JPH11304143A - Boiler fuel mixing control device - Google Patents

Boiler fuel mixing control device

Info

Publication number
JPH11304143A
JPH11304143A JP10113508A JP11350898A JPH11304143A JP H11304143 A JPH11304143 A JP H11304143A JP 10113508 A JP10113508 A JP 10113508A JP 11350898 A JP11350898 A JP 11350898A JP H11304143 A JPH11304143 A JP H11304143A
Authority
JP
Japan
Prior art keywords
fuel
furnace
adjusting
mixing
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10113508A
Other languages
Japanese (ja)
Inventor
Yukio Miyama
幸穂 深山
Katsumi Shimodaira
克己 下平
Yoshio Murakami
義雄 村上
Shunichi Tsumura
俊一 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10113508A priority Critical patent/JPH11304143A/en
Publication of JPH11304143A publication Critical patent/JPH11304143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a boiler fuel mixing control device which is suitable for realizing the economical operational performance of a boiler by mixing various kinds of fuel. SOLUTION: A boiler fuel mixing control device used for a boiler device provided with a furnace 7 equipped with a burner 4, a water screen 12 surrounding the furnace 7, and a superheater 18 which superheats the steam generated from the water screen 12 in the exhaust gas flow passage of the furnace 7 is provided with a detecting means which detects the ratio of the heat-exchanging amount of the water screen 12 to that of the superheater 18, a plurality of fuel supplying means 55 and 56 which respectively supply a plurality of kinds of fuel having different combustion speeds, fuel adjusting means 51 and 52 which respectively adjust the flow rates of the plurality of kinds of fuel supplied by means of the supplying means 55 and 56, and a mixing means which mixes the plurality of kinds of fuel adjusted by means of the adjusting means 51 and 52 and supplies the mixed fuel to the burner 4. The controller detects the increase or decrease of the ratio of the heat-exchanging amount of the water screen 12 to that of the superheater 18 by means of the detecting means and decreases or increases the mixing ratio of the fuel having the faster combustion speed by adjusting the flow rates of the plurality of kinds of fuel based on the detected result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はボイラ制御装置に係
わり、特に多様な燃料を混合して経済的に良好なボイラ
の運転性能を実現するに好適なボイラ燃料混合制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler control apparatus, and more particularly to a boiler fuel mixing control apparatus suitable for realizing economically good boiler operation performance by mixing various fuels.

【0002】[0002]

【従来の技術】図3は従来技術による貫流ボイラ装置本
体である。燃料ライン1の流量は流量調節手段2で流量
を加減される。前記流量調節手段2は液体燃料であれば
弁開度、気体燃料であればダンパ開度、石炭であれば石
炭粉砕機へのベルトコンベア速度等を調節し、制御装置
からの指令107に燃料流量を追従させる。前記燃料は
火炉7中に設けられたバーナ4で燃焼させる。このとき
燃焼用空気は空気ライン5から通風機6を介してエアレ
ジスタ8から炉内に供給する。
2. Description of the Related Art FIG. 3 shows a once-through boiler apparatus body according to the prior art. The flow rate of the fuel line 1 is adjusted by the flow rate adjusting means 2. The flow rate adjusting means 2 adjusts a valve opening degree for liquid fuel, a damper opening degree for gaseous fuel, a belt conveyor speed to a coal pulverizer for coal, and the like. To follow. The fuel is burned by a burner 4 provided in a furnace 7. At this time, the combustion air is supplied from the air register 8 through the air line 5 to the inside of the furnace through the ventilator 6.

【0003】一方、給水ライン10からポンプ11を介
して給水は主として火炉を取り囲む水壁12に供給さ
れ、前記水壁中で蒸気に変わる。水壁の一部は格子上の
スクリーン13となって、その間を火炉排ガス9が通過
する。水壁で発生した蒸気は火炉上部や天井の水壁内を
通過する間に過熱され、その温度は温度検出器14で計
測される。その後、前記蒸気は減温器15で注水17と
混合され、その際、注水弁17で注水量を加減する。
On the other hand, water is supplied from a water supply line 10 through a pump 11 to a water wall 12 surrounding a furnace, and is converted into steam in the water wall. A part of the water wall becomes a screen 13 on a lattice, between which the furnace exhaust gas 9 passes. The steam generated at the water wall is superheated while passing through the water wall of the furnace upper part and the ceiling, and the temperature is measured by the temperature detector 14. Thereafter, the steam is mixed with the water injection 17 in the desuperheater 15, and at this time, the water injection amount is adjusted by the water injection valve 17.

【0004】さらに、前記蒸気は過熱器18で昇温し、
その際の過熱ガス量はガスダンパ19で加減される。過
熱器18を出た蒸気は温度検出器20で温度を計測され
た後、主蒸気ライン21を経て高圧タービン22に供給
される。タービン22で仕事をして膨張した蒸気は低温
再熱蒸気ライン23を経て再熱器24に入り、再び加熱
され、その際の加熱ガス量はガスダンパ25で加減され
る。再熱器24を出た蒸気は高温再熱蒸気ライン27を
経て低圧タービン28に供給される。
[0004] Further, the temperature of the steam is increased by a superheater 18,
The amount of superheated gas at that time is adjusted by the gas damper 19. After the temperature of the steam exiting the superheater 18 is measured by a temperature detector 20, the steam is supplied to a high-pressure turbine 22 through a main steam line 21. The steam expanded by the work in the turbine 22 enters the reheater 24 via the low-temperature reheat steam line 23 and is heated again, and the amount of the heated gas at that time is adjusted by the gas damper 25. The steam exiting the reheater 24 is supplied to a low-pressure turbine 28 via a high-temperature reheat steam line 27.

【0005】また過熱器18または再熱器24を通過し
た排ガスはダンパ29の開度に応じガス再循環ライン3
0を通り、通風機31を経て火炉の底に投入される。
The exhaust gas passing through the superheater 18 or the reheater 24 is supplied to the gas recirculation line 3 according to the opening degree of the damper 29.
After passing through 0, it is put into the bottom of the furnace through the ventilator 31.

【0006】これは、火炉ガス温度を低下させて火炉水
壁12の輻射伝熱量を低下させ、一方、過熱器18や再
熱器24の通過ガス量を増加させ、前記部位での接触伝
熱を増加させる作用を有する。最後にボイラ排ガスは煙
道32を経て煙突へ抜ける。
[0006] This lowers the furnace gas temperature to lower the amount of radiant heat transfer of the furnace water wall 12, while increasing the amount of gas passing through the superheater 18 and the reheater 24 to increase the contact heat transfer at the above-mentioned parts. Has the effect of increasing Finally, the boiler exhaust gas passes through the flue 32 to the chimney.

【0007】図4は、図3に示すボイラ装置に用いる従
来技術による制御装置である。前記制御装置は要約すれ
ば、負荷指令101に応じた蒸気流量を発生させるこ
と、および、主蒸気ライン21と再熱蒸気ライン27の
蒸気温度を負荷指令101に応じた規定温度に維持する
こと、を主眼としている。
FIG. 4 shows a control device according to the prior art used for the boiler device shown in FIG. In summary, the control device generates a steam flow according to the load command 101, and maintains the steam temperature of the main steam line 21 and the reheat steam line 27 at a specified temperature according to the load command 101. The main focus is.

【0008】総燃料指令107は、関数要素105で負
荷指令101に応じて与えられる基本値に、温度検出器
14で検知した過熱器18入口の蒸気温度と関数要素1
02の出力の偏差をPID要素104を通して得た補正
信号を、加算要素106で加えて得られる。言い換えれ
ば、総燃料量指令107は負荷指令を基本に給水量や実
際の燃料供給ライン1の流量の変動に係わる火炉・水壁
12における水燃比の変動をPID制御で補正する構成
と言える。
The total fuel command 107 is obtained by adding the steam temperature at the inlet of the superheater 18 detected by the temperature detector 14 to the basic value given by the function element 105 in accordance with the load command 101 and the function element 1
02 is obtained by adding the correction signal obtained by obtaining the deviation of the output of the second through the PID element 104 by the adding element 106. In other words, the total fuel amount command 107 can be said to be a configuration in which the fluctuation of the water-fuel ratio in the furnace / water wall 12 related to the fluctuation of the water supply amount or the actual flow rate of the fuel supply line 1 is corrected by PID control based on the load command.

【0009】ガス再循環ダンパ29の開度指令109は
負荷指令101に応じて関数要素108で求める。これ
は、ボイラの低負荷帯では相対的に火炉・水壁の熱吸収
量が過大となるため、上述のガス再循環ライン30のガ
ス量を増加し、輻射伝熱が主体の火炉・水壁12の熱吸
収を低下させ、接触伝熱が主体の過熱器18、再過熱器
24の熱吸収を増加させる作用を有する。
The opening command 109 of the gas recirculation damper 29 is obtained by a function element 108 in accordance with the load command 101. This is because the heat absorption of the furnace / water wall becomes relatively large in the low load zone of the boiler, so that the gas amount in the gas recirculation line 30 is increased, and the furnace / water wall mainly composed of radiant heat transfer is used. 12 has the effect of reducing the heat absorption of the superheater 18 and the reheater 24, which are mainly composed of contact heat transfer.

【0010】主蒸気ライン21の蒸気温度は指令信号1
24により注水弁17を加減して行う。すなわち、関数
要素122による基本信号と、温度検出器20で検知し
た実温度と関数要素119による目標値を減算要素12
0で比較しこれをPID要素121に与えて得られる補
正信号と、を加算要素123で加えて弁17の指令信号
124を得る。このような減温器15を用いる主蒸気ラ
イン21の温度調整は速応性もあり、これによるプラン
トのエネルギ変換効率の低下も僅かであるため常套的に
用いられる。
The steam temperature of the main steam line 21 is determined by the command signal 1
24, the injection valve 17 is adjusted. That is, the basic signal by the function element 122, the actual temperature detected by the temperature detector 20 and the target value by the function element 119 are subtracted by the element 12
The value is compared by 0, and a correction signal obtained by giving this to the PID element 121 is added by an adding element 123 to obtain a command signal 124 for the valve 17. The temperature control of the main steam line 21 using such a desuperheater 15 has a quick response, and the reduction of the energy conversion efficiency of the plant due to this is small, so that it is conventionally used.

【0011】再熱蒸気ライン27の蒸気温度は指令信号
116により再熱器24の加熱ガス量を加減して行う。
すなわち、関数要素113による基本信号と、温度検出
器26で検知した実温度と関数要素110による目標値
を減算要素111で比較しこれをPID要素112に与
えて得られる補正信号と、を加算要素114で加え、ダ
ンパの開度・流量を補正する関数要素115によりダン
パ25の開度指令信号116を得る。
The temperature of the steam in the reheat steam line 27 is controlled by adjusting the amount of the heating gas in the reheater 24 according to the command signal 116.
That is, the basic signal by the function element 113, the actual temperature detected by the temperature detector 26 and the target value by the function element 110 are compared by the subtraction element 111, and the correction signal obtained by giving the result to the PID element 112 is added to the addition element. In addition to 114, an opening command signal 116 for the damper 25 is obtained by a function element 115 for correcting the opening and flow rate of the damper.

【0012】このとき関数要素117によりダンパ19
の開度指令118を指令116と逆方向に動かして再熱
器24の通過ガス量の調節を支援する。これは過熱器1
8の熱吸収量に外乱を与え、主蒸気ライン21の温度変
動をもたらすが、上述したスプレ弁17による減温器1
5への注水量変化で十分吸収できるので問題はない。な
お、再熱蒸気温度制御には他の方法として再熱器への注
水を行う方法も知られているが、これは効率の悪い低圧
タービン28の蒸気量を増加させ、トータルのエネルギ
変換効率を損なうため、非常用としてのみ用いられる。
At this time, the damper 19 is
Is moved in the opposite direction to the command 116 to assist in adjusting the amount of gas passing through the reheater 24. This is superheater 1
8 disturbs the heat absorption of the main steam line 21, causing the temperature fluctuation of the main steam line 21.
There is no problem because the change in the amount of water injected into 5 can be sufficiently absorbed. As another method for controlling the reheat steam temperature, a method of injecting water into a reheater is also known. However, this method increases the steam amount of the inefficient low-pressure turbine 28 to reduce the total energy conversion efficiency. It is used only for emergency purposes.

【0013】[0013]

【発明が解決しようとする課題】図3のボイラ本体及び
図4のボイラ制御装置は、燃料性状がボイラ本体の設計
値近傍であれば良好に動作する。また、燃料の性状につ
いては、一般に発熱量、燃焼速度、灰の生成量が重要視
され、このうち「発熱量の相違」には運転制御の立場で
は負荷指令に応じてボイラの所要熱量が定まるため、発
熱量に反比例して燃料供給ライン1の流量を加減して対
処できる。しかしながら、「燃焼速度の相違」や「灰付
着による伝熱面の汚れ」は図3、図4のボイラ本体、ボ
イラ制御装置に技術課題をもたらす。
The boiler body shown in FIG. 3 and the boiler control device shown in FIG. 4 operate satisfactorily if the fuel property is near the design value of the boiler body. In addition, regarding the properties of fuel, heat generation, combustion rate, and ash generation are generally regarded as important, and the difference in heat generation determines the required heat of the boiler according to the load command in terms of operation control. Therefore, it is possible to adjust the flow rate of the fuel supply line 1 in inverse proportion to the calorific value. However, "difference in combustion speed" and "dirt of the heat transfer surface due to ash adhesion" bring technical problems to the boiler main body and the boiler control device of FIGS.

【0014】ここで、本発明の背景について補足説明を
行う。一般に化石燃料は含有元素のうち炭素分/水素分
の比を考えるとき、前記値が低いほど燃焼速度が大であ
る。また、石炭の場合は、固定炭素/揮発分の比を燃料
比と定義した整理法が用いられ、同様に前記値が低いほ
ど燃焼速度大である。従って、一例を示せば、燃焼速度
が大から小へ並べて、天然ガス、ナフサ、軽油A重油、
C重油、アスファルト、褐炭、瀝青炭、無煙炭の順にな
る。
Here, the background of the present invention will be supplementarily described. Generally, when considering the ratio of carbon content / hydrogen content of fossil fuel contained elements, the lower the above value, the higher the burning rate. In the case of coal, an arrangement method in which the fixed carbon / volatile content ratio is defined as the fuel ratio is used. Similarly, the lower the above value is, the higher the combustion rate is. Therefore, if an example is shown, natural gas, naphtha, light oil A heavy oil,
C heavy oil, asphalt, lignite, bituminous coal, anthracite.

【0015】ことに石炭の場合は、例えば瀝青炭であっ
ても産炭地(銘柄)により燃料比(従って、燃焼速度)
に大きな差があり、また同一銘柄の石炭でも俗に「地層
を噛む」というとおり、鉱脈のどの部分を掘るかによっ
て燃料比は大きくばらつく傾向がある。加えて、灰成分
(シリカ、アルミナ、カルシウム、マグネシウム等)を
多く含有する場合がある。
Particularly, in the case of coal, for example, even for bituminous coal, the fuel ratio (accordingly, the burning rate) depends on the coal-producing area (brand).
The fuel ratio tends to vary greatly depending on which part of the vein is dug, as is commonly known as “biting the stratum” even with the same brand of coal. In addition, it may contain a large amount of ash components (silica, alumina, calcium, magnesium, etc.).

【0016】常識的に言って、典型的なボイラの設計値
から燃焼速度がはずれたり、燃焼速度のばらつきが大き
かったり、また灰成分の多い燃料(以下、低品位燃料と
称す)は安価であるが、前記燃料単独ではボイラの運転
が困難になるため、通常は前記欠点の少ない高価な燃料
(以下、高品位燃料と称す)を混合して運転を行ってい
る。
It is a common sense that a fuel whose combustion speed deviates from the design value of a typical boiler, whose combustion speed varies greatly, and whose ash component is high (hereinafter referred to as low-grade fuel) are inexpensive. However, the operation of the boiler is difficult with the use of the fuel alone, and therefore, the operation is usually performed by mixing an expensive fuel with less defects (hereinafter, referred to as a high-grade fuel).

【0017】そこで、本発明の目的は、可能な限り高品
位燃料の混合を低減して経済的なボイラ運転を実現する
燃料混合制御装置を提供することにあり、以下、具体的
に解決すべき技術課題について説明する。
An object of the present invention is to provide a fuel mixing control device which realizes economical boiler operation by reducing the mixing of high-grade fuel as much as possible. A technical problem will be described.

【0018】例えば、燃焼速度小の燃料を使用した場
合、火炉内の発熱量の分布は燃焼ガスの流れに沿って後
流側(火炉出口側)に移動し、火炉下部の水壁の熱吸収
量が大きく低下するため、火炉の総熱吸収量が低下す
る。火炉伝熱面が汚れた場合も火炉熱吸収量が低下し、
これらの場合は同一入熱を与えても火炉で熱吸収されに
くいことから火炉排ガス温度が上昇し、後流の過熱器1
8、再熱器24のガス温度が上昇することにより、これ
らにおける熱吸収量が増加する。
For example, when a fuel having a low combustion rate is used, the distribution of the calorific value in the furnace moves to the downstream side (furnace outlet side) along the flow of the combustion gas, and the heat absorption of the water wall at the lower part of the furnace. The amount of heat greatly decreases, so the total heat absorption of the furnace decreases. Even if the furnace heat transfer surface becomes dirty, the heat absorption of the furnace decreases,
In these cases, even if the same heat input is applied, the furnace exhaust gas temperature rises because the heat is hardly absorbed by the furnace, and the downstream superheater 1
8. As the gas temperature of the reheater 24 increases, the amount of heat absorbed by these increases.

【0019】逆に、燃焼速度大の燃料を用いた場合や、
伝熱面の汚れが剥離した場合は火炉排ガス温度が低下
し、後流の過熱器18、再熱器24熱吸収量が減少する
ことになる。
Conversely, when a fuel having a high burning rate is used,
If the dirt on the heat transfer surface is peeled off, the temperature of the furnace exhaust gas decreases, and the amount of heat absorbed by the downstream superheater 18 and reheater 24 decreases.

【0020】従って、次に列記するような問題が生じ
る。
Therefore, the following problems occur.

【0021】(1)水壁12の熱吸収量が設計値より大
幅に減少すると、水壁出口の流体のエンタルピが低下
し、極端な場合には水滴を含む湿り蒸気になる場合があ
る。過熱器18に湿り蒸気を通じることはできないか
ら、このような場合は湿分分離器が必要になる場合があ
る。なお、湿分分離とは、過熱器18に通じる蒸気量の
減少を意味するから、前記のような場合ではボイラ発生
蒸気の不足をきたすことになる。
(1) When the amount of heat absorbed by the water wall 12 is significantly reduced from the design value, the enthalpy of the fluid at the outlet of the water wall decreases, and in extreme cases, the steam may become wet steam containing water droplets. In such a case, a moisture separator may be required because wet steam cannot be passed through the superheater 18. In addition, since the moisture separation means a decrease in the amount of steam flowing to the superheater 18, in such a case, the steam generated by the boiler is insufficient.

【0022】逆に、水壁12の熱吸収量が過大になる
と、水壁12のメタル温度高の状態になって危険であ
る。従来技術ではかかる水壁12熱吸収量の過不足の事
態をさけるため、常に高品位燃料を大目に使用せざるを
得ない。
Conversely, if the amount of heat absorbed by the water wall 12 becomes excessive, the metal temperature of the water wall 12 becomes high, which is dangerous. In the prior art, in order to avoid such an excessive or insufficient amount of heat absorption of the water wall 12, a high-grade fuel must always be used.

【0023】なお、ボイラは、負荷、蒸気量(給水
量)、燃料量(総熱吸収量)の順で制御するのが前提で
あり、負荷帯毎に総熱吸収量が制御されているという条
件で課題並びにそれへの対処について説明する。
It is assumed that the boiler is controlled in the order of load, steam amount (water supply amount), and fuel amount (total heat absorption amount), and the total heat absorption amount is controlled for each load zone. The problem and the measures to be taken will be explained under the conditions.

【0024】(2)過熱器18の熱吸収増加・減少によ
り注水弁17の開度を増加・減少する必要がある。これ
らはボイラ水壁12と過熱器の熱吸収バランスの設計点
からのずれに起因しており、注水弁17の開度が全開ま
たは全閉近傍で常時運用する事態となりやすい。前記全
開、全閉近傍では、注水弁36開度の片側の操作余地が
小さく、この状態で何らかの外乱が発生したり、負荷指
令101を変化させると、主蒸気ライン21温度の過渡
的変動に対処できない場合が生じる。従来技術では前記
事態を避けるため、高品位燃料を大目に使用せざるを得
ない。
(2) It is necessary to increase or decrease the opening of the water injection valve 17 due to an increase or decrease in the heat absorption of the superheater 18. These are caused by the deviation of the heat absorption balance between the boiler water wall 12 and the superheater from the design point, and the water injection valve 17 is likely to be always operated when the opening degree of the water injection valve 17 is fully opened or in the vicinity of the fully closed state. In the vicinity of the full opening and the full closing, there is little room for operation of one side of the opening of the water injection valve 36. In this state, if any disturbance occurs or the load command 101 is changed, the transient fluctuation of the temperature of the main steam line 21 is dealt with. In some cases, it is not possible. In the prior art, in order to avoid the above-mentioned situation, high-grade fuel must be used.

【0025】(3)再熱器24の熱吸収増加・減少によ
り再熱器ガス分配ダンパ25の開度を減少・増加する必
要がある。これらは再熱器24の熱吸収量の設計点から
のずれに起因しており、ダンパ25の開度が全開または
全閉近傍で常時運用する事態となりやすい。前記全開、
全閉近傍では、ダンパ25開度の片側の操作余地が小さ
く、この状態で何らかの外乱が発生したり、負荷指令1
01を変化させると、再熱蒸気ライン27温度の過渡的
変動に対処できない場合が生じる。従来技術では前記事
態を避けるため、高品位燃料を大目に使用せざるを得な
い。
(3) It is necessary to reduce or increase the opening of the reheater gas distribution damper 25 by increasing or decreasing the heat absorption of the reheater 24. These are caused by the deviation of the heat absorption amount of the reheater 24 from the design point, and it is easy to always operate the damper 25 when the opening degree of the damper 25 is fully open or in the vicinity of fully closed. Said full opening,
In the vicinity of the fully closed position, there is little room for operation on one side of the opening degree of the damper 25, and in this state, some disturbance occurs or the load command 1
If 01 is changed, there may be cases where transient fluctuations in the temperature of the reheat steam line 27 cannot be handled. In the prior art, in order to avoid the above-mentioned situation, high-grade fuel must be used.

【0026】(4)水壁12の熱吸収増加・減少により
ガス再循環ダンパ29の開度を増加・減少する必要があ
る。これらは水壁12熱吸収量と過熱器18および再熱
器24の熱吸収量のバランスの設計的からのずれに起因
しており、このような場合、従来技術による図4の実施
形態では関数要素108を設定変更する必要があり、面
倒である。
(4) It is necessary to increase or decrease the opening of the gas recirculation damper 29 due to the increase or decrease of the heat absorption of the water wall 12. These are due to deviations from the design of the balance between the heat absorption of the water wall 12 and the heat absorption of the superheater 18 and the reheater 24. In such a case, the function of the prior art embodiment of FIG. The setting of the element 108 needs to be changed, which is troublesome.

【0027】また、ガス再循環は不足すると火炉7下部
の過熱やバーナ4の燃焼における窒素酸化物の増加を招
きやすく、過剰になりすぎると燃焼が不安定になる場合
が生じるため、前記関数108の設定変更は慎重でなけ
ればならず、水壁12の熱吸収増加・減少に即応的対処
が困難になりやすい。従来技術では前記事態を避けるた
め、高品位燃料を大目に使用せざるを得ない。
If the gas recirculation is insufficient, overheating of the lower part of the furnace 7 and an increase in nitrogen oxides in the combustion of the burner 4 are likely to occur, and if the gas recirculation is excessive, combustion may become unstable. Must be carefully changed, and it is likely that it is difficult to respond quickly to an increase or decrease in the heat absorption of the water wall 12. In the prior art, in order to avoid the above-mentioned situation, high-grade fuel must be used.

【0028】(5)火炉排ガス9温度が増加すると燃料
中の灰成分の融点を上回り、過熱器18や再過熱器24
付近に灰が進入する可能性が高まる。前記灰は火炉7に
落下すれば問題ないが、過熱器18や再熱器24付近に
進入すると冷却してその表面に付着し、伝熱性能の大幅
低下や閉塞をきたし、ボイラは概ね運転不可能になる。
従来技術では、前記事態は極めて重大であるので、火炉
排ガス9温度を下げる、燃料中の灰の融点を上げる、ま
たは、灰自体の含有量を減らす、のいずれかの観点で、
十分な余裕に配慮して高品位燃料を大目に使用せざるを
得ない。
(5) If the temperature of the furnace exhaust gas 9 increases, it exceeds the melting point of the ash component in the fuel, and the superheater 18 and the reheater 24
The likelihood of ash entering the vicinity increases. There is no problem if the ash falls into the furnace 7, but when it enters the vicinity of the superheater 18 or the reheater 24, it cools down and adheres to its surface, causing a significant decrease in heat transfer performance or blockage. Will be possible.
In the prior art, since the situation is extremely serious, in view of lowering the temperature of the furnace exhaust gas 9, increasing the melting point of the ash in the fuel, or reducing the content of the ash itself,
We have to contend with using high-grade fuel with sufficient margin.

【0029】(6)低品位燃料と高品位燃料を混合する
場合、高品位燃料の割合を可能な限り低減したボイラの
運転が望ましいが、低品位燃料は前述のように性状がば
らつく場合が多く、その最悪の性状を想定して、高品位
燃料を大目に使用せざるを得ない。
(6) When mixing low-grade fuel and high-grade fuel, it is desirable to operate a boiler in which the proportion of high-grade fuel is reduced as much as possible. However, low-grade fuel often varies in properties as described above. Assuming the worst properties, high-grade fuel must be used.

【0030】[0030]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0031】バーナを設けた火炉と、前記火炉を取り囲
む水冷壁と、前記水冷壁で発生した蒸気を前記火炉の排
ガス流路中で過熱する過熱器と、を備えたボイラ装置で
あって、前記水冷壁と前記過熱器とにおける熱交換量に
ついての割合を検知する検知手段と、燃焼速度の異なる
複数の燃料を供給する複数の燃料供給手段と、前記燃料
供給手段におけるそれぞれの燃料流量を調節する燃料調
節手段と、前記燃料調節手段で調節された複数の燃料を
混合し且つ前記バーナに供給する混合手段と、を有し、
前記水冷壁の熱交換量の前記過熱器に対する相対割合の
増加または減少を前記検知手段により検知し、前記検知
に基づいて前記複数燃料の流量調節を行うことによっ
て、燃焼速度の大なる燃料の混合割合をそれぞれ減少ま
たは増加するボイラ燃料混合制御装置。
A boiler device comprising: a furnace provided with a burner; a water cooling wall surrounding the furnace; and a superheater for heating steam generated in the water cooling wall in an exhaust gas flow path of the furnace. Detecting means for detecting the ratio of the amount of heat exchange between the water cooling wall and the superheater, a plurality of fuel supply means for supplying a plurality of fuels having different combustion speeds, and adjusting respective fuel flow rates in the fuel supply means. Fuel adjusting means, and mixing means for mixing the plurality of fuels adjusted by the fuel adjusting means and supplying the fuel to the burner;
An increase or decrease in the relative ratio of the heat exchange amount of the water-cooled wall to the superheater is detected by the detection means, and the flow rate of the plurality of fuels is adjusted based on the detection, thereby mixing the fuel having a high combustion speed. A boiler fuel mixing control device that decreases or increases the proportion, respectively.

【0032】また、バーナを設けた火炉と、前記火炉を
取り囲む水冷壁と、前記水冷壁で発生した蒸気を前記火
炉の排ガス流路中で過熱する過熱器と、前記過熱器への
注水量を調節する注水調節手段と、を備えたボイラ装置
であって、前記注水量を検知する検知手段と、燃焼速度
の異なる複数の燃料を供給する複数の燃料供給手段と、
前記燃料供給手段におけるそれぞれの燃料流量を調節す
る燃料調節手段と、前記燃料調節手段で調節された複数
の燃料を混合し且つ前記バーナに供給する混合手段と、
を有し、前記注水量の増加または減少を前記検知手段に
より検知し、前記検知に基づいて前記複数燃料の流量調
節を行うことによって、燃焼速度の大なる燃料の混合割
合をそれぞれ増加または減少するボイラ燃料混合制御装
置。
Further, a furnace provided with a burner, a water cooling wall surrounding the furnace, a superheater for superheating steam generated in the water cooling wall in an exhaust gas flow path of the furnace, and a water injection amount to the superheater A water injection adjustment means for adjusting, and a boiler device comprising: a detection means for detecting the water injection amount; a plurality of fuel supply means for supplying a plurality of fuels having different combustion rates;
Fuel adjusting means for adjusting each fuel flow rate in the fuel supply means, mixing means for mixing the plurality of fuels adjusted by the fuel adjusting means and supplying the fuel to the burner;
Detecting the increase or decrease of the water injection amount by the detection means, and adjusting the flow rate of the plurality of fuels based on the detection, thereby increasing or decreasing the mixing ratio of the fuel having a high combustion speed, respectively. Boiler fuel mixing control device.

【0033】また、バーナを設けた火炉と、前記火炉を
取り囲む水冷壁と、前記水冷壁で発生した蒸気を前記火
炉の排ガス流路中で過熱する過熱器および再熱器と、前
記再熱器への前記火炉の排ガスの流量配分を調節する流
量配分調節手段と、を備えたボイラ装置であって、前記
再熱器への前記火炉の排ガスの流量配分を検知する検知
手段と、燃焼速度の異なる複数の燃料を供給する複数の
燃料供給手段と、前記燃料供給手段におけるそれぞれの
燃料流量を調節する燃料調節手段と、前記燃料調節手段
で調節された複数の燃料を混合し且つ前記バーナに供給
する混合手段と、を有し、前記再熱器への排ガス流量配
分の増加または減少を前記検知手段により検知し、前記
検知に基づいて前記複数燃料の流量調節を行うことによ
って、燃焼速度の大なる燃料の混合割合をそれぞれ減少
または増加するボイラ燃料混合制御装置。
A furnace provided with a burner; a water cooling wall surrounding the furnace; a superheater and a reheater for superheating steam generated in the water cooling wall in an exhaust gas flow path of the furnace; A flow rate distribution adjusting means for adjusting the flow rate distribution of the exhaust gas of the furnace to the reheater, wherein the detecting means for detecting the flow rate distribution of the exhaust gas of the furnace to the reheater, A plurality of fuel supply means for supplying a plurality of different fuels; a fuel adjustment means for adjusting a fuel flow rate in the fuel supply means; and a plurality of fuels adjusted by the fuel adjustment means and supplied to the burner. Mixing means, and an increase or a decrease in the exhaust gas flow rate distribution to the reheater is detected by the detection means, and the flow rate adjustment of the plurality of fuels is performed based on the detection, whereby the combustion speed is reduced. Boiler fuel mixing control apparatus comprising mixing ratio of fuel to decrease or increase, respectively.

【0034】また、バーナを設けた火炉と、前記火炉を
取り囲む水冷壁と、前記水冷壁で発生した蒸気を前記火
炉の排ガス流路中で過熱する過熱器および再熱器と、前
記過熱器および再熱器を通過した排ガスの前記火炉への
再循環量を調節する再循環量調節手段と、を備えたボイ
ラ装置であって、前記再循環量を検知する検知手段と、
燃焼速度の異なる複数の燃料を供給する複数の燃料供給
手段と、前記燃料供給手段におけるそれぞれの燃料流量
を調節する燃料調節手段と、前記燃料調節手段で調節さ
れた複数の燃料を混合し且つ前記バーナに供給する混合
手段と、を有し、前記再循環量の増加または減少を前記
検知手段により検知し、前記検知に基づいて前記複数燃
料の流量調節を行うことによって、燃焼速度の大なる燃
料の混合割合をそれぞれ減少または増加するボイラ燃料
混合制御装置。
Further, a furnace provided with a burner, a water cooling wall surrounding the furnace, a superheater and a reheater for superheating steam generated in the water cooling wall in an exhaust gas flow path of the furnace, the superheater, Recirculation amount adjusting means for adjusting the amount of recirculation of exhaust gas passing through a reheater to the furnace, and a boiler device including: a detection means for detecting the amount of recirculation,
A plurality of fuel supply means for supplying a plurality of fuels having different combustion rates; a fuel adjustment means for adjusting a fuel flow rate in the fuel supply means; a plurality of fuels adjusted by the fuel adjustment means; Mixing means for supplying the fuel to the burner, wherein the increase or decrease in the recirculation amount is detected by the detection means, and the flow rate of the plurality of fuels is adjusted based on the detection, whereby the fuel having a high combustion rate is obtained. Boiler fuel mixing control device which decreases or increases the mixing ratio of the boiler respectively.

【0035】また、バーナを設けた火炉と、前記火炉を
取り囲む水冷壁と、前記火炉出口の排ガス温度を計測す
る排ガス温度計測手段と、を備えたボイラ装置であっ
て、燃焼速度の異なる複数の燃料を供給する複数の燃料
供給手段と、前記燃料供給手段におけるそれぞれの燃料
流量を調節する燃料調節手段と、前記燃料調節手段で調
節された複数の燃料を混合し且つ前記バーナに供給する
混合手段と、を有し、前記火炉排ガス温度の増加または
減少を前記排ガス温度計測手段により計測し、前記計測
に基づいて前記複数燃料の流量調節を行うことによっ
て、燃焼速度の大なる燃料の混合割合をそれぞれ増加ま
たは減少するボイラ燃料混合制御装置。
A boiler apparatus comprising: a furnace provided with a burner; a water cooling wall surrounding the furnace; and an exhaust gas temperature measuring means for measuring an exhaust gas temperature at the furnace outlet, wherein the boiler apparatus has a plurality of combustion speeds different from each other. A plurality of fuel supply means for supplying fuel, a fuel adjustment means for adjusting the flow rate of each fuel in the fuel supply means, and a mixing means for mixing the plurality of fuels adjusted by the fuel adjustment means and supplying the fuel to the burner And measuring the increase or decrease of the furnace exhaust gas temperature by the exhaust gas temperature measuring means, and adjusting the flow rate of the plurality of fuels based on the measurement, thereby increasing the mixing ratio of the fuel having a high combustion rate. Boiler fuel mixing control device which increases or decreases respectively.

【0036】[0036]

【発明の実施の形態】本発明の実施形態について、図1
及び図2に基づいて以下説明する。ここで、4はバー
ナ、5は空気ライン、6は通風機、7は火炉、8はエア
レジスタ、9は火炉排ガス、10は給水ライン、11は
ポンプ、12は水壁、14は温度検出器、15は減温
器、17は注水弁、18は過熱器、19はガスダンパ、
20は温度検出器、21は主蒸気ライン、22は高圧タ
ービン、24は再熱器、25はガスダンパ、26は温度
検出器、27は高温再熱蒸気ライン、28は低圧タービ
ン、29は再循環ダンパ、30はガス再循環ライン、3
1は通風機、51,52は弁、53は火炉排ガス温度計
測手段、54は燃料性状分析器、55は燃料供給A系ラ
イン、56は燃料供給B系ライン、をそれぞれ表す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
This will be described below with reference to FIG. Here, 4 is a burner, 5 is an air line, 6 is a ventilator, 7 is a furnace, 8 is an air register, 9 is furnace exhaust gas, 10 is a water supply line, 11 is a pump, 12 is a water wall, and 14 is a temperature detector. , 15 is a temperature reducer, 17 is a water injection valve, 18 is a superheater, 19 is a gas damper,
20 is a temperature detector, 21 is a main steam line, 22 is a high-pressure turbine, 24 is a reheater, 25 is a gas damper, 26 is a temperature detector, 27 is a high-temperature reheat steam line, 28 is a low-pressure turbine, and 29 is recirculation. Damper, 30 is a gas recirculation line, 3
1 is a ventilator, 51 and 52 are valves, 53 is a furnace exhaust gas temperature measuring means, 54 is a fuel property analyzer, 55 is a fuel supply A system line, and 56 is a fuel supply B system line.

【0037】図1は本発明の実施形態に係る制御装置を
示し、図2は本発明の実施形態のボイラ装置本体を示
す。以下、従来技術による図3のボイラ装置本体と図4
の制御装置と同一部分には同一の番号を付してあり、共
通する構成要素についてはその説明を省略する。ところ
で、図3と図4に図示された全構成が本発明の一つの実
施形態であるとして、まず説明するが、図示の全構成の
内のいくつかの構成要素部分を省いたものも本発明の他
の実施形態を構成するものであるが、これについては後
述する。
FIG. 1 shows a control device according to an embodiment of the present invention, and FIG. 2 shows a boiler device main body of the embodiment of the present invention. Hereinafter, the boiler apparatus body of FIG. 3 and FIG.
The same reference numerals are given to the same portions as those of the control device described above, and the description of the common components will be omitted. By the way, it will be described first that all the configurations shown in FIGS. 3 and 4 are one embodiment of the present invention, but some of all the configurations shown in FIG. This constitutes another embodiment, which will be described later.

【0038】図2の本実施形態に係るボイラ装置本体の
構成において、従来技術を図示した図3と異なる点は、
燃料供給ラインとして燃焼速度の異なる2種類のライン
をA系55とB系56として設け、対応する燃料流量
を、弁51と弁52で個別に調整可能とした点、火炉排
ガス温度計測手段53を設けた点、バーナ入り口のオン
ライン燃料性状分析器54を設けた点、の3点である。
The configuration of the boiler apparatus main body according to the present embodiment shown in FIG. 2 is different from that of FIG.
Two types of lines having different combustion speeds are provided as A system 55 and B system 56 as fuel supply lines, and the corresponding fuel flow rates can be individually adjusted by valves 51 and 52. And an on-line fuel property analyzer 54 at the entrance of the burner.

【0039】ここで、計測手段53は、本出願人による
特開平8−145812号公報、特開平9−17857
6に係わる音響式ガス温度計測装置が一例として挙げら
れ、この音響式ガス温度計測装置は高精度で耐久性があ
って好適である。また、分析器54は、例えば、レーザ
誘起ブレークダウン法(LIBS法)でスペクトル上に
おける各元素に対応する山の高さを得て、水素と炭素の
前記高さの比を得る方法を用いたものが一例である。こ
の方法の詳細は、公知の、例えば、Ottesen,
D.K.etal:Laser spark emis
sion spectroscopy for in
situ.Rcal−time monitoring
of pulverized coal parti
cle composition;Energy an
d Fuels,Vol.5,No.2,pp304−
312,1991等に記載されている。
Here, the measuring means 53 is disclosed in JP-A-8-145812 and JP-A-9-17857 by the present applicant.
The acoustic gas temperature measuring device according to No. 6 is given as an example, and the acoustic gas temperature measuring device is suitable for its high accuracy and durability. In addition, the analyzer 54 uses a method of obtaining the height of the peak corresponding to each element on the spectrum by the laser-induced breakdown method (LIBS method) and obtaining the ratio of the height of hydrogen and carbon, for example. Things are an example. Details of this method are described in known, for example, Ottesen,
D. K. etal: Laser spark emis
sion spectroscopy for in
situ. Rcal-time monitoring
of pulverized coal parti
cle composition; Energy an
d Fuels, Vol. 5, No. 2, pp304-
312, 1991 and the like.

【0040】図1の制御装置において、従来技術の図4
と異なる点は以下の通りである。即ち、スプレ弁17の
開度指令124およびガスダンパ25の開度に係わる再
熱器ガス配分指令178を、それぞれ関数要素155お
よび関数要素153に入力して、それぞれスプレ弁開度
に係わる補正156およびダンパ開度に係わる補正15
4を得る。そして、これらの補正156および154
と、負荷指令101を関数要素151に与えて得られる
火炉排ガス温度基本目標値152と、を加算要素157
で加え、火炉排ガス温度の目標値158を得る。
In the control device shown in FIG.
The differences are as follows. That is, the re-heater gas distribution command 178 relating to the opening degree 124 of the spray valve 17 and the opening degree of the gas damper 25 is input to the function element 155 and the function element 153, respectively, and the correction 156 relating to the spray valve opening degree and Correction 15 related to damper opening
Get 4. Then, these corrections 156 and 154
And a furnace exhaust gas temperature basic target value 152 obtained by giving the load command 101 to the function element 151.
In addition, a target value 158 of the furnace exhaust gas temperature is obtained.

【0041】次に、目標値158と温度検出手段53に
よる前記排ガス温度計測値164の偏差160を減算要
素159で算出し、これをPID要素161に与えて、
燃料性状目標信号186を得る。前記燃料性状は前述し
た炭素と水素の比で与えても良いし、燃料比で与えても
良い。
Next, a difference 160 between the target value 158 and the exhaust gas temperature measured value 164 by the temperature detecting means 53 is calculated by a subtraction element 159, which is given to a PID element 161.
A fuel property target signal 186 is obtained. The fuel property may be given by the above-described ratio of carbon and hydrogen, or may be given by the fuel ratio.

【0042】さらに、目標信号186と燃料性状実測信
号185とを減算要素184で比較し、前記偏差をPI
要素187で処理して燃料混合比司令信号188を得
る。
Further, the target signal 186 and the fuel property measurement signal 185 are compared by a subtraction element 184, and the deviation is calculated by PI
Processed at element 187, a fuel mixture ratio command signal 188 is obtained.

【0043】このとき、司令信号188は流量調整手段
51,52の非直線性を補償し、一方が単調増加、他方
は単調減少の関数要素167,171を介して総燃料司
令信号107に乗じられ、対応する流量調整手段51,
52を駆動する。すなわち、司令信号188に応じて、
流量調整手段51に係わる燃料量が増加すれば、流量調
整手段52に係わる燃料量は減少する構成をなしてい
る。
At this time, the command signal 188 compensates for the non-linearity of the flow control means 51, 52, one of which is multiplied by the monotonically increasing function element 167, 171 through the monotonically decreasing function element 167, to the total fuel command signal 107. , Corresponding flow rate adjusting means 51,
52 is driven. That is, according to the command signal 188,
When the amount of fuel related to the flow rate adjusting means 51 increases, the amount of fuel related to the flow rate adjusting means 52 decreases.

【0044】以上の説明は、図1に示された制御装置の
全ての構成、機能、作用について開示したものである
が、図1の制御装置の部分的構成についても、本発明の
実施形態を構成し、且つ前記構成に伴う機能、作用を奏
するものである。以下、その部分的構成の特徴を挙げ
る。
Although the above description discloses all the configurations, functions, and operations of the control device shown in FIG. 1, the partial configuration of the control device shown in FIG. It has a configuration and functions and effects associated with the configuration. Hereinafter, features of the partial configuration will be described.

【0045】(1)過熱器注水弁17の状態を考慮し
て、関数要素155を設ける構成。
(1) A configuration in which the function element 155 is provided in consideration of the state of the superheater injection valve 17.

【0046】(2)再熱器ガスダンパ25の状態を考慮
して、関数要素153を設ける構成。
(2) A configuration in which the function element 153 is provided in consideration of the state of the reheater gas damper 25.

【0047】(3)負荷司令(従って、水壁12の熱吸
収配分の設計値)を考慮して、関数要素151を設ける
構成。
(3) A configuration in which the function element 151 is provided in consideration of the load command (therefore, the design value of the heat absorption distribution of the water wall 12).

【0048】(4)火炉排ガス9温度の影響を考慮し
て、計測手段53、減算要素159,PID要素161
を設ける構成。
(4) Considering the influence of the temperature of the furnace exhaust gas 9, the measuring means 53, the subtraction element 159, the PID element 161
Configuration to provide.

【0049】(5)燃料性状のばらつきの影響を考慮し
て、計測手段54、減算要素184,PI要素187を
設ける構成。
(5) A configuration in which the measuring means 54, the subtraction element 184, and the PI element 187 are provided in consideration of the influence of variations in fuel properties.

【0050】そして、ボイラ制御装置中にあって、上記
5つの部分的構成のうち1つでも図4に示す制御装置の
構成に加えれば、本発明の他の実施形態を構成するもの
であり、且つ前記部分的構成を採用したことに伴って、
本発明の目的である「可能な限り高品位燃料の混合を低
減した経済的なボイラ運転の実現」を達成できるもので
ある。また、上記5つの部分的構成のそれぞれを任意に
組み合わせて、それらを図4の制御装置に適用したもの
も本発明の他の実施形態として成立するものである。
In the boiler control device, if at least one of the above five partial configurations is added to the configuration of the control device shown in FIG. 4, another embodiment of the present invention is configured. And with the adoption of the partial configuration,
The object of the present invention is to achieve the "realization of economical boiler operation in which the mixing of high-grade fuel is reduced as much as possible". Further, any of the above five partial configurations may be arbitrarily combined and applied to the control device of FIG. 4 as another embodiment of the present invention.

【0051】実際上、例えば、燃料が安価であって、燃
焼速度が特殊な値であるが、性状のばらつきがさほど問
題でなければ、高価な計測手段54を含む上記部分的構
成(5)の部分を省略して、本発明の他の実施形態を構
成することで、本発明の実施コストを低減することも有
益である。
In practice, for example, if the fuel is inexpensive and the combustion rate is a special value, but the variation in properties is not a problem, the partial configuration (5) including the expensive measuring means 54 can be used. It is also advantageous to reduce the implementation cost of the present invention by omitting parts and configuring another embodiment of the present invention.

【0052】また、図1に示す構成において、ガス温度
目標値152、ガス温度計測値164、及び燃料性状目
標値186、燃料性状計測値185は、それぞれ絶対値
(例えば、ガス温度1200℃、燃料比1.5等)で与
えた場合を想定して説明しているが、制御システム設計
上の基準値からの相対値(例えば、ガス温度+10℃、
燃料比−0.1等)で与えても良い。これにより、前記
部分的構成の追加、削除の際の関数要素類の設定変更が
簡単になる。
In the configuration shown in FIG. 1, the gas temperature target value 152, the gas temperature measurement value 164, the fuel property target value 186, and the fuel property measurement value 185 are absolute values (for example, a gas temperature of 1200.degree. Although the description is given assuming that the value is given by a ratio of 1.5 or the like, a relative value (for example, gas temperature + 10 ° C.,
(Fuel ratio -0.1 etc.). This makes it easy to change the setting of the function elements when adding or deleting the partial configuration.

【0053】また、「発明が解決しようとする課題」で
述べた水壁と過熱器とにおける熱吸収量の大小に伴う問
題点を解消するために、水壁12と過熱器18とにおけ
る熱吸収量を検知する必要があるが、これを検知するに
は種々の方法があり、例えば、水側から求める方法で
は、水壁と過熱器の両者の出、入口における水、蒸気の
温度、圧力からエンタルピを求め、両伝熱面におけるエ
ンタルピの上昇幅に両者を通過する水、蒸気の流量を乗
じれば良い。もし、両伝熱面の前記流量がほぼ等しけれ
ば、単にエンタルピの上昇幅を比較することで両者の熱
吸収量を検知することができる。また、ガス側において
ガス温度、流量、比熱を乗じれば当該位置のガスが保有
する総エネルギが知れるから、火炉7出口及び過熱器1
8出口のガス保有エネルギとバーナ4入熱の関係から、
両伝熱面における熱交換量を知ることができる。
Further, in order to solve the problem associated with the amount of heat absorption between the water wall and the superheater described in “Problems to be Solved by the Invention”, the heat absorption between the water wall 12 and the superheater 18 is eliminated. It is necessary to detect the amount, but there are various methods to detect this, for example, in the method obtained from the water side, the temperature of water, steam at the inlet and outlet of both the water wall and the superheater, the temperature, the pressure The enthalpy is determined, and the rising width of the enthalpy on both heat transfer surfaces may be multiplied by the flow rates of water and steam passing through both. If the flow rates of the two heat transfer surfaces are substantially equal, it is possible to detect the amount of heat absorption between the two simply by comparing the rising width of the enthalpy. Further, if the gas side, the gas temperature, the flow rate, and the specific heat are multiplied, the total energy held by the gas at the position can be known.
From the relationship between the gas holding energy at outlet 8 and the heat input to burner 4,
The amount of heat exchange on both heat transfer surfaces can be known.

【0054】いずれにせよ、両伝熱面の熱交換量の相対
割合を知れば、水冷壁12の熱交換量の相対割合の増加
または減少時において燃焼速度の大なる燃料の割合をそ
れぞれ減少または増加して、本発明の目的を達すること
ができる。
In any case, if the relative ratio of the heat exchange amount between the two heat transfer surfaces is known, the ratio of the fuel having a high combustion rate can be reduced or increased when the relative ratio of the heat exchange amount of the water cooling wall 12 increases or decreases, respectively. With the increase, the object of the present invention can be achieved.

【0055】以上説明したように、本発明の実施形態
は、次のような構成上の特徴、作用乃至機能を奏するも
のを含むものである。
As described above, the embodiments of the present invention include those having the following structural features, functions and functions.

【0056】(1)水冷壁の熱交換量の相対割合の増加
または減少時において、燃焼速度の大なる燃料の割合を
それぞれ減少または増加する。なお、水冷壁の熱交換量
の相対割合という意味は、「水冷壁の熱交換量の、過熱
器の熱交換量に対する割合」のことであり、運転負荷が
異なれば各部熱吸収量の絶対値がそれぞれ異なってくる
のは当然であるから、同一負荷の条件で考えるという意
味で「相対」値に着目している。そして、水冷壁の熱交
換量の相対割合の変更についての解決手法は、図1に示
す全体構成であって、以下の(2)〜(6)とは別異の
技術観点から把握した技術的思想である。
(1) When the relative ratio of the heat exchange amount of the water-cooled wall increases or decreases, the ratio of the fuel whose combustion speed is high is decreased or increased, respectively. In addition, the meaning of the relative ratio of the heat exchange amount of the water cooling wall means "the ratio of the heat exchange amount of the water cooling wall to the heat exchange amount of the superheater". Are naturally different from each other, and therefore, attention is paid to “relative” values in the sense that they are considered under the same load condition. The solution to the change in the relative ratio of the heat exchange amount of the water-cooled wall has the overall configuration shown in FIG. 1 and is technically understood from a different technical viewpoint from the following (2) to (6). It is an idea.

【0057】(2)注水量16の増加または減少時にお
いて、燃焼速度の大なる燃料の割合をそれぞれ増加また
は減少する。
(2) When the water injection amount 16 increases or decreases, the ratio of the fuel having the higher combustion rate is increased or decreased, respectively.

【0058】(3)再熱器24への排ガス流量配分の増
加または減少時において、燃焼速度の大なる燃料の割合
をそれぞれ減少または増加する。
(3) When increasing or decreasing the distribution of the exhaust gas flow rate to the reheater 24, the proportion of fuel having a high combustion rate is decreased or increased, respectively.

【0059】(4)ガス再循環量30の増加(火炉の温
度が上がり過ぎ)または減少時において、燃焼速度の大
なる燃料の割合をそれぞれ減少または増加する。
(4) When the gas recirculation amount 30 is increased (the temperature of the furnace is too high) or decreased, the proportion of fuel having a high combustion rate is decreased or increased, respectively.

【0060】(5)火炉排ガス温度の計測または推定手
段を設置し、火炉排ガス温度の増加または減少時におい
て、燃焼速度の大なる燃料の割合をそれぞれ増加または
減少する。
(5) A means for measuring or estimating furnace exhaust gas temperature is provided to increase or decrease the proportion of fuel having a high combustion rate when the furnace exhaust gas temperature increases or decreases, respectively.

【0061】(6)バーナ入口の燃料性状のオンライン
分析手段を設け、前記バーナ入口の燃料性状の目標値を
司令し、前述のオンライン分析手段の計測値と前記目標
値との偏差を低減する方向に前述した複数の燃料の混合
割合を調節する。
(6) A fuel property online analysis means at the burner inlet is provided, and a target value of the fuel property at the burner inlet is commanded to reduce the deviation between the measured value of the online analysis means and the target value. The mixing ratio of the plurality of fuels described above is adjusted.

【0062】そして、それぞれの作用乃至機能は次の通
りである。
The functions and functions are as follows.

【0063】(1)水冷壁12の熱交換量の相対割合の
増加、減少時において燃焼速度の大なる燃料の割合をそ
れぞれ減少、増加すれば、火炉内のガス温度分布(従っ
て熱交換量の分布)が、それぞれ、後流側、前流側に移
動し、過熱器18との比較において水冷壁12の熱交換
量の相対割合が減少、増加して適正値となる。前記燃料
割合の変更は状況に応じて必要かつ十分に行われる。
(1) If the relative proportion of the heat exchange amount of the water cooling wall 12 is increased or decreased, and the proportion of the fuel having a higher combustion rate is decreased or increased, respectively, the gas temperature distribution in the furnace (and hence the heat exchange amount) Distribution) respectively move to the downstream side and the upstream side, and the relative ratio of the heat exchange amount of the water-cooling wall 12 decreases and increases to an appropriate value in comparison with the superheater 18. The change of the fuel ratio is necessary and sufficient depending on the situation.

【0064】(2)注水量16の増加、減少時において
燃焼速度の大なる燃料の割合をそれぞれ増加、減少すれ
ば、ガス温度分布(従って熱吸収)の中心部がそれぞれ
水壁12側、過熱器18側に移動して過熱器18の熱吸
収量がそれぞれ減少、増加し、ボイラ水壁12と過熱器
の熱吸収バランスの設計点からのずれが解消する。
(2) If the proportion of fuel having a high combustion rate is increased or decreased when the water injection amount 16 is increased or decreased, respectively, the center of the gas temperature distribution (accordingly, heat absorption) becomes the water wall 12 side, and The amount of heat absorbed by the superheater 18 is decreased and increased by moving to the side of the heater 18, and the deviation of the heat absorption balance between the boiler water wall 12 and the superheater from the design point is eliminated.

【0065】すなわち、図4のPID要素121の作用
で注水弁17の開度がそれぞれ減少、増加し、開閉側と
もに操作余地を残した開度になり、以後の主蒸気ライン
21温度の過渡的変動に余裕をもって対処できる。前記
燃料割合の変更は状況に応じて必要かつ十分に行われ
る。
That is, the opening degree of the water injection valve 17 decreases and increases by the action of the PID element 121 in FIG. Can handle fluctuations with a margin. The change of the fuel ratio is necessary and sufficient depending on the situation.

【0066】(3)再熱器24への排ガス流量配分の増
加、減少時において燃焼速度の大なる燃料の割合をそれ
ぞれ減少、増加すれば、ガス温度分布(従って熱吸収)
の中心部がそれぞれ再熱器24側、水壁12側に移動し
て、再熱器24の熱吸収量がそれぞれ増加、減少し、再
熱器24の熱吸収の設計点からのずれが解消する。
(3) If the ratio of fuel having a high combustion rate is decreased or increased when the distribution of exhaust gas flow to the reheater 24 is increased or decreased, the gas temperature distribution (accordingly, heat absorption)
Move to the reheater 24 side and the water wall 12 side, respectively, the amount of heat absorption of the reheater 24 increases and decreases, respectively, and the deviation of the heat absorption of the reheater 24 from the design point is eliminated. I do.

【0067】すなわち、図4のPID要素112の作用
でダンパ25の開度がそれぞれ減少、増加し、開閉側と
もに操作余地を残した開度になり、以後の再熱蒸気ライ
ン27温度の過渡的変動に余裕をもって対処できる。前
記燃料割合の変更は状況に応じて必要かつ十分に行われ
る。
That is, the opening degree of the damper 25 decreases and increases by the action of the PID element 112 in FIG. 4, and the opening degree of the damper 25 remains open on both the open and closed sides. Can handle fluctuations with a margin. The change of the fuel ratio is necessary and sufficient depending on the situation.

【0068】(4)ガス再循環量30の増加、減少時に
おいて、燃焼速度の大なる燃料の割合をそれぞれ減少、
増加すれば、ガス温度分布(従って熱吸収)の中心部が
それぞれ過熱器18側、水壁12側に移動して水壁12
側の熱吸収量がそれぞれ減少、増加し、面倒な関数要素
108の設定変更を行うことなく水壁12の熱吸収の設
計点からのずれが解消する。前記燃料割合の変更は状況
に応じて必要かつ十分に行われる。
(4) When the gas recirculation amount 30 is increased or decreased, the proportion of fuel having a high combustion rate is decreased,
If it increases, the central part of the gas temperature distribution (and therefore the heat absorption) moves to the superheater 18 side and the water wall 12 side, respectively.
The amount of heat absorption on the side decreases and increases, and the deviation of the heat absorption of the water wall 12 from the design point is eliminated without making any troublesome setting change of the function element 108. The change of the fuel ratio is necessary and sufficient depending on the situation.

【0069】(5)火炉排ガス温度の計測または推定手
段を設置し、火炉排ガス温度の増加、減少時において、
燃焼速度の大なる燃料の割合をそれぞれ増加、減少すれ
ば、ガス温度分布の中心部がそれぞれ水壁12前流側、
過熱器18側(水壁12後流側)に移動して火炉排ガス
9温度がそれぞれ減少、増加する。従って、前記燃料割
合の状況に応じた必要かつ十分な変更により、火炉排ガ
ス9温度を燃料中の灰成分の融点以下に管理して、前記
灰が過熱器18や再熱器24付近に進入する危険が解消
できる。
(5) A means for measuring or estimating the furnace exhaust gas temperature is installed, and when the furnace exhaust gas temperature increases or decreases,
By increasing or decreasing the proportion of fuel having a high combustion rate, respectively, the central part of the gas temperature distribution becomes the upstream side of the water wall 12,
It moves to the superheater 18 side (the downstream side of the water wall 12), and the temperature of the furnace exhaust gas 9 decreases and increases, respectively. Therefore, by a necessary and sufficient change according to the situation of the fuel ratio, the temperature of the furnace exhaust gas 9 is controlled to be equal to or lower than the melting point of the ash component in the fuel, and the ash enters the vicinity of the superheater 18 and the reheater 24. Danger can be eliminated.

【0070】(6)バーナ入口の燃料性状のオンライン
分析手段を設け、前記バーナ入口の燃料性状の目標値を
司令し、前述のオンライン分析手段の計測値と前記目標
値との偏差を低減する方向に前述した複数の燃料の混合
割合を調節することにより、低品位燃料の性状のばらつ
きに応じて、高品位炭を必要かつ十分な量だけ混合でき
る。
(6) On-line analysis means for the fuel property at the burner inlet is provided, and a target value of the fuel property at the burner inlet is commanded to reduce the deviation between the measured value of the online analysis means and the target value. By adjusting the mixing ratio of the plurality of fuels described above, a high-grade coal can be mixed in a necessary and sufficient amount according to the variation in the properties of the low-grade fuel.

【0071】[0071]

【発明の効果】本発明によれば、次のような効果を奏す
ることができる。
According to the present invention, the following effects can be obtained.

【0072】高価な高品位炭の必要最低量の混合によ
り、水壁12の熱交換量を適正範囲に維持し、ボイラ発
生蒸気量の不足や、水壁12メタル温度高、等の重大な
不具合を未然に防止できる。
By mixing the required minimum amount of expensive high-grade coal, the amount of heat exchange in the water wall 12 is maintained in an appropriate range, and there are serious problems such as a shortage of steam generated by the boiler and a high metal temperature of the water wall 12. Can be prevented beforehand.

【0073】高価な高品位炭の必要最低量の混合によ
り、主蒸気ライン21温度の過渡的変動に余裕をもって
対処できる。
By mixing the necessary minimum amount of expensive high-grade coal, transient fluctuations in the temperature of the main steam line 21 can be adequately dealt with.

【0074】高価な高品位炭の必要最低量の混合によ
り、再熱蒸気ライン27温度の過渡的変動に余裕をもっ
て対処できる。
By mixing the necessary minimum amount of expensive high-grade coal, transient fluctuations in the temperature of the reheat steam line 27 can be adequately dealt with.

【0075】高価な高品位炭の必要最低量の混合によ
り、面倒な関数要素108の設定変更を行うことなく水
壁12の熱吸収の設計点からのずれが解消する。
By mixing the required minimum amount of expensive high-grade coal, the deviation of the heat absorption of the water wall 12 from the design point is eliminated without complicated setting change of the function element 108.

【0076】高価な高品位炭の必要最低量の混合によ
り、燃料中の灰が過熱器18や再熱器24付近に進入す
る危険が解消できる。
By mixing the necessary minimum amount of expensive high-grade coal, the danger of ash in the fuel entering the vicinity of the superheater 18 and the reheater 24 can be eliminated.

【0077】高価な高品位炭の必要最低量の混合によ
り、低品位燃料の性状のばらつきに係わる不具合を解消
できる。
By mixing the required minimum amount of expensive high-grade coal, it is possible to solve the problems related to the variation in properties of low-grade fuel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る制御装置を示す図であ
る。
FIG. 1 is a diagram showing a control device according to an embodiment of the present invention.

【図2】本発明の実施形態に係るボイラ装置本体を示す
図である。
FIG. 2 is a diagram showing a boiler device main body according to the embodiment of the present invention.

【図3】従来技術のボイラ装置本体を示す図である。FIG. 3 is a view showing a conventional boiler apparatus main body.

【図4】従来技術の制御装置を示す図である。FIG. 4 is a diagram showing a control device according to the related art.

【符号の説明】[Explanation of symbols]

1 燃料ライン 2 流量調節手段 4 バーナ 5 空気ライン 6 通風機 7 火炉 8 エアレジスタ 9 火炉排ガス 10 給水ライン 11 ポンプ 12 水壁 14 温度検出器 15 減温器 17 注水弁 18 過熱器 19 ガスダンパ 20 温度検出器 21 主蒸気ライン 22 高圧タービン 24 再熱器 25 ガスダンパ 26 温度検出器 27 高温再熱蒸気ライン 28 低圧タービン 29 再循環ダンパ 30 ガス再循環ライン 31 通風機 51,52 弁 53 火炉排ガス温度計測手段 54 燃料性状分析器 55 燃料供給A系ライン 56 燃料供給B系ライン DESCRIPTION OF SYMBOLS 1 Fuel line 2 Flow control means 4 Burner 5 Air line 6 Ventilator 7 Furnace 8 Air register 9 Furnace exhaust gas 10 Water supply line 11 Pump 12 Water wall 14 Temperature detector 15 Desuperheater 17 Water injection valve 18 Superheater 19 Gas damper 20 Temperature detection Apparatus 21 Main steam line 22 High pressure turbine 24 Reheater 25 Gas damper 26 Temperature detector 27 High temperature reheat steam line 28 Low pressure turbine 29 Recirculation damper 30 Gas recirculation line 31 Ventilator 51, 52 Valve 53 Furnace exhaust gas temperature measuring means 54 Fuel property analyzer 55 Fuel supply A system line 56 Fuel supply B system line

フロントページの続き (72)発明者 津村 俊一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内Continued on the front page (72) Inventor Shunichi Tsumura 6-9 Takaracho, Kure City, Hiroshima Pref. Babcock Hitachi Kure Factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 バーナを設けた火炉と、前記火炉を取り
囲む水冷壁と、前記水冷壁で発生した蒸気を前記火炉の
排ガス流路中で過熱する過熱器と、を備えたボイラ装置
であって、 前記水冷壁と前記過熱器とにおける熱交換量についての
割合を検知する検知手段と、 燃焼速度の異なる複数の燃料を供給する複数の燃料供給
手段と、 前記燃料供給手段におけるそれぞれの燃料流量を調節す
る燃料調節手段と、 前記燃料調節手段で調節された複数の燃料を混合し且つ
前記バーナに供給する混合手段と、を有し、 前記水冷壁の熱交換量の前記過熱器に対する相対割合の
増加または減少を前記検知手段により検知し、前記検知
に基づいて前記複数燃料の流量調節を行うことによっ
て、燃焼速度の大なる燃料の混合割合をそれぞれ減少ま
たは増加することを特徴とするボイラ燃料混合制御装
置。
1. A boiler apparatus comprising: a furnace provided with a burner; a water cooling wall surrounding the furnace; and a superheater for heating steam generated in the water cooling wall in an exhaust gas flow path of the furnace. Detecting means for detecting the ratio of the amount of heat exchange between the water cooling wall and the superheater; a plurality of fuel supply means for supplying a plurality of fuels having different combustion rates; and a fuel flow rate in the fuel supply means. A fuel adjusting means for adjusting, and a mixing means for mixing the plurality of fuels adjusted by the fuel adjusting means and supplying the fuel to the burner, wherein a relative ratio of a heat exchange amount of the water cooling wall to the superheater is set. The increase or decrease is detected by the detection means, and the flow rate of the plurality of fuels is adjusted based on the detection to reduce or increase the mixing ratio of the fuel having a high combustion speed. Boiler fuel mixing control apparatus according to claim.
【請求項2】 バーナを設けた火炉と、前記火炉を取り
囲む水冷壁と、前記水冷壁で発生した蒸気を前記火炉の
排ガス流路中で過熱する過熱器と、前記過熱器への注水
量を調節する注水調節手段と、を備えたボイラ装置であ
って、 前記注水量を検知する検知手段と、 燃焼速度の異なる複数の燃料を供給する複数の燃料供給
手段と、 前記燃料供給手段におけるそれぞれの燃料流量を調節す
る燃料調節手段と、 前記燃料調節手段で調節された複数の燃料を混合し且つ
前記バーナに供給する混合手段と、を有し、 前記注水量の増加または減少を前記検知手段により検知
し、前記検知に基づいて前記複数燃料の流量調節を行う
ことによって、燃焼速度の大なる燃料の混合割合をそれ
ぞれ増加または減少することを特徴とするボイラ燃料混
合制御装置。
2. A furnace provided with a burner, a water cooling wall surrounding the furnace, a superheater for superheating steam generated in the water cooling wall in an exhaust gas flow path of the furnace, and a water injection amount to the superheater. A water injection adjusting means for adjusting the water injection amount, a detecting means for detecting the amount of injected water, a plurality of fuel supply means for supplying a plurality of fuels having different combustion speeds, and each of the fuel supply means A fuel adjusting means for adjusting a fuel flow rate; and a mixing means for mixing the plurality of fuels adjusted by the fuel adjusting means and supplying the fuel to the burner, wherein the detecting means detects an increase or decrease in the water injection amount. A boiler fuel mixing control device for detecting and adjusting the flow rate of the plurality of fuels based on the detection to increase or decrease the mixing ratio of the fuel having a high combustion speed, respectively.
【請求項3】 バーナを設けた火炉と、前記火炉を取り
囲む水冷壁と、前記水冷壁で発生した蒸気を前記火炉の
排ガス流路中で過熱する過熱器および再熱器と、前記再
熱器への前記火炉の排ガスの流量配分を調節する流量配
分調節手段と、を備えたボイラ装置であって、 前記再熱器への前記火炉の排ガスの流量配分を検知する
検知手段と、 燃焼速度の異なる複数の燃料を供給する複数の燃料供給
手段と、 前記燃料供給手段におけるそれぞれの燃料流量を調節す
る燃料調節手段と、 前記燃料調節手段で調節された複数の燃料を混合し且つ
前記バーナに供給する混合手段と、を有し、 前記再熱器への排ガス流量配分の増加または減少を前記
検知手段により検知し、前記検知に基づいて前記複数燃
料の流量調節を行うことによって、燃焼速度の大なる燃
料の混合割合をそれぞれ減少または増加することを特徴
とするボイラ燃料混合制御装置。
3. A furnace provided with a burner, a water cooling wall surrounding the furnace, a superheater and a reheater for superheating steam generated in the water cooling wall in an exhaust gas passage of the furnace, and the reheater. A flow rate distribution adjusting means for adjusting a flow rate distribution of the exhaust gas from the furnace to the reheater, wherein a detecting means for detecting a flow rate distribution of the exhaust gas from the furnace to the reheater; A plurality of fuel supply means for supplying a plurality of different fuels; a fuel adjustment means for adjusting respective fuel flow rates in the fuel supply means; and a plurality of fuels adjusted by the fuel adjustment means mixed and supplied to the burner. Mixing means for detecting the increase or decrease of the exhaust gas flow rate distribution to the reheater by the detection means, and adjusting the flow rate of the plurality of fuels based on the detection, thereby increasing the combustion speed. Boiler fuel mixing control apparatus characterized by decreased or increased respectively mixing ratio of the fuel that.
【請求項4】 バーナを設けた火炉と、前記火炉を取り
囲む水冷壁と、前記水冷壁で発生した蒸気を前記火炉の
排ガス流路中で過熱する過熱器および再熱器と、前記過
熱器および再熱器を通過した排ガスの前記火炉への再循
環量を調節する再循環量調節手段と、を備えたボイラ装
置であって、 前記再循環量を検知する検知手段と、 燃焼速度の異なる複数の燃料を供給する複数の燃料供給
手段と、 前記燃料供給手段におけるそれぞれの燃料流量を調節す
る燃料調節手段と、 前記燃料調節手段で調節された複数の燃料を混合し且つ
前記バーナに供給する混合手段と、を有し、 前記再循環量の増加または減少を前記検知手段により検
知し、前記検知に基づいて前記複数燃料の流量調節を行
うことによって、燃焼速度の大なる燃料の混合割合をそ
れぞれ減少または増加することを特徴とするボイラ燃料
混合制御装置。
4. A furnace provided with a burner, a water cooling wall surrounding the furnace, a superheater and a reheater that superheats steam generated in the water cooling wall in an exhaust gas flow path of the furnace, A recirculation amount adjusting means for adjusting an amount of recirculation of the exhaust gas passing through a reheater to the furnace, wherein the detection means detects the amount of recirculation, and a plurality of different combustion speeds A plurality of fuel supply means for supplying the same fuel; a fuel adjustment means for adjusting a fuel flow rate in the fuel supply means; and a mixture for mixing the plurality of fuels adjusted by the fuel adjustment means and supplying the fuel to the burner. Means for detecting the increase or decrease in the recirculation amount by the detection means, and adjusting the flow rate of the plurality of fuels based on the detection, thereby increasing the mixing ratio of the fuel having a high combustion rate. Boiler fuel mixing control apparatus characterized by being reduced or increased.
【請求項5】 バーナを設けた火炉と、前記火炉を取り
囲む水冷壁と、前記火炉出口の排ガス温度を計測する排
ガス温度計測手段と、を備えたボイラ装置であって、 燃焼速度の異なる複数の燃料を供給する複数の燃料供給
手段と、 前記燃料供給手段におけるそれぞれの燃料流量を調節す
る燃料調節手段と、 前記燃料調節手段で調節された複数の燃料を混合し且つ
前記バーナに供給する混合手段と、を有し、 前記火炉排ガス温度の増加または減少を前記排ガス温度
計測手段により計測し、前記計測に基づいて前記複数燃
料の流量調節を行うことによって、燃焼速度の大なる燃
料の混合割合をそれぞれ増加または減少することを特徴
とするボイラ燃料混合制御装置。
5. A boiler device comprising: a furnace provided with a burner; a water cooling wall surrounding the furnace; and an exhaust gas temperature measuring means for measuring an exhaust gas temperature at the furnace outlet. A plurality of fuel supply means for supplying fuel; a fuel adjustment means for adjusting respective fuel flow rates in the fuel supply means; and a mixing means for mixing the plurality of fuels adjusted by the fuel adjustment means and supplying the fuel to the burner. By measuring the increase or decrease of the furnace exhaust gas temperature by the exhaust gas temperature measuring means, and adjusting the flow rate of the plurality of fuels based on the measurement, the mixing ratio of the fuel having a high combustion rate A boiler fuel mixing control device characterized by increasing or decreasing respectively.
【請求項6】 請求項1乃至5のいずれか1つの請求項
に記載のボイラ燃料混合制御装置において、 前記バーナの入口の燃料性状を分析する分析手段を設
け、 前記バーナ入口の燃料性状の目標値を司令し、 前記分析手段の計測値と前記目標値との偏差が低減する
ように前記複数の燃料の混合割合を調節することを特徴
とするボイラ燃料混合制御装置。
6. The boiler fuel mixing control device according to claim 1, further comprising an analysis unit configured to analyze a fuel property at an inlet of the burner, wherein a target fuel property at the burner inlet is provided. A boiler fuel mixture control device, wherein the mixture ratio of the plurality of fuels is adjusted so as to reduce a deviation between the measurement value of the analysis means and the target value.
JP10113508A 1998-04-23 1998-04-23 Boiler fuel mixing control device Pending JPH11304143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10113508A JPH11304143A (en) 1998-04-23 1998-04-23 Boiler fuel mixing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10113508A JPH11304143A (en) 1998-04-23 1998-04-23 Boiler fuel mixing control device

Publications (1)

Publication Number Publication Date
JPH11304143A true JPH11304143A (en) 1999-11-05

Family

ID=14614119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10113508A Pending JPH11304143A (en) 1998-04-23 1998-04-23 Boiler fuel mixing control device

Country Status (1)

Country Link
JP (1) JPH11304143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027942A (en) * 2004-07-15 2006-02-02 Sumitomo Chemical Co Ltd Method for producing alkali metal carbonate aqueous solution and production system therefor
JP2011503498A (en) * 2007-07-25 2011-01-27 ルマス テクノロジー インコーポレイテッド Method, system and apparatus for combustion control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023708A (en) * 1983-07-19 1985-02-06 Babcock Hitachi Kk Combustion device for coal
JPH09126436A (en) * 1995-11-01 1997-05-16 Babcock Hitachi Kk Combustion controller of dust coal combustion boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023708A (en) * 1983-07-19 1985-02-06 Babcock Hitachi Kk Combustion device for coal
JPH09126436A (en) * 1995-11-01 1997-05-16 Babcock Hitachi Kk Combustion controller of dust coal combustion boiler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027942A (en) * 2004-07-15 2006-02-02 Sumitomo Chemical Co Ltd Method for producing alkali metal carbonate aqueous solution and production system therefor
JP2011503498A (en) * 2007-07-25 2011-01-27 ルマス テクノロジー インコーポレイテッド Method, system and apparatus for combustion control
JP2012215383A (en) * 2007-07-25 2012-11-08 Lummus Technology Inc Method, system and apparatus for firing control
US8408896B2 (en) 2007-07-25 2013-04-02 Lummus Technology Inc. Method, system and apparatus for firing control

Similar Documents

Publication Publication Date Title
JP5178453B2 (en) Oxyfuel boiler and control method for oxygen fired boiler
US4749122A (en) Combustion control system
CA2733107C (en) Process temperature control in oxy/fuel combustion system
US9416686B2 (en) Heat recovery steam generator and power plant
JPH01107003A (en) Method of operating once-through type boiler
US10914467B2 (en) Method and apparatus for reheat steam temperature control of oxy-fired boilers
JP7261113B2 (en) BOILER CONTROL DEVICE, BOILER SYSTEM, POWER PLANT, AND BOILER CONTROL METHOD
JPH11304143A (en) Boiler fuel mixing control device
JPS6053252B2 (en) Fossil fuel-fired steam generator
JP2010243016A (en) Oxygen burning boiler plant and method of operating the oxygen burning boiler plant
JP6520317B2 (en) Control method at blast furnace blow-through in blast furnace gas-fired power generation facility
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP3188010B2 (en) Control method of coal-fired boiler
JPH10110904A (en) Boiler controller
JP2901085B2 (en) Boiler control device
JPH09287416A (en) Operation control method for recycle power generating system
JPH0238843B2 (en)
JPS6332205A (en) Automatic controller for boiler
Mann Improving boiler performance with modified boiler control systems
JP2006064188A (en) Method and device for controlling reheater steam temperature for boiler
Love Boiler Control
JPH0979529A (en) Refuse incinerating furnace
JPH0493501A (en) Method of controlling spray flow rate for boiler
JPH04320702A (en) Feedwater flow rate controller of combined power plant of exhaust gas reburning type
JPH07122488B2 (en) Reheater steam temperature control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404