JP2009260179A - Package for storing light-emitting element - Google Patents

Package for storing light-emitting element Download PDF

Info

Publication number
JP2009260179A
JP2009260179A JP2008110145A JP2008110145A JP2009260179A JP 2009260179 A JP2009260179 A JP 2009260179A JP 2008110145 A JP2008110145 A JP 2008110145A JP 2008110145 A JP2008110145 A JP 2008110145A JP 2009260179 A JP2009260179 A JP 2009260179A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
insulating substrate
storage package
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008110145A
Other languages
Japanese (ja)
Inventor
Norikazu Fukunaga
憲和 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2008110145A priority Critical patent/JP2009260179A/en
Publication of JP2009260179A publication Critical patent/JP2009260179A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a package for storing a light-emitting element, capable of efficiently dissipating heat from the light-emitting element. <P>SOLUTION: In the package 10 for storing the light-emitting element, the light-emitting element 12 is mounted on the upper surface of an insulating substrate 11. The insulating substrate 11 includes ceramics that are baked together with a high melting-point metal such as tungsten and molybdenum simultaneously in the reducing atmosphere at a high temperature exceeding 1,530°C. A portion of the insulating substrate 11 where the light-emitting element 12 is mounted includes thermal vias 13, 13a, and 13b consisting of copper plated coats 16, 16a, and 16b provided to a metallized film 15 of high melting-point metal on a wall surface of a through-hole 14 formed in the insulating substrate 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数個のLED(Light Emitting Diode)等の発光素子を収納するための発光素子収納用パッケージに関し、より詳細には、発光素子からの発熱を効率的に放熱させるための発光素子収納用パッケージに関する。   The present invention relates to a light emitting element storage package for storing light emitting elements such as a plurality of LEDs (Light Emitting Diodes), and more particularly, a light emitting element storage for efficiently dissipating heat from the light emitting elements. For packages.

発光素子は、従来から照度を向上させるための手段の一つとして入力電流を上げることで対応されている。しかしながら、発光素子は、入力電流を上げることで照度はあがるものの、高温となり大量の発熱が起こることとなっている。この発熱と共に、発光素子は、逆に照度の低下が発生するという問題を抱えている。   Conventionally, a light emitting element is supported by increasing an input current as one of means for improving illuminance. However, although the illuminance of the light emitting element is increased by increasing the input current, the light emitting element is heated to generate a large amount of heat. Along with this heat generation, the light emitting element has a problem that the illuminance is decreased.

図3(A)、(B)を参照しながら、従来の発光素子収納用パッケージを説明する。ここで、図3(A)、(B)はそれぞれ従来の発光素子収納用パッケージの説明図、サーマルビアの拡大説明図である。
図3(A)に示すように、従来の発光素子収納用パッケージ50は、発光素子51を載置するために、絶縁基体52をセラミックや、樹脂を用いて作製している。しかしながら、樹脂は、セラミックに比較して熱伝導率が低く、放熱性が劣るので、特段の放熱性を要求される発光素子収納用パッケージ50には不向きとなっている。そこで、このような場合には、絶縁基体52に、熱伝導率が樹脂、例えば、BT樹脂(ビスマレイミドトリアジンを主成分とする樹脂)からなる樹脂基板(熱伝導率:0.19W/m・K程度)に対しては高いアルミナ(Al)(熱伝導率:17.8W/m・K程度)や、窒化アルミニウム(AlN)(熱伝導率:120W/m・K程度)等のセラミックを用いることが多くなってきている。しかしながら、発光素子収納用パッケージ50の絶縁基体52に窒化アルミニウムを用いる場合には、窒化アルミニウムが高価であるので、発光素子収納用パッケージ50のコストアップとなっている。
With reference to FIGS. 3A and 3B, a conventional light emitting element storage package will be described. Here, FIGS. 3A and 3B are an explanatory view of a conventional light emitting element storage package and an enlarged explanatory view of a thermal via, respectively.
As shown in FIG. 3A, in the conventional light emitting element storage package 50, in order to mount the light emitting element 51, the insulating base 52 is made of ceramic or resin. However, since the resin has a lower thermal conductivity and inferior heat dissipation than ceramic, it is not suitable for the light emitting element storage package 50 that requires special heat dissipation. Therefore, in such a case, the insulating base 52 is provided with a resin substrate (thermal conductivity: 0.19 W / m ··) having a thermal conductivity of a resin, for example, a BT resin (a resin containing bismaleimide triazine as a main component). High alumina (Al 2 O 3 ) (thermal conductivity: about 17.8 W / m · K), aluminum nitride (AlN) (thermal conductivity: about 120 W / m · K), etc. More and more ceramic is used. However, when aluminum nitride is used for the insulating base 52 of the light emitting element housing package 50, the cost of the light emitting element housing package 50 is increased because aluminum nitride is expensive.

発光素子収納用パッケージ50に、アルミナのセラミックを用いる場合には、先ず、アルミナからなる複数枚のセラミックグリーンシートを作製している。そして、それぞれのセラミックグリーンシートには、タングステン(W)や、モリブデン(Mo)等の高融点金属からなる導体ペーストを用いてスクリーン印刷し、それぞれのセラミックグリーンシートを重ね合わせて積層した後、セラミックと、高融点金属を高温で同時焼成してセラミック多層基板からなる絶縁基体52を形成している。これにより、この発光素子収納用パッケージ50には、絶縁基体52の上面に発光素子51をワイヤボンド方式や、フリップチップ方式で接続して実装させるための接続パッド53がタングステンや、モリブデン等の高融点金属で設けられている。また、発光素子収納用パッケージ50には、絶縁基体52の上面に発光素子51を囲繞して発光素子51からの発光を反射させるためのセラミックや、金属等からなる枠状の反射体54が形成されている。更に、この発光素子収納用パッケージ50には、絶縁基体52の下面に、絶縁基体52の上面の接続パッド53と、絶縁基体52の内部に設けられる導体配線パターン55を介して電気的に接続状態となる外部接続端子パッド56がタングステンや、モリブデン等の高融点金属で設けられている。   When alumina ceramic is used for the light emitting element storage package 50, first, a plurality of ceramic green sheets made of alumina are produced. Each ceramic green sheet is screen-printed using a conductive paste made of a refractory metal such as tungsten (W) or molybdenum (Mo), and each ceramic green sheet is laminated and laminated. Insulating substrate 52 made of a ceramic multilayer substrate is formed by simultaneously firing high melting point metals at a high temperature. As a result, in the light emitting element storage package 50, the connection pads 53 for mounting the light emitting element 51 on the upper surface of the insulating base 52 by wire bonding or flip chip mounting are made of tungsten, molybdenum or the like. It is provided with a melting point metal. Further, in the light emitting element storage package 50, a frame-like reflector 54 made of ceramic, metal or the like is formed on the upper surface of the insulating base 52 so as to surround the light emitting element 51 and reflect light emitted from the light emitting element 51. Has been. Further, the light emitting element storage package 50 is electrically connected to the lower surface of the insulating substrate 52 via the connection pads 53 on the upper surface of the insulating substrate 52 and the conductor wiring pattern 55 provided inside the insulating substrate 52. The external connection terminal pad 56 is provided with a refractory metal such as tungsten or molybdenum.

上記の発光素子収納用パッケージ50は、発光素子51からの発熱を下方に放熱させるために絶縁基体52に当接する、例えば、アルミニウム等を用いたヒートシンク板57を接合して設けている。なお、この発光素子収納用パッケージ50は、実装される発光素子51を外部接続端子パッド56を介して外部と電気的に導通状態とするために、ヒートシンク板57上に設けられたボード等の配線基板58の端子に外部接続端子パッド56を半田59等で接合させている。   The light emitting element storage package 50 is provided with a heat sink plate 57 that is in contact with the insulating base 52, for example, aluminum or the like, in order to dissipate the heat generated from the light emitting element 51 downward. The light-emitting element storage package 50 has a wiring such as a board provided on the heat sink plate 57 in order to electrically connect the light-emitting element 51 to be mounted to the outside through the external connection terminal pad 56. External connection terminal pads 56 are joined to terminals of the substrate 58 with solder 59 or the like.

しかしながら、この発光素子収納用パッケージ50は、熱伝導率が優れるセラミック多層基板からなる絶縁基体52を用い、下面にヒートシンク板57を用いたとしても、アルミナからなるセラミック多層基板の場合には、近年の発光効率の向上が求められる電子機器への使用では、増大する発光素子51からの発熱を効率的に放熱させるための熱伝導率が小さく、熱による発光素子51の照度の低下を抑えることができなくなっている。そこで、図3(B)に示すように、発光素子収納用パッケージ50は、アルミナからなる絶縁基体52の発光素子51が搭載される部位となるセラミックグリーンシートに設ける貫通孔60にタングステンや、モリブデン等の高融点金属を詰め込んで、同時焼成して貫通孔60に高融点金属からなるビア導体61を充填させたサーマルビア62を設けている。そして、発光素子収納用パッケージ50は、このサーマルビア62を介して発光素子51からの発熱を下方のヒートシンク板57に伝熱させてヒートシンク板57から外部に放熱させている。しかしながら、タングステンや、モリブデン等の高融点金属で充填させたビア導体61からなるサーマルビア62は、タングステンや、モリブデン等の熱伝導率が35W/m・K程度と低いので、ヒートシンク板57への伝熱が低く、効率的な放熱ができなく発光素子51の熱抵抗θj−cの低減効果が低いものとなっている。また、セラミックと同時焼成するタングステンや、モリブデン等の高融点金属には、通常、同時焼成するときのそれぞれの熱膨張係数をできるだけセラミックの熱膨張係数と近似させるために、タングステンや、モリブデン等の高融点金属に同じセラミック粉末を含有させたものを用いている。これにより、セラミック粉末を含有させて焼成されたタングステンや、モリブデン等の高融点金属のビア導体61は、熱伝導率が単体金属のタングステンや、モリブデン等の高融点金属の場合と異なり、35W/m・K程度より更に低いものとなり、発光素子51の熱抵抗θj−cの低減効果が更に低いものとなっている。 However, even if this light emitting element storage package 50 uses an insulating base 52 made of a ceramic multilayer substrate with excellent thermal conductivity and uses a heat sink plate 57 on the lower surface, in the case of a ceramic multilayer substrate made of alumina, in recent years. In an electronic device in which the improvement of the light emission efficiency is required, the thermal conductivity for efficiently radiating the heat generated from the increasing light emitting element 51 is small, and the decrease in the illuminance of the light emitting element 51 due to heat can be suppressed. I can't. Therefore, as shown in FIG. 3B, the light emitting element storage package 50 includes tungsten or molybdenum in a through hole 60 provided in a ceramic green sheet on which the light emitting element 51 of the insulating base 52 made of alumina is mounted. A thermal via 62 in which a high-melting point metal such as is filled and simultaneously fired to fill the through hole 60 with a via conductor 61 made of a high-melting point metal is provided. The light emitting element storage package 50 transfers heat generated from the light emitting element 51 to the lower heat sink plate 57 through the thermal via 62 and dissipates the heat from the heat sink plate 57 to the outside. However, the thermal via 62 made of the via conductor 61 filled with a high melting point metal such as tungsten or molybdenum has a low thermal conductivity of about 35 W / m · K such as tungsten or molybdenum. The heat transfer is low, the heat radiation cannot be efficiently performed, and the effect of reducing the thermal resistance θ j-c of the light emitting element 51 is low. Moreover, in order to approximate the thermal expansion coefficient of each refractory metal such as tungsten and molybdenum co-fired with ceramic as much as possible to the thermal expansion coefficient of the ceramic as much as possible, A refractory metal containing the same ceramic powder is used. As a result, via conductor 61 made of refractory metal such as tungsten or molybdenum fired by containing ceramic powder has a thermal conductivity of 35 W / in contrast to the case of single metal tungsten or refractory metal such as molybdenum. Thus, the effect of reducing the thermal resistance θ j-c of the light emitting element 51 is further reduced.

発光素子収納用パッケージにも用いることが可能な、従来のセラミック配線基板には、比較的低温で焼成できる、低温焼成用のセラミックグリーンシートの貫通孔に銅粉末と、有機ビヒクルと、セラミック粒子を含有させた銅ペーストを充填して、1000℃程度でセラミックと金属を同時焼成してサーマルビアを設けた配線基板が提案されている(例えば、特許文献1参照)。
また、発光素子収納用パッケージにも用いることが可能な、従来のセラミック配線基板には、セラミックグリーンシートの貫通孔に銅と、タングステン及び/又はモリブデンを含有してなるペーストを充填して、1200〜1500℃の非酸化性雰囲気中でセラミックと金属を同時焼成してサーマルビアを設けた配線基板が提案されている(例えば、特許文献2参照)。
更には、発光素子収納用パッケージにも用いることが可能な、従来のセラミック配線基板には、比較的低温で焼成できる、ガラスセラミックからなるセラミックグリーンシートの貫通孔に銅85体積%以上の割合で含有してなるペーストを充填して、900℃程度でセラミックと金属を同時焼成してサーマルビアを設けた配線基板が提案されている(例えば、特許文献3参照)。
A conventional ceramic wiring board that can also be used for a package for storing light emitting elements has copper powder, an organic vehicle, and ceramic particles in a through hole of a ceramic green sheet for low temperature firing that can be fired at a relatively low temperature. There has been proposed a wiring board in which a thermal via is provided by filling the contained copper paste and simultaneously firing ceramic and metal at about 1000 ° C. (see, for example, Patent Document 1).
Further, a conventional ceramic wiring board that can also be used for a light emitting element storage package is filled with a paste containing copper and tungsten and / or molybdenum in a through hole of a ceramic green sheet. A wiring board provided with thermal vias by simultaneously firing ceramic and metal in a non-oxidizing atmosphere at ˜1500 ° C. has been proposed (see, for example, Patent Document 2).
Furthermore, a conventional ceramic wiring substrate that can be used for a light emitting element storage package can be fired at a relatively low temperature, and the ceramic green sheet made of glass ceramic has a through hole of 85% by volume or more of copper. There has been proposed a wiring board in which a paste formed therein is filled and ceramic and metal are simultaneously fired at about 900 ° C. to provide a thermal via (see, for example, Patent Document 3).

特開2004−134378号公報JP 2004-134378 A 特開2000−164992号公報JP 2000-164992 A 特開2004−228410号公報JP 2004-228410 A

しかしながら、前述したような従来の発光素子収納用パッケージは、次のような問題がある。
(1)特開2004−134378号公報で開示されるような配線基板を用いた発光素子収納用パッケージは、銅ペーストを充填し、焼成されて形成されたサーマルビアが高い熱伝導率を有したとしても、セラミックが1000℃程度の比較的低温で焼成される、所謂、低温焼成セラミックからなり、セラミックが低い熱伝導率となって、パッケージ全体として熱伝導率が低くなり、発光素子からの発熱を効率的に放熱させることができなくなっている。
(2)特開2000−164992号公報で開示されるような配線基板を用いた発光素子収納用パッケージは、銅と、タングステン及び/又はモリブデンを混合させた導体ペーストを充填し、焼成されて形成されたサーマルビアがタングステン及び/又はモリブデンだけの場合の導体より高い熱伝導率を有し、1200〜1500℃で焼成されたセラミックが低温焼成セラミックの場合より高い熱伝導率を有したとしても、それぞれ銅単体や、高温焼成のセラミックの場合より熱伝導率が低いので、パッケージ全体として熱伝導率が低くなり、発光素子からの発熱を効率的に放熱させることができなくなっている。
(3)特開2004−228410号公報で開示されるような配線基板を用いた発光素子収納用パッケージは、特開2004−134378号公報の場合と同様に、サーマルビアが銅で形成されたとしても、セラミックがガラスセラミックからなり熱伝導率が低いので、パッケージ全体として熱伝導率が低くなり、発光素子からの発熱を効率的に放熱させることができなくなっている。
However, the conventional light emitting element storage package as described above has the following problems.
(1) A light emitting element storage package using a wiring board as disclosed in Japanese Patent Application Laid-Open No. 2004-134378 has a high thermal conductivity in which thermal vias formed by filling and baking copper paste have high thermal conductivity. The ceramic is made of a so-called low-temperature fired ceramic that is fired at a relatively low temperature of about 1000 ° C., the ceramic has low thermal conductivity, the thermal conductivity of the entire package is lowered, and the heat generated from the light emitting element Cannot be radiated efficiently.
(2) A light emitting element storage package using a wiring board as disclosed in Japanese Patent Application Laid-Open No. 2000-164992 is formed by filling a conductor paste in which copper and tungsten and / or molybdenum are mixed and firing. Even if the thermal vias made have a higher thermal conductivity than the conductor when only tungsten and / or molybdenum and the ceramic fired at 1200-1500 ° C. has a higher thermal conductivity than does the low temperature fired ceramic, Since the thermal conductivity is lower than in the case of copper alone or high-temperature fired ceramic, the thermal conductivity of the entire package is low, and heat generated from the light emitting element cannot be efficiently radiated.
(3) In the light emitting element storage package using the wiring board as disclosed in Japanese Patent Application Laid-Open No. 2004-228410, the thermal via is formed of copper as in the case of Japanese Patent Application Laid-Open No. 2004-134378. However, since the ceramic is made of glass ceramic and has low thermal conductivity, the thermal conductivity of the entire package is low, and heat generated from the light emitting element cannot be efficiently radiated.

本発明は、かかる事情に鑑みてなされたものであって、発光素子からの発熱を効率的に放熱させることができる発光素子収納用パッケージを提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the package for light emitting element accommodation which can thermally radiate the heat_generation | fever from a light emitting element efficiently.

前記目的に沿う本発明に係る発光素子収納用パッケージは、絶縁基体の上面に発光素子が搭載される発光素子収納用パッケージにおいて、絶縁基体がタングステンや、モリブデン等の高融点金属と1530℃を超える高温の還元性雰囲気中で同時焼成可能なセラミックからなり、絶縁基体の発光素子が搭載される部位に、絶縁基体に形成された貫通孔の壁面に設けられた高融点金属のメタライズ膜に設けられる銅めっき被膜からなるサーマルビアを有する。   The light-emitting element storage package according to the present invention that meets the above-described object is a light-emitting element storage package in which a light-emitting element is mounted on the upper surface of an insulating substrate. It is made of a ceramic that can be fired simultaneously in a high-temperature reducing atmosphere, and is provided on a metallized film of a refractory metal provided on a wall surface of a through hole formed in the insulating substrate at a portion where the light emitting element of the insulating substrate is mounted. It has a thermal via made of a copper plating film.

ここで、上記の発光素子収納用パッケージは、絶縁基体の下面に発光素子からの発熱を絶縁基体、及びサーマルビアの銅めっき被膜を介して下方に伝熱させると共に、絶縁基体、及びサーマルビアの銅めっき被膜と直接接続して放熱させるヒートシンク板を有するのがよい。   Here, the light emitting element storage package transfers heat generated from the light emitting element to the lower surface of the insulating base through the insulating base and the copper plating film of the thermal via, and the insulating base and the thermal via. It is preferable to have a heat sink plate that is directly connected to the copper plating film to dissipate heat.

請求項1又はこれに従属する請求項2記載の発光素子収納用パッケージは、絶縁基体がタングステンや、モリブデン等の高融点金属と1530℃を超える高温の還元性雰囲気中で同時焼成可能なセラミックからなり、絶縁基体の発光素子が搭載される部位に、絶縁基体に形成された貫通孔の壁面に設けられた高融点金属のメタライズ膜に設けられる銅めっき被膜からなるサーマルビアを有するので、高温で焼成するセラミックが比較的高い熱伝導率を有すると共に、銅めっき被膜のサーマルビアが高い熱伝導率を有し、入力電流を上げて発光素子からの発熱が上昇しても、発熱をセラミックと、サーマルビアを介して効率的に絶縁基体の下方に伝熱させて放熱させることができ、発光素子の熱抵抗θj−cの低減効果を高めて発光素子の照度を向上させることができる。 The light-emitting element storage package according to claim 1 or claim 2 dependent thereon is made of an insulating substrate made of a refractory metal such as tungsten or molybdenum and a ceramic that can be co-fired in a reducing atmosphere at a high temperature exceeding 1530 ° C. Since the thermal via made of a copper plating film provided on the metallized film of the refractory metal provided on the wall surface of the through-hole formed in the insulating substrate is provided at the site where the light emitting element of the insulating substrate is mounted, The ceramic to be fired has a relatively high thermal conductivity, and the thermal vias of the copper plating film have a high thermal conductivity. through the thermal via is conducted to the lower part of effectively insulating base can be radiated, the illuminance of the light emitting device to enhance the effect of reducing the thermal resistance theta j-c of the light emitting element It is possible to improve.

特に、請求項2記載の発光素子収納用パッケージは、絶縁基体の下面に発光素子からの発熱を絶縁基体、及びサーマルビアの銅めっき被膜を介して下方に伝熱させると共に、絶縁基体、及びサーマルビアの銅めっき被膜と直接接続して放熱させるヒートシンク板を有するので、比較的高い熱伝導率のセラミックと、高い熱伝導率のサーマルビアの銅めっき被膜が直接接続するヒートシンク板で発光素子からの発熱をヒートシンク板に速やかに伝熱させると共に、ヒートシンク板から放熱させることができ、発光素子の熱抵抗θj−cの低減効果を高めて発光素子の照度を向上させることができる。 In particular, the light-emitting element storage package according to claim 2 transfers heat from the light-emitting element downward to the lower surface of the insulating base via the insulating base and the copper plating film of the thermal via, and also includes the insulating base and the thermal base. Since it has a heat sink plate that directly connects to the copper plating film of the via and dissipates heat, the ceramics with relatively high thermal conductivity and the heat sink plate that the copper plating film of high thermal conductivity thermal connection directly connects to the light emitting element. The generated heat can be quickly transferred to the heat sink plate and can be dissipated from the heat sink plate, so that the effect of reducing the thermal resistance θ j-c of the light emitting element can be enhanced and the illuminance of the light emitting element can be improved.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1(A)、(B)はそれぞれ本発明の一実施の形態に係る発光素子収納用パッケージの説明図、サーマルビアの拡大説明図、図2(A)、(B)はそれぞれ同発光素子収納用パッケージのサーマルビアの変形例の拡大説明図、他の変形例の拡大説明図である。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
1A and 1B are explanatory diagrams of a light emitting element storage package according to an embodiment of the present invention, enlarged explanatory diagrams of thermal vias, and FIGS. 2A and 2B are respectively. It is the expansion explanatory view of the modification of the thermal via of the package for light emitting element accommodation, and the expansion explanatory view of another modification.

図1(A)、(B)を参照しながら、本発明の一実施の形態に係る発光素子収納用パッケージを説明する。
図1(A)に示すように、本発明の一実施の形態に係る発光素子収納用パッケージ10は、形状を限定するものではないが、例えば、四角形からなる絶縁基体11の上面にLED等の発光素子12が搭載されるようになっている。この発光素子収納用パッケージ10には、絶縁基体11に高温で焼成されるアルミナや、窒化アルミニウム等のセラミックを用いることができる。このセラミックから絶縁基体11を形成するためには、先ず、アルミナや、窒化アルミニウム等のセラミック粉末に焼結助剤と、可塑剤と、バインダー、及び溶剤を加え、十分に混練し、脱泡してスラリーを作製し、ドクターブレード法等によって、所望の厚みのシート状のセラミックグリーシートを作製している。次に、それぞれのセラミックグリーンシートには、タングステンや、モリブデン等の高融点金属からなる導体ペーストを用いてスクリーン印刷して導体パターンを形成し、それぞれのセラミックグリーンシートを重ね合わせて積層した後、セラミックと、高融点金属を非酸化性雰囲気中の高温で同時焼成してセラミック多層基板からなる絶縁基体11を形成している。この同時焼成は、例えば、セラミックがアルミナの場合には、タングステンや、モリブデン等の高融点金属と、1550℃程度の水素、窒素の還元性雰囲気中の高温で行われている。また、この同時焼成は、例えば、セラミックが窒化アルミニウムの場合には、タングステンや、モリブデン等の高融点金属と、1700℃程度の窒素雰囲気中の高温で行われている。
With reference to FIGS. 1A and 1B, a light-emitting element storage package according to an embodiment of the present invention will be described.
As shown in FIG. 1A, the shape of the light emitting element storage package 10 according to the embodiment of the present invention is not limited. For example, an LED or the like is formed on the upper surface of a rectangular insulating substrate 11. The light emitting element 12 is mounted. The light emitting element storage package 10 may be made of alumina or ceramic such as aluminum nitride that is fired at a high temperature on the insulating substrate 11. In order to form the insulating substrate 11 from this ceramic, first, a sintering aid, a plasticizer, a binder, and a solvent are added to ceramic powder such as alumina or aluminum nitride, and the mixture is thoroughly kneaded and defoamed. A slurry is prepared, and a sheet-like ceramic green sheet having a desired thickness is prepared by a doctor blade method or the like. Next, each ceramic green sheet is screen-printed using a conductive paste made of a refractory metal such as tungsten or molybdenum to form a conductor pattern, and the ceramic green sheets are stacked and laminated. A ceramic and a refractory metal are simultaneously fired at a high temperature in a non-oxidizing atmosphere to form an insulating substrate 11 made of a ceramic multilayer substrate. For example, when the ceramic is alumina, this co-firing is performed at a high temperature in a reducing atmosphere of refractory metal such as tungsten or molybdenum and hydrogen and nitrogen at about 1550 ° C. For example, when the ceramic is aluminum nitride, this co-firing is performed at a high temperature in a nitrogen atmosphere of about 1700 ° C. with a refractory metal such as tungsten or molybdenum.

上記の発光素子収納用パッケージ10は、絶縁基体11が窒化アルミニウムの場合には、その熱伝導率が120W/m・K程度と高いので、高熱を発する発光素子の熱による発光効率の低下を抑えるために、速やかな放熱を促進できる好適な材料であり、発光素子12からの発熱を速やかに下方に伝熱させて放熱させることができ、発光素子12が搭載される部位にサーマルビア13を設ける必要性が低いものとなっている。しかしながら、窒化アルミニウムは、高価であり、発光素子収納用パッケージ10のコストアップとなっている。   When the insulating substrate 11 is made of aluminum nitride, the light emitting element storage package 10 has a high thermal conductivity of about 120 W / m · K, and thus suppresses a decrease in light emission efficiency due to heat of the light emitting element that generates high heat. Therefore, it is a suitable material that can promote prompt heat dissipation, and heat generated from the light emitting element 12 can be quickly transferred downward to dissipate heat, and a thermal via 13 is provided at a site where the light emitting element 12 is mounted. The necessity is low. However, aluminum nitride is expensive and increases the cost of the light emitting element storage package 10.

そこで、発光素子収納用パッケージ10には、絶縁基体11に安価なアルミナからなるセラミックが用いられている。絶縁基体11がアルミナからなる場合には、その熱伝導率が17.8W/m・K程度であるので、発光素子12からの発熱を速やかに下方に伝熱させて放熱させることができなく、発光素子12が搭載される部位にサーマルビア13を設けることの必要性が高いものとなっている。そこで、絶縁基体11がアルミナからなる場合の発光素子収納用パッケージ10は、発光素子12が搭載される部位に、絶縁基体11に形成された貫通孔14の壁面にタングステンや、モリブデン等の高融点金属からなるメタライズ膜15を設け、更に、その表面に銅めっき被膜16からなるサーマルビア13を有するようにしている。このサーマルビア13を設けた発光素子収納用パッケージ10は、銅めっき被膜16が純粋な金属としての銅からなり、その熱伝導率が390W/m・K程度と非常に高いので、アルミナの熱伝導率をカバーしながらパッケージ全体としての熱伝導率を高めて発光素子からの発熱を効率的に放熱させることができる。   Therefore, the light emitting element storage package 10 uses an inexpensive ceramic made of alumina for the insulating substrate 11. When the insulating substrate 11 is made of alumina, its thermal conductivity is about 17.8 W / m · K, so that heat generated from the light emitting element 12 can be quickly transferred downward to dissipate heat. It is highly necessary to provide the thermal via 13 at the site where the light emitting element 12 is mounted. Therefore, the light emitting element storage package 10 in the case where the insulating base 11 is made of alumina has a high melting point such as tungsten or molybdenum on the wall surface of the through hole 14 formed in the insulating base 11 at the portion where the light emitting element 12 is mounted. A metallized film 15 made of metal is provided, and a thermal via 13 made of a copper plating film 16 is provided on the surface thereof. In the light emitting element storage package 10 provided with the thermal vias 13, the copper plating film 16 is made of copper as a pure metal, and its thermal conductivity is as high as about 390 W / m · K. It is possible to efficiently dissipate heat generated from the light emitting element by increasing the thermal conductivity of the entire package while covering the rate.

なお、上記の発光素子収納用パッケージ10のサーマルビア13の形態は、絶縁基体11に形成された貫通孔14の壁面にタングステンや、モリブデン等の高融点金属からなるメタライズ膜15を設け、更に、その表面に銅めっき被膜16を設けて、サーマルビア13には空洞を有した形態となっている。また、発光素子収納用パッケージ10の変形例のサーマルビア13aの形態には、図2(A)に示すように、絶縁基体11に形成された貫通孔14の壁面にメタライズ膜15を設け、更に、その表面に銅めっき被膜16aを設けて、メタライズ膜15と、銅めっき被膜16aで貫通孔14を塞ぐようにすると共に、銅めっき被膜16aの内部に空隙17を残したようなサーマルビア13aであってもよい。更には、発光素子収納用パッケージ10の他の変形例のサーマルビア13bの形態には、図2(B)に示すように、絶縁基体11に形成された貫通孔14の壁面にメタライズ膜15を設け、更に、その表面に銅めっき被膜16bを設けて、メタライズ膜15と、銅めっき被膜16bで貫通孔14を塞ぐようにすると共に、銅めっき被膜16bの両端部に凹み18を残したようなサーマルビア13bであってもよい   The form of the thermal via 13 of the light emitting element storage package 10 described above is provided with a metallized film 15 made of a refractory metal such as tungsten or molybdenum on the wall surface of the through hole 14 formed in the insulating substrate 11. A copper plating film 16 is provided on the surface, and the thermal via 13 has a cavity. Further, in the form of the thermal via 13a as a modified example of the light emitting element storage package 10, as shown in FIG. 2A, a metallized film 15 is provided on the wall surface of the through hole 14 formed in the insulating base 11, and A copper plating film 16a is provided on the surface, and the metallized film 15 and the thermal via 13a that closes the through hole 14 with the copper plating film 16a and leaves the gap 17 inside the copper plating film 16a are used. There may be. Further, in the form of the thermal via 13b of another modification of the light emitting element storage package 10, as shown in FIG. 2B, a metallized film 15 is formed on the wall surface of the through hole 14 formed in the insulating base 11. Further, a copper plating film 16b is provided on the surface so as to close the through hole 14 with the metallized film 15 and the copper plating film 16b, and dents 18 are left at both ends of the copper plating film 16b. The thermal via 13b may be used.

上記の発光素子収納用パッケージ10には、絶縁基体11の上面に発光素子12をワイヤボンド方式や、フリップチップ方式で接続して実装させるための接続パッド19がタングステンや、モリブデン等の高融点金属で設けられている。また、発光素子収納用パッケージ10には、絶縁基体11の上面に発光素子12を囲繞して発光素子12からの発光を反射させるためのセラミックや、金属等からなる枠状の反射体20が設けられている。更に、この発光素子収納用パッケージ10には、絶縁基体11の下面に、絶縁基体11の上面の接続パッド17と、絶縁基体11の内部に設けられる導体配線パターン21を介して電気的に接続状態となる外部接続端子パッド22がタングステンや、モリブデン等の高融点金属で設けられている。なお、外部接続端子パッド22は、絶縁基体11の上面に設けられる場合もある。   In the light emitting element storage package 10, the connection pad 19 for mounting the light emitting element 12 on the upper surface of the insulating substrate 11 by wire bonding or flip chip bonding is mounted on a refractory metal such as tungsten or molybdenum. Is provided. The light emitting element storage package 10 is provided with a frame-like reflector 20 made of ceramic, metal, or the like for reflecting the light emitted from the light emitting element 12 by surrounding the light emitting element 12 on the upper surface of the insulating substrate 11. It has been. Further, the light emitting element storage package 10 is electrically connected to the lower surface of the insulating substrate 11 via the connection pads 17 on the upper surface of the insulating substrate 11 and the conductor wiring pattern 21 provided inside the insulating substrate 11. The external connection terminal pad 22 is provided with a refractory metal such as tungsten or molybdenum. The external connection terminal pad 22 may be provided on the upper surface of the insulating substrate 11 in some cases.

上記の発光素子収納用パッケージ10は、絶縁基体11の下面に当接して、発光素子12からの発熱を絶縁基体11、及びサーマルビア13、13a、13bの銅めっき被膜16、16a、16bを介して下方に伝熱させると共に、絶縁基体11、及びサーマルビア13、13a、13bの銅めっき被膜16、16a、16bと直接接続して放熱させるアルミニウム板等からなるヒートシンク板23を有している。なお、この発光素子収納用パッケージ10は、実装される発光素子12を外部接続端子パッド22を介して外部と電気的に導通状態とするために、ヒートシンク板23上に設けられたボード等の配線基板24の端子に外部接続端子パッド22を半田25等で接合させている。また、図示しないが、外部接続端子パッド22が絶縁基体11の上面に形成される発光素子収納用パッケージ10の場合には、ヒートシンク板23の平面状の上面に、絶縁基体11の下面全面が当接でき、ヒートシンク板23からの放熱を更に向上させることができる。   The light emitting element storage package 10 is in contact with the lower surface of the insulating base 11, and heat generated from the light emitting element 12 is transmitted through the insulating base 11 and the copper plating films 16, 16a, 16b of the thermal vias 13, 13a, 13b. The heat sink plate 23 is made of an aluminum plate or the like that is directly connected to the insulating base 11 and the copper plating films 16, 16 a, 16 b of the thermal vias 13, 13 a, 13 b to dissipate heat. The light emitting element storage package 10 has a wiring such as a board provided on the heat sink plate 23 in order to electrically connect the light emitting element 12 to be mounted to the outside through the external connection terminal pads 22. External connection terminal pads 22 are joined to terminals of the substrate 24 by solder 25 or the like. Although not shown, in the case of the light emitting element storage package 10 in which the external connection terminal pads 22 are formed on the upper surface of the insulating substrate 11, the entire lower surface of the insulating substrate 11 is applied to the planar upper surface of the heat sink plate 23. The heat dissipation from the heat sink plate 23 can be further improved.

本発明者は、アルミナからなる絶縁基体に設ける貫通孔の壁面にタングステンからなるメタライズ膜を設け、更にその表面に銅めっき被膜を設けるサーマルビアを有する発光素子収納用パッケージの実施例のサンプルと、アルミナからなる絶縁基体に設ける貫通孔にタングステンを充填させたサーマルビアを有する発光素子収納用パッケージの従来例のサンプルと、絶縁基体にサーマルビアを設けない発光素子収納用パッケージの比較例のサンプルについて、有限要素法によるシミュレーションで熱抵抗θj−cを算出し、それぞれの低減効果を測定した。その結果をグラフとして表1に示す。 The inventor provides a sample of an example of a package for a light-emitting element housing having a thermal via in which a metallized film made of tungsten is provided on a wall surface of a through hole provided in an insulating base made of alumina and a copper plating film is further provided on the surface thereof, About a sample of a conventional example of a light emitting element storage package having a thermal via in which a through hole provided in an insulating base made of alumina is filled with tungsten, and a sample of a comparative example of a light emitting element storage package not having a thermal via on an insulating base The thermal resistance θ j-c was calculated by simulation using the finite element method, and the respective reduction effects were measured. The results are shown in Table 1 as a graph.

Figure 2009260179
Figure 2009260179

従来例のサンプルは、比較例のサンプルより15%の熱抵抗θj−cの低減効果が確認できたが、実施例のサンプルは、この比較例のサンプルより更に50%を超える熱抵抗θj−cの低減効果が確認でき、効果の大きいことが実証された。 The sample of the conventional example was able to confirm a reduction effect of 15% of the thermal resistance θ j-c compared to the sample of the comparative example, but the sample of the example further has a thermal resistance θ j of 50% exceeding the sample of the comparative example. The reduction effect of -c could be confirmed and proved to be large.

本発明の発光素子収納用パッケージは、大きな発光効率を求められ、発熱量が大きい自動車用ヘッドランプや、街路灯等のランプとして用いることができる。   The light emitting element storage package of the present invention is required to have high luminous efficiency, and can be used as a lamp for automobile headlamps or street lamps that generate a large amount of heat.

(A)、(B)はそれぞれ本発明の一実施の形態に係る発光素子収納用パッケージの説明図、サーマルビアの拡大説明図である。(A), (B) is explanatory drawing of the package for light emitting element accommodation which concerns on one embodiment of this invention, respectively, and is an expansion explanatory drawing of a thermal via. (A)、(B)はそれぞれ同発光素子収納用パッケージのサーマルビアの変形例の拡大説明図、他の変形例の拡大説明図である。(A), (B) is the expansion explanatory drawing of the modification of the thermal via of the light emitting element storage package, respectively, and the expansion explanatory drawing of another modification. (A)、(B)はそれぞれ従来の発光素子収納用パッケージの説明図、サーマルビアの拡大説明図である。(A), (B) is explanatory drawing of the package for the conventional light emitting element accommodation, and the expansion explanatory drawing of a thermal via, respectively.

符号の説明Explanation of symbols

10:発光素子収納用パッケージ、11:絶縁基体、12:発光素子、13、13a、13b:サーマルビア、14:貫通孔、15:メタライズ膜、16、16a、16b:銅めっき被膜、17:空隙、18:凹み、19:接続パッド、20:反射体、21:導体配線パターン、22:外部接続端子パッド、23:ヒートシンク板、24:配線基板、25:半田   10: Light emitting element storage package, 11: Insulating substrate, 12: Light emitting element, 13, 13a, 13b: Thermal via, 14: Through hole, 15: Metallized film, 16, 16a, 16b: Copper plating film, 17: Void , 18: dent, 19: connection pad, 20: reflector, 21: conductor wiring pattern, 22: external connection terminal pad, 23: heat sink plate, 24: wiring board, 25: solder

Claims (2)

絶縁基体の上面に発光素子が搭載される発光素子収納用パッケージにおいて、
前記絶縁基体がタングステンや、モリブデン等の高融点金属と1530℃を超える高温の還元性雰囲気中で同時焼成可能なセラミックからなり、前記絶縁基体の前記発光素子が搭載される部位に、前記絶縁基体に形成された貫通孔の壁面に設けられた前記高融点金属のメタライズ膜に設けられる銅めっき被膜からなるサーマルビアを有することを特徴とする発光素子収納用パッケージ。
In the light emitting element storage package in which the light emitting element is mounted on the upper surface of the insulating substrate,
The insulating substrate is made of a refractory metal such as tungsten or molybdenum and a ceramic that can be fired simultaneously in a reducing atmosphere at a high temperature exceeding 1530 ° C., and the insulating substrate is mounted on a portion of the insulating substrate where the light emitting element is mounted. A package for accommodating a light emitting element, comprising a thermal via made of a copper plating film provided on the metallized film of the refractory metal provided on the wall surface of the through hole formed in the metal plate.
請求項1記載の発光素子収納用パッケージにおいて、前記絶縁基体の下面に前記発光素子からの発熱を前記絶縁基体、及び前記サーマルビアの前記銅めっき被膜を介して下方に伝熱させると共に、前記絶縁基体、及び前記サーマルビアの前記銅めっき被膜と直接接続して放熱させるヒートシンク板を有することを特徴とする発光素子収納用パッケージ。   2. The light emitting element storage package according to claim 1, wherein heat generated from the light emitting element is transferred to the lower surface of the insulating base through the insulating base and the copper plating film of the thermal via and the insulating base. A light emitting element storage package comprising: a base body; and a heat sink plate for directly dissipating heat by connecting directly to the copper plating film of the thermal via.
JP2008110145A 2008-04-21 2008-04-21 Package for storing light-emitting element Pending JP2009260179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110145A JP2009260179A (en) 2008-04-21 2008-04-21 Package for storing light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110145A JP2009260179A (en) 2008-04-21 2008-04-21 Package for storing light-emitting element

Publications (1)

Publication Number Publication Date
JP2009260179A true JP2009260179A (en) 2009-11-05

Family

ID=41387207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110145A Pending JP2009260179A (en) 2008-04-21 2008-04-21 Package for storing light-emitting element

Country Status (1)

Country Link
JP (1) JP2009260179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180549B2 (en) 2013-08-28 2015-11-10 Nichia Corporation Wavelength conversion member, light emitting device, and method of manufacturing light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180549B2 (en) 2013-08-28 2015-11-10 Nichia Corporation Wavelength conversion member, light emitting device, and method of manufacturing light emitting device

Similar Documents

Publication Publication Date Title
JP4915052B2 (en) LED component and manufacturing method thereof
US8766283B2 (en) Light-emitting diode arrangement with heat dissipating plate
JP4915058B2 (en) LED component and manufacturing method thereof
JP2006294898A (en) Package for housing light emitting element
JP2010034262A (en) Package for housing light-emitting element
JP2008109079A (en) Wiring board for surface mounting type light-emitting element, and light-emitting device
JP2010199167A (en) Package for housing light-emitting element, and light-emitting device
WO2005106973A1 (en) Wiring board for light emitting element
JP2006196565A (en) Package for housing light-emitting device
JP2008218761A (en) Light emitting element storage package
JP2007123482A (en) Wiring board for light emitting element, light emitting device, and method for manufacturing board
US11107741B2 (en) Composite ceramic multilayer substrate, heat generating element-mounting module, and method of producing composite ceramic multilayer substrate
KR101038213B1 (en) Speedy heat radiation apparatus for high luminant LED
JP4780939B2 (en) Light emitting device
JP2008034513A (en) Substrate for mounting light emitting element, and its manufacturing method
JP2007227728A (en) Led (light emitting diode) component, and its manufacturing method
JP4895777B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
KR20060105403A (en) Package structure having circuit and composite substrate
JP2006156447A (en) Wiring board for light emitting element, light emitting device and its manufacturing method
JP2006066409A (en) Wiring board for light emitting element, manufacturing method thereof and light emitting device
JP2006100364A (en) Wiring board for light emitting element, method for manufacturing the same and light emitting element
TW201349603A (en) LED light emitting device and manufacturing method thereof and LED lighting device
JP2009260179A (en) Package for storing light-emitting element
JP2011071554A (en) Wiring board for light emitting element and light emitting device
JP2022173218A (en) Substrate for mounting light-emitting element, and light-emitting device