO2は下記式で示されるので、係数k2x=0.29である。 (0.08×44/12)×X=0.29×X
排水32の燃焼のために供給必要なO2は下記式で示されるので、係数k4x=0.26である。
(0.01×16/2+0.08×32/12−0.03)×X=0.26×X
燃料1の燃焼により生成される水蒸気は下記式で示されるので係数k1f1=0.81である。 (0.09×18/2)×F1=0.81×F1
燃料1の燃焼により生成されるCO2は下記式で示されるので係数k2f1=2.86である。
(0.78×44/12)×F1=2.86×F1
燃料1の燃焼のために供給必要なO2は下記式で示されるので係数k4f1=2.67である。
(0.09×16/2+0.78×32/12−0.13)×F1=2.67×F1
燃料2の燃焼により生成される水蒸気は下記式で示されるので係数k1f2=0.72である。
(0.08×18/2)×F1=0.72×F2
燃料2の燃焼により生成されるCO2は下記式で示されるので係数k2f2=3.08である。
(0.84×44/12)×F1=3.08×F2
燃料2の燃焼のために供給必要なO2は下記式で示されるので係数k4f2=2.80である。
(0.08×16/2+0.84×32/12−0.08)×F2=2.80×F2
燃焼用空気34に含まれるN2は空気の組成(0.77×Z)より、その係数k3=0.77である。
燃焼用空気に含まれるO2は空気の組成(0.23×Z)より、その係数k4z=0.23である。
The coefficient determined by the composition of the waste water 32 and the fuel 33 (fuel 1 and fuel 2) in this embodiment is calculated from the combustion chemical formula and the molecular weight. When the operating conditions are changed (or periodically), the properties and composition are analyzed, and the coefficients used for control are reviewed so that optimum operation can be performed.
The steam generated by the combustion of the waste water 32 is represented by the following formula, and therefore the coefficient k1x = 0.94.
0.85 × X + (0.01 × 18/2) × X = 0.94 × X
Since CO 2 produced by the combustion of the waste water 32 is expressed by the following equation, the coefficient k2x = 0.29. (0.08 × 44/12) × X = 0.29 × X
Since the O 2 required for the combustion of the waste water 32 is expressed by the following equation, the coefficient k4x = 0.26.
(0.01 × 16/2 + 0.08 × 32 / 12−0.03) × X = 0.26 × X
The steam generated by the combustion of the fuel 1 is represented by the following formula, and therefore the coefficient k1f1 = 0.81. (0.09 × 18/2) × F1 = 0.81 × F1
The CO 2 produced by the combustion of the fuel 1 is expressed by the following equation, and therefore the coefficient k2f1 = 2.86.
(0.78 × 44/12) × F1 = 2.86 × F1
The O 2 required to be supplied for the combustion of the fuel 1 is expressed by the following equation, and therefore the coefficient k4f1 = 2.67.
(0.09 × 16/2 + 0.78 × 32 / 12−0.13) × F1 = 2.67 × F1
The steam generated by the combustion of the fuel 2 is represented by the following equation, and therefore the coefficient k1f2 = 0.72.
(0.08 × 18/2) × F1 = 0.72 × F2
The CO 2 produced by the combustion of the fuel 2 is expressed by the following equation, and therefore the coefficient k2f2 = 3.08.
(0.84 × 44/12) × F1 = 3.08 × F2
The O 2 required to be supplied for the combustion of the fuel 2 is expressed by the following equation, and therefore the coefficient k4f2 = 2.80.
(0.08 × 16/2 + 0.84 × 32 / 12−0.08) × F2 = 2.80 × F2
N 2 contained in the combustion air 34 has a coefficient k3 = 0.77 based on the composition of the air (0.77 × Z).
O 2 contained in the combustion air has a coefficient k4z = 0.23 from the air composition (0.23 × Z).

水の潜熱と平均比熱は以下を用いる。
水の潜熱:Cw=2260KJ/kg
水の平均比熱:Cpw=4.18KJ/kg・℃
これらの物性値には、対象となる温度範囲で最適となる数値を文献やデータベースより入手、あるいは最適な数値がない場合には入手できる数値の比例配分、平均化等を実施し最適となるように計算した数値を用いる。
The latent heat and average specific heat of water are as follows.
Water latent heat: Cw = 2260KJ / kg
Average specific heat of water: Cpw = 4.18KJ / kg ・ ℃
For these physical property values, obtain optimal values from the literature or database for the target temperature range, or if there is no optimal value, perform proportional distribution, averaging, etc. of available values so that they will be optimal The numerical value calculated in is used.

ガスの比熱は焼却ガス35の温度T1と焼却排ガス37の温度T2での平均比熱を文献より求め以下とした。
水蒸気の平均比熱:Cpv=2.14KJ/kg・℃
CO2の平均比熱:Cpc=1.11KJ/kg・℃
N2の平均比熱:Cpn=1.11KJ/kg・℃
O2の平均比熱:Cpo=1.04KJ/kg・℃
これらの物性値には、対象となる温度範囲で最適となる数値を文献やデータベースより入手、あるいは最適な数値がない場合には入手できる数値の比例配分、平均化等を実施し最適となるように計算した数値を用いる。
The specific heat of the gas was determined from the literature as the average specific heat at the temperature T1 of the incineration gas 35 and the temperature T2 of the incineration exhaust gas 37 and was set to the following.
Average specific heat of water vapor: Cpv = 2.14KJ / kg ・ ℃
Average specific heat of CO 2 : Cpc = 1.11KJ / kg ・ ℃
Average specific heat of N 2 : Cpn = 1.11KJ / kg ・ ℃
Average specific heat of O 2 : Cpo = 1.04KJ / kg ・ ℃
For these physical property values, obtain optimal values from the literature or database for the target temperature range, or if there is no optimal value, perform proportional distribution, averaging, etc. of available values so that they will be optimal The numerical value calculated in is used.

本発明の方法によれば、化学工場等から排出されるアルカリ性排水に含まれるアルカリ金属塩を炭酸アルカリ金属塩として回収し、その有効利用を図ることができる。また、炭酸アルカリ金属塩の濃度を特定範囲とするための水による希釈または濃縮のための設備を必要とせず、冷却水の量と燃焼用空気の量の2つ量をコントロールすることにより、所望の濃度の炭酸アルカリ金属塩が得られる。   According to the method of the present invention, an alkali metal salt contained in an alkaline drainage discharged from a chemical factory or the like can be recovered as an alkali metal carbonate and can be used effectively. In addition, there is no need for water dilution or concentration equipment to keep the alkali metal carbonate salt concentration within a specific range, and by controlling the amount of cooling water and the amount of combustion air, the desired amount can be obtained. An alkali metal carbonate with a concentration of

本発明の排水処理プロセスの一例を示すフロー図である。It is a flowchart which shows an example of the waste water treatment process of this invention. 本発明の排水処理プロセスの一例を示すフロー図である。It is a flowchart which shows an example of the waste water treatment process of this invention.

符号の説明Explanation of symbols

1 噴霧焼却炉
2 有機化合物含有アルカリ性排水
3 燃料
4 燃焼用空気
5 冷却水
6 ベンチュリースクラバー
7 補給水
8 循環ポンプ
9 排気フィルター
10 洗浄用循環水
11 循環水レベル調節計
12 排気ガス
13 粗固形分分離ピット
14 磁気処理装置
15 ポンプ
16 レベル計
17 調節弁
18 中間タンク
19 ポンプ
20 懸濁微固形分除去装置
21 微固形分
22 ソーダ製品
DESCRIPTION OF SYMBOLS 1 Spray incinerator 2 Alkaline waste water containing organic compound 3 Fuel 4 Combustion air 5 Cooling water 6 Venturi scrubber 7 Makeup water 8 Circulation pump 9 Exhaust filter 10 Circulating water for washing 11 Circulating water level controller 12 Exhaust gas 13 Coarse solid content separation Pit 14 Magnetic processing device 15 Pump 16 Level meter 17 Control valve 18 Intermediate tank 19 Pump 20 Suspended fine solid content removal device 21 Fine solid content 22 Soda product

Claims (5)

(1)有機化合物含有アルカリ性排水を燃料および燃焼用空気と共に噴霧焼却し、焼却ガスを得る第1工程、(2)焼却ガスに冷却水を注入し、固形分および水溶性成分を水相に、焼却排ガスを気相に分離する第2工程、(3)水相中の固形分中の粗固形分を沈降分離して、微固形分懸濁アルカリ性水を得、次工程に移送する第3工程、(4)移送された微固形分懸濁アルカリ性水中の懸濁微固形分を除去し、炭酸アルカリ金属塩を得る第4工程を含み、
第4工程において測定された炭酸アルカリ金属塩濃度が
(a)運転管理目標値の上限値より高い場合は、第2工程の冷却水注入量を増加させ、
(b−1)運転管理目標値の下限値より低い場合であって、第2工程の冷却水注入量が必要最低量より多い場合は、冷却水注入量を減少させ、
(b−2)第2工程の冷却注入量が必要最低量である場合は、第1工程の燃焼用空気量を増加させ、炭酸アルカリ金属塩濃度を運転管理目標値に制御する、炭酸アルカリ金属塩水溶液の製造方法。
(1) A first step of spraying and incinerating organic compound-containing alkaline wastewater together with fuel and combustion air to obtain an incineration gas, (2) injecting cooling water into the incineration gas, solid content and water-soluble components into an aqueous phase, 2nd process which isolate | separates incineration exhaust gas into a gaseous phase, (3) 3rd process which carries out sedimentation separation of the rough solid content in the solid content in an aqueous phase, obtains fine solid suspended alkaline water, and transfers to the next process , (4) removing the suspended fine solids in the transported fine solids suspended alkaline water to obtain an alkali metal carbonate salt,
In the case where the alkali metal carbonate concentration measured in the fourth step is higher than the upper limit value of the (a) operation management target value, the cooling water injection amount in the second step is increased,
(B-1) When it is lower than the lower limit value of the operation management target value and the cooling water injection amount in the second step is larger than the necessary minimum amount, the cooling water injection amount is decreased,
(B-2) When the cooling injection amount in the second step is the minimum required amount, the amount of combustion air in the first step is increased, and the alkali metal carbonate concentration is controlled to the operation management target value. A method for producing an aqueous salt solution.
(1)有機化合物含有アルカリ性排水を燃料および燃焼用空気と共に噴霧焼却し、焼却ガスを得る第1工程、(2)焼却ガスに冷却水を注入し、固形分および水溶性成分を水相に、焼却排ガスを気相に分離する第2工程、(3)水相中の固形分中の粗固形分を沈降分離して、微固形分懸濁アルカリ性水を得、次工程に移送する第3工程、(4)移送された微固形分懸濁アルカリ性水中の懸濁微固形分を除去し、炭酸アルカリ金属塩を得る第4工程を含み、
第4工程において測定された炭酸アルカリ金属塩濃度が
(a)運転管理目標値の下限値より低い場合は、第1工程の燃焼用空気量を増加させ、
(b−1)運転管理目標値の上限値より高い場合であって、第1工程の燃焼用空気量が最適空気量より多い場合は、燃焼用空気量を減少させ、
(b−2)第1工程の燃焼用空気量が最適空気量である場合は、第2工程の冷却水注入量を増加させ、炭酸アルカリ金属塩濃度を運転管理目標値に制御する、炭酸アルカリ金属塩水溶液の製造方法。
(1) A first step of spraying and incinerating organic compound-containing alkaline wastewater together with fuel and combustion air to obtain an incineration gas, (2) injecting cooling water into the incineration gas, solid content and water-soluble components into an aqueous phase, 2nd process which isolate | separates incineration exhaust gas into a gaseous phase, (3) 3rd process which carries out sedimentation separation of the rough solid content in the solid content in an aqueous phase, obtains fine solid suspended alkaline water, and transfers to the next process , (4) removing the suspended fine solids in the transported fine solids suspended alkaline water to obtain an alkali metal carbonate salt,
When the alkali metal carbonate concentration measured in the fourth step is lower than the lower limit value of the (a) operation management target value, increase the amount of combustion air in the first step,
(B-1) When it is higher than the upper limit value of the operation management target value and the amount of combustion air in the first step is larger than the optimum amount of air, the amount of combustion air is decreased,
(B-2) When the amount of combustion air in the first step is the optimum amount of air, the amount of cooling water injected in the second step is increased and the alkali carbonate metal salt concentration is controlled to the operation management target value. A method for producing a metal salt aqueous solution.
前記第3工程と第4工程の間に、微固形分懸濁アルカリ性水の磁気処理工程をさらに含む請求項1または2に記載の方法。   The method according to claim 1, further comprising a magnetic treatment step of fine solids suspended alkaline water between the third step and the fourth step. 前記第2工程の焼却排ガスを洗浄及びろ過して排出する工程を含み、洗浄にはベンチュリースクラバーが、ろ過には排気フィルターが用いられ、ベンチュリースクラバー及び排気フィルターの洗浄水として軟水が用いられる請求項1〜3のいずれか一項に記載の方法。   The method includes a step of cleaning and discharging the incineration exhaust gas in the second step, wherein a venturi scrubber is used for cleaning, an exhaust filter is used for filtration, and soft water is used as cleaning water for the venturi scrubber and the exhaust filter. The method as described in any one of 1-3. 噴霧焼却炉、噴霧焼却炉に有機化合物含有アルカリ性排水を供給する排水供給路、燃料を供給する燃料供給路及び燃焼用空気を供給する空気供給路、焼却ガスに冷却水を供給する冷却水供給路、炭酸アルカリ金属塩濃度の指標を検出できる手段、炭酸アルカリ金属塩の濃度が目標値となるように冷却水の供給量を調節する冷却水調節系、炭酸アルカリ金属塩の濃度が目標値となるように燃焼用空気の供給量を調節する空気調節系、及び密度計により検出した炭酸アルカリ金属塩の濃度に基づき、冷却水調節系及び空気調節系におけるそれぞれの供給量の必要な増減量を算出し、冷却水調節系及び空気調節系を制御する制御系を含む炭酸アルカリ金属塩製造システム。

Spray incinerator, drainage supply path for supplying organic compound-containing alkaline drainage to spray incinerator, fuel supply path for supplying fuel, air supply path for supplying combustion air, cooling water supply path for supplying cooling water to incineration gas , Means capable of detecting an indicator of the alkali metal carbonate concentration, a cooling water adjusting system for adjusting the amount of cooling water supplied so that the alkali metal carbonate concentration becomes the target value, and the alkali metal carbonate concentration becomes the target value Based on the air conditioning system that adjusts the supply amount of combustion air and the concentration of alkali metal carbonate detected by the density meter, the required increase / decrease amount of each supply amount in the cooling water adjustment system and air conditioning system is calculated. And an alkali metal carbonate production system including a control system for controlling a cooling water control system and an air control system.

JP2004207974A 2004-07-15 2004-07-15 Method for producing alkali metal carbonate aqueous solution and production system thereof Expired - Fee Related JP4555009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207974A JP4555009B2 (en) 2004-07-15 2004-07-15 Method for producing alkali metal carbonate aqueous solution and production system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207974A JP4555009B2 (en) 2004-07-15 2004-07-15 Method for producing alkali metal carbonate aqueous solution and production system thereof

Publications (2)

Publication Number Publication Date
JP2006027942A true JP2006027942A (en) 2006-02-02
JP4555009B2 JP4555009B2 (en) 2010-09-29

Family

ID=35894734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207974A Expired - Fee Related JP4555009B2 (en) 2004-07-15 2004-07-15 Method for producing alkali metal carbonate aqueous solution and production system thereof

Country Status (1)

Country Link
JP (1) JP4555009B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270754A (en) * 2008-05-07 2009-11-19 Tsukishima Kankyo Engineering Ltd Combustion method and combustion device of waste fluid
JP4542190B1 (en) * 2009-03-11 2010-09-08 月島環境エンジニアリング株式会社 Waste combustion power generation method and combustion equipment therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923966A (en) * 1972-07-03 1974-03-02
JPS502547B1 (en) * 1970-06-26 1975-01-27
JPH11304143A (en) * 1998-04-23 1999-11-05 Babcock Hitachi Kk Boiler fuel mixing control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502547B1 (en) * 1970-06-26 1975-01-27
JPS4923966A (en) * 1972-07-03 1974-03-02
JPH11304143A (en) * 1998-04-23 1999-11-05 Babcock Hitachi Kk Boiler fuel mixing control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270754A (en) * 2008-05-07 2009-11-19 Tsukishima Kankyo Engineering Ltd Combustion method and combustion device of waste fluid
JP4542171B2 (en) * 2008-05-07 2010-09-08 月島環境エンジニアリング株式会社 Waste liquid combustion method and combustion apparatus therefor
JP4542190B1 (en) * 2009-03-11 2010-09-08 月島環境エンジニアリング株式会社 Waste combustion power generation method and combustion equipment therefor
WO2010103692A1 (en) * 2009-03-11 2010-09-16 月島環境エンジニアリング株式会社 Method of generating electricity by burning waste and waste burning facility
JP2010210159A (en) * 2009-03-11 2010-09-24 Tsukishima Kankyo Engineering Ltd Combustion power generating method of waste, and its combustion facility
US8893498B2 (en) 2009-03-11 2014-11-25 Tsukishima Kankyo Engineering Ltd. Method of power generation by waste combustion and waste combustion system

Also Published As

Publication number Publication date
JP4555009B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4725224B2 (en) How to prevent clinker generation
KR101415454B1 (en) A combustion improver
US4973529A (en) Apparatus and process for forming an aqueous solution
JP4555009B2 (en) Method for producing alkali metal carbonate aqueous solution and production system thereof
CA1269299A (en) Apparatus employing an aqueous solution
JP2007255886A (en) Incineration method of waste fluid containing, as constituent, organic substance containing inorganic salt
JP6020305B2 (en) Exhaust gas treatment method
JP3686157B2 (en) Solution processing method
EP1065444B1 (en) Method for reducing the temperature of exhaust gas utilizing hot water
US4741890A (en) Gas scrubbing method
WO2004106239A1 (en) Method and system for producing aqueous alkali metal carbonate solution
CN214700737U (en) Incineration boiler for treating waste liquid and waste gas containing salt
RU2049740C1 (en) Circulating water supply system of coke and byproduct process
CN105169815B (en) The dust removal method of the high-temperature flue gas of high salt bearing liquid wastes incinerator
CN204897462U (en) Industrial wastewater treatment device
CN107824022B (en) Treatment method and treatment system for waste water and waste gas in power industry
CN207153371U (en) Gas cleaning and plume control device
US4285820A (en) Process for the treatment of a waste liquid containing boron compounds and organic compounds
CN205664395U (en) High concentration contains salt organic waste liquid incineration boiler
CN217323426U (en) Desulfurization wastewater treatment device
CN103011322A (en) Method for treating wastewater produced by rosin deep processing
CN114348972B (en) Intelligent vaporization and energy recycling method and device for electronic grade sulfuric acid production
JPS6226404A (en) Reducing method for nitrogen oxides concentration in burnt exhaust gas
JPS6034900Y2 (en) Equipment that simultaneously processes wastewater and waste gas
JP2747876B2 (en) Spray incineration method of photographic processing waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees