JP2009262046A - 紫外光照射処理装置 - Google Patents
紫外光照射処理装置 Download PDFInfo
- Publication number
- JP2009262046A JP2009262046A JP2008114147A JP2008114147A JP2009262046A JP 2009262046 A JP2009262046 A JP 2009262046A JP 2008114147 A JP2008114147 A JP 2008114147A JP 2008114147 A JP2008114147 A JP 2008114147A JP 2009262046 A JP2009262046 A JP 2009262046A
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet light
- light irradiation
- processing apparatus
- gas
- glass substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Cleaning In General (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
【課題】被処理物の表面に到達する紫外光の強度の低下を抑制しつつ、被処理物の表面における静電気の発生を抑制することのできる紫外光照射処理装置を提供する。
【解決手段】搬送される被処理物Wに紫外線ランプ32を備えたランプハウス30からの紫外光を照射することで被処理物Wの表面の洗浄を行う紫外光照射処理装置20であって、被処理物Wの周囲に不活性ガス及び電子親和性分子を混合した混合ガスを供給するガス供給ダクト37を備えることを特徴とする。前記混合ガス中における前記電子親和性分子の濃度は、1.0%以上6.0%以下であることが好ましい。前記不活性ガスは、窒素ガスであることが好ましい。前記電子親和性分子は、酸素分子であることが好ましい。
【選択図】図4
【解決手段】搬送される被処理物Wに紫外線ランプ32を備えたランプハウス30からの紫外光を照射することで被処理物Wの表面の洗浄を行う紫外光照射処理装置20であって、被処理物Wの周囲に不活性ガス及び電子親和性分子を混合した混合ガスを供給するガス供給ダクト37を備えることを特徴とする。前記混合ガス中における前記電子親和性分子の濃度は、1.0%以上6.0%以下であることが好ましい。前記不活性ガスは、窒素ガスであることが好ましい。前記電子親和性分子は、酸素分子であることが好ましい。
【選択図】図4
Description
本発明は、紫外光を利用して被処理物表面の処理を行う紫外光照射処理装置に関する。
例えば、液晶ディスプレイや半導体装置の製造プロセスにおいて、基板の表面を清浄化するために基板に紫外光を照射して表面の有機物の酸化分解を行わせる紫外光照射処理装置が利用されている。
この種の紫外光照射処理装置は、基板(被処理物)に紫外光を照射すると、まず、基板の雰囲気中の酸素分子に紫外光が吸収されてオゾンが生成し、このオゾンが紫外光を受けて更に光分解することにより活性酸素等の活性種を生じ、この活性種により基板表面の有機物が酸化分解されると考えられている。
一方、紫外光が大気中の酸素分子に衝突してオゾンを生成させることは、紫外光が大気中の酸素によって吸収されることを意味する。現に、大気中における紫外光透過率は極めて小さく、例えば波長172nmの紫外光では大気中を2mm進むだけで約40数%に減衰することが知られており、被処理物の表面に到達する紫外光強度を高めて洗浄の処理スピードを上げるためには、大気中の酸素の存在は障害になる。
そこで、従来、特許文献1に記載の紫外光照射処理装置が提案されている。この紫外光照射処理装置においては、被処理物の周囲に窒素ガス等の不活性ガスを供給することによって、被処理物の表面に到達する紫外光の強度を高めている。窒素ガス等の不活性ガスを供給する場合、被処理物の周囲には酸素が存在しないこととなるが、大気中から搬送されてきた被処理物の表面には微量の酸素が付着しているために、この酸素が紫外光により活性種となって、被処理物の表面に付着している有機物等の酸化分解を十分に行うことが可能となっている。
しかしながら、上述した従来の紫外光照射処理装置においては、被処理物の表面に対して紫外光を照射したときに、被処理物の表面に静電気が発生してしまい、静電気による吸引力によって、雰囲気中に存在する埃や塵等が被処理物の表面に付着してしまうという問題や、半導体、液晶基板等では、帯電量が大きいと絶縁破壊により素子上の回路が壊れるという問題があった。
本発明は上記のような事情に基づいて完成されたものであって、被処理物の表面に到達する紫外光の強度の低下を抑制しつつ、被処理物の表面における静電気の発生を抑制することのできる紫外光照射処理装置を提供することを目的とする。
本発明は、搬送される被処理物に紫外線ランプを備えたランプハウスからの紫外光を照射することで前記被処理物の表面の洗浄を行う紫外光照射処理装置であって、前記被処理物の周囲に不活性ガス及び電子親和性分子を混合した混合ガスを供給するガス供給手段を備えることを特徴とする紫外光照射処理装置である。
また、本発明は、搬送される被処理物に紫外線ランプを備えたランプハウスからの紫外光を照射することで前記被処理物の表面の処理を行う紫外光照射処理装置であって、前記被処理物の周囲に電子親和性分子含有不活性ガスを供給するガス供給手段を備えることを特徴とする紫外光照射処理装置である。
本発明によれば、被処理物の周囲に供給される混合ガス中あるいは電子親和性分子含有不活性ガス中には電子親和性分子が混合されているために、この電子親和性分子が被処理物の表面における静電気の発生を抑制することができる。
本発明において、前記ランプハウスからの紫外光を照射する紫外光照射エリアの全域にわたって、前記混合ガスあるいは前記電子親和性分子含有不活性ガスが下向きに吐出されることが好ましい。混合ガスあるいは電子親和性分子含有不活性ガスがこのように吐出された場合、被処理物の表面全体における静電気の発生を均一に抑制できるからである。
本発明において、前記混合ガス中あるいは前記電子親和性分子含有不活性ガス中における前記電子親和性分子の濃度は、1.0%以上6.0%以下であることが好ましい。電子親和性分子の濃度が1.0%以上6.0%以下の場合、被処理物の表面に到達する紫外光の強度の低下を抑制しつつ、被処理物の表面における静電気の発生を抑制することができるからである。
本発明において、前記不活性ガスは、窒素ガスであることが好ましい。
本発明において、前記電子親和性分子は、酸素分子であることが好ましい。
本発明において、前記電子親和性分子は、酸素分子であることが好ましい。
本発明によれば、被処理物の表面に到達する紫外光の強度の低下を抑制しつつ、被処理物の表面における静電気の発生を抑制することのできる紫外光照射処理装置を提供することが可能である。
本発明の紫外光照射処理装置は、液晶ディスプレイ用のガラス基板(本発明の被処理物に相当する)の洗浄を行う基板洗浄装置10に組み込まれている。図1に示すように、基板洗浄装置10はその正面から見て左側から順に、搬送ユニット11、本発明に係る紫外光照射処理装置20、搬送ユニット12、ウエット洗浄を行うウエット洗浄装置13を連続して配置して構成されている。紫外光照射処理装置20及びウエット洗浄装置13の内部には、搬送ユニット11内に設けたと同様な搬送機構14(図2参照)が備えられており、被処理物W(ガラス基板)が図1中の矢印に示すように左側から右側に順次搬送され、全体として連続する洗浄ラインをなしている。
図2に示すように、紫外光照射処理装置20には上面を開口させた箱形をなす搬送チャンバー21が設けられており、その開口部を塞ぐように2枚のランプハウス30が図示しないヒンジ機構によって開閉可能に配置されている。搬送チャンバー21内には搬送機構14を構成する複数本のコンベア軸22が被処理物Wの搬送方向と直交する方向に回転自在に設けられており、それらの各コンベア軸22に設けた複数個のコンベアローラ23(図3,図4参照)によって被処理物Wが搬送されるようになっている。
ランプハウス30は、支持プレート31の下面に複数本(本実施形態では、4本)の紫外線ランプ32を被処理物Wの搬送方向と直交する方向に平行に並べて構成してあり、その紫外線ランプ32群全体を四方から囲んで下面側を開放させた開放ハウジング33が設けられている。したがって、紫外線ランプ32群は、上記開放ハウジング33内にその開放面に沿わせるように横並びになっており、搬送機構14によって被処理物Wが開放ハウジング33の下方の紫外光照射空間X(図3,図4参照)に搬送されるときに、その被処理物Wの表面に紫外光を照射できるようになっている。なお、本実施形態では、紫外線ランプ32としては、合成石英ガラス製の断面が矩形状をなす扁平な角筒型であり、波長172nm、強度80mW/cm2の真空紫外光を放射することが可能なキセノンエキシマランプが使用されている。
図4に示すように、開放ハウジング33の天井部(前記開放面とは反対側)には、例えばステンレス板に直径2mmの孔を3mmピッチで多数形成して開口率40%となるようにした多孔のガス拡散板35を開放ハウジング33の開放面と平行になる(紫外線ランプ32の上側の平坦面と平行に対面する)ように配置してある。なお、ガス拡散板35に形成する孔の孔径は1〜3mm、開口率は30〜60%とすることが望ましい。そして、前記支持プレート31には、そのガス拡散板35によって区画された空間に連なるガス供給口36が形成されており、支持プレート31上には前記ガス供給口36を上から覆うようにガス供給ダクト37が設けられている。
ガス供給ダクト37からは、被処理物Wの周囲に窒素ガスと圧縮乾燥空気とを混合した混合ガスを供給することが可能となっている。なお、圧縮乾燥空気のことを、以下、CDA(Compressed Dry Air)と呼ぶことにする。
ガス供給ダクト37の上流側には、中間ダクト41を介して、窒素ガスを供給するための窒素ガス供給ダクト39と、CDAを供給するためのCDA供給ダクト40が接続されている。窒素ガスとCDAとの混合比率は、窒素ガス供給ダクト39及びCDA供給ダクト40にそれぞれ設けられた流量調整バルブV1、V2によって調整することが可能となっている。
なお、被処理物Wの周囲に混合ガスを供給するガス供給ダクト37が、本発明の「ガス供給手段」に対応している。
なお、被処理物Wの周囲に混合ガスを供給するガス供給ダクト37が、本発明の「ガス供給手段」に対応している。
搬送チャンバー21の底部には、図示しない排気装置に連なる排気ダクト24が設けられている。この排気ダクト24によって、搬送チャンバー21内に供給された混合ガス、搬送チャンバー21の内部で発生したオゾンガス等を排出できるようになっている。
上記構成の本実施形態によれば、図4の矢印に示すように、ランプハウス30内に設けられているガス拡散板35の微細孔から混合ガスが下向きに吐出される。吐出された混合ガスは、まず紫外線ランプ32の平坦面に衝突し、ここで横向きに流れを変え、紫外線ランプ32の両側部から真っ直ぐ被処理物Wの表面に向かって落ちるように流れる。これにより、被処理物Wの周囲の空間である紫外光照射空間Xに、窒素ガス及びCDAを混合した混合ガスを供給できるようになっている。
また、ランプハウス30からの紫外光が照射される紫外光照射エリア(開放ハウジング33によって囲まれた領域)には、その全域にわたって、ガス拡散板35の微細孔から混合ガスが下向きに吐出されるようになっている。これにより、被処理物Wの表面全体に混合ガスを均一に供給することが可能となっている。
ところで、被処理物Wが例えばガラス基板である場合には、紫外線ランプ32からの紫外光がガラス基板の表面に照射されることにより、ガラス基板の表面には静電気が発生してしまう。すると、静電気による吸引力によって、ガラス基板の表面に塵や埃等の異物が付着してしまうという問題がある。また、半導体、液晶基板等では、帯電量が大きいと絶縁破壊により素子上の回路が壊れるという問題がある。
ガラス基板の表面に静電気が発生するのは、光電効果による電子の放出が原因であると考えられる。電子が放出される原因は、以下の2つに分類される。
(1)紫外線ランプ32を構成するガラスからの電子放出
(2)ガラス基板表面からの電子放出
(1)紫外線ランプ32を構成するガラスからの電子放出
(2)ガラス基板表面からの電子放出
上記(2)ガラス基板表面からの電子放出は、さらに、以下(A)及び(B)に分類される。
(A)ガラス基板の表面が、絶縁体である場合。例えば、ガラス基板の表面に何も被膜が形成されていない場合(ガラス基板の表面がガラスそのものである場合)や、ガラス基板の表面に窒化珪素などの絶縁体からなる被膜が形成されている場合。
(B)ガラス基板の表面が、半導体である場合。例えば、ガラス基板の表面にn+−Siなどの半導体からなる被膜が形成されている場合。
(A)ガラス基板の表面が、絶縁体である場合。例えば、ガラス基板の表面に何も被膜が形成されていない場合(ガラス基板の表面がガラスそのものである場合)や、ガラス基板の表面に窒化珪素などの絶縁体からなる被膜が形成されている場合。
(B)ガラス基板の表面が、半導体である場合。例えば、ガラス基板の表面にn+−Siなどの半導体からなる被膜が形成されている場合。
上記(A)の場合は、バンドギャップが大きいために、ガラス基板の表面から放出される電子の量が少ない。このため、紫外線ランプ32を構成するガラスから放出された電子が、ガラス基板の表面に多く到達する。この結果、ガラス基板の表面はマイナスに帯電する。
一方、上記(B)の場合は、バンドギャップが小さいために、ガラス基板の表面から放出される電子の量が多い。このため、紫外線ランプ32を構成するガラスから放出される電子の量よりも、ガラス基板の表面から放出される電子の量の方が多いために、ガラス基板の表面には正孔が残る。この結果、ガラス基板の表面はプラスに帯電する。
ガラス基板の表面における帯電を緩和するためには、酸素分子(O2)のような電子親和力の高い分子を窒素ガス中に混合することが効果的である。なぜなら、酸素分子と比べると、窒素分子の電子親和力は極めて低いために、窒素分子と電子との結合は行われず、ガラス基板の表面における帯電の緩和はなされないが、窒素ガス中に電子親和力の高い酸素分子を混合した場合には、酸素分子と電子との結合が行われるために、ガラス基板の表面における帯電の程度が緩和されるからである。
より具体的に説明すると、上記(A)の場合には、ガラス基板(被処理物W)の周囲に窒素ガスとCDAを混合した混合ガスを供給することにより、CDAに含まれている酸素分子が、紫外線ランプ32を構成するガラスから放出される電子の一部と結合してマイナスイオンになる。これにより、ガラス基板の表面に到達する電子の量が減少するために、ガラス基板の表面におけるマイナス帯電の程度が緩和される。
一方、上記(B)の場合には、ガラス基板(被処理物W)の周囲に窒素ガスとCDAを混合した混合ガスを供給することにより、ガラス基板の表面から放出された電子の一部は、酸素分子と結合してマイナスイオンになる。このとき、酸素分子の質量は、電子の質量よりも遙かに大きいために、結合してできたマイナスイオンの運動量は、電子の運動量ではなく、酸素分子の運動量にほぼ等しくなる。したがって、マイナスイオンのブラウン運動と、正孔−マイナスイオン間の電気的引力の結果として、ガラス基板の表面に存在する正孔と一部のマイナスイオンが結合して電荷が消滅する。この結果、ガラス基板の表面におけるプラス帯電の程度が緩和される。
以上説明したように、本実施形態の紫外光照射処理装置20によれば、被処理物Wの表面全体に対して均一に混合ガスを供給することが可能であるために、被処理物Wの表面における静電気の発生を均一に抑制することができる。
なお、以上の説明では、CDAと窒素ガスとを混合したガスのことを「混合ガス」と呼んでいたが、この「混合ガス」を「電子親和性分子含有不活性ガス」に置き換えてもよい。「電子親和性分子含有不活性ガス」とは、電子親和性分子が含まれている不活性ガスのことである。
なお、以上の説明では、CDAと窒素ガスとを混合したガスのことを「混合ガス」と呼んでいたが、この「混合ガス」を「電子親和性分子含有不活性ガス」に置き換えてもよい。「電子親和性分子含有不活性ガス」とは、電子親和性分子が含まれている不活性ガスのことである。
[実施例1]
実施例1では、紫外光照射処理装置20を用いて、以下の実験を行った。
まず、被処理物Wとして、表面に何も被膜が形成されていない厚み0.7mmのガラス基板を準備した。このガラス基板は、表面が絶縁体であるガラス基板(上記(A)のガラス基板)に相当する。
実施例1では、紫外光照射処理装置20を用いて、以下の実験を行った。
まず、被処理物Wとして、表面に何も被膜が形成されていない厚み0.7mmのガラス基板を準備した。このガラス基板は、表面が絶縁体であるガラス基板(上記(A)のガラス基板)に相当する。
実験条件は、以下の通りに設定した。
(1)被処理物Wの搬送速度:1m/min
(2)混合ガスの流量:450l/min
(3)排気ダクト24からの排気ガスの流量:1m3/min
(1)被処理物Wの搬送速度:1m/min
(2)混合ガスの流量:450l/min
(3)排気ダクト24からの排気ガスの流量:1m3/min
そして、混合ガス中における酸素濃度を種々変化させたときのガラス基板の帯電量[−V]を測定するとともに、ガラス基板の表面に到達する紫外線の積算光量[mJ/cm2]を測定した。なお、帯電量の測定には、高精度静電気センサ(株式会社キーエンス製、センサーヘッド:SK-03、コントローラ:SK-200)を使用した。
測定結果を図5にグラフで示す。
図5のグラフにおいて、紫外線の積算光量は、酸素濃度が0%のときの積算光量677[mJ/cm2]を100%としたときの相対値[%]で示している。また、混合ガス中の酸素濃度は、体積%濃度で示している。
図5のグラフにおいて、紫外線の積算光量は、酸素濃度が0%のときの積算光量677[mJ/cm2]を100%としたときの相対値[%]で示している。また、混合ガス中の酸素濃度は、体積%濃度で示している。
図5のグラフを見ればわかるように、混合ガス中の酸素濃度が1.0%以上6.0%以下の範囲、より好ましくは、2.0%以上5.0%以下の範囲においては、紫外線ランプ32から照射される紫外線の積算光量がほとんど減少しておらず、かつ、ガラス基板の帯電量が−100V以上であり、帯電量の絶対値が小さい結果となった。つまり、ガラス基板の周囲に供給する混合ガス中の酸素濃度を1.0%以上6.0%以下、より好ましくは、2.0%以上5.0%以下の範囲とすることにより、ガラス基板の表面に到達する紫外光の強度の低下を抑制しつつ、ガラス基板の表面における静電気の発生を抑制できることが実証された。
[実施例2]
実施例2では、紫外光照射処理装置20を用いて、以下の実験を行った。
まず、被処理物Wとして、表面にn+−Siからなる被膜が形成された厚み0.7mmのガラス基板を準備した。このガラス基板は、表面が半導体であるガラス基板(上記(B)のガラス基板)に相当する。
実施例2では、紫外光照射処理装置20を用いて、以下の実験を行った。
まず、被処理物Wとして、表面にn+−Siからなる被膜が形成された厚み0.7mmのガラス基板を準備した。このガラス基板は、表面が半導体であるガラス基板(上記(B)のガラス基板)に相当する。
実験条件は、以下の通りに設定した。
(1)被処理物Wの搬送速度:1m/min
(2)混合ガスの流量:450l/min
(3)排気ダクト24からの排気ガスの流量:1m3/min
(1)被処理物Wの搬送速度:1m/min
(2)混合ガスの流量:450l/min
(3)排気ダクト24からの排気ガスの流量:1m3/min
そして、混合ガス中における酸素濃度を種々変化させたときのガラス基板の帯電量[+V]を測定するとともに、ガラス基板の表面に到達する紫外線の積算光量[mJ/cm2]を測定した。なお、帯電量の測定は、高精度静電気センサ(株式会社キーエンス製、センサーヘッド:SK-03、コントローラ:SK-200)を使用した。
測定結果を図6にグラフで示す。
図6のグラフにおいて、紫外線の積算光量は、酸素濃度が0%のときの積算光量677[mJ/cm2]を100%としたときの相対値[%]で示している。また、混合ガス中の酸素濃度は、体積%濃度で示している。
図6のグラフにおいて、紫外線の積算光量は、酸素濃度が0%のときの積算光量677[mJ/cm2]を100%としたときの相対値[%]で示している。また、混合ガス中の酸素濃度は、体積%濃度で示している。
図6のグラフを見ればわかるように、混合ガス中の酸素濃度が1.0%以上6.0%以下の範囲、より好ましくは、2.0%以上5.0%以下の範囲においては、紫外線ランプ32から照射される紫外線の積算光量がほとんど減少しておらず、かつ、ガラス基板の帯電量が+100V以下であり、帯電量の絶対値が小さい結果となった。つまり、ガラス基板の周囲に供給する混合ガス中の酸素濃度を1.0%以上6.0%以下、より好ましくは、2.0%以上5.0%以下の範囲とすることにより、ガラス基板の表面に到達する紫外光の強度の低下を抑制しつつ、ガラス基板の表面における静電気の発生を抑制できることが実証された。
以上説明したように、本実施形態の紫外光照射処理装置20によれば、被処理物Wの周囲に窒素ガス及び酸素原子を混合した混合ガスを供給することによって、被処理物Wの表面に到達する紫外光の強度の低下を抑制しつつ、被処理物Wの表面における静電気の発生を抑制することが可能である。この結果、被処理物Wの洗浄スピードを落とすことなく、被処理物Wの表面に塵や埃等の異物が付着することを防止することが可能となる。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では、ガス供給ダクト37の上流側には、窒素ガスを供給するための窒素ガス供給ダクト39と、CDAを供給するためのCDA供給ダクト40が接続している例を示したが、本発明はこれに限定されるものではない。例えば、図7及び図8に示すように、窒素ガスを供給するための窒素ガス供給ダクト39をガス供給ダクト37の上流側に接続するとともに、CDAを供給するためのCDA供給ダクト40を被処理物Wの下方に配置してもよい。この場合、CDA供給ダクト40には、被処理物Wの下面に向けてCDAを噴射するための多数の孔42(スリットノズル)を設けるのが好ましい。この孔42から被処理物Wの下面に向けてCDAを噴射することによって、被処理物Wと次の被処理物Wが流れてくる間に、被処理物Wの周囲に窒素ガスとCDAを混合した混合ガスを供給することが可能である。この場合には、窒素ガス供給ダクト39とCDA供給ダクト40とを合わせたものが、本発明の「ガス供給手段」に対応する。
(2)上記実施形態では、不活性ガスとして窒素ガスを用いた例を示したが、本発明はこれに限定されるものではない。不活性ガスとしては、紫外光の減衰が小さく、かつ、反応性の低いガス、例えば、Ar、Ne、Xe等を用いることも可能である。
(3)上記実施形態では、電子親和性分子として酸素分子(O2)を用いた例を示したが、本発明はこれに限定されるものではない。電子親和性分子としては、N2よりも電子親和性の高い分子、例えば、CO2、H2O等を用いることも可能である。
(4)上記実施形態では、紫外線ランプ32として波長172nmのキセノンエキシマランプを使用した例を示したが、本発明はこれに限定されるものではない。紫外線ランプ32としては、例えば、波長185nm、254nm等の低圧水銀ランプを使用してもよい。また、上記実施形態では、扁平な角筒状の紫外線ランプ32を使用した例を示したが、例えば、丸みを帯びた筒型の紫外線ランプを使用してもよい。
20…紫外光照射処理装置
30…ランプハウス
32…紫外線ランプ
36…ガス供給口
37…ガス供給ダクト
39…窒素ガス供給ダクト
40…CDA供給ダクト
30…ランプハウス
32…紫外線ランプ
36…ガス供給口
37…ガス供給ダクト
39…窒素ガス供給ダクト
40…CDA供給ダクト
Claims (10)
- 搬送される被処理物に紫外線ランプを備えたランプハウスからの紫外光を照射することで前記被処理物の表面の処理を行う紫外光照射処理装置であって、
前記被処理物の周囲に不活性ガス及び電子親和性分子を混合した混合ガスを供給するガス供給手段を備えることを特徴とする紫外光照射処理装置。 - 請求項1に記載の紫外光照射処理装置であって、
前記ランプハウスからの紫外光を照射する紫外光照射エリアの全域にわたって、前記混合ガスが下向きに吐出されることを特徴とする紫外光照射処理装置。 - 請求項1または請求項2に記載の紫外光照射処理装置であって、
前記混合ガス中における前記電子親和性分子の濃度が1.0%以上6.0%以下であることを特徴とする紫外光照射処理装置。 - 請求項1から請求項3のうちいずれか1項に記載の紫外光照射処理装置であって、
前記不活性ガスは、窒素ガスであることを特徴とする紫外光照射処理装置。 - 請求項1から請求項4のうちいずれか1項に記載の紫外光照射処理装置であって、
前記電子親和性分子は、酸素分子であることを特徴とする紫外光照射処理装置。 - 搬送される被処理物に紫外線ランプを備えたランプハウスからの紫外光を照射することで前記被処理物の表面の処理を行う紫外光照射処理装置であって、
前記被処理物の周囲に電子親和性分子含有不活性ガスを供給するガス供給手段を備えることを特徴とする紫外光照射処理装置。 - 請求項6に記載の紫外光照射処理装置であって、
前記ランプハウスからの紫外光を照射する紫外光照射エリアの全域にわたって、前記電子親和性分子含有不活性ガスが下向きに吐出されることを特徴とする紫外光照射処理装置。 - 請求項6または請求項7に記載の紫外光照射処理装置であって、
前記電子親和性分子含有不活性ガス中における前記電子親和性分子の濃度が1.0%以上6.0%以下であることを特徴とする紫外光照射処理装置。 - 請求項6から請求項8のうちいずれか1項に記載の紫外光照射処理装置であって、
前記不活性ガスは、窒素ガスであることを特徴とする紫外光照射処理装置。 - 請求項6から請求項9のうちいずれか1項に記載の紫外光照射処理装置であって、
前記電子親和性分子は、酸素分子であることを特徴とする紫外光照射処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008114147A JP2009262046A (ja) | 2008-04-24 | 2008-04-24 | 紫外光照射処理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008114147A JP2009262046A (ja) | 2008-04-24 | 2008-04-24 | 紫外光照射処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009262046A true JP2009262046A (ja) | 2009-11-12 |
Family
ID=41388576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008114147A Pending JP2009262046A (ja) | 2008-04-24 | 2008-04-24 | 紫外光照射処理装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009262046A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011235210A (ja) * | 2010-05-06 | 2011-11-24 | Shin-Etsu Chemical Co Ltd | Uvオゾン洗浄装置 |
JP2012211951A (ja) * | 2011-03-30 | 2012-11-01 | Shin Etsu Chem Co Ltd | フォトマスク関連基板の洗浄方法及び洗浄装置 |
CN104858193A (zh) * | 2015-06-12 | 2015-08-26 | 深圳市华星光电技术有限公司 | 玻璃基板的紫外光清洗装置 |
JP2019018164A (ja) * | 2017-07-19 | 2019-02-07 | ウシオ電機株式会社 | 光照射装置 |
-
2008
- 2008-04-24 JP JP2008114147A patent/JP2009262046A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011235210A (ja) * | 2010-05-06 | 2011-11-24 | Shin-Etsu Chemical Co Ltd | Uvオゾン洗浄装置 |
JP2012211951A (ja) * | 2011-03-30 | 2012-11-01 | Shin Etsu Chem Co Ltd | フォトマスク関連基板の洗浄方法及び洗浄装置 |
CN104858193A (zh) * | 2015-06-12 | 2015-08-26 | 深圳市华星光电技术有限公司 | 玻璃基板的紫外光清洗装置 |
JP2019018164A (ja) * | 2017-07-19 | 2019-02-07 | ウシオ電機株式会社 | 光照射装置 |
CN110831708A (zh) * | 2017-07-19 | 2020-02-21 | 优志旺电机株式会社 | 光照射装置 |
CN110831708B (zh) * | 2017-07-19 | 2022-08-23 | 优志旺电机株式会社 | 光照射装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4337547B2 (ja) | 紫外光洗浄装置および紫外光洗浄装置用紫外線ランプ | |
TW200823929A (en) | Excimer lamp device | |
JP2003001206A (ja) | 基板処理方法及び基板処理装置 | |
JP2009262046A (ja) | 紫外光照射処理装置 | |
KR20130058602A (ko) | 광 조사 장치 | |
JP2005072374A (ja) | 基板処理装置 | |
JP2013154145A (ja) | 空気浄化装置 | |
JP4883133B2 (ja) | 紫外光洗浄装置 | |
TWI575559B (zh) | Light irradiation device | |
JP5586316B2 (ja) | Uvオゾン洗浄装置 | |
TW201300177A (zh) | 紫外線照射裝置 | |
WO2020095835A1 (ja) | 気体処理装置 | |
WO2020262478A1 (ja) | 気体処理方法、気体処理装置 | |
JP2018176032A (ja) | 光照射装置 | |
JP2008164856A (ja) | カラーフィルタ用基板の洗浄装置及び洗浄方法 | |
JP4543794B2 (ja) | 平板状部材の搬送装置 | |
JP2004162124A (ja) | 基板の処理装置及び処理方法 | |
KR100532512B1 (ko) | 디스플레이 패널 상의 유기물 세정방법 및 그 장치 | |
JP6984206B2 (ja) | 光照射装置 | |
JP7027871B2 (ja) | 光照射装置 | |
WO2024190007A1 (ja) | 光処理装置 | |
JP2023163746A (ja) | 紫外線照射装置および紫外線照射方法 | |
TW202435979A (zh) | 光處理裝置 | |
JP6507701B2 (ja) | 光処理装置および光処理方法 | |
JP2011131149A (ja) | ドライ洗浄方法およびドライ洗浄装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20090925 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090925 |
|
A711 | Notification of change in applicant |
Effective date: 20100507 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20100608 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |