JP5354187B2 - Traveling material surface quality judging device and surface quality judging method - Google Patents

Traveling material surface quality judging device and surface quality judging method Download PDF

Info

Publication number
JP5354187B2
JP5354187B2 JP2009098626A JP2009098626A JP5354187B2 JP 5354187 B2 JP5354187 B2 JP 5354187B2 JP 2009098626 A JP2009098626 A JP 2009098626A JP 2009098626 A JP2009098626 A JP 2009098626A JP 5354187 B2 JP5354187 B2 JP 5354187B2
Authority
JP
Japan
Prior art keywords
defects
defect
dark
bright
surface quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009098626A
Other languages
Japanese (ja)
Other versions
JP2010249624A (en
Inventor
眞 奥野
彰 風間
寛幸 杉浦
正 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009098626A priority Critical patent/JP5354187B2/en
Publication of JP2010249624A publication Critical patent/JP2010249624A/en
Application granted granted Critical
Publication of JP5354187B2 publication Critical patent/JP5354187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining a surface quality of a moving material, which can accurately determine the surface quality of the moving material. <P>SOLUTION: In the method, bright portions and dark portions are extracted from an image which is obtained by photographing a surface of the moving material by using respective thresholds of the bright portions and the dark portions being set beforehand, and the extracted bright and dark portions are classified into one or more bright defects and one or more dark defects by using a plurality of feature quantities containing a dimension feature quantity and a brightness feature quantity, and the surface quality of the material is determined on the basis of an occurrence density of the classified bright and dark defects. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、鋼帯など走行する材料の表面欠陥を検査してその表面品質を判定する、走行材の表面品質判定装置および表面品質判定方法に関するものである。   The present invention relates to a traveling material surface quality determination device and a surface quality determination method that inspect surface defects of a traveling material such as a steel strip and determine the surface quality thereof.

冷延鋼板や表面処理鋼板などの鋼帯の製造ラインでは、ヘゲ、スケール疵、カキ疵といった重度の表面欠陥(以下、重欠陥と称する)の有無を検査して、これらを下工程あるいは顧客へ流出しないようにすることが品質保証上、極めて重要である。   In the production line of steel strips such as cold rolled steel sheets and surface-treated steel sheets, the surface is inspected for the presence of severe surface defects (hereinafter referred to as “severe defects”) such as baldness, scale wrinkles, and oyster wrinkles. It is extremely important for quality assurance to prevent leakage.

一方、鋼板表面には、有害レベルに至らない極く軽度の表面欠陥や、製造ライン操業条件の変化や異常に伴う軽度の表面異質部(以下、これらを軽欠陥と称する)が発生するケースがある。これら軽欠陥はそれ単体では無害であるが、密集して発生する場合は、操業状態の何らかの異常を示している可能性があり、また有害な欠陥に進展する可能性もあるので、これらを早期に発見して操業条件を是正することが品質管理上、重要である。   On the other hand, on the surface of the steel sheet, there are cases where extremely mild surface defects that do not reach harmful levels and minor surface heterogeneous parts (hereinafter referred to as light defects) due to changes or abnormalities in production line operation conditions occur. is there. These minor defects are harmless on their own, but if they occur densely, they may indicate some abnormality in the operating state, and may develop into harmful defects, so they are treated early. It is important for quality control to discover and correct operating conditions.

鋼帯の製造ラインでは、従来より、画像撮像方式の表面欠陥検査装置が多数設置され、表面品質保証の重要な一役を担っている。これら従来の検査装置は、カメラで撮影した鋼板表面の画像を所定のしきい値で2値化あるいは多値化することによって、上記重欠陥を地合部分から分離・抽出するものである。上記軽欠陥は一般に、健全な地合部分との画像輝度差が小さいため、重欠陥と同様の処理で検出しようとすると過検出が発生する問題があるため、従来の検査装置では上記軽欠陥は検査対象外としている。   In the production line of steel strip, many surface defect inspection devices using an image pickup method have been installed so far and play an important role in ensuring surface quality. These conventional inspection apparatuses separate and extract the above-mentioned serious defect from the formation portion by binarizing or multi-leveling an image of the surface of the steel sheet taken by a camera with a predetermined threshold value. Since the light defect generally has a small image brightness difference with a healthy formation part, there is a problem that overdetection occurs when trying to detect it by the same processing as a heavy defect. Not subject to inspection.

上記軽欠陥を検出する手法として、特許文献1には、鋼板表面の軽欠陥をその密集度に応じて評価する表面品位識別法が開示されている。これは、(1)まず欠陥を重欠陥と軽欠陥に弁別する、(2)軽欠陥については鋼帯の所定単位長さL1(5〜20m)毎に個数をカウントし、これが許容値を超えたときに密集軽欠陥が1個あると判定する、(3)鋼帯の所定単位長さL2(500〜1000m)毎に、重欠陥数と密集軽欠陥数をカウントし、これが所定の許容個数を超えたらオペレータに指示信号を出す、(4)鋼帯全長に亘る重欠陥数と密集軽欠陥数をカウントし、これを所定許容数域と比較して鋼帯の表面品位を識別する、という方法である。この方法では、軽欠陥は密集して発生した場合のみ考慮するという考え方に基づいて処理しているので、密集度の比較的小さい地合ノイズとの分離が可能であり、過検出を抑止して軽欠陥を検出できる可能性がある。   As a technique for detecting the above-mentioned light defects, Patent Document 1 discloses a surface quality identification method for evaluating light defects on the surface of a steel sheet according to the density. (1) First, discriminate defects into heavy and light defects. (2) For light defects, the number of steel strips is counted for each specified unit length L1 (5-20m), which exceeds the allowable value. (3) For each specified unit length L2 (500 to 1000m) of the steel strip, the number of heavy defects and the number of dense defects are counted, and this is the predetermined allowable number. (4) Count the number of heavy defects and dense defects over the entire length of the steel strip, and compare this with a predetermined allowable number range to identify the surface quality of the steel strip. Is the method. In this method, since light defects are processed based on the idea of considering only when they occur densely, they can be separated from ground noise with relatively low density, and overdetection is suppressed. There is a possibility that minor defects can be detected.

特公昭59−22894号公報Japanese Patent Publication No.59-22894

しかしながら、特許文献1に開示の技術は、同種の軽欠陥が図6(a)に示すように全幅に亘って密集して発生している場合には、表面品質の傾向をある程度把握するのに有効であるものの、以下に示す多くの問題がある。   However, the technique disclosed in Patent Document 1 can grasp the tendency of the surface quality to some extent when light defects of the same type are densely generated over the entire width as shown in FIG. Although effective, there are a number of problems:

すなわち、
1)軽欠陥は鋼帯の全幅に亘って発生することもあるが、一般には図6(b)に示すように、特定の板幅方向位置に帯状に密集して発生する。このため、特に発生部分の帯の幅が小さい場合、発生密集度を過小に評価してしまい表面品質の妥当な判定ができない。
2)多くの場合、鋼帯の板幅自体も1.5倍から2倍程度の変動があるため、全幅にわたって同じ密集度で軽欠陥が発生した場合でも、板幅によって判定結果が異なってしまう(板幅が広い鋼板ほど判定結果が厳しくなってしまう)。
3)軽欠陥にも様々な形態のものがあるが、これらを分離して判定できない。たとえば、図6(c)に示すように2種類以上の軽欠陥が混在して発生した場合、異なる軽欠陥が合算されて密集軽欠陥とカウントされる。このため、各々の軽欠陥の密集度が比較的小さい場合でも、これらを合算して処理するため、過剰判定となってしまう。
4)軽欠陥の中にも重度の大きいものと小さいものが種々あるが、これらの軽欠陥を同等に処理するため、表面品質の判定結果が実態と合致しない。
That is,
1) Light defects may occur over the entire width of the steel strip. In general, however, as shown in FIG. 6B, light defects are densely formed in a specific strip width direction position. For this reason, especially when the width of the band of the generated portion is small, the generated density is underestimated and the surface quality cannot be determined appropriately.
2) In many cases, the strip width of the steel strip itself varies from 1.5 to 2 times, so even if light defects occur with the same density over the entire width, the judgment results differ depending on the strip width ( The wider the steel plate, the harder the judgment result).
3) There are various types of light defects, but these cannot be determined separately. For example, as shown in FIG. 6 (c), when two or more types of light defects are mixed, different light defects are added together and counted as a dense light defect. For this reason, even if the density of each light defect is relatively small, these are combined and processed, resulting in over-determination.
4) There are various types of minor defects, both large and small, but since these minor defects are processed equally, the determination result of the surface quality does not match the actual condition.

本発明では、これら従来技術の問題点に鑑み考案されたものであり、走行する材料の表面品質を正確に判定できる、走行材の表面品質判定方法を提供することを課題とする。   The present invention has been devised in view of these problems of the prior art, and it is an object of the present invention to provide a surface quality determination method for a traveling material that can accurately determine the surface quality of the traveling material.

本発明の請求項1に係る発明は、走行する材料表面を撮像した画像を入力する画像入力手段と、該入力した画像から明欠陥候補領域および暗欠陥候補領域を抽出する明暗領域抽出手段と、該抽出した明欠陥候補領域および暗欠陥候補領域の寸法特徴量および輝度特徴量を算出する特徴量算出手段と、該特徴量を用いて前記欠陥候補領域の各々を1つ以上の明欠陥および1つ以上の暗欠陥に分類する欠陥分類手段と、分類した明欠陥および暗欠陥の発生密度から材料の表面品質を判定する品質判定手段とを有することを特徴とする走行材の表面品質判定装置である。   The invention according to claim 1 of the present invention is an image input means for inputting an image obtained by imaging a traveling material surface, a light / dark area extracting means for extracting a bright defect candidate area and a dark defect candidate area from the input image, Feature quantity calculation means for calculating the dimensional feature quantity and the brightness feature quantity of the extracted bright defect candidate area and dark defect candidate area, and each of the defect candidate areas using one or more bright defects and 1 A traveling material surface quality judgment device comprising: a defect classification means for classifying two or more dark defects; and a quality judgment means for judging the surface quality of the material from the occurrence density of the classified bright defects and dark defects. is there.

また、本発明の請求項2に係る発明は、請求項1に記載の走行材の表面品質判定装置において、前記品質判定手段は、予め明欠陥及び暗欠陥の種別毎に重度を重み係数で定義し、材料表面を複数の矩形小領域に分割し、該小領域毎に、前記重み係数を用いた明欠陥の重み付け欠陥数および暗欠陥の重み付け欠陥数を求め、該重み付け欠陥数に基づいて、分割した小領域毎の欠陥等級を判定することを特徴とする走行材の表面品質判定装置である。   Further, the invention according to claim 2 of the present invention is the traveling material surface quality determination device according to claim 1, wherein the quality determination means defines the severity in advance for each type of bright defect and dark defect by a weighting factor. Then, the material surface is divided into a plurality of rectangular small areas, and for each small area, the number of bright defects weighted defects and the number of dark defect weighted defects are determined, based on the number of weighted defects, A surface quality determination device for a traveling material, characterized by determining a defect grade for each divided small region.

また、本発明の請求項3に係る発明は、請求項1または請求項2に記載の走行材の品質判定装置において、重度が予め定めた値以上の重欠陥に対しては、欠陥発生密度に基づく判定とは別に、個々の欠陥毎に品質を判定することを特徴とする走行材の品質判定装置である。   Further, the invention according to claim 3 of the present invention is the quality determination device for the running material according to claim 1 or 2, wherein the defect occurrence density is determined for a serious defect having a severity greater than or equal to a predetermined value. In addition to the determination based on this, a quality determination device for a traveling material is characterized in that the quality is determined for each individual defect.

また、本発明の請求項4に係る発明は、走行する材料表面を撮像した画像から、明部分および暗部分各々に予め設定したしきい値により明欠陥候補領域と暗欠陥候補領域を抽出し、抽出した明欠陥候補領域および暗欠陥候補領域を、寸法特徴量および輝度特徴量を含む特徴量を用いて1つ以上の明欠陥および1つ以上の暗欠陥に分類し、分類した明欠陥および暗欠陥の発生密度から材料の表面品質を判定することを特徴とする走行材の表面品質判定方法である。   Further, the invention according to claim 4 of the present invention extracts a bright defect candidate region and a dark defect candidate region from a captured image of the surface of a traveling material by using a threshold value set in advance for each of a bright portion and a dark portion, The extracted bright defect candidate area and dark defect candidate area are classified into one or more bright defects and one or more dark defects using the feature quantity including the dimension feature quantity and the brightness feature quantity, and the classified bright defect and dark defect A surface quality determination method for a running material, characterized in that the surface quality of a material is determined from a defect generation density.

本発明は、軽欠陥の判定を行う際、画像輝度の極性によって明軽欠陥と暗軽欠陥とに分類して、この両者を個別に評価するので、異なる種類の軽欠陥を混同して評価することを防止し、正確な表面品質の判定が可能になる。また、明、暗の極性だけでなく、画像特徴量によって軽欠陥をその程度に応じて分類し、欠陥程度に応じた重み係数を掛けて密集度を評価するので、信頼性の高い表面品質の判定が可能になる。   In the present invention, when a light defect is determined, it is classified into a light defect and a dark defect according to the polarity of the image luminance, and both are individually evaluated. Therefore, different types of light defects are mixed and evaluated. This makes it possible to accurately determine the surface quality. In addition to light and dark polarities, light defects are classified according to the degree of image features, and the density is evaluated by multiplying the weighting factor according to the degree of defects. Judgment is possible.

さらに本発明では、材料表面を複数の矩形小領域に分割し、各小領域内で軽欠陥の等級を判定するので、材料表面上の表面品質分布状況が正確に把握でき、また軽欠陥が材料の特定の幅方向に発生した場合でも、あるいは材料の幅長さが変動する場合でも、それらの変動に依らずに同一の基準で材料表面品質の判定が可能になる。   Furthermore, in the present invention, the material surface is divided into a plurality of rectangular small areas, and the grade of light defects is determined in each small area, so that the surface quality distribution on the material surface can be accurately grasped, and light defects are Even if the material occurs in a specific width direction or the width of the material fluctuates, the material surface quality can be determined based on the same reference regardless of the variation.

本発明に係る走行材の表面品質判定装置の構成例を示す図である。It is a figure which shows the structural example of the surface quality determination apparatus of the traveling material which concerns on this invention. 本発明に係る走行材の表面品質判定方法の処理手順例を示す図である。It is a figure which shows the example of a process sequence of the surface quality determination method of the traveling material which concerns on this invention. 本発明の一実施例における処理手順例を示す図である。It is a figure which shows the example of a process sequence in one Example of this invention. 本発明に係る重み付け係数の一例を示す図である。It is a figure which shows an example of the weighting coefficient which concerns on this invention. 本発明に係る小領域の等級を分類するための評価閾値を示す図である。It is a figure which shows the evaluation threshold value for classifying the grade of the small area | region which concerns on this invention. 従来技術の問題点を模式的に説明する図である。It is a figure which illustrates the problem of a prior art typically.

鋼板が品質判定対象である場合を例に、以下に本発明を実施するための形態を図面を参照して説明する。図1は、本発明に係る走行材(鋼板)の表面品質判定装置1の構成例を示す図である。一般に表面検査装置は、機能的に撮像部と信号処理・欠陥判定部に分けられるので、本発明の表面品質判定装置1は、信号処理・欠陥判定部の機能に相当しており、撮像部と組み合わせて表面検査装置として考えてもよい。   A mode for carrying out the present invention will be described below with reference to the drawings, taking as an example the case where a steel plate is a quality judgment target. FIG. 1 is a diagram illustrating a configuration example of a surface quality determination device 1 for a traveling material (steel plate) according to the present invention. In general, since the surface inspection apparatus is functionally divided into an imaging unit and a signal processing / defect determination unit, the surface quality determination apparatus 1 of the present invention corresponds to the function of the signal processing / defect determination unit, It may be considered as a surface inspection device in combination.

表面品質判定装置1は、表面検査装置の撮像部2(ラインセンサカメラやエリアセンサなどの撮像装置)から走行する検査対象材の表面を撮像した画像データを入力する画像入力部4と、入力した画像データや演算に必要な係数などのデータを記憶するデータ記憶部5と、画像データから欠陥を分類し、分類後の欠陥の発生密度に基づいて表面品質を判定する演算処理部6と、判定した結果のモニタへの表示やプリンタへの印刷あるいは操業コンピュータへの伝送を行う結果出力部7を有する。   The surface quality determination device 1 is input with an image input unit 4 that inputs image data obtained by imaging the surface of the inspection target material traveling from the imaging unit 2 (an imaging device such as a line sensor camera or an area sensor) of the surface inspection device. A data storage unit 5 that stores data such as image data and coefficients necessary for calculation; a calculation processing unit 6 that classifies defects from the image data and determines surface quality based on the occurrence density of defects after classification; A result output unit 7 is provided for displaying the results on a monitor, printing them on a printer, or transmitting them to an operating computer.

画像入力部4には、走行材の走行速度が変化しても移動方向に均一な分解能で信号を取り込むためのPLGなどのライン信号3も入力して、走行材の走行量に同期して信号を取り込み、データ記憶部5の画像データ記憶部51に記憶する。   The image input unit 4 also receives a line signal 3 such as PLG for capturing a signal with uniform resolution in the moving direction even when the traveling speed of the traveling material changes, and the signal is synchronized with the traveling amount of the traveling material. Is stored in the image data storage unit 51 of the data storage unit 5.

演算処理装置6は、明暗領域抽出部61、特徴量算出部62、欠陥分類部63、小領域毎の重み付け個数算出部64、小領域毎の品質等級判定部65,および鋼板全体の品質等級判定部66とを有する。明暗領域抽出部61は、画像データ記憶部51から画像データを読み込み、予め設定したしきい値によって、走行材表面の地合部分(健全部)に対して、明るい部分と暗い部分を示す領域、すなわち明欠陥候補領域と暗欠陥候補領域を抽出する。特徴量算出部62は、抽出された欠陥候補領域毎に、材料表面上の発生位置や寸法特徴量(形状に関する特徴量)、輝度特徴量(濃淡に関する特徴量)を算出する。   The arithmetic processing unit 6 includes a light / dark region extraction unit 61, a feature amount calculation unit 62, a defect classification unit 63, a weighted number calculation unit 64 for each small region, a quality grade determination unit 65 for each small region, and a quality grade determination for the entire steel plate. Part 66. The light / dark region extraction unit 61 reads image data from the image data storage unit 51, and shows a bright portion and a dark portion with respect to the formation portion (sound portion) on the surface of the running material according to a preset threshold value, That is, a bright defect candidate area and a dark defect candidate area are extracted. The feature amount calculation unit 62 calculates the occurrence position, dimensional feature amount (feature feature amount), and luminance feature amount (feature feature amount) for each extracted defect candidate region.

欠陥分類部63は、算出された特徴量に基づいて、欠陥種分類用ロジック52を参照して欠陥の種類を判定する。欠陥種分類用ロジック52は、欠陥サンプル等を用いて、特徴量の値を使って検査員の判定結果に合致するように、予め手動または自動的に作成されて、データ記憶部5に記憶されている。   The defect classification unit 63 determines the type of defect with reference to the defect type classification logic 52 based on the calculated feature amount. The defect type classification logic 52 is manually or automatically created in advance and stored in the data storage unit 5 using a defect sample or the like so as to match the determination result of the inspector using the feature value. ing.

小領域毎の重み付け個数算出部64は、走行材の全領域を小領域に分割して、その小領域毎に明欠陥および暗欠陥の個数をそれぞれ算出する。この際、単純な個数でなく、欠陥種類毎に定められた重み係数で重み付けをした重み付け個数を算出する。なお、欠陥種類毎の重み付け係数は予め設定され、重み付け係数データ記憶部53に記憶される。小領域毎の品質等級判定部65は、小領域毎の重み付け明欠陥個数および重み付け暗欠陥個数の値によって、小域毎に表面品質を判定する。鋼板全体の品質等級判定部66は、小領域毎の表面品質結果を統合して、走行材全領域の表面品質を判定して、結果を結果出力部7に出力する。なお、表面品質の判定は、予め設定されて、データ記憶部に記憶された等級判定用ロジック記憶部54を参照して行う。
図2は、本発明に係る走行材の表面品質判定装置を用いた表面品質判定方法の処理手順例を示す図である。
The weighted number calculation unit 64 for each small area divides the entire area of the traveling material into small areas, and calculates the number of bright defects and dark defects for each small area. At this time, not the simple number but the weighted number weighted by the weighting coefficient determined for each defect type is calculated. The weighting coefficient for each defect type is set in advance and stored in the weighting coefficient data storage unit 53. The quality grade determination unit 65 for each small area determines the surface quality for each small area based on the values of the weighted bright defect number and the weighted dark defect number for each small area. The quality grade determination unit 66 for the entire steel plate integrates the surface quality results for each small region, determines the surface quality of the entire traveling material region, and outputs the result to the result output unit 7. The determination of the surface quality is performed with reference to the grade determination logic storage unit 54 that is preset and stored in the data storage unit.
FIG. 2 is a diagram illustrating an example of a processing procedure of a surface quality determination method using the traveling material surface quality determination apparatus according to the present invention.

まず、走行する鋼板表面を撮像した画像において、地合部分(健全部)より明るい部分(明欠陥候補領域)および暗い部分(暗欠陥候補領域)を、それぞれ予め設定した明部分しきい値および暗部分しきい値によって抽出する(Step 1)。明欠陥候補領域と暗欠陥候補領域をそれぞれ別個に抽出するのは、後述するように、軽欠陥を明軽欠陥と暗軽欠陥に分けて個別に処理するためである。明部分しきい値および暗部分しきい値は、それぞれ1つずつでもよいが、抽出した欠陥を輝度レベルによって細かく分類する場合、これらのしきい値を2つあるいは3つ以上ずつなど複数設けてもよい。本発明では、重欠陥だけではなく、一般に輝度コントラストの低い軽欠陥も評価対象とするため、各しきい値は従来の表面検査方法に比べて低めに設定することになる。   First, in an image obtained by imaging the surface of a moving steel sheet, a brighter portion (bright defect candidate region) and a darker portion (dark defect candidate region) than the formation portion (healthy portion) are respectively set to a preset bright portion threshold value and dark portion. Extract by partial threshold (Step 1). The reason why the bright defect candidate area and the dark defect candidate area are separately extracted is to divide the light defect into the light defect and the dark defect and process them separately, as will be described later. There may be one bright part threshold value and one dark part threshold value, but when the extracted defect is classified finely according to the brightness level, two or more of these threshold values are provided. Also good. In the present invention, not only a heavy defect but also a light defect having a low luminance contrast is generally evaluated. Therefore, each threshold value is set lower than that of a conventional surface inspection method.

次に、抽出した明欠陥候補領域および暗欠陥候補領域を、画像特徴量に基づいて、1つ以上の明欠陥、および1つ以上の暗欠陥に分類する(Step 2)。欠陥の有害度は、欠陥の寸法と輝度に密接に関連するので、画像特徴量としては、少なくとも寸法特徴量(欠陥の長さ、幅、面積など)と、輝度特徴量(欠陥部分の平均輝度、最大輝度など)を含めるのが適当であるが、この他にも対象欠陥の特性に応じて、欠陥の形状や発生位置などに関する特徴量を適宜含めるようにするとよい。   Next, the extracted bright defect candidate area and dark defect candidate area are classified into one or more bright defects and one or more dark defects based on the image feature amount (Step 2). Since the harmfulness of defects is closely related to the size and brightness of the defect, the image features are at least dimensional features (defect length, width, area, etc.) and brightness features (average brightness of the defect portion). In addition to this, it is preferable to appropriately include a feature quantity related to the shape and occurrence position of the defect according to the characteristics of the target defect.

軽欠陥は、一般に欠陥サイズが非常に小さい場合が多く、輝度コントラストも低い傾向にあるので、画像特徴量によってその種類を正確に分類することは困難である。しかしながら、同じ発生原因で生じた軽欠陥は、欠陥の寸法や輝度などの特徴量にバラツキはあるものの、欠陥の極性(明欠陥と暗欠陥の種別)は同一となる。本発明はこの点に着目し、軽欠陥を明欠陥と暗欠陥に分類して、両者を別個に処理することにより、発生原因の異なる軽欠陥を混同して評価しないようにしている。分類した各欠陥にはその有害度に応じて、あらかじめ重み係数を定義しておく。   Light defects generally have a very small defect size and tend to have a low luminance contrast. Therefore, it is difficult to accurately classify the type based on the image feature amount. However, light defects caused by the same occurrence cause the same polarity of defects (types of bright and dark defects), although there are variations in the feature quantities such as defect size and brightness. The present invention pays attention to this point, and classifies light defects as light defects and dark defects and processes them separately, so that light defects having different causes of occurrence are not mixed and evaluated. For each classified defect, a weighting coefficient is defined in advance according to the degree of harm.

たとえば、明欠陥A(重み係数=10)、明欠陥B(重み係数=7)、明欠陥C(重み係数=7)、明欠陥D(重み係数=5)、明欠陥E(重み係数=4)、明欠陥F(重み係数=3)、明欠陥G(重み係数=1)、のように分類する(暗欠陥についても同様)。   For example, bright defect A (weighting factor = 10), bright defect B (weighting factor = 7), bright defect C (weighting factor = 7), bright defect D (weighting factor = 5), bright defect E (weighting factor = 4) ), Bright defect F (weight coefficient = 3), and bright defect G (weight coefficient = 1) (the same applies to dark defects).

次に、鋼板表面を幅W×長さLの所定寸法の小領域に分割し、各小領域内で明欠陥数および暗欠陥数の重み付け加算(欠陥種類毎の個数に重み付け係数を乗算し、欠陥の全種類について加算した値であり、本明細書では重み付け個数と記すを個別に行う(Step 3)。ここで小領域の幅Wおよび長さLは、当該検査材料における軽欠陥の空間的発生分布、すなわち、軽欠陥が密集して発生する場合の発生部分の幅および長さの最小値に応じて適当な値に設定する。小領域の幅Wや長さLの値が小さすぎると、小領域内の軽欠陥数が少なくなり、過誤検出が懸念される。また逆に幅Wや長さLの値が大きすぎると、軽欠陥の発生分布の面積が小さいときにこれを見逃す恐れがある。   Next, the steel plate surface is divided into small areas of a predetermined dimension of width W × length L, and the weighted addition of the number of bright defects and the number of dark defects in each small area (multiplying the number of each defect type by a weighting coefficient, This is a value obtained by adding all types of defects, and in this specification, the number of weights is individually described (Step 3), where the width W and length L of the small region are the spatial dimensions of light defects in the inspection material. The distribution is set to an appropriate value according to the minimum value of the width and length of the occurrence distribution when light defects are densely formed. The number of light defects in a small area is reduced, and there is a concern about erroneous detection, and conversely, if the values of width W and length L are too large, this may be overlooked when the area of light defect occurrence distribution is small. There is.

たとえば、板幅1000mmで板長さが2000mの鋼板で、予想される軽欠陥発生部分の幅と長さがそれぞれ100〜1000mm(全幅)、10〜2000m(全長)の場合、WおよびLの値としてそれぞれ、100mm程度、 10m程度(予想される軽欠陥発生部分の最小値程度)が適当である。このように、最小値に設定しておけば、最小値以上の面積に分布して発生した場合にも、2つ以上の小領域で検知できるので問題ない。軽欠陥の中でも有害度の大きいものと小さいものがあり、各小領域内でこれらを一括して単純に加算すると妥当な判定結果が得られない。本発明では、上記のように明欠陥、暗欠陥のそれぞれの軽欠陥を有害度に応じて細かく分類し、これらを有害度に応じた重み係数を掛けて加算しているので、信頼性の高い品質判定が可能になる。   For example, in the case of a steel plate with a plate width of 1000 mm and a plate length of 2000 m, and the expected width and length of the light defect occurrence part are 100 to 1000 mm (full width) and 10 to 2000 m (full length), respectively, the values of W and L Respectively, about 100 mm and about 10 m (about the expected minimum value of the occurrence of light defects) are appropriate. In this way, if the minimum value is set, there is no problem because it can be detected in two or more small areas even if it is distributed over an area of the minimum value or more. Among minor defects, there are ones with a high degree of harmfulness and ones with a small degree of harm, and if these are simply added together in each small area, an appropriate determination result cannot be obtained. In the present invention, as described above, the light defect and the dark defect are each classified finely according to the degree of harmfulness, and these are multiplied by a weighting factor according to the degree of harmfulness, so that the reliability is high. Quality judgment is possible.

次に、各小領域の品質等級を、明欠陥および暗欠陥の重み付け個数に基づいて判定する(Step 4)。たとえば5段階に等級付けを行う場合、明欠陥および暗欠陥の重み付け個数がともに大きいときに等級5、ともに小さいときに等級1、その中間のときに等級4〜2とする、などあらかじめ決めておく。   Next, the quality grade of each small area is determined based on the weighted number of bright defects and dark defects (Step 4). For example, when grading is performed in five stages, grade 5 is assigned when the weighted number of light and dark defects is large, grade 1 is assigned when both are small, and grades 4 and 2 are established in the middle. .

最後に、各小領域の品質等級に基づいて鋼板の表面品質を判定する(Step 5)。すなわち、Step 4で判定した各小領域の品質等級の鋼板表面上の分布に基づいて、鋼板表面の不適合部分とその程度を判定する。また、この判定結果を基に、鋼板全体の合否判定を行うことも可能である。   Finally, the surface quality of the steel sheet is determined based on the quality grade of each small area (Step 5). That is, based on the distribution of the quality grade of each small area determined in Step 4 on the steel sheet surface, the nonconforming portion on the steel sheet surface and its degree are determined. Moreover, it is also possible to perform the pass / fail determination for the entire steel sheet based on the determination result.

以上の説明では、鋼板表面の単一の画像を処理する場合について述べたが、鋼板表面の同一部分を受光角度の異なる2種類以上のカメラで撮像し、複数のカメラから得られた表面画像を処理するようにしてもよい。この場合、各カメラ画像のそれぞれに対し、明欠陥と暗欠陥が得られるので、欠陥の種類の判定には有利となる。   In the above description, the case where a single image of the steel sheet surface is processed has been described. However, the same part of the steel sheet surface is captured by two or more types of cameras having different light receiving angles, and surface images obtained from a plurality of cameras are captured. You may make it process. In this case, a bright defect and a dark defect are obtained for each camera image, which is advantageous for determining the type of defect.

また以上の説明では、鋼板の表面を検査する場合について述べたが、本発明の対象は鋼板に限定されるものではなく、アルミ板などの非鉄金属や紙、フィルムなどの表面検査にも適用することが可能である。   In the above description, the case of inspecting the surface of a steel plate has been described. However, the object of the present invention is not limited to a steel plate, and is applicable to surface inspection of non-ferrous metals such as aluminum plates, paper, and films. It is possible.

図3は、本発明の一実施例における処理手順例を示す図である。本実施例は、溶融亜鉛鍍金鋼板の製造ラインに適用するもので、対象とした鋼板の幅は800〜1500mm、長さは800〜3000mである。   FIG. 3 is a diagram showing an example of a processing procedure in one embodiment of the present invention. The present embodiment is applied to a production line for a hot dip galvanized steel sheet, and the width of the target steel sheet is 800 to 1500 mm and the length is 800 to 3000 m.

走行する鋼板をカメラで撮像し、得られた画像に対して明暗それぞれ1つずつのしきい値によって欠陥を抽出し(Step 11)、欠陥面積、欠陥部ピーク輝度、欠陥部平均輝度を含む多数の特徴量を用いて、欠陥種分類用ロジックを用いて、18種の明欠陥および18種の暗欠陥に分類する(Step 12)。分類した各欠陥には、その有害度に応じて1〜12の重み係数を図4に示すように予め設定しておく。鋼板表面を幅200mm×長さ20mの小領域に分割して、各小領域内で8種の明欠陥(明欠陥K〜明欠陥R)の数にそれぞれ重み係数を掛けて明欠陥重み付け個数を計算する。   The moving steel plate is imaged with a camera, and defects are extracted from the obtained image by one threshold value for each of the light and dark (Step 11), and a large number including defect area, defect peak luminance, and defect average luminance Are classified into 18 types of light defects and 18 types of dark defects using the defect type classification logic (Step 12). For each classified defect, a weighting factor of 1 to 12 is set in advance as shown in FIG. Divide the steel plate surface into small areas of 200mm width x 20m length, and multiply the number of 8 types of bright defects (bright defect K to bright defect R) in each small area by the weighting factor to obtain the weight number of bright defects. calculate.

また同様に、8種の暗欠陥(暗欠陥k〜暗欠陥r)の数にそれぞれ重み係数を掛けて暗欠陥重み付け個数を計算する(Step 13)。本実施例では、欠陥重度が6以上の欠陥を重欠陥、5以下の欠陥を軽欠陥とみなし、重欠陥は1個でも発生すると有害、軽欠陥は密集して発生した場合のみ有害として処理する。欠陥発生密度の評価に重度5以下の欠陥だけを対象にしたのはこのためである。得られた明軽欠陥の重み付き個数S1と暗軽欠陥の重み付き個数S2の範囲によって、小領域の等級を等級0〜等級5まで6分類する(Step 14)。   Similarly, the number of dark defects is calculated by multiplying the number of eight types of dark defects (dark defect k to dark defect r) by a weighting factor (Step 13). In this embodiment, a defect having a severity of 6 or more is regarded as a severe defect, and a defect of 5 or less is regarded as a minor defect. If even one severe defect occurs, it is harmful, and only minor defects are treated as harmful. . This is the reason why only defects with a severity of 5 or less are targeted for the evaluation of the defect occurrence density. The grades of the small regions are classified into 6 grades from grade 0 to grade 5 according to the range of the obtained weighted number S1 of light and light defects and weighted number S2 of dark and light defects (Step 14).

等級判定用ロジックの具体例を図5に示す。ここでP1〜P5およびQ1〜Q5はそれぞれ明欠陥および暗欠陥の発生密度評価しきい値である。また、等級0は無害レベル、等級1〜3は、鋼板の用途によっては有害となるレベル、等級4〜5は鋼板の用途に関わらず有害となるレベルである。鋼板の各小領域に対し、重欠陥が1つ以上あるもの、あるいは軽欠陥等級が4以上(用途によっては1以上)のものは有害として下工程で除去する(Step 15)。本方法により、搬送ロールの不具合による軽欠陥、微細なカキ疵などを早期に検出可能となり、品質管理上、非常に有効となる。   A specific example of the grade determination logic is shown in FIG. Here, P1 to P5 and Q1 to Q5 are generation density evaluation threshold values of bright defects and dark defects, respectively. Grade 0 is a harmless level, grades 1 to 3 are harmful depending on the use of the steel plate, and grades 4 to 5 are harmful levels regardless of the use of the steel plate. For each small area of the steel plate, one with one or more serious defects or one with a minor defect grade of 4 or more (1 or more depending on the application) is removed as a harmful step (Step 15). This method makes it possible to detect light defects and fine oysters due to a defect in the transport roll at an early stage, which is very effective for quality control.

上記Step 15では、たとえば、鋼板全体で重欠陥が3個以上ある場合、あるいは、軽欠陥等級が3以上の小領域が10個以上ある場合に、その鋼板を不良と判定するようにしてもよい。   In Step 15 described above, for example, when there are 3 or more serious defects in the entire steel plate, or when there are 10 or more small regions with a light defect grade of 3 or more, the steel plate may be determined as defective. .

Claims (4)

走行する材料表面を撮像した画像を入力する画像入力手段と、
該入力した画像から明欠陥候補領域および暗欠陥候補領域を抽出する明暗領域抽出手段と、
該抽出した明欠陥候補領域および暗欠陥候補領域の寸法特徴量および輝度特徴量を算出する特徴量算出手段と、
該特徴量を用いて前記欠候補領域の各々を1つ以上の明欠陥および1つ以上の暗欠陥に
分類する欠陥分類手段と、
明欠陥の発生密度および暗欠陥の発生密度をそれぞれ算出し、該明欠陥の発生密度および該暗欠陥の発生密度から材料の表面品質を判定する品質判定手段とを有することを特徴とする走行材の表面品質判定装置。
Image input means for inputting an image of the traveling material surface;
A light / dark region extracting means for extracting a light defect candidate region and a dark defect candidate region from the input image;
Feature quantity calculating means for calculating the dimensional feature quantity and luminance feature quantity of the extracted bright defect candidate area and dark defect candidate area;
Defect classification means for classifying each of the missing candidate regions into one or more bright defects and one or more dark defects using the feature amount;
The generation density of generation density and the dark defect of the bright defect is calculated respectively, and having a determining quality determination unit surface quality from generation density material generation density and dark defects該明defect Traveling material surface quality judgment device.
請求項1に記載の走行材の表面品質判定装置において、
前記品質判定手段は、
予め明欠陥及び暗欠陥の種別毎に重度を重み係数で定義し、
材料表面を所定の幅、長さの小領域に分割して複数の矩形小領域を得て、
該小領域毎に、前記重み係数を用いた明欠陥の重み付け欠陥数および暗欠陥の重み付け欠陥数を求め、
明欠陥の重み付け欠陥数および該暗欠陥の重み付け欠陥数に基づいて、
分割した小領域毎の欠陥等級を判定することを特徴とする走行材の表面品質判定装置。
In the running material surface quality determination device according to claim 1,
The quality determination means includes
Define the severity for each type of light and dark defects in advance with a weighting factor,
Dividing the material surface into small areas of a predetermined width and length to obtain a plurality of rectangular small areas ,
For each small area, determine the number of bright defects and the number of dark defects using the weighting factors,
Based on the weighted number of defects weighted number of defects and the dark defect of the bright defect,
A traveling material surface quality judgment device characterized by judging a defect grade for each divided small area.
請求項1または請求項2に記載の走行材の品質判定装置において、重度が予め定めた値以上の重欠陥に対しては、欠陥発生密度に基づく判定とは別に、個々の欠陥毎に品質を判定することを特徴とする走行材の品質判定装置。   In the quality determination apparatus for a traveling material according to claim 1 or 2, for a serious defect having a severity of a predetermined value or more, quality is determined for each individual defect separately from the determination based on the defect occurrence density. A quality determination device for a traveling material, characterized in that determination is made. 走行する材料表面を撮像した画像から、明部分および暗部分各々に予め設定したしきい値により明欠陥候補領域と暗欠陥候補領域を抽出し、
抽出した明欠陥候補領域および暗欠陥候補領域を、寸法特徴量および輝度特徴量を含む特徴量を用いて1つ以上の明欠陥および1つ以上の暗欠陥に分類し、
該明欠陥の発生密度および該暗欠陥の発生密度をそれぞれ算出し、該明欠陥の発生密度および該暗欠陥の発生密度から材料の表面品質を判定することを特徴とする走行材の表面品質判定方法。
Extracting bright defect candidate areas and dark defect candidate areas from a captured image of the surface of the traveling material according to a preset threshold value for each of the bright part and the dark part,
Classifying the extracted bright defect candidate area and dark defect candidate area into one or more bright defects and one or more dark defects using a feature quantity including a dimension feature quantity and a brightness feature quantity;
The surface quality determination of the running material, characterized by calculating the generation density of the bright defects and the generation density of the dark defects, respectively, and determining the surface quality of the material from the generation density of the bright defects and the generation density of the dark defects Method.
JP2009098626A 2009-04-15 2009-04-15 Traveling material surface quality judging device and surface quality judging method Active JP5354187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098626A JP5354187B2 (en) 2009-04-15 2009-04-15 Traveling material surface quality judging device and surface quality judging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098626A JP5354187B2 (en) 2009-04-15 2009-04-15 Traveling material surface quality judging device and surface quality judging method

Publications (2)

Publication Number Publication Date
JP2010249624A JP2010249624A (en) 2010-11-04
JP5354187B2 true JP5354187B2 (en) 2013-11-27

Family

ID=43312131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098626A Active JP5354187B2 (en) 2009-04-15 2009-04-15 Traveling material surface quality judging device and surface quality judging method

Country Status (1)

Country Link
JP (1) JP5354187B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853738B2 (en) * 2012-02-03 2016-02-09 Jfeスチール株式会社 Surface defect inspection method and surface defect inspection apparatus
JP6028520B2 (en) * 2012-10-24 2016-11-16 Jfeスチール株式会社 Surface defect inspection method and apparatus
JP6407007B2 (en) * 2014-12-16 2018-10-17 株式会社キーレックス Bonding inspection device
KR101733018B1 (en) * 2015-02-25 2017-05-24 동우 화인켐 주식회사 Apparatus and method for detecting defect of optical film
JP7496702B2 (en) * 2020-03-27 2024-06-07 日鉄ステンレス株式会社 Defect inspection device and defect inspection method
JP7501173B2 (en) 2020-07-08 2024-06-18 株式会社ジェイテクト METHOD FOR MANUFACTURING LEARNING MODEL USED IN QUALITY ASSESSMENT, LEARNING SYSTEM, QUALITY ASSESSMENT SYSTEM, AND QUALITY ASSESSMENT METHOD
JP7540235B2 (en) 2020-08-07 2024-08-27 株式会社ジェイテクト METHOD FOR MANUFACTURING LEARNING MODEL USED IN QUALITY ASSESSMENT, LEARNING SYSTEM, QUALITY ASSESSMENT SYSTEM, AND QUALITY ASSESSMENT METHOD
MX2024000342A (en) * 2021-07-08 2024-01-26 Jfe Steel Corp Inspection method, classification method, management method, steel material manufacturing method, training model generation method, training model, inspection device, and steel material manufacturing facility.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922894B2 (en) * 1977-05-20 1984-05-29 新日本製鐵株式会社 Surface quality identification method for moving objects
JPS61245045A (en) * 1985-04-23 1986-10-31 Nisshin Steel Co Ltd Automatic surface defect inspecting method for metallic band
JPS62168038A (en) * 1986-01-18 1987-07-24 Ngk Insulators Ltd Inspecting method for surface defect
JP2001101417A (en) * 1999-09-30 2001-04-13 Canon Inc Device, system and method for detecting defect and storage medium

Also Published As

Publication number Publication date
JP2010249624A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5354187B2 (en) Traveling material surface quality judging device and surface quality judging method
KR101867256B1 (en) Apparatus for inspecting surface defects of steel sheet and method for inspecting surface defects
JP6753553B1 (en) Surface defect detection method, surface defect detection device, steel material manufacturing method, steel material quality control method, steel material manufacturing equipment, surface defect judgment model generation method, and surface defect judgment model
JP5471818B2 (en) Method and apparatus for inspecting periodic defects in strip material
Aoki et al. Application of artificial neural network to discrimination of defect type in automatic radiographic testing of welds
WO2017164338A1 (en) Flaw detection apparatus and flaw detection method using flaw detection apparatus
JP6357617B2 (en) Defect inspection equipment
JP2016156647A (en) Inspection device using electromagnetic wave
JP6007639B2 (en) Wrinkle detection method and wrinkle detection device
WO2020067262A1 (en) Method and device for detecting defect in surface of metal sheet, and method for manufacturing plated steel sheet
JP4464332B2 (en) Inspection method for defective winding of cans
JPH06148098A (en) Surface defect inspection apparatus
CA2775288C (en) Apparatus and method for determining kind of steel material
JP5181912B2 (en) Surface defect inspection method, surface defect inspection apparatus, steel sheet manufacturing method, and steel sheet manufacturing apparatus
JPH07198627A (en) Metallic surface defect inspection device
JPH07333197A (en) Automatic surface flaw detector
JP2013200157A (en) Method and apparatus for inspecting end face
JP6249241B2 (en) Metal plate surface defect detection method
JP6769447B2 (en) Defect inspection device and defect inspection method for steel sheets
WO2015159352A1 (en) Web inspection device, web inspection method, and web inspection program
Aoki et al. Intelligent image processing for abstraction and discrimination of defect image in radiographic film
JP4863117B2 (en) High temperature steel surface inspection equipment
JP2005003574A (en) Method and device for inspecting surface flaw
JP2004125686A (en) Method and apparatus for detecting flaw of steel sheet, computer program, and computer-readable recording medium
JP2009047517A (en) Inspection apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5354187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250