JP2009264680A - 真空熱処理炉 - Google Patents

真空熱処理炉 Download PDF

Info

Publication number
JP2009264680A
JP2009264680A JP2008116124A JP2008116124A JP2009264680A JP 2009264680 A JP2009264680 A JP 2009264680A JP 2008116124 A JP2008116124 A JP 2008116124A JP 2008116124 A JP2008116124 A JP 2008116124A JP 2009264680 A JP2009264680 A JP 2009264680A
Authority
JP
Japan
Prior art keywords
heat treatment
processing chamber
gas
cooling gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008116124A
Other languages
English (en)
Inventor
Daichi Yoshii
大智 吉井
Yuichi Otani
雄一 大谷
Koichi Tanimoto
浩一 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008116124A priority Critical patent/JP2009264680A/ja
Publication of JP2009264680A publication Critical patent/JP2009264680A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Details (AREA)

Abstract

【課題】冷却ガスの流れを制御し、冷却ガスを均一な速度に整流することで処理室内に設置した熱処理対象物全体を均一に冷却すると共に、冷却効率の向上を図る真空熱処理炉を提供する。
【解決手段】本実施の形態に係る真空熱処理炉10Aは、熱処理対象物11を加熱し、加熱した熱処理対象物11を冷却ガス12でガス冷却する処理室13を備えた真空熱処理炉であって、処理室13の上側に設けられ、冷却ガス12を処理室13に供給するガス供給部14と、処理室13の下側に設けられ、冷却ガス12を処理室13から排出するガス排出部15と、冷却ガス12を熱処理対象物11に均等に流し、熱処理対象物11を均等に冷却する案内部材16Aとを有する。
【選択図】図1

Description

本発明は、加熱した熱処理対象物を冷却ガスを用いてガス冷却するガス冷却式の真空熱処理炉に関する。
金型等の熱処理対象物を焼き入れ処理するため、真空熱処理炉が従来より用いられている。この真空熱処理炉では、炉内を真空引きした状態で熱処理対象物を所定時間加熱した後、低温の冷却ガスを導入したり、熱処理対象物を油槽に投入するなどして急冷処理することが行われている。
従来の真空熱処理炉には、加熱方式として、内面側に発熱体を配した断熱層からなる処理室を真空熱処理炉の本体内に設け、熱処理材である熱処理対象物を直接的に加熱する内熱式のものと、本体内に配した処理室の外側に熱源を設け、熱処理対象物を間接的に加熱する外熱式のものとがある。また、熱処理対象物として、例えば、ブローチなどのような長尺部材が用いられ、これら熱処理対象物の曲がりの発生を防止するため、複数の熱処理対象物を処理室内に吊下して焼入処理している。そして、加熱後の熱処理対象物の冷却の際には、外部から処理室内に導入された冷媒ガスを用いて冷却するようにしている(特許文献1〜特許文献3、参照)。
冷却ガスを利用したガス冷却式の真空熱処理炉は、加熱後に炉内及び熱処理対象物についた水分等がガス化した後に再度減圧し、不活性ガス等を再充填するため、水分による色付きのない熱処理(「光輝熱処理」)ができ、脱炭浸炭もなく、変形も少ない上、作業環境が良いなど、種々の利点を有している。
冷却ガスを利用した従来の真空熱処理炉の構成の一例を示す模式図を図13に示す。図13に示すように、従来の真空熱処理炉100は、気密性の真空熱処理炉の本体内に断熱壁によって囲って形成された処理室101と、この処理室101の上側に冷却した不活ガスを冷却ガス102として処理室101内に供給するガス供給部103と、処理室101の下側に処理室101内の冷却ガス102を排出するガス排出部104と、処理室101の上下両壁面に開閉可能な開口部105、106と、円筒状の筒を多層構造とした整流板107とを有するものである。
従来の真空熱処理炉100では、処理室101内に配置された図示しないヒータにより例えばブローチなどの熱処理対象物108を真空中で加熱する。そして、加熱後の冷却時には、外部から導入された冷却ガス102をガス供給部103から開口部105を介して処理室101内に供給し、開口部106よりガス排出部104に排出するようにしている。また、真空熱処理炉100の本体内には、不活性ガスの冷却装置として、例えば、クーラおよびファンが設けられ、真空熱処理炉100の本体内に供給された不活性ガスは、クーラで冷却された後、冷却ガス102としてファンの回転によりガス供給部103に送給される。そして冷却ガス102は整流板107により整流された後、開口部105より処理室101内に供給される。処理室101内に供給された冷却ガス102は、加熱された熱処理対象物108と接触し、熱交換することで、熱処理対象物108を冷却する。その後、冷却ガス102は、開口部106からガス排出部104に供給するようにしている。
開口部105、106は、処理室101に相対するように配置され、開口部105から処理室101内に供給された冷却ガス102は、開口部106からガス排出部104に吹き出され、再度、クーラで冷却した後、処理室101内に循環させている。
また、処理室101内の複数の熱処理対象物108は、ガス冷却を行う際、熱処理温度を全ての熱処理対象物108で均一にするためには、一般的に同心円状に配置されている。また、これらの複数の熱処理対象物108は、支持手段109に設けた冶具110により処理室101内に支持され、処理室101内に吊下されている。
また、冷却ガス102は、従来の真空熱処理炉100の本体内に設けているファンから熱処理対象物108に向けて供給し、その後再びファンに吸込まれるようにしているため、熱処理対象物108は、ファンに向かって流れる一方向からの冷却ガス102を受けることになる。そのため、従来の真空熱処理炉100では、処理室101内を上下方向に通過する冷却ガス102の流れ方向を上下交互に切り替えるようにしている。
このように、従来の真空熱処理炉100では、処理室101に相対するように配置された開口部105、106を介して冷却ガス102を循環させることで、処理室101内の複数の加熱された熱処理対象物108を均等に冷却するようにしている。
特許第2656839号公報 特開平07−229683号公報 特開2002−333277号公報
ここで、従来の真空熱処理炉100では、加熱と冷却を同一の場所で行い、熱処理対象物108を囲んで加熱用のヒータや炉体があるため、冷却時に熱処理対象物108に向けて処理室101内に供給した冷却ガス102の大部分は、熱処理対象物108を同心円状に配置した円の中心部分に流れるため、冷却ガス102の流速が最大となり、最も冷却効果の高い箇所は、熱処理対象物108を同心円状に配置した円の中心部分となる。
そのため、従来の真空熱処理炉100では、同心円状に配置した複数の熱処理対象物108により形成される環状群の内側を流れる冷却ガス102と、熱処理対象物108と処理室101の内壁101aとの間を流れる冷却ガス102とを均一な流速で各々の熱処理対象物108に供給することができないため、複数の熱処理対象物108により形成される環状群の内側を流れる冷却ガス102と熱処理対象物108と処理室101の内壁101aとの間を流れる冷却ガス102による熱伝導率に差異が生じることで、冷却効果に差異を生じ、熱処理対象物108の冷却が不均一になる、という問題がある。
また、熱処理対象物108の冷却が不均一となることで、熱処理対象物108全体の歪み、硬さのばらつき、内部組織や結晶粒度のばらつきを発生する原因となる、という問題がある。
本発明は、前記問題に鑑み、冷却ガスの流れを制御し、冷却ガスを均一な速度に整流することで処理室内に設置した熱処理対象物全体を均一に冷却すると共に、冷却効率の向上を図る真空熱処理炉を提供することを課題とする。
上述した課題を解決するための本発明の第1の発明は、熱処理対象物を加熱し、加熱した熱処理対象物を冷却ガスでガス冷却する処理室を備えた真空熱処理炉であって、前記処理室の上側に設けられ、前記冷却ガスを前記処理室に供給するガス供給部と、前記処理室の下側に設けられ、前記冷却ガスを前記処理室から排出するガス排出部と、前記冷却ガスを前記熱処理対象物に均等に流し、前記熱処理対象物を均等に冷却する案内部材とを有することを特徴とする真空熱処理炉にある。
第2の発明は、第1の発明において、複数の熱処理対象物が、前記処理室内に同心円状に配置されてなることを特徴とする真空熱処理炉にある。
第3の発明は、第1又は2の発明において、前記案内部材が、複数の前記熱処理対象物の中心部分に配置されてなることを特徴とする真空熱処理炉にある。
第4の発明は、第3の発明において、前記案内部材の上部側の形状部が、半球状であることを特徴とする真空熱処理炉にある。
第5の発明は、第1乃至4の何れか一つの発明において、前記処理室の側壁の内側に設けられ、前記熱処理対象物と対応する位置に突部を有することを特徴とする真空熱処理炉にある。
第6の発明は、第1乃至4の何れか一つの発明において、前記処理室内に送給する冷却ガスのガス流れ方向を交互に切り替えることを特徴とする真空熱処理炉にある。
本発明によれば、加熱した熱処理対象物をガス冷却する際、冷却ガスを複数の前記熱処理対象物に均等に流し、前記熱処理対象物を均等に冷却する案内部材を有しているため、前記処理室内の前記熱処理対象物に供給される前記冷却ガスの速度分布を均一化させることができる。このため、前記冷却ガスによる前記熱処理対象物への熱伝導率の差異を軽減し、前記冷却ガスによる冷却効果の差異を軽減することで、前記熱処理対象物を均等に冷却することができる。
また、前記熱処理対象物の冷却速度の差を低減し、前記熱処理対象物を均一に冷却することで、前記熱処理対象物全体の歪み、硬さのばらつきを低減することができると共に、内部組織や結晶粒度のばらつきを低減することもできる。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
[第一の実施の形態]
本発明による第一の実施の形態に係る真空熱処理炉について、図面を参照して説明する。
図1は、本発明による第一の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図であり、図2は、図1中のA−A断面図であり、図3は、図1中のB−B断面図である。
図1に示すように、本実施の形態に係る真空熱処理炉10Aは、熱処理対象物11を加熱し、加熱した熱処理対象物11を冷却ガス12でガス冷却する処理室13を備えた真空熱処理炉であって、処理室13の上側に設けられ、冷却ガス12を処理室13に供給するガス供給部14と、処理室13の下側に設けられ、冷却ガス12を処理室13から排出するガス排出部15と、冷却ガス12を熱処理対象物11に均等に流し、熱処理対象物11を均等に冷却する案内部材16Aとを有するものである。
また、図1中、符号17は、冷却ガス12をガス供給部14から処理室13内に通過させるガス通気口であり、符号18は、冷却ガス12を処理室13内からガス排出部15に通過させるガス通気口である。
ここで、処理室13は、真空熱処理炉10Aの図示しない本体内に断熱壁によって形成されてなるものである。前記本体は、筒状胴部を有する鋼製の圧力容器であり、図示しない真空ポンプに連通されている。前記断熱壁は、ガラス繊維等の断熱材からなる筒状のもので、前記本体内に間隙を隔てて配設され、その内周面上に図示しないヒータを周設し、処理室13が形成されている。この処理室13の内側に熱処理対象物11が収容される。
また、処理室13は、筒状の断熱層が二層以上で構成される多層構造としてもよい。このとき各断熱層は、所定の間隙を隔てて囲撓するようにしてガス流通が可能となるようにしてもよい。また、処理室13の上下両壁面13a、13bは、環状断熱層で形成されており、この環状断熱層からなる上下両壁面13a、13bの内孔が、冷却ガス12のガス通気口14、15を各々形成する。また、この環状断熱層は、処理室13の側面を構成する筒状の断熱層から嵌脱自由としている。
また、処理室13の内周面に設けている図示しないヒータは、例えば棒状のグラファイトフェルト等を素材としてなるものであり、所定間隔で縦方向に整列させて周設している。また、図示しないヒータは図示しない外部の通電および入力制御手段に接続されている。
また、図2は、図1中のA−A断面図であり、熱処理対象物の配置を処理室の軸方向から見た時の図である。図2に示すように、処理室13内には、6個の熱処理対象物11が処理室13内に同心円状に配置され、環状群を形成している。また、本発明では、処理室13内に熱処理対象物11を6個配置しているが、これに限定されるものではない。
また、各々の熱処理対象物11は上下に2つの熱処理対象物11を連結して、処理室13内に同心円状に配置しているが、1本の熱処理対象物11を処理室13内に同心円状に配置してもよい。
また、図3は、図1中のB−B断面図であり、熱処理対象物の配置を処理室の軸方向から見た時の図である。図3に示すように、処理室13内に設けた支持手段19にリング状部材20が支持され、このリング状部材20に設けられている複数の冶具21によりこれらの複数の熱処理対象物11が処理室13内で軸上に支持され、吊下させている。
また、熱処理対象物11としては、例えば、高速度工具鋼からなるブローチが例示され、ブローチは、小径、大径の何れでも良く、特にこれに限定されるものではない。そして、この熱処理対象物11は冶具21により各々吊下して処理室13内に装入されている。
よって、前記本体に設けられている図示しない真空ポンプにより処理室13内を真空にした後、処理室13の内周面上に周設されている図示しないヒータにより、処理室13内に配置された複数の熱処理対象物11は、真空中で加熱される。
そして、加熱された熱処理対象物11を冷却する際、ガス供給部14より処理室13の上側の壁面13aに設けられたガス通気口17を通過して、処理室13内に配置した熱処理対象物11に冷却ガス12を供給するようにしている。
冷却ガス12としては、アルゴン、ヘリウム、窒素、水素等の不活性ガスが用いられている。
また、真空熱処理炉10Aの本体内には、例えば図示しないクーラおよび図示しないファンが設けられている。真空熱処理炉10Aの前記本体内に図示しない不活性ガス供給手段より供給された不活性ガスは、クーラなどガス冷却装置で冷却された後、ファンの回転によりガス供給部14に冷却ガス12として送給される。
また、壁面13aのガス通気口17には整流筒22を設けている。整流筒22は円筒状の管22a〜22dにより多層に構成されている。これにより、処理室13内に供給される冷却ガス12の流れを規制し、冷却ガス12が処理室13内の中央付近に流れるように整流させることができ、熱処理対象物11に均一に冷却ガス12を送給することができる。
また、処理室13内の複数の熱処理対象物11は、ガス冷却を行う際、熱処理温度を全ての熱処理対象物11に均一に冷却ガス12を供給するため、処理室13内に複数の熱処理対象物11を同心円状に均等に配置しているが、特にこれに限定されるものではない。
また、本実施の形態に係る真空熱処理炉10Aにおいては、冷却ガス12を熱処理対象物11に均等に流し、熱処理対象物11を均等に冷却する案内部材16Aが設けられている。この案内部材16Aは、処理室13内に同心円状に配置され、環状群を形成している6個の熱処理対象物11の中心部分に設けられている。また、案内部材16Aは、図1に示すように、処理室13内に設けた支持手段23により処理室13内に支持されている。
よって、ガス供給部14から壁面13aのガス通気口17を介して処理室13内に吹出された冷却ガス12は、案内部材16Aの上部及びその近傍に衝突し、冷却ガス12の流路が変更され、案内部材16Aとその案内部材16Aの周囲に配置されている複数の熱処理対象物11に分散して流れていく。そして、案内部材16Aと熱処理対象物11との間を流れる冷却ガス12と環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間を流れる冷却ガス12とが、熱処理対象物11と接触し、熱交換することで、熱処理対象物11を冷却する。
従って、処理室13内に供給された冷却ガス12のうち、複数の熱処理対象物11により形成される環状群の内側を流れる冷却ガス12が、案内部材16Aの上部及びその近傍に衝突し、案内部材16Aの周囲の熱処理対象物11に分散することで、案内部材16Aと熱処理対象物11との間を流れる冷却ガス12の流量を減らし流速を遅らせると共に、環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間を流れる冷却ガス12の流量を増大し流速を早くすることができる。
これにより、案内部材16Aと熱処理対象物11との間を流れる冷却ガス12と環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間を流れる冷却ガス12との速度分布を均一化させることができる。このため、複数の熱処理対象物11により形成される環状群の内側を流れる冷却ガス12と環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間を流れる冷却ガス12とによる熱伝導率の差異を軽減し、冷却ガス12による熱処理対象物11の冷却効果の差異を軽減することで、熱処理対象物11を均等に冷却することができる。
また、案内部材16Aと熱処理対象物11との間を流れる冷却ガス12と、環状群を形成する複数の熱処理対象物11と処理室13の内壁との間を流れる冷却ガス12とでの冷却速度の差を低減し、熱処理対象物11を均一に冷却することで、熱処理対象物11の全体の歪み、硬さのばらつき、内部組織や結晶粒度のばらつきを低減することができる。
壁面13a、13bの各々のガス通気口17、18は、処理室13に相対するように配置されており、熱処理対象物11と接触し、熱交換された冷却ガス12は、処理室13の他方の壁面13bのガス通気口18を通過して、ガス排出部15から処理室13の外に排出される。
また、壁面13bのガス通気口18にも整流筒22を設けており、処理室13内から排出する冷却ガス12の流れを整流した後、ガス排出部15に排出するようにしている。
壁面13bのガス通気口18からガス排出部15に吐出された冷却ガス12は、再度、図示しないガス冷却装置で冷却した後、図示しないファンによりガス供給部14に送給し、処理室13内に循環するようにしている。
よって、本実施の形態に係る真空熱処理炉10Aは、案内部材16Aを設置することにより処理室13内に供給される冷却ガス12の流路を変え、案内部材16Aと環状群を形成する複数の熱処理対象物11との間を流れる冷却ガス12の流速を遅くし、環状群を形成する複数の熱処理対象物11と処理室13の内壁との間を流れる冷却ガス12の流速を速くする。そして、案内部材16Aと熱処理対象物11との間を流れる冷却ガス12と環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間を流れる冷却ガス12とを均等に通過させることで、処理室13内に配置された複数の加熱された熱処理対象物11を均等に冷却するようにしている。
また、本実施の形態に係る真空熱処理炉10Aにおいては、処理室13を通過する冷却ガスの流れ方向を真空熱処理炉10Aの本体内の上側から下側に流れるようにしているが、本発明はこれに限定されるものではなく、冷却ガス12の流れ方向を逆方向として真空熱処理炉10Aの本体内の下側から上側に流れるようにしてもよい。このとき、ガス排出部15がガス供給部となり、ガス供給部14がガス排出部となる。
また、処理室13内を上下方向に通過する冷却ガス12の流れ方向を上下交互に切り替えるようにしてもよい。冷却ガス12は、真空熱処理炉10Aの本体内に設けているファンから熱処理対象物11に向けて供給し、その後再びファンに吸込まれているため、熱処理対象物11は、ファンに向かって流れる一方向からの冷却ガス12を受けることになる。これに対し、冷却ガス12の流れ方向を上下交互に切り替えることで、熱処理対象物11が受ける冷却効果を熱処理対象物11の上下で均等にすることができる。
このように、本実施の形態に係る真空熱処理炉10Aによれば、ガス冷却を行う際、処理室13内に同心円状に配置され、環状群を形成する複数の熱処理対象物11の中心部分に案内部材16Aを設けることで、処理室13内に供給された冷却ガス12のうち、案内部材16Aと熱処理対象物11との間を流れる冷却ガス12の流量を減らし流速を遅らせると共に、環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間を流れる冷却ガス12の流量を増大し流速を早くすることができる。
これにより、案内部材16Aと熱処理対象物11との間を流れる冷却ガス12と環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間を流れる冷却ガス12との速度分布を均一化させることができる。このため、案内部材16Aと熱処理対象物11との間を流れる冷却ガス12と環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間を流れる冷却ガス12とによる熱伝導率の差異を軽減し、冷却ガス12による熱処理対象物11の冷却効果の差異を軽減することで、熱処理対象物11を均等に冷却することができる。
また、熱処理対象物11の冷却速度の差を低減し、均一に冷却することで、熱処理対象物11の全体の歪み、硬さのばらつきを低減することができると共に、内部組織や結晶粒度のばらつきを低減することもでき、信頼性の高い熱処理対象物11を提供することができる。
また、本実施の形態に係る真空熱処理炉10Aにおいては、熱処理対象物11の加熱とガス冷却を単室で行う単室炉としているが、本発明はこれに限定されるものではなく、本実施の形態に係る真空熱処理炉10Aをガス冷却炉として用い、熱処理対象物11を加熱する熱処理炉を別途設け、加熱炉とガス冷却炉とを備える多室型の真空熱処理炉に用いるようにしてもよい。
[第二の実施の形態]
図4は、本発明による第二の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図であり、図5は、本発明による第二の実施の形態において用いられる案内部材の構成を簡略に示す概略図である。
なお、前述した実施の形態で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
図4、5に示すように、本実施の形態に係る真空熱処理炉10Bは、図1に示すような本発明による第一の実施の形態に係る真空熱処理炉10Aの案内部材16Aの上部側の先端部16aが、半球状に形成されてなるものである。
即ち、図4、5に示すように、本実施の形態に係る真空熱処理炉10Bにおいては、上部側の先端部16aを半球状に形成された案内部材16Bを設けてなるものである。
案内部材16Bは上部側の先端部16aを半球状にしているため、案内部材16Bの先端部16aに衝突した冷却ガス12の流路を案内部材16Bの周囲の複数の熱処理対象物11に円滑に変更することができる。
よって、本実施の形態に係る真空熱処理炉10Bによれば、上部側の先端部16aを半球状に形成してなる案内部材16Bを設けているため、図1に示すような本発明による第一の実施の形態に係る真空熱処理炉10Aの案内部材16Aのように上部側の先端部を板状として構成している場合に比べて、処理室13に送給される冷却ガス12を案内部材16Aの周囲に配置されている複数の熱処理対象物11に円滑に冷却ガス12を分散させることができる。
このため、複数の熱処理対象物11により形成される環状群の内側と、環状群を形成する複数の熱処理対象物11と処理室13の内壁面13cとの間に冷却ガス12を効率良く供給することができる。
[第三の実施の形態]
図6は、本発明による第三の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図であり、図7は、図6のA−A断面図であり、図8は、冷却ガスのガス流れを示す説明図である。
なお、前述した実施の形態で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
図6、7に示すように、本実施の形態に係る真空熱処理炉10Cは、処理室13の内壁面13cに設けられ、熱処理対象物11と各々対応する位置に突部25を有するものである。
処理室13内に供給された冷却ガス12は、熱処理対象物11の先端部から熱処理対象物11の加熱による高温部分と処理室13内に送給された冷却ガス12による低温部分との境界層26が形成される。また、熱処理対象物11を冷却する際、処理室13内を通過する冷却ガス12の流れ方向は上下交互に切り替えているため、熱処理対象物11は真ん中部分が高温となる。そのため、境界層26の厚さが熱処理対象物11の上部の端部側より熱処理対象物11の真ん中部分の方が厚くなる。
本実施の形態に係る真空熱処理炉10Cのように、処理室13の内壁面13cに熱処理対象物11と各々対応する位置に突部25を設けることで、図8に示すように、熱処理対象物11の真ん中部分に形成される境界層26の厚さを変化させ、熱処理対象物11の表面の境界層26の厚さを薄くすることができる。
よって、熱処理対象物11の表面に形成される境界層26の厚さを薄くすることで、熱処理対象物11への熱伝達率を早くすることができるため、処理室13内に吹出された冷却ガス12により更に効率よく熱処理対象物11を冷却することができる。
[第四の実施の形態]
図9は、本発明による第四の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図であり、図10は、本発明による第四の実施の形態に係る真空熱処理炉に適用される整流板の平面図である。
なお、前述した実施の形態で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
図9、10に示すように、本実施の形態に係る真空熱処理炉10Dは、処理室13の壁面13aのガス通気口17上に、案内部材として、図1に示す第一の実施の形態に係る真空熱処理炉の整流筒22に代えて、複数の孔27を有する整流板28Aを設けたものである。
処理室13の壁面13aのガス通気口17上に複数の孔27を有する整流板28Aを設けることで、ガス供給部14に送給される冷却ガス12を整流化してから処理室13内に供給することができる。これにより、処理室13内に吹出された冷却ガス12の流速の偏りを軽減し、処理室13内には冷却ガス12を均一に供給することができるため、熱処理対象物11を効率的に冷却できると共に、熱処理対象物11を均一に冷却することができる。
また、処理室13の壁面13bのガス通気口18上にも、同様に整流板28Aを設けている。このため、冷却ガス12の流れ方向を逆方向として真空熱処理炉10Dの本体内の下側から上側に流れるようにした場合、処理室13内を上下方向に通過する冷却ガス12の流れ方向を上下交互に切り替えるようにした場合でも、冷却ガス12を整流化してから処理室13内に供給することができる。
[第五の実施の形態]
図11は、本発明による第五の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図であり、図12は、本発明による第五の実施の形態に係る真空熱処理炉に適用される整流板の平面図である。
なお、前述した実施の形態で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
図11、12に示すように、本実施の形態に係る真空熱処理炉10Eは、処理室13の壁面13aのガス通気口17上に、案内部材として、図9に示す第四の実施の形態に係る真空熱処理炉の整流板28Aに代えて処理室13内に配置される熱処理対象物11の位置に応じて孔27を設けた整流板28Bを設けたものである。
処理室13の壁面13aのガス通気口17上に処理室13内に配置される熱処理対象物11の位置に応じて整流板28Bに孔27を設けることで、処理室13内に吹出された冷却ガス12の流速の偏りを軽減し、処理室13内の各々の熱処理対象物11に対する冷却ガス12の流量を均一にすると共に、冷却ガス12の流速を均一にすることができる。よって、整流板28Aに代えて熱処理対象物11の位置に応じて孔27を設けた整流板28Bを用い、各々の熱処理対象物11に冷却ガス12を均一に供給することで、熱処理対象物11を効率良く、かつ均一に冷却することができる。
本発明は、ガス冷却式の真空熱処理炉に限定されるものではなく、ガスを均一に送給する装置であれば他の装置においても適用可能である。
以上のように、本発明に係る二重配管の接続構造は、冷却ガスの速度分布を均一化させ、熱処理対象物への熱伝導率の差異を軽減し、均等に冷却することができるため、冷却ガスを利用したガス冷却式の真空熱処理炉に用いるのに適している。
本発明第一の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図である。 図1中のA−A断面図である。 図1中のB−B断面図である。 本発明による第二の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図である。 本発明による第二の実施の形態において用いられる案内部材の構成を簡略に示す概略図である。 本発明による第三の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図である。 図6のA−A断面図である。 冷却ガスのガス流れを示す説明図である。 本発明による第四の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図である。 本発明による第四の実施の形態に係る真空熱処理炉に適用される整流板の平面図である。 本発明による第五の実施の形態に係る真空熱処理炉の構成を簡略に示す概略図である。 本発明による第五の実施の形態に係る真空熱処理炉に適用される整流板の平面図である。 従来の真空熱処理炉の構成の一例を示す模式図である。
符号の説明
10A〜10E 真空熱処理炉
11 熱処理対象物
12 冷却ガス
13 処理室
13a、13b 壁面
13c 内壁面
14 ガス供給部
15 ガス排出部
16A、16B 案内部材
16a 先端部
17、18 ガス通気口
19 支持手段
20 リング状部材
21 冶具
22 整流筒
23 支持手段
25 突部
26 境界層
27 孔
28A、28B 整流板

Claims (6)

  1. 熱処理対象物を加熱し、加熱した熱処理対象物を冷却ガスでガス冷却する処理室を備えた真空熱処理炉であって、
    前記処理室の上側に設けられ、前記冷却ガスを前記処理室に供給するガス供給部と、
    前記処理室の下側に設けられ、前記冷却ガスを前記処理室から排出するガス排出部と、
    前記冷却ガスを前記熱処理対象物に均等に流し、前記熱処理対象物を均等に冷却する案内部材とを有することを特徴とする真空熱処理炉。
  2. 請求項1において、
    複数の熱処理対象物が、前記処理室内に同心円状に配置されてなることを特徴とする真空熱処理炉。
  3. 請求項1又は2において、
    前記案内部材が、複数の前記熱処理対象物の中心部分に配置されてなることを特徴とする真空熱処理炉。
  4. 請求項3において、
    前記案内部材の上部側の形状部が、半球状であることを特徴とする真空熱処理炉。
  5. 請求項1乃至4の何れか一つにおいて、
    前記処理室の側壁の内側に設けられ、前記熱処理対象物と対応する位置に突部を有することを特徴とする真空熱処理炉。
  6. 請求項1乃至4の何れか一つにおいて、
    前記処理室内に送給する冷却ガスのガス流れ方向を交互に切り替えることを特徴とする真空熱処理炉。
JP2008116124A 2008-04-25 2008-04-25 真空熱処理炉 Withdrawn JP2009264680A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116124A JP2009264680A (ja) 2008-04-25 2008-04-25 真空熱処理炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116124A JP2009264680A (ja) 2008-04-25 2008-04-25 真空熱処理炉

Publications (1)

Publication Number Publication Date
JP2009264680A true JP2009264680A (ja) 2009-11-12

Family

ID=41390742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116124A Withdrawn JP2009264680A (ja) 2008-04-25 2008-04-25 真空熱処理炉

Country Status (1)

Country Link
JP (1) JP2009264680A (ja)

Similar Documents

Publication Publication Date Title
US7625204B2 (en) Gas cooling type vacuum heat treating furnace and cooling gas direction switching device therefor
JP2011211163A (ja) 縦型熱処理装置およびその冷却方法
JP2016164306A (ja) ギア、シャフト、リングおよび類似のワークピースの真空浸炭および焼入れのための多チャンバ炉
CN102362139A (zh) 用于在罩式退火设备中预热退火件的方法
KR101444039B1 (ko) 기판 처리 장치 및 가열 장치
KR20110103326A (ko) 종형 열처리 장치 및, 압력 검지 시스템과 온도 센서의 조합체
JP5912670B2 (ja) ワークのガス冷却装置
JP2008169430A (ja) 鋼球の熱処理装置および鋼球の熱処理方法
JP5179203B2 (ja) 筒形金属部材用熱処理装置
JP2009264680A (ja) 真空熱処理炉
JP5506187B2 (ja) 真空熱処理炉及び熱処理対象物支持装置
JP2009024243A (ja) 焼入れ方法
JP5201127B2 (ja) 熱処理装置
CN110551966B (zh) 一种热处理炉
JP4466038B2 (ja) 熱処理装置
CN211057216U (zh) 一种热处理炉
JP2010016285A (ja) 熱処理装置
KR102645924B1 (ko) 금속 욕에서 유리 리본의 복사 냉각을 위한 장치
CN114561518A (zh) 一种线杆卷材退火炉
JP2000248316A (ja) 鋼線の連続焼入れ・焼戻し処理装置
JP2013038128A (ja) 熱処理装置
WO2018221465A1 (ja) 多室型熱処理装置
JP4322741B2 (ja) 誘導加熱による針状ころ軸受外輪の軌道面の表面焼入方法及び焼入装置
JP2019214769A (ja) 真空浸炭装置
KR200242384Y1 (ko) 스테인레스 선재의 광휘소둔로

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705