JP2008034513A - Substrate for mounting light emitting element, and its manufacturing method - Google Patents

Substrate for mounting light emitting element, and its manufacturing method Download PDF

Info

Publication number
JP2008034513A
JP2008034513A JP2006204493A JP2006204493A JP2008034513A JP 2008034513 A JP2008034513 A JP 2008034513A JP 2006204493 A JP2006204493 A JP 2006204493A JP 2006204493 A JP2006204493 A JP 2006204493A JP 2008034513 A JP2008034513 A JP 2008034513A
Authority
JP
Japan
Prior art keywords
emitting element
insulating layer
light emitting
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204493A
Other languages
Japanese (ja)
Inventor
Ayafumi Ogami
純史 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2006204493A priority Critical patent/JP2008034513A/en
Publication of JP2008034513A publication Critical patent/JP2008034513A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for mounting a light emitting element which is excellent in radiation property with high reflection efficiency and is inexpensively manufactured, and to provide its manufacturing method. <P>SOLUTION: The substrate 2 for mounting the light emitting element is used for a package 1 for storing the light emitting element. The substrate includes a conductive wiring pattern 6 which is printed on the upper surface 5a of an insulating base body 5 made of aluminum nitride with the use of high melting point metallic paste; and an insulating layer 7 to be formed by using an insulating paste, which is obtained by defining the aluminum nitride as a main component, so as to cover the base body 5 to be exposed through the conductive wiring pattern 6. The sintering temperature of the insulating layer 7 is higher than that of the base body 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発光素子を収納するパッケージ等に用いられる発光素子搭載用基板に関し、特に、放熱性に優れ、かつ、高い反射効率を有する発光素子搭載用基板とその製造方法に関する。   The present invention relates to a light-emitting element mounting substrate used for a package or the like that houses a light-emitting element, and more particularly to a light-emitting element mounting substrate that has excellent heat dissipation and high reflection efficiency, and a method for manufacturing the same.

一般に、発光ダイオード(LED:Light Emitting Diode)などの発光素子を収容するパッケージは、基板の上面に設けられたキャビティの内部に発光素子が設置されるとともに、キャビティの内壁面に形成された反射面によって発光素子からの出力光が反射される構造となっている。また、発光素子が発する熱を外部に効率良く逃がすため、基板の材料には高い熱伝導性を有する窒化アルミニウムが使用されることが多い。しかし、窒化アルミニウムは透光性があるため、発光素子からの出力光の一部が窒化アルミニウム基板の上面で反射せずに透過して、下面へと漏れ出てしまい、発光効率が低下するという課題があった。このような課題を解決するため、従来、様々な研究や開発が行われており、これまでにも多くの発明や考案が開示されている。   In general, a package that houses a light emitting element such as a light emitting diode (LED) has a light emitting element installed in a cavity provided on the upper surface of a substrate and a reflecting surface formed on the inner wall surface of the cavity. Therefore, the output light from the light emitting element is reflected. In addition, in order to efficiently release the heat generated by the light emitting element to the outside, aluminum nitride having high thermal conductivity is often used as a material for the substrate. However, since aluminum nitride has a light-transmitting property, a part of output light from the light-emitting element is transmitted without being reflected on the upper surface of the aluminum nitride substrate, leaking to the lower surface, and light emission efficiency is reduced. There was a problem. In order to solve such a problem, various researches and developments have been conventionally performed, and many inventions and devices have been disclosed so far.

例えば、特許文献1には、「電流供給基板に光反射層を具えた発光デバイス」という名称で、発光チップが投射する光の電流供給基板への吸収を防いで輝度を向上させることが可能な発光デバイスに関する発明が開示されている。
この発明は、発光チップが載置される電流供給基板がマウントベースの上表面に固設され、同じくマウントベースの上表面に電流供給基板を囲むようにリフレクタが設置された発光デバイスにおいて、電流供給基板の側面表面に少なくとも一層の金属材料などからなる光反射層を設けるとともに、マウントベースの上面にベース光反射層を形成したことを特徴とするものである。なお、電流供給基板の材料には珪素(Si)、窒化アルミニウム(AlN)、酸化ベリリウム(BeO)、炭化珪素(SiC)、アルミナ(Al)、ガラス、石英、サファイアなどが用いられる。また、光反射層及びベース光反射層の材料には金(Au)、銀(Ag)、アルミニウム(Al)、ベリリウム(Be)、クロム(Cr)、パラジウム(Pd)、ニッケル(Ni)などが用いられる。
このような構造の発光デバイスにおいては、発光チップによって下方に投射された光が、光反射層、ベース光反射層及びリフレクタの三者の間で反射を繰り返しながら投射方向を変えて、最終的に発光デバイスの上方に射出される。すなわち、電流供給基板に側面光が吸収されないため、投射光の空間分布不均等で照明目標物の一部に暗い領域が形成されるおそれがない。従って、発光デバイスの輝度を向上させることが可能である。
For example, in Patent Document 1, it is possible to improve the luminance by preventing absorption of light projected by the light emitting chip into the current supply substrate under the name “light emitting device having a light reflection layer on the current supply substrate”. An invention relating to a light emitting device is disclosed.
The present invention relates to a light emitting device in which a current supply substrate on which a light emitting chip is mounted is fixed on the upper surface of the mount base, and a reflector is installed on the upper surface of the mount base so as to surround the current supply substrate. A light reflecting layer made of at least one layer of a metal material or the like is provided on the side surface of the substrate, and a base light reflecting layer is formed on the upper surface of the mount base. Note that silicon (Si), aluminum nitride (AlN), beryllium oxide (BeO), silicon carbide (SiC), alumina (Al 2 O 3 ), glass, quartz, sapphire, or the like is used as a material for the current supply substrate. The material of the light reflecting layer and the base light reflecting layer includes gold (Au), silver (Ag), aluminum (Al), beryllium (Be), chromium (Cr), palladium (Pd), nickel (Ni), etc. Used.
In the light emitting device having such a structure, the light projected downward by the light emitting chip is changed in the projection direction while being repeatedly reflected between the light reflecting layer, the base light reflecting layer, and the reflector, and finally, Injected above the light emitting device. That is, since the side light is not absorbed by the current supply substrate, there is no possibility that a dark region is formed in a part of the illumination target due to uneven spatial distribution of the projection light. Therefore, the luminance of the light emitting device can be improved.

次に、特許文献2には、「発光素子用配線基板並びに発光装置」という名称で、反射率が高く、光漏れが少ない演色性に優れた発光素子用配線基板と発光装置に関する発明が開示されている。
この発明は、複数の絶縁層が積層された窒化アルミニウム質焼結体からなる絶縁基体の上面に発光素子が搭載され、絶縁基体の上面及び下面に発光素子に接続される接続端子及び外部電極端子がそれぞれ形成されるともに、接続端子と外部電極端子を接続するための貫通導体が絶縁基体を貫通して形成された発光素子用配線基板において、絶縁基体の上面に絶縁層よりも全反射率の高い表面反射層を備えたことを特徴とするものである。なお、表面反射層の材料にはセラミックス、無機フィラーを含有した樹脂、酸化チタン、酸化カルシウム、酸化亜鉛などが用いられる。
このような構造の発光素子用配線基板や発光装置においては、絶縁基体の上面に形成された表面反射層が発光素子の放射する光を反射して、絶縁基体への吸収及び透過を抑制する。また、表面反射層をセラミックスによって形成した場合には、発光効率に加えて熱放散性も高まる。この場合、発光素子が発する熱を速やかに放出して、温度上昇に伴う輝度の低下を防ぐことができる。なお、表面反射層を無機フィラーを含有した樹脂によって形成した場合には、材料コストが安くなる。
以上説明したように、特許文献2に開示された発明によれば、発光効率が高く演色性に優れる発光素子用配線基板及び発光装置を得ることができる。
Next, Patent Document 2 discloses an invention related to a light-emitting element wiring board and a light-emitting device having the high reflectance and low light leakage under the name of “light-emitting element wiring board and light-emitting device”. ing.
According to the present invention, a light emitting element is mounted on an upper surface of an insulating base made of an aluminum nitride sintered body in which a plurality of insulating layers are laminated, and a connection terminal and an external electrode terminal connected to the light emitting element on the upper and lower surfaces of the insulating base In the light emitting element wiring board in which the through conductor for connecting the connection terminal and the external electrode terminal is formed through the insulating base, the total reflectance of the upper surface of the insulating base is higher than that of the insulating layer. It is characterized by having a high surface reflection layer. In addition, ceramics, a resin containing an inorganic filler, titanium oxide, calcium oxide, zinc oxide, or the like is used as a material for the surface reflective layer.
In the light-emitting element wiring substrate and the light-emitting device having such a structure, the surface reflection layer formed on the upper surface of the insulating base reflects light emitted from the light-emitting element to suppress absorption and transmission into the insulating base. In addition, when the surface reflection layer is formed of ceramics, heat dissipation is enhanced in addition to light emission efficiency. In this case, heat generated by the light emitting element can be quickly released to prevent a decrease in luminance due to a temperature rise. In addition, when the surface reflection layer is formed of a resin containing an inorganic filler, the material cost is reduced.
As described above, according to the invention disclosed in Patent Document 2, it is possible to obtain a light-emitting element wiring substrate and a light-emitting device that have high luminous efficiency and excellent color rendering.

特許文献3には、「発光装置用パッケージ、発光装置」という名称で、放熱性に優れ、かつ光の利用効率を改善することが可能な発光装置用パッケージ及びそれを用いた発光装置に関する発明が開示されている。
この発明は、窒化アルミニウムなどからなるセラミック基板の表面に凹部を形成し、この凹部に発光素子を設置するとともに配線パターンを形成し、さらに、凹部の底面に配線パターンとは電気的に絶縁された銀メッキ層などからなるメタライズ層や光を反射する印刷反射部あるいは白色樹脂を形成したことを特徴とするものである。
このような構造の発光装置用パッケージにおいては、メタライズ層及びセラミック基板が熱伝導性に優れているため、発光素子からの熱が外部に迅速に取り出される。これにより、温度上昇に起因する発光素子の動作の不安定化を抑えることができる。また、発光素子からセラミック基板に向かった照射光が、メタライズ層や印刷反射部又は白色樹脂によって反射されて外部へ放射される。すなわち、発光装置用パッケージの正面側以外への発光が抑えられる。従って、発光素子からの照射光の利用効率が改善される。
Patent Document 3 discloses an invention relating to a light-emitting device package that is excellent in heat dissipation and can improve light utilization efficiency under the name of “light-emitting device package, light-emitting device”, and a light-emitting device using the same. It is disclosed.
According to the present invention, a recess is formed on the surface of a ceramic substrate made of aluminum nitride or the like, a light emitting element is installed in the recess and a wiring pattern is formed, and the wiring pattern is electrically insulated from the bottom of the recess. The present invention is characterized in that a metallized layer made of a silver plating layer or the like, a printed reflecting portion that reflects light, or a white resin is formed.
In the package for a light emitting device having such a structure, the metallized layer and the ceramic substrate are excellent in thermal conductivity, so that heat from the light emitting element is quickly extracted to the outside. Accordingly, instability of the operation of the light emitting element due to temperature rise can be suppressed. In addition, the irradiation light directed from the light emitting element toward the ceramic substrate is reflected by the metallized layer, the print reflecting portion, or the white resin and radiated to the outside. That is, light emission to other than the front side of the light emitting device package is suppressed. Therefore, the utilization efficiency of the irradiation light from the light emitting element is improved.

特開2005−285952号公報JP-A-2005-285952 特開2006−147999号公報JP 2006-147999 A 特開2004−311467号公報JP 2004-31467 A

しかしながら、上述の従来技術である特許文献1に開示された発明においては、光反射層やベース光反射層として金属材料を用いる場合には、材料コストが高くなるという課題があった。また、光反射層に電流供給基板の材料とは異なる窒化珪素などの絶縁材料を用いた場合、両者の熱膨張係数が異なるため、光反射層と電流供給基板との間に熱膨張差が生じて光反射層等が剥がれ易くなるという課題があった。なお、光反射層と電流供給基板の双方にアルミナを用いることも考えられるが、アルミナが透光性を有することから、この場合にはアルミナの白色化が必要である。しかしながら、特許文献1にはアルミナの白色化について何ら記載されていない。従って、光反射層と電流供給基板の双方にアルミナを使用することは困難である。   However, in the invention disclosed in Patent Document 1, which is the above-described prior art, when a metal material is used as the light reflecting layer or the base light reflecting layer, there is a problem that the material cost is increased. In addition, when an insulating material such as silicon nitride, which is different from the material of the current supply substrate, is used for the light reflection layer, a difference in thermal expansion occurs between the light reflection layer and the current supply substrate. Therefore, there is a problem that the light reflection layer and the like are easily peeled off. Although it is conceivable to use alumina for both the light reflection layer and the current supply substrate, since alumina has translucency, whitening of alumina is necessary in this case. However, Patent Document 1 does not describe anything about whitening of alumina. Therefore, it is difficult to use alumina for both the light reflection layer and the current supply substrate.

また、特許文献2に開示された発明においては、表面反射層の材料に酸化チタン、酸化カルシウム、酸化亜鉛などを用いた場合、材料コストが高くなるという課題があった。また、無機フィラーを含んだ樹脂で表面反射層を形成すれば、材料コストは安くなるものの、樹脂は熱伝導率が小さいため、熱放散性が低下するという課題があった。さらに、表面反射層と絶縁基体の材料が異なる場合には、両者の熱膨張差によって、絶縁基体に対する表面反射層の密着強度が低下するおそれがあった。   In the invention disclosed in Patent Document 2, when titanium oxide, calcium oxide, zinc oxide, or the like is used as the material of the surface reflection layer, there is a problem that the material cost increases. Further, if the surface reflective layer is formed of a resin containing an inorganic filler, the material cost is reduced, but the resin has a problem that heat dissipation is reduced because the resin has low thermal conductivity. Furthermore, when the material of the surface reflective layer and the insulating base is different, there is a possibility that the adhesion strength of the surface reflective layer to the insulating base may be reduced due to the difference in thermal expansion between the two.

特許文献3に開示された発明においては、メタライズ層や印刷反射部や白色樹脂は、材料の熱膨張係数がセラミック基板の熱膨張係数と異なるため、熱膨張差によってセラミック基板から剥がれ易くなるおそれがあった。また、メタライズ層を形成する場合には、配線パターンと電気的な絶縁を確実に行う必要があることから、ファインピッチの配線パターンが形成された発光装置用パッケージには適用できないという課題があった。   In the invention disclosed in Patent Document 3, since the thermal expansion coefficient of the metallized layer, the printed reflection portion, and the white resin is different from the thermal expansion coefficient of the ceramic substrate, there is a possibility that the metallized layer, the printed reflection portion, and the white resin are likely to be peeled off from the ceramic substrate. there were. In addition, when the metallized layer is formed, it is necessary to ensure electrical insulation from the wiring pattern, and thus there is a problem that it cannot be applied to a light emitting device package in which a fine pitch wiring pattern is formed. .

本発明はかかる従来の事情に対処してなされたものであり、高い反射効率を有するとともに放熱性に優れ、かつ、安価に製造することが可能な発光素子搭載用基板とその製造方法を提供することを目的とする。   The present invention has been made in response to such a conventional situation, and provides a light-emitting element mounting substrate that has high reflection efficiency, is excellent in heat dissipation, and can be manufactured at low cost, and a method for manufacturing the same. For the purpose.

上記目的を達成するため、請求項1記載の発明である発光素子搭載用基板は、片面に発光素子が搭載される窒化アルミニウム製の基体と、この基体に印刷されるとともに発光素子に接続される導体配線パターンと、基体表面の少なくとも一部を被覆する絶縁層とを備え、この絶縁層は窒化アルミニウムを主成分とする絶縁性ペーストから成り、その焼結温度は基体の焼結温度よりも高いことを特徴とするものである。
上記構造の発光素子搭載用基板においては、熱伝導性に優れる窒化アルミニウムで形成された基体と絶縁層が、発光素子が発した熱を外部へ速やかに放出するように作用する。また、基体の焼結温度が絶縁層の焼結温度よりも低いため、同時焼成によって絶縁層の焼結は不完全なまま、基体のみを容易に完全に焼結させることができる。この場合、基体は緻密な構造となって熱伝導率や機械的強度が向上し、絶縁層は焼成不良となって白濁化する。そして、このような基体と絶縁層を備えた発光素子搭載用基板を発光素子収納用パッケージに用いた場合には、絶縁層が発光素子からの出力光に対して反射層として作用する。すなわち、発光素子から基体に向かって出力された光は絶縁層によって反射されるため、基体を透過して外部へ漏れ出るおそれがない。特に、導体配線パターンの隙間を埋めるように絶縁層を印刷することによれば、このような出力光の漏出を確実に防止することができる。また、基体と絶縁層はいずれも窒化アルミニウムを主成分としているため、両者の熱膨張係数は略等しい。従って、基体に対する絶縁層の密着強度が、熱膨張差によって低下するおそれがない。
In order to achieve the above object, a light-emitting element mounting substrate according to claim 1 is an aluminum nitride base on which a light-emitting element is mounted on one side, printed on the base and connected to the light-emitting element. A conductive wiring pattern and an insulating layer covering at least part of the surface of the substrate are provided. The insulating layer is made of an insulating paste mainly composed of aluminum nitride, and the sintering temperature thereof is higher than the sintering temperature of the substrate. It is characterized by this.
In the light emitting element mounting substrate having the above structure, the base and the insulating layer formed of aluminum nitride having excellent thermal conductivity act so as to quickly release the heat generated by the light emitting element to the outside. Further, since the sintering temperature of the substrate is lower than the sintering temperature of the insulating layer, only the substrate can be easily and completely sintered by the simultaneous firing while the insulating layer is not completely sintered. In this case, the base body has a dense structure and thermal conductivity and mechanical strength are improved, and the insulating layer becomes defective in firing and becomes clouded. And when the light emitting element mounting substrate provided with such a base | substrate and an insulating layer is used for the package for light emitting element accommodation, an insulating layer acts as a reflection layer with respect to the output light from a light emitting element. That is, since the light output from the light emitting element toward the base is reflected by the insulating layer, there is no possibility of leaking outside through the base. In particular, by printing the insulating layer so as to fill the gaps in the conductor wiring pattern, it is possible to reliably prevent such leakage of output light. Further, since both the base and the insulating layer are mainly composed of aluminum nitride, the thermal expansion coefficients of both are substantially equal. Accordingly, there is no possibility that the adhesion strength of the insulating layer to the base body is lowered due to the difference in thermal expansion.

また、請求項2記載の発明は、請求項1記載の発光素子搭載用基板において、絶縁層は窒化ホウ素又は酸化カルシウムのうち、少なくとも一方を焼結助剤成分として含むことを特徴とするものである。
このような構造の発光素子搭載用基板においては、窒化ホウ素又は酸化カルシウムが絶縁層を構成するガラス質成分に不透光性を付与するという作用を有する。従って、発光素子からの出力光を反射するという絶縁層の作用がより一層強まる。また、窒化ホウ素又は酸化カルシウムは、絶縁層の焼結温度を高め、基体の焼結温度との差を広げるように作用する。
The invention according to claim 2 is the light emitting element mounting substrate according to claim 1, wherein the insulating layer includes at least one of boron nitride and calcium oxide as a sintering aid component. is there.
In the light emitting element mounting substrate having such a structure, boron nitride or calcium oxide has an effect of imparting light-opacity to the vitreous component constituting the insulating layer. Therefore, the action of the insulating layer that reflects the output light from the light emitting element is further enhanced. Further, boron nitride or calcium oxide acts to increase the sintering temperature of the insulating layer and widen the difference from the sintering temperature of the substrate.

請求項3記載の発明である発光素子搭載用基板の製造方法は、窒化アルミニウム製の基体に導体配線パターンを印刷する工程と、窒化アルミニウムを主成分とする絶縁性ペーストを印刷して基体表面の少なくとも一部を被覆する絶縁層を形成する工程と、基体と絶縁層を焼成する工程とを備え、この基体と絶縁層を焼成する工程においては、基体及び絶縁層は、基体の焼結温度よりも高くかつ絶縁層の焼結温度よりも低い温度で同時に焼成されることを特徴とするものである。
このような発光素子搭載用基板の製造方法によれば、絶縁層の焼結は不完全なまま、基体のみが完全に焼結する。すなわち、基体と絶縁層が1回の焼成工程によって、それぞれ異なる焼結状態となる。
According to a third aspect of the present invention, there is provided a method for manufacturing a substrate for mounting a light-emitting element, the step of printing a conductor wiring pattern on a base made of aluminum nitride, and the printing of an insulating paste mainly composed of aluminum nitride on the surface of the base. A step of forming an insulating layer covering at least a part of the substrate, and a step of firing the base and the insulating layer. In the step of firing the base and the insulating layer, the base and the insulating layer are separated from the sintering temperature of the base. And is simultaneously fired at a temperature lower than the sintering temperature of the insulating layer.
According to such a method for manufacturing a light emitting element mounting substrate, only the substrate is completely sintered while the insulating layer is not completely sintered. That is, the substrate and the insulating layer are in different sintered states by one firing process.

請求項4記載の発明は、請求項3記載の発光素子搭載用基板の製造方法において、窒化アルミニウムを主成分とする絶縁性ペーストを印刷して基体表面の少なくとも一部を被覆する絶縁層を形成する工程は、窒化アルミニウム製の基体に導体配線パターンを印刷する工程よりも先に行われることを特徴とするものである。
電極としての用途を考えた場合、導体配線パターンは露出面積が広いほど良い。しかし、導体配線パターンの印刷後に絶縁層を印刷すると、印刷ずれ等により絶縁層の一部が導体配線パターンの上面にかかるように形成される可能性がある。この場合、導体配線パターンの露出面積が減少することになるので好ましくない。これに対し、本発明の製造方法によれば、絶縁層の印刷ずれ等が発生した場合でも導体配線パターンの露出面積を減少させるおそれがない。また、導体配線パターンの一部が絶縁層の上面にかかるように印刷される可能性があるが、この場合には導体配線パターンの露出面積が広くなるので好都合である。なお、絶縁層の上面に意図的にその一部がかかるように導体配線パターンを印刷することによれば、導体配線パターンと絶縁層に隙間が発生することを確実に防止できる。
According to a fourth aspect of the present invention, in the method for manufacturing a light emitting element mounting substrate according to the third aspect, an insulating paste mainly composed of aluminum nitride is printed to form an insulating layer that covers at least a part of the substrate surface. The step of performing is performed before the step of printing the conductor wiring pattern on the base made of aluminum nitride.
When considering the use as an electrode, the larger the exposed area of the conductor wiring pattern, the better. However, if the insulating layer is printed after the conductor wiring pattern is printed, there is a possibility that a part of the insulating layer is formed on the upper surface of the conductor wiring pattern due to printing misalignment or the like. This is not preferable because the exposed area of the conductor wiring pattern is reduced. On the other hand, according to the manufacturing method of the present invention, there is no possibility that the exposed area of the conductor wiring pattern is reduced even when printing misalignment or the like of the insulating layer occurs. Further, there is a possibility that a part of the conductor wiring pattern is printed so as to cover the upper surface of the insulating layer. In this case, the exposed area of the conductor wiring pattern becomes wide, which is convenient. In addition, by printing the conductor wiring pattern so that a part of it is intentionally applied to the upper surface of the insulating layer, it is possible to reliably prevent a gap from being generated between the conductor wiring pattern and the insulating layer.

以上説明したように、本発明の請求項1記載の発光素子搭載用基板においては、発光素子の温度上昇に伴って発生する輝度の低下を防ぐことができる。また、出力光の漏出を防いで、発光素子の発光効率を高めることができる。さらに、絶縁層の基体に対する密着強度が低下し難いため、装置の信頼性が高まる。また、基体と絶縁層の材料の主成分が同じであることから、材料コストを安くすることができる。加えて、基体と絶縁層を同時焼成することにより、製造コストを削減することが可能である。   As described above, in the light emitting element mounting substrate according to the first aspect of the present invention, it is possible to prevent a decrease in luminance that occurs as the temperature of the light emitting element increases. Further, leakage of output light can be prevented, and the light emission efficiency of the light emitting element can be increased. Furthermore, since the adhesion strength of the insulating layer to the substrate is difficult to decrease, the reliability of the apparatus is increased. In addition, since the main components of the material of the base and the insulating layer are the same, the material cost can be reduced. In addition, the manufacturing cost can be reduced by simultaneously firing the substrate and the insulating layer.

本発明の請求項2記載の発光素子搭載用基板においては、発光素子の発光効率を高めることが可能である。また、基体の焼結温度よりも高く、絶縁層の焼結温度よりも低い温度で基体と絶縁層を同時焼成する場合、基体の焼結温度と絶縁層の焼結温度との差が大きいため、焼成時の温度条件に幅を持たせることができる。従って、実際の焼成温度が多少ぶれても基体や絶縁層の焼結状態に影響を与えないように、焼成温度を設定することができる。これにより、高品質の発光素子搭載用基板を安価に製造することが可能となる。   In the light emitting element mounting substrate according to claim 2 of the present invention, the light emission efficiency of the light emitting element can be increased. In addition, when the substrate and the insulating layer are simultaneously fired at a temperature higher than the sintering temperature of the substrate and lower than the sintering temperature of the insulating layer, the difference between the sintering temperature of the substrate and the sintering temperature of the insulating layer is large. The temperature condition during firing can be widened. Therefore, the firing temperature can be set so that even if the actual firing temperature fluctuates somewhat, the sintered state of the substrate and the insulating layer is not affected. This makes it possible to manufacture a high-quality light-emitting element mounting substrate at low cost.

本発明の請求項3記載の発光素子搭載用基板の製造方法によれば、工程数を増やすことなく、基体と絶縁層をそれぞれ異なる所望の焼結状態にすることが可能である。従って、製造コストを安くすることができる。   According to the method for manufacturing a substrate for mounting a light emitting element according to claim 3 of the present invention, it is possible to make the base body and the insulating layer have different desired sintered states without increasing the number of steps. Therefore, the manufacturing cost can be reduced.

本発明の請求項4記載の発光素子搭載用基板の製造方法によれば、絶縁層によって導体配線パターンの露出面積が狭められるおそれがないため、ファインピッチ仕様の導体配線パターンに対しても絶縁層を容易に形成することが可能である。また、発光素子からの出力光が基体側から漏出することを防いで、出力光を効率よく外部に放射させることが可能である。   According to the method for manufacturing a substrate for mounting a light-emitting element according to claim 4 of the present invention, the exposed area of the conductor wiring pattern is not narrowed by the insulating layer. Can be easily formed. Further, it is possible to prevent the output light from the light emitting element from leaking out from the substrate side, and to efficiently radiate the output light to the outside.

本発明の最良の実施の形態に係る発光素子搭載用基板とその製造方法の実施例について説明する。   Examples of the light-emitting element mounting substrate and the manufacturing method thereof according to the best mode of the present invention will be described.

実施例1の発光素子搭載用基板について図1乃至図3を用いて説明する。
図1(a)及び(b)はそれぞれ本発明の実施の形態に係る発光素子搭載用基板が用いられる発光素子収納用パッケージの縦断面図及び平面図である。
図1に示すように、発光素子収納用パッケージ1は、略矩形平板状の発光素子搭載用基板2の片面に設置された金属製のリングからなる枠体3の内側に発光素子4を収納するものである。発光素子搭載用基板2は窒化アルミニウムからなる絶縁性の基体5の上面5aに高融点金属ペーストを用いて導体配線パターン6が印刷されるとともに、導体配線パターン6の間から露出する基体5を被覆するように絶縁層7が形成された構造となっている。また、基体5にはビア9が穿設されるとともに、下面5bに外部と電気的に接続される端子部8が形成されている。そして、この端子部8はビア9の内部に充填された導電性部材を介して導体配線パターン6と導通がとられている。なお、枠体3は金属製のリングに限定されるものではなく、例えば、セラミック製のリングであっても良い。
発光素子4は半田、異方性フィルム又は金バンプなどからなる接続用バンプ10を用いて導体配線パターン6にフリップチップ接続されている。すなわち、発光素子4は接続用バンプ10、導体配線パターン6及びビア9内の導電性部材を介して端子部8と導通している。また、枠体3の内側には発光素子4を封止するために透光性を有する樹脂等が充填されている。さらに、枠体3は開口部3aが基体5の上面5aから離れるにつれて拡開した形状となっており、発光素子4からの出力光が枠体3の内周面3bによって反射されて外部へと放射可能となっている。
基体5は、焼結助剤として酸化イットリウム(Y)を5重量%含有する窒化アルミニウムのグリーンシートの焼結体であり、絶縁層7は窒化アルミニウムを主成分とし、焼結助剤として酸化イットリウムを10重量%含有する絶縁性ペーストの焼結体である。なお、基体5の焼結温度は1,825℃であり、絶縁層7の焼結温度は1,845℃である。そして、基体5は1,825℃よりも高い温度で焼成され、絶縁層7は1,845℃よりも低い温度で焼成されている。
A light-emitting element mounting substrate of Example 1 will be described with reference to FIGS.
1A and 1B are a longitudinal sectional view and a plan view of a light emitting element storage package in which the light emitting element mounting substrate according to the embodiment of the present invention is used, respectively.
As shown in FIG. 1, the light-emitting element storage package 1 stores the light-emitting element 4 inside a frame 3 made of a metal ring installed on one side of a light-emitting element mounting substrate 2 having a substantially rectangular flat plate shape. Is. The light-emitting element mounting substrate 2 has a conductive wiring pattern 6 printed on the upper surface 5a of an insulating base 5 made of aluminum nitride using a refractory metal paste, and covers the base 5 exposed between the conductive wiring patterns 6. Thus, the insulating layer 7 is formed. In addition, vias 9 are formed in the base 5, and terminal portions 8 that are electrically connected to the outside are formed on the lower surface 5b. The terminal portion 8 is electrically connected to the conductor wiring pattern 6 through a conductive member filled in the via 9. The frame 3 is not limited to a metal ring, and may be a ceramic ring, for example.
The light emitting element 4 is flip-chip connected to the conductor wiring pattern 6 using connection bumps 10 made of solder, anisotropic film, gold bumps, or the like. That is, the light emitting element 4 is electrically connected to the terminal portion 8 through the conductive bumps 10, the conductor wiring pattern 6, and the via 9. The frame 3 is filled with a light-transmitting resin or the like for sealing the light emitting element 4. Further, the frame 3 has a shape in which the opening 3a is expanded as the distance from the upper surface 5a of the base 5 increases, and the output light from the light emitting element 4 is reflected by the inner peripheral surface 3b of the frame 3 to the outside. Radiation is possible.
The substrate 5 is a sintered body of an aluminum nitride green sheet containing 5% by weight of yttrium oxide (Y 2 O 3 ) as a sintering aid, the insulating layer 7 is mainly composed of aluminum nitride, and the sintering aid. As a sintered body of an insulating paste containing 10% by weight of yttrium oxide. The sintering temperature of the substrate 5 is 1,825 ° C., and the sintering temperature of the insulating layer 7 is 1,845 ° C. The substrate 5 is fired at a temperature higher than 1,825 ° C., and the insulating layer 7 is fired at a temperature lower than 1,845 ° C.

このような構造の発光素子搭載用基板2においては、基体5及び絶縁層7は熱伝導性に優れる窒化アルミニウムを主成分としているため、発光素子4が発する熱は基体5や絶縁層7を経て外部に速やかに放出される。なお、基体5と絶縁層7は熱膨張率が略等しく、熱膨脹差が生じ難いため、発光素子4等の発熱によって基体5や絶縁層7が膨張あるいは収縮した場合でも、絶縁層7の基体5に対する密着強度が低下するおそれはない。また、基体5は完全に焼結して高い熱伝導性や機械的強度を有する一方、絶縁層7は焼成不足により白濁している。従って、絶縁層7は発光素子4からの出力光を反射する反射層として作用する。すなわち、導体配線パターン6の間から露出する基体5を被覆するように形成された絶縁層7は、発光素子4からの出力光が基体5を透過して下面5b側へと漏出しないように防ぐという作用を有する。   In the light emitting element mounting substrate 2 having such a structure, since the base 5 and the insulating layer 7 are mainly composed of aluminum nitride having excellent thermal conductivity, the heat generated by the light emitting element 4 passes through the base 5 and the insulating layer 7. It is quickly released to the outside. Note that the base 5 and the insulating layer 7 have substantially the same coefficient of thermal expansion and are unlikely to cause a difference in thermal expansion. Therefore, even when the base 5 or the insulating layer 7 expands or contracts due to heat generated by the light-emitting element 4 or the like, the base 5 of the insulating layer 7. There is no possibility that the adhesion strength to the surface will be reduced. The substrate 5 is completely sintered and has high thermal conductivity and mechanical strength, while the insulating layer 7 is cloudy due to insufficient firing. Therefore, the insulating layer 7 functions as a reflective layer that reflects the output light from the light emitting element 4. That is, the insulating layer 7 formed so as to cover the base 5 exposed from between the conductor wiring patterns 6 prevents the output light from the light emitting element 4 from passing through the base 5 and leaking to the lower surface 5b side. It has the action.

次に、本実施例の発光素子搭載用基板2の製造方法について説明する。
図2は本実施例の発光素子搭載用基板の製造プロセスを示す工程図である。なお、図1に示した構成要素については同一の符号を付してその説明を省略する。
図2に示すように、ステップS1において、窒化アルミニウムの粉末に酸化イットリウム等の粉末を焼結助剤として添加する(原料粉末の調整)。次に、ステップS2で、この原料粉末にポリビニルブチラール(PVB)等の有機バインダ及びエタノール(COH)等の分散剤を加え、ボールミル等を用いて混合する(スラリー化)。ステップS3では、ドクターブレード法等を用いて、このスラリーを薄板状に形成する(グリーンシートの形成)。なお、このグリーンシートは後述するように焼成されて基体5となる。
さらに、ステップS4において、窒化アルミニウムを主成分とし、酸化イットリウムを10重量%含有する絶縁性ペーストをグリーンシート上にスクリーン印刷する(絶縁層7の印刷)。なお、絶縁層7は次ステップで印刷される導体配線パターン6の間から露出するグリーンシートの表面を被覆するように形成される。
次に、ステップS5では、このグリーンシートにタングステン(W)やモリブデン(Mo)などの高融点金属粉末のペーストをスクリーン印刷して配線パターンを形成する(導体配線パターン6の印刷)。また、ステップS6においては、窒素及び水素の雰囲気中1,100〜1,500℃の温度条件で有機バインダや分散剤を除去する(脱脂)。さらに、ステップS7では、このグリーンシートをカーボン炉等の高温焼成炉内に入れて、窒素雰囲気中1,825℃の温度条件で焼成する。このとき、グリーンシートは略完全に焼結して基体5となる。一方、この焼成温度は既に述べた絶縁層7の焼結温度1,845℃よりも低いため、絶縁層7の焼結は不十分なものとなる。
Next, the manufacturing method of the light emitting element mounting substrate 2 of the present embodiment will be described.
FIG. 2 is a process diagram showing a manufacturing process of the light emitting element mounting substrate of this embodiment. In addition, about the component shown in FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 2, in step S1, a powder such as yttrium oxide is added to the aluminum nitride powder as a sintering aid (adjustment of the raw material powder). Next, in step S2, an organic binder such as polyvinyl butyral (PVB) and a dispersant such as ethanol (C 2 H 5 OH) are added to the raw material powder and mixed using a ball mill or the like (slurry). In step S3, this slurry is formed into a thin plate using a doctor blade method or the like (formation of a green sheet). The green sheet is fired to form the base 5 as described later.
In step S4, an insulating paste containing aluminum nitride as a main component and containing 10% by weight of yttrium oxide is screen-printed on the green sheet (printing of the insulating layer 7). The insulating layer 7 is formed so as to cover the surface of the green sheet exposed from between the conductor wiring patterns 6 printed in the next step.
Next, in step S5, a paste of a refractory metal powder such as tungsten (W) or molybdenum (Mo) is screen-printed on the green sheet to form a wiring pattern (printing of the conductor wiring pattern 6). Moreover, in step S6, an organic binder and a dispersing agent are removed on the temperature conditions of 1,100-1500 degreeC in the atmosphere of nitrogen and hydrogen (degreasing | defatting). In step S7, the green sheet is placed in a high-temperature firing furnace such as a carbon furnace and fired in a nitrogen atmosphere at a temperature of 1,825 ° C. At this time, the green sheet is sintered almost completely to become the base 5. On the other hand, since this firing temperature is lower than the sintering temperature 1,845 ° C. of the insulating layer 7 already described, the sintering of the insulating layer 7 becomes insufficient.

このように、本実施例の製造プロセスによれば、1回の焼成で基体5は完全に焼結し、絶縁層7は焼成不足によって白濁化する。すなわち、基体5の熱伝導性や機械的強度を犠牲にせずに、絶縁層7を容易に白色化することが可能である。従って、本実施例の製造プロセスによれば、発光素子搭載用基板2の製造コストを安くすることができる。   Thus, according to the manufacturing process of the present embodiment, the substrate 5 is completely sintered by one firing, and the insulating layer 7 becomes white turbid due to insufficient firing. That is, the insulating layer 7 can be easily whitened without sacrificing the thermal conductivity and mechanical strength of the base 5. Therefore, according to the manufacturing process of the present embodiment, the manufacturing cost of the light emitting element mounting substrate 2 can be reduced.

ステップS4及びステップS5について図3を用いて詳しく説明する。
図3(a)乃至(c)は本実施例の発光素子搭載用基板における導体配線パターンと絶縁層の形成状態を示す概念図である。なお、図1に示した構成要素については、同一の符号を付してその説明を省略する。
まず、導体配線パターン6が電極として用いられることを考えると、露出面積が広くなるように形成されることが望ましい。しかしながら、導体配線パターン6を印刷した後に絶縁層7を印刷する場合、印刷ずれ等が発生すると、例えば、図3(a)又は(b)に示すような状態となる。すなわち、導体配線パターン6の上面に一部がかかるように絶縁層7が印刷された場合には、図3(a)に示すように、導体配線パターン6の露出面積が狭められる。この場合、電極として利用可能な領域が減少することになるため、接触不良などの故障を招き易い。一方、導体配線パターン6の上面にできるだけかからないように絶縁層7を印刷した場合には、図3(b)に示すように、導体配線パターン6と絶縁層7との間に基体5の露出部5cが生じるおそれがある。この場合、発光素子4からの出力光が露出部5cを通って、基体5の下面5b側に漏出することになる。
これに対し、図2のステップS4及びステップS5で既に説明したように、絶縁層7を印刷した後に導体配線パターン6を印刷する場合、図3(c)に示すように、基体5に予め印刷された絶縁層7の上面に一部が意図的にかかるように導体配線パターン6を印刷することができる。このとき、導体配線パターン6と絶縁層7との間には基体5の露出部5cが生じ難い。従って、発光素子4の出力光の基体5の下面5B側への漏出を確実に防ぐことができる。また、絶縁層7の上面に形成された被覆部6aの分だけ、導体配線パターン6の露出面積が増加する。すなわち、電極として使用可能な領域が増えるため、接触不良などの故障が発生し難い。但し、このステップS4とステップS5の順序は、この順序で望ましいものの、これらのステップを逆にする場合であっても、基体5の露出部5cを生じさせることなく、絶縁層7の表面の面積を狭くして導体配線パターン6を十分確保できる場合には、これらの2つのステップを逆にしてもよい。
Steps S4 and S5 will be described in detail with reference to FIG.
FIGS. 3A to 3C are conceptual diagrams showing the formation state of the conductor wiring pattern and the insulating layer in the light emitting element mounting substrate of this embodiment. In addition, about the component shown in FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
First, considering that the conductor wiring pattern 6 is used as an electrode, it is desirable that the exposed wiring area be widened. However, when the insulating layer 7 is printed after the conductor wiring pattern 6 is printed, if a printing misalignment or the like occurs, for example, a state as shown in FIG. That is, when the insulating layer 7 is printed so as to partially cover the upper surface of the conductor wiring pattern 6, the exposed area of the conductor wiring pattern 6 is narrowed as shown in FIG. In this case, since the area that can be used as the electrode is reduced, a failure such as a contact failure is likely to occur. On the other hand, when the insulating layer 7 is printed so as not to cover the upper surface of the conductor wiring pattern 6 as much as possible, the exposed portion of the base 5 is interposed between the conductor wiring pattern 6 and the insulating layer 7 as shown in FIG. 5c may occur. In this case, the output light from the light emitting element 4 leaks to the lower surface 5b side of the base 5 through the exposed portion 5c.
On the other hand, as already described in step S4 and step S5 in FIG. 2, when the conductor wiring pattern 6 is printed after the insulating layer 7 is printed, the substrate 5 is printed in advance as shown in FIG. The conductor wiring pattern 6 can be printed so that a part of the upper surface of the insulating layer 7 is intentionally applied. At this time, the exposed portion 5 c of the base 5 is unlikely to occur between the conductor wiring pattern 6 and the insulating layer 7. Therefore, leakage of the output light of the light emitting element 4 to the lower surface 5B side of the substrate 5 can be reliably prevented. Further, the exposed area of the conductor wiring pattern 6 is increased by the amount of the covering portion 6a formed on the upper surface of the insulating layer 7. That is, since an area that can be used as an electrode increases, a failure such as a contact failure hardly occurs. However, although the order of step S4 and step S5 is desirable in this order, even if these steps are reversed, the surface area of the insulating layer 7 does not occur without causing the exposed portion 5c of the substrate 5. These two steps may be reversed if the conductor pattern 6 can be sufficiently secured by narrowing.

以上説明したように、本実施例の発光素子搭載用基板2においては、絶縁層7と基体5が高熱伝導性の材料によって形成されており、発光素子4等が発する熱の放散を阻害しないため、温度上昇に起因して発光素子の輝度が低下するというトラブルを防ぐことができる。また、発光素子4の出力光が基体5側から漏出し難いため、発光素子の発光効率が高まる。さらに、基体5と絶縁層7の材料の主成分が同じであるため、材料コストを安くできる。加えて、基体5と絶縁層7の熱膨張係数が略等しくなることから、熱膨張差に起因する絶縁層7の剥離を防いで装置の信頼性を高めることができる。
また、本実施例の発光素子搭載用基板2の製造方法によれば、1つの工程で基体5を完全に焼成するとともに、絶縁層7を焼成不足にして白濁させることができる。これにより、製造コストが削減される。さらに、絶縁層7に一部がかかるように導体配線パターン6を印刷することで、基体5の露出をより確実に防ぐとともに、導体配線パターン6の露出面積を広くして接触不良等のトラブルの発生を防止することができる。加えて、ファインピッチ仕様の導体配線パターン6に対しても、導体配線パターン6の間を埋めるように絶縁層7を容易に形成することが可能である。
As described above, in the light emitting element mounting substrate 2 of the present embodiment, the insulating layer 7 and the base body 5 are formed of a material having high thermal conductivity, so that the heat dissipation from the light emitting element 4 and the like is not hindered. Further, it is possible to prevent the trouble that the luminance of the light emitting element is lowered due to the temperature rise. Moreover, since the output light of the light emitting element 4 is difficult to leak from the base 5 side, the light emitting efficiency of the light emitting element is increased. Furthermore, since the main components of the base 5 and the insulating layer 7 are the same, the material cost can be reduced. In addition, since the thermal expansion coefficients of the substrate 5 and the insulating layer 7 are substantially equal, the peeling of the insulating layer 7 due to the difference in thermal expansion can be prevented and the reliability of the apparatus can be improved.
In addition, according to the method for manufacturing the light emitting element mounting substrate 2 of the present embodiment, the substrate 5 can be completely baked in one step, and the insulating layer 7 can be made insufficiently baked to be clouded. Thereby, the manufacturing cost is reduced. Furthermore, by printing the conductor wiring pattern 6 so as to partially cover the insulating layer 7, the exposure of the substrate 5 can be prevented more reliably, and the exposed area of the conductor wiring pattern 6 can be widened to prevent troubles such as poor contact. Occurrence can be prevented. In addition, the insulating layer 7 can be easily formed so as to fill the space between the conductor wiring patterns 6 even with respect to the conductor wiring pattern 6 of the fine pitch specification.

なお、絶縁層7に用いる絶縁性ペーストは本実施例に示す組成に限定されるものではなく、適宜変更可能である。例えば、絶縁性ペーストとして、窒化アルミニウムを主成分とし、酸化イットリウム及び窒化ホウ素(BN)をそれぞれ5重量%及び0.5重量%含有する材料を使用しても良い。この場合、窒化ホウ素が白色顔料として作用し、絶縁性ペーストの白色度が増加する。これにより、絶縁層7の反射層としての作用をより強めることができる。なお、このときの絶縁層7の焼結温度は1,865℃となり、基体5の焼結温度との差が大きくなる。従って、実際の焼成温度が多少変化した場合でも基体5や絶縁層7の焼結状態に影響が出ないように、焼成工程における焼成温度の設定値に予め幅を持たせることができる。これにより、発光素子搭載用基板2の品質を高めるとともに、その製造コストを安くすることが可能である。さらに、絶縁性ペーストとして窒化アルミニウムを主成分とし、酸化イットリウム及び酸化カルシウム(CaO)をそれぞれ5重量%及び0.5重量%含有する材料を使用することもできる。この場合、酸化カルシウムは白色顔料として作用するとともに、絶縁性ペーストの焼結温度を高くする。従って、前述の窒化ホウ素を含有する材料を使用した場合とほぼ同様な作用及び効果を生じる。
また、絶縁性ペーストの主成分に粒径の大きな窒化アルミニウムの原料粉末を用いても良い。例えば、本実施例の絶縁性ペーストに用いられる窒化アルミニウムとして粒径が1μm未満は10%、1〜4μmは40%、4〜7μmは40%、7μm以上は10%であるような原料粉末を使用した場合、絶縁層7の焼結温度は1,865℃となる。すなわち、基体5と絶縁層7の焼結温度の差が大きいため、既に説明したように、焼成温度の設定値の幅を広くとって、発光素子搭載用基板2の製造を容易にすることが可能となる。
焼結は融点以下の温度で緻密な微構造を得る現象であるため、このように原料粉末の粒径が大きい場合には、粒子の移動に多くのエネルギーが必要となり、焼結温度が高くなる。このとき、焼結温度よりも低い温度で焼成すると、粒子の移動が少なくなるため、低密度となり、気孔率が高くなる。そして、気孔率が高い材料は、気孔の境界面で屈折を繰り返す光が増えて透光性が低下するため、白濁して見える。すなわち、これが本願発明において焼結が不十分な絶縁層7を反射層として利用できる理由である。
The insulating paste used for the insulating layer 7 is not limited to the composition shown in the present embodiment, and can be changed as appropriate. For example, a material containing aluminum nitride as a main component and containing 5 wt% and 0.5 wt% yttrium oxide and boron nitride (BN) may be used as the insulating paste. In this case, boron nitride acts as a white pigment, and the whiteness of the insulating paste increases. Thereby, the effect | action as a reflection layer of the insulating layer 7 can be strengthened more. Note that the sintering temperature of the insulating layer 7 at this time is 1,865 ° C., and the difference from the sintering temperature of the base body 5 becomes large. Therefore, the setting value of the firing temperature in the firing step can be widened in advance so that the sintered state of the substrate 5 and the insulating layer 7 is not affected even when the actual firing temperature is slightly changed. As a result, the quality of the light emitting element mounting substrate 2 can be improved and the manufacturing cost can be reduced. Furthermore, a material containing aluminum nitride as a main component and containing yttrium oxide and calcium oxide (CaO) at 5 wt% and 0.5 wt%, respectively, can be used as the insulating paste. In this case, calcium oxide acts as a white pigment and raises the sintering temperature of the insulating paste. Therefore, substantially the same operation and effect as when the material containing boron nitride is used is produced.
Alternatively, a raw material powder of aluminum nitride having a large particle size may be used as the main component of the insulating paste. For example, as the aluminum nitride used in the insulating paste of the present embodiment, a raw material powder having a particle size of less than 1 μm is 10%, 1-4 μm is 40%, 4-7 μm is 40%, and 7 μm or more is 10%. When used, the sintering temperature of the insulating layer 7 is 1,865 ° C. That is, since the difference between the sintering temperatures of the base 5 and the insulating layer 7 is large, as described above, it is possible to facilitate the manufacture of the light-emitting element mounting substrate 2 by widening the setting range of the firing temperature. It becomes possible.
Sintering is a phenomenon in which a dense microstructure is obtained at a temperature below the melting point. Therefore, when the particle size of the raw material powder is large, a large amount of energy is required to move the particles, and the sintering temperature becomes high. . At this time, if the firing is performed at a temperature lower than the sintering temperature, the movement of the particles is reduced, so that the density is lowered and the porosity is increased. A material having a high porosity appears to be clouded because light that repeats refraction at the interface between the pores increases and the translucency decreases. That is, this is the reason why the insulating layer 7 that is not sufficiently sintered in the present invention can be used as the reflective layer.

以上説明したように、請求項1乃至請求項4に記載された発明は、発光素子収納用パッケージに用いられる基板に限らず、発光素子が搭載されるあらゆる基板に対して適用可能である。   As described above, the invention described in claims 1 to 4 is applicable not only to the substrate used for the light emitting element storage package but also to any substrate on which the light emitting element is mounted.

(a)及び(b)はそれぞれ本発明の実施の形態に係る発光素子搭載用基板が用いられる発光素子収納用パッケージの縦断面図及び平面図である。(A) And (b) is the longitudinal cross-sectional view and top view of a light emitting element storage package in which the light emitting element mounting substrate which concerns on embodiment of this invention is used, respectively. 本実施例の発光素子搭載用基板の製造プロセスを示す工程図である。It is process drawing which shows the manufacturing process of the light emitting element mounting substrate of a present Example. (a)乃至(c)は本実施例の発光素子搭載用基板における導体配線パターンと絶縁層の形成状態を示す概念図である。(A) thru | or (c) is a conceptual diagram which shows the formation state of the conductor wiring pattern and insulating layer in the light emitting element mounting substrate of a present Example.

符号の説明Explanation of symbols

1…発光素子収納用パッケージ 2…発光素子搭載用基板 3…枠体 3a…開口部 3b…内周面 4…発光素子 5…基体 5a…上面 5b…下面 5c…露出部 6…導体配線パターン 6a…被覆部 7…絶縁層 8…端子部 9…ビア 10…接続用バンプ   DESCRIPTION OF SYMBOLS 1 ... Light emitting element accommodation package 2 ... Light emitting element mounting substrate 3 ... Frame 3a ... Opening part 3b ... Inner peripheral surface 4 ... Light emitting element 5 ... Base | substrate 5a ... Upper surface 5b ... Lower surface 5c ... Exposed part 6 ... Conductor wiring pattern 6a ... Coating part 7 ... Insulating layer 8 ... Terminal part 9 ... Via 10 ... Bump for connection

Claims (4)

片面に発光素子が搭載される窒化アルミニウム製の基体と、この基体に印刷されるとともに前記発光素子に接続される導体配線パターンと、前記基体表面の少なくとも一部を被覆する絶縁層とを備え、この絶縁層は窒化アルミニウムを主成分とする絶縁性ペーストから成り、その焼結温度は前記基体の焼結温度よりも高いことを特徴とする発光素子搭載用基板。   An aluminum nitride base on which a light emitting element is mounted on one side, a conductor wiring pattern printed on the base and connected to the light emitting element, and an insulating layer covering at least part of the surface of the base; The insulating layer is made of an insulating paste mainly composed of aluminum nitride, and the sintering temperature thereof is higher than the sintering temperature of the base body. 前記絶縁層は窒化ホウ素又は酸化カルシウムのうち、少なくとも一方を焼結助剤成分として含むことを特徴とする請求項1記載の発光素子搭載用基板。   The light-emitting element mounting substrate according to claim 1, wherein the insulating layer includes at least one of boron nitride and calcium oxide as a sintering aid component. 窒化アルミニウム製の基体に導体配線パターンを印刷する工程と、窒化アルミニウムを主成分とする絶縁性ペーストを印刷して前記基体表面の少なくとも一部を被覆する絶縁層を形成する工程と、前記基体と前記絶縁層を焼成する工程とを備え、この前記基体と前記絶縁層を焼成する工程においては、前記基体及び前記絶縁層は、前記基体の焼結温度よりも高くかつ前記絶縁層の焼結温度よりも低い温度で同時に焼成されることを特徴とする発光素子搭載用基板の製造方法。   A step of printing a conductor wiring pattern on a base made of aluminum nitride, a step of printing an insulating paste mainly composed of aluminum nitride to form an insulating layer covering at least a part of the surface of the base, and the base A step of firing the insulating layer, and in the step of firing the base and the insulating layer, the base and the insulating layer are higher than a sintering temperature of the base and a sintering temperature of the insulating layer. A method for manufacturing a substrate for mounting a light-emitting element, characterized by being simultaneously fired at a lower temperature. 前記窒化アルミニウムを主成分とする絶縁性ペーストを印刷して前記基体表面の少なくとも一部を被覆する絶縁層を形成する工程は、前記窒化アルミニウム製の基体に導体配線パターンを印刷する工程よりも先に行われることを特徴とする請求項3記載の発光素子搭載用基板の製造方法。
The step of forming the insulating layer covering at least a part of the surface of the substrate by printing the insulating paste mainly composed of aluminum nitride precedes the step of printing the conductor wiring pattern on the substrate made of aluminum nitride. The method for manufacturing a substrate for mounting a light emitting element according to claim 3, wherein the method is performed.
JP2006204493A 2006-07-27 2006-07-27 Substrate for mounting light emitting element, and its manufacturing method Pending JP2008034513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204493A JP2008034513A (en) 2006-07-27 2006-07-27 Substrate for mounting light emitting element, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204493A JP2008034513A (en) 2006-07-27 2006-07-27 Substrate for mounting light emitting element, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008034513A true JP2008034513A (en) 2008-02-14

Family

ID=39123647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204493A Pending JP2008034513A (en) 2006-07-27 2006-07-27 Substrate for mounting light emitting element, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008034513A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246057A (en) * 2008-03-31 2009-10-22 Ngk Spark Plug Co Ltd Production process of wiring board for packaging light emitting device
JP2011091405A (en) * 2009-10-26 2011-05-06 Gio Optoelectronics Corp Light-emitting apparatus
WO2011104963A1 (en) 2010-02-25 2011-09-01 旭硝子株式会社 Substrate for mounting light emitting element, and light emitting device
JP2012009533A (en) * 2010-06-23 2012-01-12 Mitsubishi Chemicals Corp Semiconductor light emitting device mounted circuit board, light emitting module, and lighting apparatus
WO2013181538A1 (en) * 2012-05-31 2013-12-05 Cree, Inc. Light emitter packages, systems, and methods
USD749051S1 (en) 2012-05-31 2016-02-09 Cree, Inc. Light emitting diode (LED) package
US9349929B2 (en) 2012-05-31 2016-05-24 Cree, Inc. Light emitter packages, systems, and methods
WO2019107430A1 (en) * 2017-11-29 2019-06-06 京セラ株式会社 Circuit board and light emitting device provided with same
KR20190091724A (en) * 2018-01-29 2019-08-07 주식회사 아모센스 A lighting apparatus for a car

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019090A1 (en) * 2004-08-18 2006-02-23 Tokuyama Corporation Ceramic substrate for mounting light-emitting device and method for producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019090A1 (en) * 2004-08-18 2006-02-23 Tokuyama Corporation Ceramic substrate for mounting light-emitting device and method for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246057A (en) * 2008-03-31 2009-10-22 Ngk Spark Plug Co Ltd Production process of wiring board for packaging light emitting device
JP2011091405A (en) * 2009-10-26 2011-05-06 Gio Optoelectronics Corp Light-emitting apparatus
WO2011104963A1 (en) 2010-02-25 2011-09-01 旭硝子株式会社 Substrate for mounting light emitting element, and light emitting device
JP2012009533A (en) * 2010-06-23 2012-01-12 Mitsubishi Chemicals Corp Semiconductor light emitting device mounted circuit board, light emitting module, and lighting apparatus
USD749051S1 (en) 2012-05-31 2016-02-09 Cree, Inc. Light emitting diode (LED) package
WO2013181537A1 (en) * 2012-05-31 2013-12-05 Cree, Inc. Light emitter packages, systems, and methods having improved performance
CN104335368A (en) * 2012-05-31 2015-02-04 克利公司 Light emitter packages, systems, and methods having improved performance
CN104396036A (en) * 2012-05-31 2015-03-04 克利公司 Light emitter packages, systems, and methods
WO2013181538A1 (en) * 2012-05-31 2013-12-05 Cree, Inc. Light emitter packages, systems, and methods
US9349929B2 (en) 2012-05-31 2016-05-24 Cree, Inc. Light emitter packages, systems, and methods
US10439112B2 (en) 2012-05-31 2019-10-08 Cree, Inc. Light emitter packages, systems, and methods having improved performance
WO2019107430A1 (en) * 2017-11-29 2019-06-06 京セラ株式会社 Circuit board and light emitting device provided with same
JPWO2019107430A1 (en) * 2017-11-29 2020-12-24 京セラ株式会社 Circuit board and light emitting device equipped with this
JP7004743B2 (en) 2017-11-29 2022-01-21 京セラ株式会社 Circuit board and light emitting device equipped with it
KR20190091724A (en) * 2018-01-29 2019-08-07 주식회사 아모센스 A lighting apparatus for a car
KR102475370B1 (en) 2018-01-29 2022-12-07 주식회사 아모센스 A lighting apparatus for a car

Similar Documents

Publication Publication Date Title
JP2008034513A (en) Substrate for mounting light emitting element, and its manufacturing method
JP4572994B2 (en) Light emitting module and lighting device
JP5140275B2 (en) Ceramic substrate for mounting light emitting element and method for manufacturing the same
KR100865701B1 (en) Package for storing light emitting element and method for producing package for storing light emitting element
US8461755B2 (en) Light source for lighting
JP6203942B2 (en) Method for manufacturing substrate for light emitting device, method for manufacturing light emitting device, and method for manufacturing lighting device
JP4804109B2 (en) LIGHT EMITTING DEVICE WIRING BOARD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE WIRING BOARD MANUFACTURING METHOD
WO2005106973A1 (en) Wiring board for light emitting element
JP5554680B2 (en) Light-emitting element mounting substrate, light-emitting device, and manufacturing method thereof
US20160308101A1 (en) Substrate for light emitting device, light emitting device, and manufacturing method of substrate for light emitting device
JP2007234846A (en) Ceramic package for light-emitting element
JP4926789B2 (en) Multilayer wiring board for mounting light emitting device and method for manufacturing the same
JP2006041230A (en) Light emitting devices and wiring board therefor
JP4699042B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP2008117932A (en) Reflector, light emitting element housing package equipped with the same, and light emitting device
JP2009038161A (en) Light emitting element storage package
JP2007266222A (en) Substrate for loading light emitting element, package for storing light emitting element, light emitting device and light system
JP4895777B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP6215357B2 (en) Light emitting device substrate, light emitting device, and method of manufacturing light emitting device substrate
JP2006156447A (en) Wiring board for light emitting element, light emitting device and its manufacturing method
JP2006066409A (en) Wiring board for light emitting element, manufacturing method thereof and light emitting device
JP2008131011A (en) Package for storing light-emitting element, and manufacturing method thereof
JP2006100364A (en) Wiring board for light emitting element, method for manufacturing the same and light emitting element
JP2007048969A (en) Package for light-emitting device storage
JP2005191065A (en) Package for housing light-emitting element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120224