JP2009257896A - Method of evaluating surface flaw of steel material - Google Patents

Method of evaluating surface flaw of steel material Download PDF

Info

Publication number
JP2009257896A
JP2009257896A JP2008106332A JP2008106332A JP2009257896A JP 2009257896 A JP2009257896 A JP 2009257896A JP 2008106332 A JP2008106332 A JP 2008106332A JP 2008106332 A JP2008106332 A JP 2008106332A JP 2009257896 A JP2009257896 A JP 2009257896A
Authority
JP
Japan
Prior art keywords
steel material
steel
defect
defects
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008106332A
Other languages
Japanese (ja)
Inventor
Naofumi Ito
直文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2008106332A priority Critical patent/JP2009257896A/en
Publication of JP2009257896A publication Critical patent/JP2009257896A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating the surface flaw of a steel material capable of quantitatively evaluating the occurrence state of a flaw. <P>SOLUTION: An ultrasonic flaw detecting test, which rotates an ultrasonic flaw detecting probe around the steel material to spirally detect the flaw of at least one region of the cross section of the steel material over the longitudinal direction of the steel material, is performed with respect to at least one steel material to detect the flaw of the steel material. The flaw detected with respect to each steel material is arranged on the mesh in a data map wherein a first axis is set to the direction of rotation of the ultrasonic flaw detecting probe and a second axis is set to the longitudinal direction of the steel material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋼材の表面欠陥評価方法に関し、特に、欠陥の発生状況を定量的に評価することが可能な鋼材の表面欠陥評価方法に関するものである。   The present invention relates to a method for evaluating surface defects of steel materials, and more particularly, to a method for evaluating surface defects of steel materials capable of quantitatively evaluating the occurrence of defects.

特殊鋼からなる丸棒鋼は、鋼片が圧延されることで得られる。通常は、タンデムに並べられた粗列圧延機、中間列圧延機及び仕上列圧延機による多段圧延が施される。この圧延によって鋼片は徐々に細径化し且つ長尺化して、丸棒鋼が得られる。ユーザーの要求によっては、圧延によって得られた丸棒鋼に、さらに、熱処理、ピーリング加工などを施して丸棒鋼(成品)とする。   Round steel bar made of special steel is obtained by rolling a steel piece. Usually, multi-stage rolling is performed by a rough row rolling mill, a middle row rolling mill, and a finishing row rolling mill arranged in tandem. By this rolling, the steel slab is gradually reduced in diameter and lengthened to obtain a round bar steel. Depending on the user's request, the round bar steel obtained by rolling is further subjected to heat treatment, peeling processing, etc. to obtain round bar steel (product).

このように製造される丸棒鋼には表面及び表面直下に欠陥(以下、疵ともいう)が存在することがある。欠陥の数によっては丸棒鋼の品質を損なうため、丸棒鋼の用途にあわせた表面欠陥の検査を行い、高品質の丸棒鋼のみを出荷する必要がある。   The round steel bar manufactured in this way may have defects (hereinafter also referred to as wrinkles) on the surface and directly below the surface. Depending on the number of defects, the quality of the round bar steel is impaired. Therefore, it is necessary to inspect the surface defects according to the use of the round bar steel and to ship only high quality round bar steel.

丸棒鋼の表面及び表面直下の欠陥の代表的な検査方法には、斜角探傷用の探触子を備える全自動超音波探傷装置を用いた検査がある(例えば、特許文献1参照)。   As a typical inspection method for defects on the surface of a round steel bar and directly under the surface, there is an inspection using a fully automatic ultrasonic flaw detector equipped with a probe for oblique flaw detection (see, for example, Patent Document 1).

一般的な全自動超音波探傷装置は、垂直探傷用の探触子及び斜角探傷用の探触子を備え、垂直探傷用の探触子及び斜角探傷用の探触子から丸棒材内に超音波ビームを入射させることにより、被探傷材内の内部疵を検出している。   A general fully automatic ultrasonic flaw detector includes a probe for vertical flaw detection and a probe for oblique flaw detection, and a round bar material from the probe for vertical flaw detection and the probe for oblique flaw detection. An internal flaw in the material to be inspected is detected by making an ultrasonic beam enter the inside.

ここで、全自動超音波探傷装置を用いた欠陥の検査手法について簡単に説明をする。図1は、斜角探傷による超音波探傷の原理を示す図である。丸棒鋼の表面ゲート(以下、Loともいう)及び表面直下ゲート(以下、Liともいう)については斜角探触子で探傷される。図1(a)に示すように、丸棒鋼の表面から入射した超音波は45度の角度で屈折して、図1(b)に示すように、表面及び表面直下領域のゲートにある欠陥で反射したエコーを欠陥信号として捕らえる。   Here, a defect inspection method using a fully automatic ultrasonic flaw detector will be briefly described. FIG. 1 is a diagram showing the principle of ultrasonic flaw detection by oblique flaw detection. A round bar steel surface gate (hereinafter also referred to as Lo) and a gate directly below the surface (hereinafter also referred to as Li) are inspected by an oblique probe. As shown in FIG. 1A, the ultrasonic wave incident from the surface of the round bar steel is refracted at an angle of 45 degrees, and as shown in FIG. The reflected echo is captured as a defect signal.

図2は、垂直探傷による超音波探傷の原理を示す図である。丸棒鋼の中心部及び中間部については垂直探触子で探傷される。図2(a)に示すように、超音波は丸棒鋼の表面から屈折せずにそのまま入射し、図2(b)に示すように、中間部、及び中心部領域のゲートにある欠陥で反射したエコーを欠陥信号として捕らえる。   FIG. 2 is a diagram showing the principle of ultrasonic flaw detection by vertical flaw detection. The center part and the middle part of the round bar steel are inspected with a vertical probe. As shown in FIG. 2 (a), the ultrasonic wave is incident as it is without being refracted from the surface of the round steel bar, and as shown in FIG. 2 (b), it is reflected by defects at the gates in the middle and central regions. Echoes are captured as defect signals.

垂直探傷用の探触子及び斜角探傷用の探触子は、それぞれ水が封入されたホルダーにセットされて、図1及び図2中のAの方向に丸棒鋼の周囲を回転し、ホルダー内を走行する丸棒鋼の断面の全領域がスパイラル状に丸棒鋼の全長にわたって探傷されることとなる。
特開2007−271375号公報
The probe for vertical flaw detection and the probe for oblique flaw detection are set in holders filled with water, and rotate around the round steel bar in the direction A in FIGS. The entire area of the cross section of the round bar steel traveling inside is spirally detected over the entire length of the round bar steel.
JP 2007-271375 A

図3は、全自動超音波探傷装置を用いた欠陥の検出結果の一例を示す図である。図3(a)及び図3(b)に示すように、Lo波形及びLi波形が1本の丸棒鋼の全長(図では6.8m)にわたって探傷され、反射の強度及び欠陥の存在する丸棒鋼の軸方向の位置に応じて反射の強度分布が生じる。   FIG. 3 is a diagram illustrating an example of a defect detection result using a fully automatic ultrasonic flaw detector. As shown in FIG. 3 (a) and FIG. 3 (b), the Lo waveform and the Li waveform are inspected over the entire length (6.8 m in the figure) of one round bar steel, and the strength of the reflection and the presence of defects in the round bar steel A reflection intensity distribution is generated according to the position in the axial direction.

図3(c)は、Lo波形及びLi波形の強度が所定のしきい値を超えた場合には、欠陥有りと判定してイベントを立たせ、丸棒鋼の軸方向の位置にイベントを表示した図である。   FIG. 3C is a diagram in which when the intensity of the Lo waveform and the Li waveform exceeds a predetermined threshold value, it is determined that there is a defect and an event is set up, and the event is displayed at a position in the axial direction of the round bar steel. It is.

しかしながら、図3(c)に示すチャートからは、欠陥の丸棒鋼の長手方向の位置関係のみしか判明しない。また、従来は、同一ロット内で1個以上のイベントの立った丸棒鋼の本数の比率(以下、不良率とする)の評価方法であり、同一ロット全体の内の何本の鋼材に疵があったかは判断できるが、1本あたりどの程度の疵が発生しているかについては不明であった。また、疵の数は1箇所に重複していなければ計算可能だが、複数の疵が丸棒鋼の軸方向の同一の位置に重複して存在する場合には、疵の数を少なく計測してしまうという問題があった。   However, from the chart shown in FIG. 3 (c), only the positional relationship in the longitudinal direction of the defective round steel bar is known. Conventionally, it is an evaluation method for the ratio of the number of round steel bars with one or more events in the same lot (hereinafter referred to as the defect rate), and the number of steel materials in the same lot is wrinkled. Although it was possible to determine whether or not there was any wrinkle per bottle, it was unclear. In addition, the number of wrinkles can be calculated if they do not overlap at one place, but if a plurality of wrinkles are duplicated at the same position in the axial direction of the round steel bar, the number of wrinkles will be reduced. There was a problem.

このように、従来は鋼材の表面部(Lo)および表面直下部(Li)の欠陥の有無を不良本数率で評価していたが、不良本数率が同等であっても鋼材1本あたりの欠陥個数が大きく違う場合があり、欠陥発生状況の定量的な評価が可能な指標が望まれていた。   Thus, conventionally, the presence / absence of defects in the surface portion (Lo) and directly under the surface (Li) of the steel material was evaluated by the defect number rate. However, even if the defect number rate is equivalent, the defect per steel material In some cases, the number may vary greatly, and an index capable of quantitative evaluation of the defect occurrence status has been desired.

本発明は、このような従来の問題を解決するためになされたもので、欠陥の発生状況を定量的に評価することが可能な鋼材の表面欠陥評価方法を提供することである。   The present invention has been made to solve such a conventional problem, and is to provide a method for evaluating surface defects of a steel material capable of quantitatively evaluating the state of occurrence of defects.

本発明の鋼材の表面欠陥評価方法は、超音波探傷用探触子を鋼材の周囲で回転させ鋼材の断面の少なくとも1つのゲート領域をスパイラル状に鋼材の長手方向にわたって探傷する超音波探傷検査を、少なくとも1つの鋼材について行って欠陥を検出し、各鋼材について、検出された欠陥を、第1の軸を超音波探傷用探触子の回転方向とし第2の軸を鋼材の長手方向としたデータマップ内の対応するメッシュに配置することを特徴とする。   According to the method for evaluating surface defects of a steel material according to the present invention, an ultrasonic flaw detection inspection is performed in which a probe for ultrasonic flaw detection is rotated around the steel material and at least one gate region of the cross section of the steel material is spirally detected over the longitudinal direction of the steel material. The detection is performed on at least one steel material, and the detected defect is detected for each steel material, with the first axis as the rotation direction of the ultrasonic flaw detector and the second axis as the longitudinal direction of the steel material. It is arranged on the corresponding mesh in the data map.

本発明の鋼材の表面欠陥評価方法によれば、検出された欠陥を、第1の軸を超音波探傷用探触子の回転方向とし第2の軸を鋼材の長手方向としたデータマップ内のメッシュに配置することにより、疵の位置と疵の深さを判別可能としている。   According to the method for evaluating surface defects of a steel material according to the present invention, the detected defects are defined in a data map in which the first axis is the rotation direction of the ultrasonic flaw detector and the second axis is the longitudinal direction of the steel material. By arranging them on the mesh, the position of the ridge and the depth of the ridge can be discriminated.

以下、本発明の実施形態である鋼材の表面欠陥評価方法について、図を参照して詳細に説明をする。   Hereinafter, a steel surface defect evaluation method according to an embodiment of the present invention will be described in detail with reference to the drawings.

図4は、本実施形態の鋼材の表面欠陥評価方法で用いるデータマップを示す図である。   FIG. 4 is a diagram showing a data map used in the steel surface defect evaluation method of the present embodiment.

図4に示す本実施形態のデータマップは、図3に示すチャートと同一の条件で、斜角探傷用の探触子により鋼番1の同一の鋼材について全自動超音波探傷を行った結果をマップ状のデータとして出力したものである。   The data map of the present embodiment shown in FIG. 4 shows the result of full-automatic ultrasonic flaw detection performed on the same steel material of steel number 1 with the probe for oblique flaw detection under the same conditions as the chart shown in FIG. This is output as map data.

本実施形態では、図1に示す斜角探傷法におけるLoを丸棒鋼の直径Dに対し表面から0〜5%Dの範囲とし、Liを、直径Dに対し5〜15%Dの範囲として判定を行っている。   In the present embodiment, Lo is determined to be in the range of 0 to 5% D from the surface with respect to the diameter D of the round steel bar, and Li is determined to be in the range of 5 to 15% D with respect to the diameter D in the oblique flaw detection method shown in FIG. It is carried out.

図4に示す本実施形態のデータマップの縦軸は、図1に示す斜角探傷用の探触子を丸棒鋼の周囲の図中のAの方向に回転させて欠陥を探傷した場合に、1周360°を20メッシュに分割して各位置ごと(すなわち、18°ごと)に探傷を行った場合の検出結果を示す。   The vertical axis of the data map of the present embodiment shown in FIG. 4 shows the case where a defect is detected by rotating the probe for oblique flaw detection shown in FIG. 1 in the direction A in the drawing around the round steel bar. A detection result when one round of 360 ° is divided into 20 meshes and flaw detection is performed at each position (ie, every 18 °) is shown.

また、図4に示す本実施形態のデータマップの横軸は、丸棒鋼1mあたり10メッシュに分割して、丸棒鋼の全長(6.8m)にわたって、各位置ごとに探傷を行った場合の丸棒鋼の軸方向の検出結果を示す。   In addition, the horizontal axis of the data map of this embodiment shown in FIG. 4 is a round bar steel when divided into 10 meshes per 1 m of round bar steel and flaw detection is performed at each position over the entire length of the round bar steel (6.8 m). The detection results in the axial direction are shown.

Lo及びLiについては、各々所定のしきい値を超えた場合に、データマップ上の対応する位置にイベントを表示する。   For Lo and Li, an event is displayed at a corresponding position on the data map when a predetermined threshold value is exceeded.

イベントの表示は、Loでしきい値を超えた場合には「1」、Liでしきい値を超えた場合には「2」、同一位置(同一メッシュ)にて、Lo及びLiともにしきい値を超えた場合には「3」と表示を出す。これにより、本実施形態のデータマップは、鋼材1本1本について、浅い疵(Loのみ)、深い疵(Lo+Li)、及び深いが表面は圧延中に圧着し表面に露出していない疵(Liのみ)を識別し、疵の位置と疵の深さを判別可能としている。また、イベントの数で鋼材の品質も評価することを可能としている。   The event display is “1” when the threshold value is exceeded at Lo, “2” when the threshold value is exceeded at Li, and both the Lo and Li thresholds at the same position (same mesh). When the value is exceeded, “3” is displayed. Thereby, the data map of this embodiment is as follows. For each steel material, shallow wrinkles (Lo only), deep wrinkles (Lo + Li), and deep wrinkles that are not exposed on the surface due to pressure bonding during rolling. Only), and the position and depth of the eyelid can be discriminated. It is also possible to evaluate the quality of steel materials by the number of events.

図3(c)と図4とを比較した場合には、両図中のA領域のように疵が1つの場合には、特に問題は発生しない。両図中のB領域のように、同一箇所に疵が複数重複している場合には、図3(c)では、1つの疵データとして表示されてしまうのに対し、図4では、疵の数が正しく表示されている。   When FIG. 3C and FIG. 4 are compared, there is no particular problem when there is one wrinkle as in the area A in both figures. In the case where a plurality of wrinkles overlap at the same location as in the B area in both figures, it is displayed as one wrinkle data in FIG. 3 (c), whereas in FIG. The number is displayed correctly.

また、両図中のC領域のように、複数の疵が密集している場合には、図3(c)では長い疵があることだけわかるが、図4からは、広がった疵であることがわかる。また、図4では指標「3」が存在するため、深い疵があることがわかる。   In addition, in the case where a plurality of wrinkles are concentrated as in the C region in both figures, it can be seen that there are only long wrinkles in FIG. 3C, but from FIG. I understand. Further, in FIG. 4, since the index “3” exists, it can be seen that there is a deep flaw.

このように、鋼番1の鋼材について、LoとLiの波形に対し、しきい値を超えた部分にイベントが立つが、本実施形態によれば、イベント発生位置を円周を20メッシュ、長手方向を10メッシュ/mの展開図となるデータマップにて取得し、イベントの立った面積率(以下、不良面積率とする)として評価指標を設けることにより、鋼番1の一本一本の疵の発生量を定量的に把握することを可能としている。図4では、不良面積率は2.72%(=37個/(20メッシュ*10メッシュ/m*6.8m))となり、特に表面からの深い疵についての不良面積率は、0.07%(=1メッシュ/(10メッシュ/m*6.8m))となる。   As described above, with respect to the steel material of steel No. 1, an event occurs in the portion exceeding the threshold with respect to the Lo and Li waveforms, but according to this embodiment, the event occurrence position is 20 mesh in the circumference and long Each direction of steel No. 1 is obtained by obtaining an evaluation index as an area ratio where an event stands (hereinafter referred to as a defective area ratio) by acquiring a direction in a data map that is a development map of 10 mesh / m. It is possible to grasp the amount of soot generated quantitatively. In FIG. 4, the defective area rate is 2.72% (= 37 pieces / (20 mesh * 10 mesh / m * 6.8 m)), and the defective area rate particularly for deep wrinkles from the surface is 0.07% (= 1 mesh / (10 mesh / m * 6.8 m)).

図5は、鋼番1とは異なる鋼番2の鋼材について全自動超音波探傷装置を用いた欠陥の検出を行い、従来の評価を行った結果を示す図である。図6は、鋼番2の鋼材について本実施形態のデータマップを作成した図である。図3と図5からわかるように、鋼番2の鋼材は鋼番1の鋼材と比較して、疵が多く発生している。   FIG. 5 is a diagram showing a result of conventional evaluation of a steel material of steel number 2 different from steel number 1 by detecting a defect using a fully automatic ultrasonic flaw detector. FIG. 6 is a diagram in which the data map of the present embodiment is created for the steel material of steel No. 2. As can be seen from FIG. 3 and FIG. 5, the steel material of steel No. 2 has more wrinkles than the steel material of steel No. 1.

表1は、従来の評価方法を用いて、図3と図5の鋼材を含む各鋼番の計130本の鋼材の検出結果から、欠陥の発生状況を評価した結果を示す表である。また、表2は、本実施形態のデータマップによる評価方法を用いて、図4と図6の鋼材を含む各鋼番の計130本の鋼材の検出結果から、欠陥の発生状況を定量的に評価した結果を示す表である   Table 1 is a table showing the result of evaluating the occurrence of defects from the detection results of a total of 130 steel materials of each steel number including the steel materials of FIGS. 3 and 5 using a conventional evaluation method. In addition, Table 2 uses the evaluation method based on the data map of the present embodiment to quantitatively determine the occurrence of defects from the detection results of a total of 130 steel materials including the steel materials shown in FIGS. 4 and 6. It is a table | surface which shows the result of having evaluated

Figure 2009257896
Figure 2009257896

Figure 2009257896
Figure 2009257896

なお、表2において「総面積」とは、図4、図6に示す鋼番1、2の各鋼材のデータマップのメッシュ数を検査本数130本の鋼材について合算した面積であり、「Lo面積」とは、図4、図6に示す鋼番1、2の各鋼材のデータマップのイベント「1」が立った各メッシュ数を検査本数130本の鋼材について合算した面積であり、「Li面積」とは、図4、図6に示す鋼番1、2の各鋼材のデータマップのイベント「2」が立ったメッシュ数を検査本数130本の鋼材について合算した面積である。   In Table 2, the “total area” is an area obtained by adding up the number of meshes in the data map of each steel material of steel numbers 1 and 2 shown in FIG. 4 and FIG. "Is the total of the number of meshes where the event" 1 "in the data map of each steel number 1 and 2 shown in FIGS. 4 and 6 stands for 130 steel materials, "" Is the total of the number of meshes where the event "2" in the data map of each steel number 1 and 2 shown in FIGS.

表1からは、鋼番1と鋼番2との間では、Lo不良本数率が94.6%、及び97.7%と若干悪化しているものの、大きな差異を認識することはできない。したがって、従来の評価方法によれば、鋼番1と鋼番2とはほぼ同一の品質を有すると判断されてしまう。   From Table 1, although the number of Lo defects is a little worse at 94.6% and 97.7% between Steel No. 1 and Steel No. 2, a large difference cannot be recognized. Therefore, according to the conventional evaluation method, it is determined that the steel number 1 and the steel number 2 have substantially the same quality.

一方、表2からは、鋼番1と鋼番2との間では、Lo不良面積率が0.537%及び1.008%とほぼ倍の数値となっており、疵の発生している総量が非常に多く、次工程の疵取り作業の負荷が増大することがわかる。したがって、本実施形態の評価方法によれば、鋼番1と鋼番2とは品質に大きな差があると判断され、前工程に警告を発することなどにより対処することが可能となる。   On the other hand, according to Table 2, between Steel No. 1 and Steel No. 2, the Lo defective area ratio is almost doubled, 0.537% and 1.008%, and the total amount of wrinkles is very large. It can be seen that the load of the scraping work in the next process increases. Therefore, according to the evaluation method of the present embodiment, it is determined that there is a large difference in quality between steel No. 1 and steel No. 2, and it is possible to cope with this by issuing a warning in the previous process.

なお、上記実施形態では斜角探傷を行う場合を例として説明したが、垂直探傷を行う場合も同様であり、表面ゲート(Lo)及び表面直下ゲート(Li)に換えて、中間ゲート(IAf、IAB)及び中心ゲート(IB)の欠陥信号を取得し、上記実施形態のデータマップを作成して評価を行えばよい。   In the above-described embodiment, the case where oblique flaw detection is performed has been described as an example. However, the same applies to the case where vertical flaw detection is performed. Instead of the surface gate (Lo) and the gate directly below the surface (Li), an intermediate gate (IAf, What is necessary is just to acquire the defect signal of IAB) and center gate (IB), create the data map of the said embodiment, and perform evaluation.

以下、本発明の実施例について説明をする。ただし、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to the following examples.

軸受鋼(SUJ2)を分塊圧延機にてφ167−7mのビレットに圧延し、冷却を経てRUSTにて超音波探傷を実施した。   The bearing steel (SUJ2) was rolled into a billet with a diameter of 167-7m with a block mill, cooled, and subjected to ultrasonic testing with RUST.

データの集計は製鋼での出鋼単位で実施(130本/C#)する。   Data is aggregated in units of steel output in steelmaking (130 / C #).

データの集計を行うと、前回集計後から今回集計処理指令を出すまでの間に検査した対象材の検査本数、Lo不良本数、Li不良本数、検査面積、Lo不良面積、Li不良面積、の数値及びLo不良本数率、Li不良本数率、Lo不良面積率、Li不良面積率が算出され、プリントアウトされる。   When data is aggregated, numerical values of the number of inspections, Lo defect number, Li defect number, inspection area, Lo defect area, Li defect area of the target material inspected after the previous aggregation until the current aggregation processing command is issued The Lo defect number rate, the Li defect number rate, the Lo defect area rate, and the Li defect area rate are calculated and printed out.

品質管理データとして従来からのLo不良本数率、Li不良本数率に加え、本実施例では、Lo不良面積率、Li不良面積率をPCに登録し、従来値に比べて増減がないかを評価する。   In addition to the conventional Lo defect number rate and Li defect number rate as quality control data, in this embodiment, the Lo defect area rate and Li defect area rate are registered in the PC and evaluated whether there is an increase or decrease compared to the conventional value. To do.

Figure 2009257896
Figure 2009257896

表3からは、鋼材No.2は、疵取本数多く、かつ疵発生面積も多いことがわかる。また、鋼材No.8は、No.6に比べ疵取本数は少ないが疵取している面積が多いことがわかる。また、鋼材No.11は、疵取本数多く、かつ疵発生面積も多いことがわかる。   From Table 3, it can be seen that Steel No. 2 has a large number of scraps and a large amount of wrinkle generation area. In addition, it can be seen that steel material No. 8 has a smaller number of scraps than No. 6, but has a large area of scraping. In addition, it can be seen that Steel No. 11 has a large number of scraps and a large amount of wrinkles.

(定常の操業中の操業異常を発見する例)
また、表3の鋼材No.1と鋼材No.2からわかるように8月の月単位の集計においてLo不良本数率は95%程度とほぼ同等の値であるが、Lo不良面積率は0.7%であったものが1.45%と上昇している。このように、疵の発生している本数に変化はないが、疵の総量は増加傾向にあり、上工程および技術管理部(管理部門)へ通報し、原因調査を開始することが可能となる。また、状態としては疵取処置をしている本数に変化はないが疵取している面積が大きくなっており、疵取処理上の負荷が増大していることが判別できる。
(Example of finding abnormal operation during normal operation)
In addition, as can be seen from Steel No. 1 and Steel No. 2 in Table 3, the number of Lo defects is almost the same as about 95% in the monthly total in August, but the Lo defect area ratio is 0.7% It has risen to 1.45%. In this way, the number of soot has not changed, but the total amount of soot is increasing, and it is possible to report to the upper process and the technical management department (management department) and start investigating the cause. . Further, as the state, there is no change in the number of scooping treatments, but the scooping area is large, and it can be determined that the load on the scooping processing is increasing.

以上、説明したように本実施形態の鋼材の表面欠陥評価方法によれば、超音波探傷用探触子を鋼材の周囲を回転させ、鋼材の断面の表面直下ゲートと、表面ゲートと、表面直下ゲートと表面ゲートとの両方とをスパイラル状に鋼材の長手方向にわたって探傷する超音波探傷検査を行って欠陥を検出し、検出した欠陥をデータマップに配置し、データマップから欠陥の存在する不良面積率を求めることにより、欠陥発生状況の定量的な評価を行うことが可能となる。   As described above, according to the surface defect evaluation method for a steel material of the present embodiment as described above, the ultrasonic flaw detection probe is rotated around the steel material, and the gate just below the surface of the cross section of the steel material, the surface gate, and the surface directly below Defects are detected by performing an ultrasonic flaw inspection in which both the gate and the surface gate are spirally detected over the longitudinal direction of the steel material, and the detected defects are arranged in the data map. By obtaining the rate, it is possible to quantitatively evaluate the defect occurrence status.

斜角探傷による超音波探傷の原理を示す図である。It is a figure which shows the principle of ultrasonic flaw detection by oblique flaw detection. 垂直探傷による超音波探傷の原理を示す図である。It is a figure which shows the principle of the ultrasonic flaw detection by a vertical flaw detection. 従来の全自動超音波探傷装置を用いた欠陥の検出結果の一例を示す図である。It is a figure which shows an example of the detection result of the defect using the conventional fully automatic ultrasonic flaw detector. 本実施形態の鋼材の表面欠陥評価方法を用いたデータマップの一例を示す図である。It is a figure which shows an example of the data map using the surface defect evaluation method of the steel materials of this embodiment. 従来の全自動超音波探傷装置を用いた欠陥の検出結果の他の例を示す図である。It is a figure which shows the other example of the detection result of the defect using the conventional fully automatic ultrasonic flaw detector. 本実施形態の鋼材の表面欠陥評価方法を用いたデータマップの他の例を示す図である。It is a figure which shows the other example of the data map using the surface defect evaluation method of the steel materials of this embodiment.

Claims (3)

超音波探傷用探触子を鋼材の周囲で回転させ鋼材の断面の少なくとも1つのゲート領域をスパイラル状に鋼材の長手方向にわたって探傷する超音波探傷検査を、少なくとも1つの鋼材について行って欠陥を検出し、
前記各鋼材について、検出された前記欠陥を、第1の軸を超音波探傷用探触子の回転方向とし第2の軸を鋼材の長手方向としたデータマップ内の対応するメッシュに配置することを特徴とする鋼材の表面欠陥評価方法。
Detecting defects by performing ultrasonic flaw detection on at least one steel material by rotating the probe for ultrasonic flaw detection around the steel material and flaw-detecting at least one gate region of the cross section of the steel material in the longitudinal direction of the steel material. And
For each steel material, the detected defects are arranged in a corresponding mesh in a data map in which the first axis is the rotation direction of the ultrasonic flaw detection probe and the second axis is the longitudinal direction of the steel material. A method for evaluating surface defects of steel materials characterized by
前記欠陥の存在するメッシュ数を、すべての前記鋼材について合計して不良面積を求め、
前記データマップの全メッシュ数を、すべての前記鋼材について合計して総面積を求め、
前記不良面積を前記総面積で除することにより不良面積率を求め、該不良面積率に基づいて欠陥発生量の定量的評価を行うことを特徴とする請求項1に記載の鋼材の表面欠陥評価方法。
The number of meshes where the defects exist is totaled for all the steel materials to determine the defective area,
The total number of meshes of the data map is summed for all the steel materials to determine the total area,
2. The surface defect evaluation of a steel material according to claim 1, wherein a defective area ratio is obtained by dividing the defective area by the total area, and a quantitative evaluation of a defect generation amount is performed based on the defective area ratio. Method.
前記鋼材断面内のゲート領域を、表面直下ゲート領域と、表面ゲート領域とに区分し、
前記検出された欠陥を、前記表面直下ゲート領域で検出された欠陥と、前記表面ゲート領域で検出された欠陥と、前記表面直下ゲートと表面ゲートとの両方の領域で検出された欠陥と、に区別して、前記データマップ内のメッシュに配置することを特徴とする請求項1または2に記載の鋼材の表面欠陥評価方法。
The gate region in the steel material section is divided into a gate region directly under the surface and a surface gate region,
The detected defect is a defect detected in the gate region immediately below the surface, a defect detected in the surface gate region, and a defect detected in both the gate immediately below the surface and the surface gate. 3. The method for evaluating surface defects of steel materials according to claim 1 or 2, characterized in that the steel material is arranged on a mesh in the data map.
JP2008106332A 2008-04-16 2008-04-16 Method of evaluating surface flaw of steel material Pending JP2009257896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106332A JP2009257896A (en) 2008-04-16 2008-04-16 Method of evaluating surface flaw of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106332A JP2009257896A (en) 2008-04-16 2008-04-16 Method of evaluating surface flaw of steel material

Publications (1)

Publication Number Publication Date
JP2009257896A true JP2009257896A (en) 2009-11-05

Family

ID=41385507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106332A Pending JP2009257896A (en) 2008-04-16 2008-04-16 Method of evaluating surface flaw of steel material

Country Status (1)

Country Link
JP (1) JP2009257896A (en)

Similar Documents

Publication Publication Date Title
JP6753553B1 (en) Surface defect detection method, surface defect detection device, steel material manufacturing method, steel material quality control method, steel material manufacturing equipment, surface defect judgment model generation method, and surface defect judgment model
JP5471818B2 (en) Method and apparatus for inspecting periodic defects in strip material
CN109765296B (en) Three-dimensional positioning method for ultrasonic detection of internal defects of thick-wall pipe
Beretta et al. From atmospheric corrosive attack to crack propagation for A1N railway axles steel under fatigue: Damage process and detection
JP2009294058A (en) Exclusion method of defective product by detection of sagging of bearing inner and outer races
JP5354187B2 (en) Traveling material surface quality judging device and surface quality judging method
JP2009236794A (en) Ultrasonic flaw detecting method and device of pipe
WO2019159940A1 (en) Plant inspection method
DO HAENG et al. Influence of signal-to-noise ratio on eddy current signals of cracks in steam generator tubes
CN100578213C (en) Fault detection method of roller body chamfering
JP2009257896A (en) Method of evaluating surface flaw of steel material
CN106226406A (en) Ultrasonic examination detection reference block and detection method thereof
JP3748228B2 (en) Method for judging harmful defect in ultrasonic flaw detection and method for using the judgment result
CN206020347U (en) Ultrasonic examination detection reference block
JP4524931B2 (en) Ultrasonic flaw detection method and apparatus
Aoki et al. Intelligent image processing for abstraction and discrimination of defect image in radiographic film
JP2012194172A (en) Method for evaluating strength of aluminum die casting component and aluminum die casting component
JP7215076B2 (en) Creep Remaining Life Diagnosis Method and Creep Remaining Life Diagnosis System
JP2008151545A (en) Method of determining presence or absence of a subsurface defect in a bloom
JP2006234807A (en) Defect detecting method
JP2012030260A (en) Method for identifying roll causing rolling flaw
Hassler et al. An image processing approach for radioscopic inspection of turbine blades
JP2008058124A (en) Flaw inspection method and flaw inspection device
Matveev 1. General and reviews
JP5558231B2 (en) Eddy current flaw detection method