JPH10317918A - Energy recovery method from combustible - Google Patents

Energy recovery method from combustible

Info

Publication number
JPH10317918A
JPH10317918A JP14577697A JP14577697A JPH10317918A JP H10317918 A JPH10317918 A JP H10317918A JP 14577697 A JP14577697 A JP 14577697A JP 14577697 A JP14577697 A JP 14577697A JP H10317918 A JPH10317918 A JP H10317918A
Authority
JP
Japan
Prior art keywords
heat
heat recovery
waste
steam
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14577697A
Other languages
Japanese (ja)
Inventor
Yutaka Mori
豊 森
Koichi Takahashi
孝一 高橋
Akira Usui
章 宇須井
Tatsuo Nakamura
立雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP14577697A priority Critical patent/JPH10317918A/en
Publication of JPH10317918A publication Critical patent/JPH10317918A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate high electric power by low temperature steam by burning combustible in a combustion furnace, recovering heat generated at combustion by a heat recovery part, and leading a medium holding heat generated in the heat recovery part to a heat cycle using fluid mixed with two sorts or more components having different boiling points so as to generate electric power. SOLUTION: Wastes are burned up in an incinerator 1, exhaust gas generated at the time is led to a waste heat recovery device 2 to heat-exchange between the gas and a medium flowing in the waste heat recovery device 2. The medium changed to hot water or steam by in heat exchange in the waste heat recovery device 2 is returned to the waste heat recovery device 2 through a steam generator 10. In this case, for heat recovery of hot water or steam generated in the waste heat recovery device 2, a heat cycle Hc using multi-component mixture containing a low boiling point component as working fluid is utilized. When multi-component mixture containing a low boiling component such as a mixture of ammonia and water, steam can be generated at about 70 deg.C, while is led to a turbine to drive a generator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は可燃物からのエネル
ギ回収方法に係り、特に廃棄物や石炭等の可燃物を燃焼
させ、燃焼時に発生する熱を回収して発電を行うことに
より可燃物からエネルギを回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering energy from combustibles, and more particularly to a method for combusting combustibles such as waste and coal, and recovering heat generated during the combustion to generate electric power. It relates to a method for recovering energy.

【0002】[0002]

【従来の技術】従来、都市ゴミ、廃プラスチック、下水
汚泥、産業廃棄物等の各種廃棄物は、焼却処理により減
容化されるか、あるいは未処理のまま投棄されてきた。
2. Description of the Related Art Conventionally, various kinds of waste such as municipal waste, waste plastic, sewage sludge, and industrial waste have been reduced in volume by incineration or have been dumped untreated.

【0003】近年、化石燃料の有限性の認識ならびに廃
棄物の資源化要求に伴い、廃棄物の有するエネルギを有
効に利用しようという気運が高まってきた。廃棄物を未
処理のまま投棄することに至っては、投棄場所の確保が
困難になるとともに環境保護上容認される事態でなくな
ってきた。そのため、廃棄物を焼却する焼却炉に廃熱ボ
イラを設け、焼却炉内を上昇してくる高温の排ガスから
廃熱ボイラによって熱を回収して高温の蒸気に換え、こ
の得られた蒸気を使ってタービンを稼動させて発電をす
る廃棄物からのエネルギ回収システムが実用化されてい
る。最近では、このエネルギ回収システムにおいて、で
きるだけ多くの電力を得ようとの考えから、400℃〜
500℃近くまで蒸気温度を高める試みもされようとし
ている。
[0003] In recent years, with the recognition of the finiteness of fossil fuels and the demand for resource recycling of waste, there has been a growing interest in effectively utilizing the energy of waste. Discarding untreated waste has made it difficult to secure a place for dumping and is no longer acceptable for environmental protection. Therefore, a waste heat boiler is installed in the incinerator that incinerates waste, heat is recovered from the high-temperature exhaust gas rising in the incinerator by the waste heat boiler, and is converted into high-temperature steam. Energy recovery systems from wastes that generate electricity by operating turbines have been put to practical use. Recently, in order to obtain as much electric power as possible in this energy recovery system, 400 ° C.
Attempts have been made to increase the steam temperature to near 500 ° C.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、比較的
小規模(都市ごみ焼却設備の場合、ごみ処理量100ト
ン/日程度;RDF焼却設備の場合、処理量50トン/
日程度)の廃棄物焼却設備においては、高温蒸気による
発電は経済性や運転管理の点から適していない。
However, a comparatively small scale (in the case of municipal waste incineration equipment, the amount of waste disposal is about 100 tons / day; in the case of RDF incineration equipment, the disposal amount is 50 tons / day)
Power generation using high-temperature steam is not suitable from the viewpoint of economic efficiency and operation management.

【0005】従来、このような小規模設備では、焼却炉
から排出される高温の排ガスを、ガス冷却設備(水を噴
霧し、蒸発する際の潜熱として排ガスから熱を奪い冷
却)で冷却し、排ガスの保有する熱を大気に捨ててい
た。一方、小規模廃棄物焼却設備であっても、電力は消
費することから、設備内で電力をまかなうことのできる
発電設備は必要である。このような背景から、蒸気の温
度を従来ほど高めることがなくとも、経済性や運転維持
管理面で優れている上に、できるだけ多くの電力を得る
ことのできる発電設備が望まれていた。
Conventionally, in such a small-scale facility, high-temperature exhaust gas discharged from an incinerator is cooled by a gas cooling facility (cooling by removing heat from the exhaust gas as latent heat when spraying water and evaporating). The heat held by the exhaust gas was dumped in the atmosphere. On the other hand, even small-scale waste incineration equipment consumes electric power, so a power generation equipment that can supply electric power within the equipment is necessary. From such a background, there has been a demand for a power generation facility that is excellent in economics and operation and maintenance without increasing the temperature of the steam as compared with the related art, and that can obtain as much power as possible.

【0006】本発明は上述の事情に鑑みなされたもの
で、小規模の廃棄物焼却設備等の燃焼設備に適した可燃
物からのエネルギ回収方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and has as its object to provide a method for recovering energy from combustible materials suitable for combustion equipment such as small-scale waste incineration equipment.

【0007】[0007]

【課題を解決するための手段】上述した目的を達成する
ため、本発明は、廃棄物等の可燃物を燃焼炉で燃焼さ
せ、燃焼時に発生する熱を熱回収部にて回収し、熱回収
部で生成された熱を保有した媒体を沸点の異なる2種以
上の成分を混合した流体を使用した熱サイクルに導き発
電を行うことを特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a method for burning combustible materials such as wastes in a combustion furnace, and recovering heat generated during the combustion in a heat recovery section. The medium holding the heat generated in the section is led to a heat cycle using a fluid in which two or more components having different boiling points are mixed to generate power.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明する。図1は本発明に係る可燃物か
らのエネルギ回収方法に用いる装置の全体構成を示す概
略図である。図1に示す実施例においては、可燃物とし
て廃棄物を例に挙げて説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic diagram showing the entire configuration of an apparatus used in the method for recovering energy from combustibles according to the present invention. In the embodiment shown in FIG. 1, a description will be given by taking waste as an example of combustibles.

【0009】本発明で用いる廃棄物としては、都市ゴ
ミ、固形化燃料(RDF)、スラリー化燃料(SW
M)、バイオマス廃棄物、プラスチック廃棄物(含FR
P)、自動車廃棄物(シュレッダーダスト、廃タイ
ヤ)、家電廃棄物、特殊廃棄物(医療廃棄物等)、下水
汚泥、し尿、高濃度廃液、産業スラッジといった発熱
量、水分率、形状が大きく異なる廃棄物と低品位石炭を
用いることができるが、これらを適当に組合せることも
可能である。
The waste used in the present invention includes municipal waste, solidified fuel (RDF), slurry fuel (SW)
M), biomass waste, plastic waste (including FR)
P), automobile waste (shredder dust, waste tires), household waste, special waste (medical waste, etc.), sewage sludge, human waste, highly concentrated waste liquid, industrial sludge, etc. Waste and low-grade coal can be used, but they can also be combined appropriately.

【0010】ここで、固形化燃料、RDF(Rufuse-Deri
ved Fuel) は、都市ごみを破砕選別後生石灰を添加し圧
縮成形したものである。スラリー化燃料、SWM(Solid
Water Mixture) は、都市ごみを破砕後水スラリー化
し、高圧下で水熱分解により油化したものである。また
FRPは、繊維強化プラスチックのことであり、低品位
石炭は、石炭化度の低い褐炭、亜炭、泥炭、もしくは選
炭時にでるボタのようなものである。
Here, solidified fuel, RDF (Rufuse-Deri
Ved Fuel) is made by crushing and sorting municipal solid waste, adding quicklime and compression molding. Slurry fuel, SWM (Solid
(Water Mixture) is a municipal solid waste that is crushed and turned into a water slurry, and then turned into oil by hydrothermal decomposition under high pressure. FRP is a fiber reinforced plastic, and low-grade coal is low-coalization lignite, lignite, peat, or scum like coal produced during coal preparation.

【0011】上述の廃棄物は焼却炉1に投入されて焼却
される。焼却時に発生した排ガスは、焼却炉1に設置さ
れた廃熱回収器2に導かれ、この廃熱回収器2内を流れ
る媒体(水)との間で熱交換を行う。廃熱回収器2より
排出された排ガスは集塵設備および煙突を介して大気に
放出される。なお、廃熱回収器2内を流れる媒体は、空
気であってもよい。
The above-mentioned waste is put into an incinerator 1 and incinerated. Exhaust gas generated at the time of incineration is guided to a waste heat recovery device 2 installed in the incinerator 1, and exchanges heat with a medium (water) flowing in the waste heat recovery device 2. The exhaust gas discharged from the waste heat recovery device 2 is discharged to the atmosphere via a dust collection facility and a chimney. The medium flowing in the waste heat recovery device 2 may be air.

【0012】一方、廃熱回収器2内で熱交換を行って温
水又は蒸気となった媒体は、蒸気発生器10を経由して
温水又は水となって廃熱回収器2に戻る。廃熱回収器2
内での熱交換により生成された温水又は蒸気は、その一
部が蒸気発生器10の上流又は下流から抜き出され場内
での使用に供される(A又はBで図示)。
On the other hand, the medium which has undergone heat exchange in the waste heat recovery unit 2 to become hot water or steam returns to the waste heat recovery unit 2 as hot water or water via the steam generator 10. Waste heat recovery unit 2
A portion of the hot water or steam generated by heat exchange in the inside is withdrawn from upstream or downstream of the steam generator 10 and is provided for use in the site (shown by A or B).

【0013】本発明は、廃熱回収器2で生成された温水
又は蒸気の熱回収に低沸点成分を含んだ多成分混合物を
作動流体として使用した熱サイクル(以下、多成分混合
流体熱サイクルという)を利用することにより、システ
ム全体の熱効率を改善しようとするものである。低沸点
成分を含んだ多成分混合物として、例えば、アンモニア
と水の混合物を使用すると、アンモニア濃度約80wt
%、圧力25kg/cm2abs の場合、約70℃で蒸気を発生
させることができる。このように、低沸点成分を含んだ
多成分混合流体熱サイクルによれば、低温度でありなが
ら高圧で発電に十分使用できる蒸気をタービンに導き、
発電機により発電することができる上、更に混合流体の
特質を活かして、サイクル内で熱回収を効率的に行うこ
とができるため、高効率の発電が行える。熱サイクル内
に設けられた凝縮再生システムでは、熱サイクル内に投
入された熱を可能な限り有効に使用するため、作動流体
間で熱交換を行ったり、また作動流体の濃度変化を行っ
たりする。
The present invention provides a heat cycle in which a multi-component mixture containing a low-boiling component is used as a working fluid for heat recovery of hot water or steam generated in the waste heat recovery device 2 (hereinafter referred to as a multi-component mixed fluid heat cycle). ) Is intended to improve the thermal efficiency of the entire system. When a mixture of ammonia and water is used as a multi-component mixture containing low-boiling components, for example, an ammonia concentration of about 80 wt.
%, And a pressure of 25 kg / cm 2 abs, steam can be generated at about 70 ° C. As described above, according to the multi-component mixed fluid heat cycle including the low-boiling components, steam that can be sufficiently used for power generation at a high pressure at a low temperature is guided to the turbine,
In addition to being able to generate electric power by the generator, heat can be efficiently recovered in the cycle by further utilizing the characteristics of the mixed fluid, so that high-efficiency power generation can be performed. In the condensation regeneration system provided in the heat cycle, in order to use the heat input in the heat cycle as efficiently as possible, heat exchange is performed between working fluids, and concentration of the working fluid is changed. .

【0014】多成分混合流体熱サイクルHcは、図2に
示すように、蒸気発生器10、発電機19を駆動するタ
ービン11、ポンプ13、再生器等の熱交換器15A,
15B、凝縮器16から構成される。破線で囲まれた符
号21の部分は、凝縮再生システムである。
As shown in FIG. 2, the multi-component mixed fluid heat cycle Hc includes a steam generator 10, a turbine 11 for driving a generator 19, a pump 13, a heat exchanger 15A such as a regenerator, and the like.
15B and a condenser 16. A portion 21 surrounded by a broken line is a condensation regeneration system.

【0015】上述の多成分混合流体熱サイクルHcの構
成において、まず、多成分混合流体が蒸気発生器10に
入り、熱源の熱、即ち、廃熱回収器2で生成された温水
又は蒸気が保有する熱により混合蒸気となった後、ター
ビン11で膨張して発電機19を回して仕事をする。タ
ービン排気の熱は、2つの熱交換器15A,15B内で
凝縮器16により凝縮した多成分混合流体の一部の加熱
に使用され、タービン排気は温度低下して行く。凝縮器
16および熱交換器15Bを出た多成分混合流体は蒸気
発生器10に流入する流れと熱交換器15Aに流入する
二つの流れに分かれる。熱交換器15Aに流入した流体
は、熱交換器15Aを通った後、蒸気発生器10に戻
る。
In the above-described configuration of the multi-component mixed fluid heat cycle Hc, first, the multi-component mixed fluid enters the steam generator 10 and holds the heat of the heat source, that is, the hot water or steam generated by the waste heat recovery unit 2. After being converted into a mixed steam by the generated heat, it expands in the turbine 11 and turns the generator 19 to perform work. The heat of the turbine exhaust is used to heat a part of the multi-component mixed fluid condensed by the condenser 16 in the two heat exchangers 15A and 15B, and the temperature of the turbine exhaust decreases. The multi-component mixed fluid that has exited the condenser 16 and the heat exchanger 15B is divided into a stream flowing into the steam generator 10 and a stream flowing into the heat exchanger 15A. The fluid that has flowed into the heat exchanger 15A returns to the steam generator 10 after passing through the heat exchanger 15A.

【0016】多成分混合流体熱サイクルHcは、作動流
体として沸点の異なる二成分以上の物質の多成分混合物
を使用する。また、そのうち少なくとも一成分以上は、
水よりも沸点の低い物質とする。作動流体は、タービン
発電機による発電の作動流体として有効な次の属性を持
つ。 a.沸点の温度が低い。 b.沸点と露点の温度が異なる(非等温蒸発、非等温凝
縮する)。 c.濃度を変えることにより、凝縮圧力が変わる。
The multi-component mixed fluid heat cycle Hc uses a multi-component mixture of two or more components having different boiling points as a working fluid. Also, at least one of the components,
The substance has a lower boiling point than water. The working fluid has the following attributes that are effective as working fluids for power generation by the turbine generator. a. Low boiling point temperature. b. The boiling point and the dew point have different temperatures (non-isothermal evaporation and non-isothermal condensation). c. Changing the concentration changes the condensation pressure.

【0017】作動流体が上記特性を持つことから、熱サ
イクルを構成する各所において、サイクルの高効率化に
寄与できる次の利点が生ずる。 1)沸点が低い温度の作動流体を蒸気発生器に供給する
ため、低温度でも蒸気が発生でき、低い温度まで熱源を
使用することができる。 2)温度が上昇しながら蒸発するので、熱源との温度差
が従来の蒸気サイクルに比べ小さくすることができ、熱
源からの熱回収を効果的に行うことができる。 3)タービン排気側では、温度が下降しながら凝縮する
ので、凝縮器で復液したタービン排気側に比べ低温の作
動流体をタービン排気側に設けた熱交換器に供給する
と、タービン排気側作動流体の保有する熱を熱回収でき
る。その結果、凝縮器からサイクル外へ放出する熱量が
少なくなるため、タービン発電機の出力が増加する。 4)熱源の温度条件や発電規模によっては、タービン排
気側の作動流体を低濃度とした後、凝縮させることによ
り、排気圧力を下げることができる。この結果、タービ
ンにおける熱落差が大きくなり、タービン発電機の出力
が増加する。
Since the working fluid has the above characteristics, there are the following advantages that can contribute to the improvement of the efficiency of the cycle at various points constituting the heat cycle. 1) Since a working fluid having a low boiling point is supplied to a steam generator, steam can be generated even at a low temperature, and a heat source can be used up to a low temperature. 2) Since the evaporator evaporates while the temperature rises, the temperature difference from the heat source can be reduced as compared with the conventional steam cycle, and heat recovery from the heat source can be performed effectively. 3) On the turbine exhaust side, the temperature decreases and condenses while decreasing. Therefore, if a working fluid whose temperature is lower than that of the turbine exhaust side returned to the condenser is supplied to the heat exchanger provided on the turbine exhaust side, the turbine exhaust side working fluid Can recover the heat possessed by As a result, the amount of heat released from the condenser to the outside of the cycle decreases, so that the output of the turbine generator increases. 4) Depending on the temperature condition of the heat source and the power generation scale, the exhaust pressure can be reduced by reducing the working fluid on the turbine exhaust side and then condensing it. As a result, the heat drop in the turbine increases, and the output of the turbine generator increases.

【0018】なお、多成分混合流体熱サイクルにおい
て、蒸気発生器、熱交換器、ポンプ、凝縮器、タービ
ン、発電機の数は、図2の数量以上の場合もある。ま
た、機器によっては使用しない場合もある。また、分離
器が追加される場合がある。多成分混合流体の濃度は、
図2では変化させず一定としているが、サイクル内で変
える場合もある。
In the multi-component mixed fluid heat cycle, the number of steam generators, heat exchangers, pumps, condensers, turbines, and generators may exceed the number shown in FIG. Some devices may not be used. Also, a separator may be added. The concentration of the multicomponent fluid is
In FIG. 2, it is fixed without changing, but may be changed in a cycle.

【0019】図3は熱サイクルの第2実施例を示す図で
ある。多成分混合流体熱サイクルHcは、図3に示すよ
うに、蒸気発生器10、発電機を駆動するタービン1
1、ポンプ13、凝縮器16、熱交換器20から構成さ
れる。破線で囲まれた符号21の部分は、凝縮再生シス
テムである。上述の多成分混合流体熱サイクルHcの構
成において、まず、多成分混合流体が蒸気発生器10に
入り、熱源の熱、即ち、廃熱回収器2で生成された温水
又は蒸気が保有する熱により混合蒸気となった後、ター
ビン11で膨張して発電機19を回して仕事をする。タ
ービン排気の熱は、熱交換器20内で、凝縮器16によ
り凝縮した多成分混合流体の一部の加熱に使用され、タ
ービン排気は温度低下していく。凝縮器16及び熱交換
器20を出た多成分混合流体は蒸気発生器10に戻る。
FIG. 3 is a view showing a second embodiment of the thermal cycle. As shown in FIG. 3, the multi-component mixed fluid heat cycle Hc includes a steam generator 10 and a turbine 1 that drives a generator.
1, a pump 13, a condenser 16, and a heat exchanger 20. A portion 21 surrounded by a broken line is a condensation regeneration system. In the configuration of the multi-component mixed fluid heat cycle Hc described above, first, the multi-component mixed fluid enters the steam generator 10 and is heated by the heat of the heat source, that is, the heat held by the hot water or steam generated by the waste heat recovery unit 2. After having become the mixed steam, it expands in the turbine 11 and turns the generator 19 to perform work. The heat of the turbine exhaust is used to heat a part of the multi-component mixed fluid condensed by the condenser 16 in the heat exchanger 20, and the temperature of the turbine exhaust decreases. The multi-component mixed fluid leaving the condenser 16 and the heat exchanger 20 returns to the steam generator 10.

【0020】図4は本発明の第2実施例を示す図であ
る。本実施例においては、焼却炉1に設けられた廃熱回
収器2で発生した温水又は蒸気は、場内で使用される
(Cで示す)。そして、廃熱回収器2を出た排ガスは、
後段の廃熱回収器5に導かれ、この廃熱回収器5内を流
れる媒体(水)との間で熱交換を行う。廃熱回収器5よ
り排出された排ガスは集塵設備等を介して大気に放出さ
れる。
FIG. 4 is a diagram showing a second embodiment of the present invention. In the present embodiment, hot water or steam generated in the waste heat recovery unit 2 provided in the incinerator 1 is used in the plant (indicated by C). And the exhaust gas that has exited the waste heat recovery unit 2 is
It is guided to the waste heat recovery unit 5 at the subsequent stage, and exchanges heat with a medium (water) flowing in the waste heat recovery unit 5. The exhaust gas discharged from the waste heat recovery device 5 is released to the atmosphere via a dust collection facility or the like.

【0021】一方、廃熱回収器5内で熱交換を行って温
水又は蒸気となった媒体は、蒸気発生器10を経由して
温水又は水となって廃熱回収器5に戻る。蒸気発生器1
0および多成分混合流体熱サイクルHcの構成は、図2
に示す例と同様の構成であり、その作動原理も同様であ
るため、説明を省略する。
On the other hand, the medium that has undergone heat exchange in the waste heat recovery unit 5 to become hot water or steam returns to the waste heat recovery unit 5 as hot water or water via the steam generator 10. Steam generator 1
The configuration of the zero- and multi-component mixed fluid thermal cycle Hc is shown in FIG.
Has the same configuration as the example shown in FIG. 1 and the operation principle is also the same, and therefore, the description is omitted.

【0022】図1乃至図4に示す実施例においては、本
発明を廃棄物を焼却する焼却設備に適用した例を説明し
たが、石炭等の燃料を燃焼させる燃焼設備においても本
発明は好適に使用される。また燃焼設備が廃熱ボイラを
有する場合には、廃熱ボイラを熱回収部としてもよい。
In the embodiment shown in FIGS. 1 to 4, an example in which the present invention is applied to an incineration facility for incinerating waste has been described. However, the present invention is also suitably applied to a combustion facility for burning fuel such as coal. used. When the combustion equipment has a waste heat boiler, the waste heat boiler may be used as the heat recovery unit.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、以
下に列挙する効果を奏する。 1)従来のように高温の蒸気を発生させることなく、低
温蒸気により高出力発電を行うことができる。 2)廃棄物焼却設備等の燃焼設備に本来的に必要な温水
または低圧蒸気を熱回収部における媒体として使用する
ため、燃焼設備運転管理者にとっては、設備の運転管理
が行いやすい。 3)熱回収部における媒体を温水とすれば、一層、設備
の運転維持管理が容易となる。 4)熱サイクルにおける媒体を水・アンモニア混合物等
の安全な媒体を使用することができる。また水・アンモ
ニア混合物等の媒体は熱サイクルにおいて高出力発電を
行うことができる。
As described above, according to the present invention, the following effects can be obtained. 1) High-output power can be generated by low-temperature steam without generating high-temperature steam as in the related art. 2) Since the hot water or low-pressure steam originally required for combustion equipment such as waste incineration equipment is used as a medium in the heat recovery unit, the operation management of the equipment is easy for the combustion equipment operation manager. 3) If the medium in the heat recovery unit is hot water, the operation and maintenance of the equipment can be further facilitated. 4) A safe medium such as a mixture of water and ammonia can be used as a medium in the heat cycle. In addition, a medium such as a water / ammonia mixture can generate high output power in a heat cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る可燃物からのエネルギ回収方法に
用いる装置の第1実施例の全体構成を示す概略図であ
る。
FIG. 1 is a schematic diagram showing the entire configuration of a first embodiment of an apparatus used for a method of recovering energy from combustibles according to the present invention.

【図2】本発明の可燃物からのエネルギ回収方法に用い
る熱サイクルの第1実施例を示し、多成分混合流体熱サ
イクルを示す図である。
FIG. 2 is a view showing a first embodiment of a heat cycle used in the method for recovering energy from combustibles according to the present invention, and showing a multi-component mixed fluid heat cycle.

【図3】熱サイクルの第2実施例を示す図である。FIG. 3 is a view showing a second embodiment of the thermal cycle.

【図4】本発明に係る可燃物からのエネルギ回収方法に
用いる装置の第2実施例の全体構成を示す概略図であ
る。
FIG. 4 is a schematic view showing the entire configuration of a second embodiment of the apparatus used in the method for recovering energy from combustibles according to the present invention.

【符号の説明】[Explanation of symbols]

1 焼却炉 2,5 廃熱回収器 10 蒸気発生器 11 タービン 13 ポンプ 15A,15B 熱交換器 16 凝縮器 19 発電機 20 熱交換器 21 凝縮再生システム Hc 多成分混合流体熱サイクル DESCRIPTION OF SYMBOLS 1 Incinerator 2, 5 Waste heat recovery device 10 Steam generator 11 Turbine 13 Pump 15A, 15B Heat exchanger 16 Condenser 19 Generator 20 Heat exchanger 21 Condensation regeneration system Hc Multicomponent mixed fluid heat cycle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F23G 5/46 B09B 3/00 303H (72)発明者 中村 立雄 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FIF23G 5/46 B09B 3/00 303H (72) Inventor Tatsuo Nakamura 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物等の可燃物を燃焼炉で燃焼させ、
燃焼時に発生する熱を熱回収部にて回収し、熱回収部で
生成された熱を保有した媒体を沸点の異なる2種以上の
成分を混合した流体を使用した熱サイクルに導き発電を
行うことを特徴とする可燃物からのエネルギ回収方法。
Claims 1. Combustible materials such as wastes are burned in a combustion furnace.
The heat generated during combustion is recovered in the heat recovery unit, and the medium holding the heat generated in the heat recovery unit is guided to a heat cycle using a fluid that is a mixture of two or more components with different boiling points to generate power. A method for recovering energy from combustible materials, characterized in that:
【請求項2】 前記熱を保有した媒体は、温水又は蒸気
又は空気であることを特徴とする請求項1記載の可燃物
からのエネルギ回収方法。
2. The method for recovering energy from combustibles according to claim 1, wherein the medium holding heat is hot water, steam or air.
【請求項3】 前記熱サイクルは、沸点の異なる2種以
上の成分を混合した流体を使用した熱サイクルであるこ
とを特徴とする請求項1又は2記載の可燃物からのエネ
ルギ回収方法。
3. The method for recovering energy from combustibles according to claim 1, wherein the heat cycle is a heat cycle using a fluid in which two or more components having different boiling points are mixed.
【請求項4】 前記沸点の異なる2種以上の成分のうち
少なくとも1つの成分は、水の沸点よりも低い沸点を有
する成分であることを特徴とする請求項3記載の可燃物
からのエネルギ回収方法。
4. The energy recovery from a combustible according to claim 3, wherein at least one of the two or more components having different boiling points has a boiling point lower than that of water. Method.
【請求項5】 前記熱回収部は、前記燃焼炉に設けられ
た廃熱回収器からなることを特徴とする請求項1又は2
記載の可燃物からのエネルギ回収方法。
5. The heat recovery unit according to claim 1, wherein the heat recovery unit includes a waste heat recovery unit provided in the combustion furnace.
A method for recovering energy from combustibles as described in the above.
【請求項6】 前記熱回収部は、前記燃焼炉の下流側に
設けられた廃熱回収器からなることを特徴とする請求項
1又は2記載の可燃物からのエネルギ回収方法。
6. The method for recovering energy from combustibles according to claim 1, wherein the heat recovery section comprises a waste heat recovery device provided downstream of the combustion furnace.
JP14577697A 1997-05-20 1997-05-20 Energy recovery method from combustible Pending JPH10317918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14577697A JPH10317918A (en) 1997-05-20 1997-05-20 Energy recovery method from combustible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14577697A JPH10317918A (en) 1997-05-20 1997-05-20 Energy recovery method from combustible

Publications (1)

Publication Number Publication Date
JPH10317918A true JPH10317918A (en) 1998-12-02

Family

ID=15392911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14577697A Pending JPH10317918A (en) 1997-05-20 1997-05-20 Energy recovery method from combustible

Country Status (1)

Country Link
JP (1) JPH10317918A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236418A (en) * 2008-03-27 2009-10-15 Metawater Co Ltd Waste incineration method and incineration device
JP2009270754A (en) * 2008-05-07 2009-11-19 Tsukishima Kankyo Engineering Ltd Combustion method and combustion device of waste fluid
JP4542190B1 (en) * 2009-03-11 2010-09-08 月島環境エンジニアリング株式会社 Waste combustion power generation method and combustion equipment therefor
JP2010210233A (en) * 2010-03-30 2010-09-24 Tsukishima Kankyo Engineering Ltd Combustion power generating method of waste, and its combustion facility
CN101922864A (en) * 2010-09-26 2010-12-22 中冶赛迪工程技术股份有限公司 Waste heat recycling system of distributed pure low temperature coal gas from iron and steel enterprises
US8091360B2 (en) * 2005-08-03 2012-01-10 Amovis Gmbh Driving device
JP2013032905A (en) * 2012-10-23 2013-02-14 Metawater Co Ltd Incineration plant
JP2013234848A (en) * 2013-07-31 2013-11-21 Metawater Co Ltd Incineration plant
JP2016041939A (en) * 2015-10-20 2016-03-31 株式会社タクマ Waste power generation system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091360B2 (en) * 2005-08-03 2012-01-10 Amovis Gmbh Driving device
JP2009236418A (en) * 2008-03-27 2009-10-15 Metawater Co Ltd Waste incineration method and incineration device
JP2009270754A (en) * 2008-05-07 2009-11-19 Tsukishima Kankyo Engineering Ltd Combustion method and combustion device of waste fluid
JP4542171B2 (en) * 2008-05-07 2010-09-08 月島環境エンジニアリング株式会社 Waste liquid combustion method and combustion apparatus therefor
JP4542190B1 (en) * 2009-03-11 2010-09-08 月島環境エンジニアリング株式会社 Waste combustion power generation method and combustion equipment therefor
JP2010210159A (en) * 2009-03-11 2010-09-24 Tsukishima Kankyo Engineering Ltd Combustion power generating method of waste, and its combustion facility
KR20110136778A (en) * 2009-03-11 2011-12-21 쓰키시마 간쿄 엔지니어링 가부시키가이샤 Method of generating electricity by burning waste and waste burning facility
WO2010103692A1 (en) * 2009-03-11 2010-09-16 月島環境エンジニアリング株式会社 Method of generating electricity by burning waste and waste burning facility
US8893498B2 (en) 2009-03-11 2014-11-25 Tsukishima Kankyo Engineering Ltd. Method of power generation by waste combustion and waste combustion system
JP2010210233A (en) * 2010-03-30 2010-09-24 Tsukishima Kankyo Engineering Ltd Combustion power generating method of waste, and its combustion facility
CN101922864A (en) * 2010-09-26 2010-12-22 中冶赛迪工程技术股份有限公司 Waste heat recycling system of distributed pure low temperature coal gas from iron and steel enterprises
JP2013032905A (en) * 2012-10-23 2013-02-14 Metawater Co Ltd Incineration plant
JP2013234848A (en) * 2013-07-31 2013-11-21 Metawater Co Ltd Incineration plant
JP2016041939A (en) * 2015-10-20 2016-03-31 株式会社タクマ Waste power generation system

Similar Documents

Publication Publication Date Title
US6857268B2 (en) Cascading closed loop cycle (CCLC)
AU2003252000B2 (en) Cascading closed loop cycle power generation
Mirolli The Kalina cycle for cement kiln waste heat recovery power plants
KR940011850A (en) Combined Circulating Power Generation System and Method with a Circulating Fluidized Bed Reactor
JP2000073706A (en) Coal gasification combined cycle power generation plant
Chen et al. Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes
CN201071741Y (en) Electric furnace flue gas waste heat power generation system
JPH10317918A (en) Energy recovery method from combustible
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP2000145408A (en) Binary waste power generation method and its system
Tugov Municipal Solid Wastes-to-Energy Conversion: Global and Domestic Experience
Tosun 5MW hybrid power generation with agriculture and forestry biomass waste co-incineration in stoker and subsequent solar panel (CSP) ORC station
Mirolli Ammonia-water based thermal conversion technology: Applications in waste heat recovery for the cement industry
JPH05288327A (en) Energy recycling device
Cunningham Waste heat/cogen opportunities in the cement industry
JPH0849822A (en) Device and method for treating waste
CN212614920U (en) Waste incineration kiln flue gas waste heat utilization power generation system
CN114046506A (en) Waste incineration waste heat utilization device and method for recycling heat of flue gas furnace slag
Simanjuntak et al. Process design and simulation study of an electricity generation plant utilizing low-grade wasted thermal energy using aspen Hysys software
CN104832225A (en) Household garbage incineration low-pressure steam power generation system
JPH11200882A (en) Sludge power generation equipment
KR20160036685A (en) Combined cycle power generation system
CN216262637U (en) Water-containing solid waste treatment system
CN214457792U (en) Plasma garbage gasification power generation system circularly coupled with supercritical carbon dioxide
CN110500585B (en) Waste incineration power generation waste heat ammonia distillation system