JP2009253151A - Polishing solution for metal and method of polishing substrate - Google Patents

Polishing solution for metal and method of polishing substrate Download PDF

Info

Publication number
JP2009253151A
JP2009253151A JP2008101572A JP2008101572A JP2009253151A JP 2009253151 A JP2009253151 A JP 2009253151A JP 2008101572 A JP2008101572 A JP 2008101572A JP 2008101572 A JP2008101572 A JP 2008101572A JP 2009253151 A JP2009253151 A JP 2009253151A
Authority
JP
Japan
Prior art keywords
polishing
metal
acid
copper
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008101572A
Other languages
Japanese (ja)
Inventor
Yutaka Ono
裕 小野
Hiroshi Nakagawa
宏 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008101572A priority Critical patent/JP2009253151A/en
Publication of JP2009253151A publication Critical patent/JP2009253151A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing solution for a copper film that achieves not only high polishing speed but also preferred uniform polishing speed inside a surface in addition to contributing to the high quality of LSI and the like using a copper wiring, and to provide a method of polishing a substrate. <P>SOLUTION: The method is provided for polishing a substrate where a metal film is polished by relatively moving a polish table and substrate, while the substrate with the metal film is pressed to a polishing cloth while supplying a solution for polishing a metal containing an oxidizing agent, a resolvent for metal oxide, a water soluble polymer, a nitrogen containing heterocyclic compound, water and an agent for improving uniformity of the polishing speed inside the surface of the copper. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体デバイスの配線形成工程の研磨に使用される銅膜用研磨液及び基板の研磨方法に関する。   The present invention relates to a polishing liquid for a copper film and a method for polishing a substrate used for polishing in a wiring formation process of a semiconductor device.

近年、半導体集積回路(以下LSIとする)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下CMPとする)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である。この技術は、例えば、特許文献1に開示されている。   In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor integrated circuits (hereinafter referred to as LSIs). The chemical mechanical polishing (hereinafter referred to as CMP) method is one of them, and is a technique frequently used in the planarization of the interlayer insulating film, the formation of the metal plug, and the formation of the embedded wiring in the LSI manufacturing process, particularly in the multilayer wiring forming process. . This technique is disclosed in Patent Document 1, for example.

また、最近は、LSIを高性能化するために、配線材料として銅及び銅合金の利用が試みられている。
しかし、銅及び銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。
Recently, in order to improve the performance of LSIs, attempts have been made to use copper and copper alloys as wiring materials.
However, copper and copper alloys are difficult to finely process by the dry etching method frequently used in the formation of conventional aluminum alloy wiring.

そこで、あらかじめ溝を形成してある絶縁膜上に銅又は銅合金薄膜を堆積して埋め込み、溝部以外の銅又は銅合金薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている。この技術は、例えば、特許文献2に開示されている。   Therefore, a so-called damascene method is mainly used, in which a copper or copper alloy thin film is deposited and embedded on an insulating film in which a groove is formed in advance, and the copper or copper alloy thin film other than the groove is removed by CMP to form a buried wiring. It has been adopted. This technique is disclosed in Patent Document 2, for example.

銅、銅合金等の金属CMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用研磨液で浸し、基板の金属膜を形成した面を押し付けて、その裏面から所定の圧力(以下研磨圧力とする)を加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。   A general method of metal CMP of copper, copper alloy, etc. is a surface on which a polishing pad is attached on a circular polishing platen (platen), the surface of the polishing pad is immersed in a metal polishing liquid, and a metal film of a substrate is formed. Is pressed, and the polishing platen is rotated with a predetermined pressure (hereinafter referred to as polishing pressure) applied from the back surface, and the metal film on the convex portion is removed by mechanical friction between the polishing liquid and the convex portion of the metal film. Is.

CMPに用いられる金属用研磨液は、一般には酸化剤及び砥粒からなっており、必要に応じてさらに酸化金属溶解剤、保護膜形成剤が添加される。まず酸化剤によって金属膜表面を酸化し、その酸化層を砥粒によって削り取るのが基本的なメカニズムと考えられている。   The metal polishing liquid used for CMP is generally composed of an oxidizer and abrasive grains, and a metal oxide solubilizer and a protective film forming agent are further added as necessary. First, it is considered that the basic mechanism is to oxidize the surface of a metal film with an oxidizing agent and scrape the oxidized layer with abrasive grains.

凹部の金属表面の酸化層は研磨パッドにあまり触れず、砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基板表面は平坦化される。この詳細については、非特許文献1に開示されている。   Since the oxide layer on the metal surface of the recess does not touch the polishing pad so much and the effect of scraping off by the abrasive grains does not reach, the metal layer of the projection is removed and the substrate surface is flattened with the progress of CMP. This detail is disclosed in Non-Patent Document 1.

CMPによる研磨速度を高める方法として酸化金属溶解剤を添加することが有効とされている。砥粒によって削り取られた金属酸化物の粒を研磨液に溶解させてしまうと砥粒による削り取りの効果が増すためと解釈できる。   As a method for increasing the polishing rate by CMP, it is effective to add a metal oxide dissolving agent. It can be interpreted that if the metal oxide particles scraped by the abrasive grains are dissolved in the polishing liquid, the effect of scraping by the abrasive grains increases.

配線の銅又は銅合金などの下層には、層間絶縁膜中への銅拡散防止及び層間絶縁膜との密着性向上のためにバリア層として、タンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物等が形成される。したがって、銅又は銅合金を埋め込む配線部分以外では、露出したバリア層をCMPにより取り除く必要がある。   In the lower layer such as copper or copper alloy of the wiring, tantalum, tantalum alloy, tantalum nitride, other tantalum compounds, etc. as a barrier layer for preventing copper diffusion into the interlayer insulating film and improving adhesion with the interlayer insulating film Is formed. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion in which copper or a copper alloy is embedded.

しかし、これらのバリア層導体は、銅又は銅合金に比べ硬度が高いために、銅又は銅合金用の研磨材料の組み合わせでは十分な研磨速度が得られず、かつ平坦性が悪くなる場合が多い。そこで、銅又は銅合金を研磨する第1工程と、バリア層導体を研磨する第2工程からなる2段研磨方法が検討されている。   However, since these barrier layer conductors have higher hardness than copper or copper alloys, a combination of polishing materials for copper or copper alloys cannot provide a sufficient polishing rate, and flatness often deteriorates. . Therefore, a two-step polishing method comprising a first step of polishing copper or a copper alloy and a second step of polishing the barrier layer conductor has been studied.

米国特許第4944836号明細書U.S. Pat. No. 4,944,836 特開02−278822号公報Japanese Patent Laid-Open No. 02-278822 ジャ−ナル・オブ・エレクトロケミカルソサエティ 第138巻11号 3460〜3464頁(1991年)Journal of Electrochemical Society Vol.138, No.11, 3460-3464 (1991)

銅合金を研磨する第一工程における主な課題として、銅合金が研磨されすぎることによって生じるバリア膜と銅配線間の段差が挙げられる。この段差を抑制するために様々な方法が試みられており、主に銅合金の研磨速度やエッチング速度を抑制する成分を添加することで段差量の低減が図られている。   As a main problem in the first step of polishing the copper alloy, there is a step between the barrier film and the copper wiring caused by the copper alloy being excessively polished. Various methods have been tried to suppress this step, and the amount of the step is reduced mainly by adding a component that suppresses the polishing rate or etching rate of the copper alloy.

しかし、銅合金の研磨速度を抑制することは、本来除去されるべき部分の研磨速度の低下に繋がるポテンシャルを高めることになる。特にウエハーのエッジ部における研磨速度が低下しやすく、研磨速度の面内均一性が低下するという問題があった。研磨速度の面内均一性が低下すると、プロセス時間が増大するのみならず、面内の研磨速度が大きい部位が過剰に研磨され段差量が悪化するという問題も発生する。
そこで、高速研磨速度が可能でかつ研磨速度の面内均一性が良好な研磨液が求められていた。
However, suppressing the polishing rate of the copper alloy increases the potential that leads to a decrease in the polishing rate of the portion that should be originally removed. In particular, there is a problem that the polishing rate at the edge portion of the wafer tends to decrease, and the in-plane uniformity of the polishing rate decreases. When the in-plane uniformity of the polishing rate is lowered, not only the process time is increased, but also a problem that a portion where the in-plane polishing rate is high is excessively polished and the step amount is deteriorated also occurs.
Accordingly, there has been a demand for a polishing liquid capable of a high polishing rate and good in-plane uniformity of the polishing rate.

本発明は、高速研磨速度が可能でかつ研磨速度の面内均一性が良好な銅膜用研磨液及び基板の研磨方法を提供することを目的とするものである。   An object of the present invention is to provide a polishing solution for a copper film and a method for polishing a substrate, which are capable of a high polishing rate and have a good in-plane uniformity of the polishing rate.

本発明は、次の事項に関する。
(1)酸化剤、酸化金属溶解剤、水溶性ポリマ、含窒素複素環化合物、水及び銅研磨速度の面内均一性向上剤を含有してなる金属用研磨液。
(2)前記面内均一性向上剤が、オルトリン酸、メタリン酸及びポリリン酸から選ばれる少なくとも1種である上記(1)記載の金属用研磨液。
The present invention relates to the following matters.
(1) A metal polishing liquid comprising an oxidizing agent, a metal oxide dissolving agent, a water-soluble polymer, a nitrogen-containing heterocyclic compound, water and an in-plane uniformity improver for copper polishing rate.
(2) The metal polishing slurry according to (1), wherein the in-plane uniformity improver is at least one selected from orthophosphoric acid, metaphosphoric acid, and polyphosphoric acid.

(3)前記含酸化金属溶解剤が、有機酸、有機酸エステル及び有機酸のアンモニウム塩からなる群より選ばれる少なくとも1種である上記(1)又は(2)記載の金属用研磨液。
(4)前記含窒素複素環化合物が、1,2,3−トリアゾ−ル、1,2,4−トリアゾ−ル、ベンゾトリアゾ−ル、1−ヒドロキシベンゾトリアゾ−ル及び3−アミノ−1,2,4−トリアゾ−ルから選ばれる少なくとも1種である上記(1)〜(3)のいずれかに記載の金属用研磨液。
(3) The metal polishing slurry according to (1) or (2), wherein the oxidized metal-containing solubilizer is at least one selected from the group consisting of organic acids, organic acid esters, and ammonium salts of organic acids.
(4) The nitrogen-containing heterocyclic compound is 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1-hydroxybenzotriazole and 3-amino-1, The metal polishing slurry according to any one of the above (1) to (3), which is at least one selected from 2,4-triazole.

(5)前記水溶性ポリマが、多糖類、ポリカルボン酸、ポリカルボン酸エステル及びその塩並びにビニル系ポリマから選ばれた少なくとも1種である上記(1)〜(4)のいずれかに記載の金属用研磨液。
(6)金属の酸化剤が、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸、過硫酸塩及びオゾン水からなる群より選ばれる少なくとも1種である上記(1)〜(5)のいずれかに記載の金属用研磨液。
(5) The water-soluble polymer according to any one of (1) to (4), wherein the water-soluble polymer is at least one selected from polysaccharides, polycarboxylic acids, polycarboxylic acid esters and salts thereof, and vinyl polymers. Metal polishing liquid.
(6) The above (1) to (5), wherein the metal oxidizing agent is at least one selected from the group consisting of hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, persulfate, and ozone water. The metal polishing liquid according to any one of the above.

(7)上記(1)〜(6)のいずれかに記載の金属研用磨液に、さらに砥粒を含む金属研用磨液。
(8)研磨される金属膜が、銅、銅合金及び銅又は銅合金の酸化物からなる群より選ばれる少なくとも1種である上記(1)〜(7)のいずれかに記載の金属用研磨液。
(7) A polishing slurry for metal polishing further comprising abrasive grains in the polishing slurry for metal polishing according to any one of (1) to (6) above.
(8) The metal polishing according to any one of the above (1) to (7), wherein the metal film to be polished is at least one selected from the group consisting of copper, copper alloys, and copper or copper alloy oxides. liquid.

(9)研磨定盤の研磨布上に上記(1)〜(8)のいずれかに記載の金属用研磨液を供給しながら、金属膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって金属膜を研磨する基板の研磨方法。   (9) While supplying the metal polishing liquid according to any one of (1) to (8) above onto the polishing cloth of the polishing surface plate, the polishing surface plate is pressed with the substrate having the metal film against the polishing cloth. And polishing the substrate by relatively moving the substrate and the metal film.

本発明によれば、高速かつ面内均一性が良好な状態で銅膜の研磨が可能である。このため、銅配線を用いたLSIなどの高品質化に寄与することができる。   According to the present invention, it is possible to polish a copper film at a high speed and a good in-plane uniformity. For this reason, it can contribute to quality improvement of LSI etc. using copper wiring.

以下、発明を実施するための最良の形態について詳細に説明する
本発明の金属用研磨液は、主要構成成分として酸化剤、含窒素複素環化合物、水溶性ポリマ、金属防食材、水、銅研磨速度の面内均一性向上材を含有してなることが好ましい。それぞれの構成成分が欠けた場合、研磨速度、平坦性、面内均一性のバランスが悪化する傾向がある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the invention will be described in detail. The metal polishing liquid of the present invention comprises, as main components, an oxidizing agent, a nitrogen-containing heterocyclic compound, a water-soluble polymer, a metal anticorrosive, water, and copper polishing. It is preferable to contain a speed in-plane uniformity improver. When each component is missing, the balance between polishing rate, flatness, and in-plane uniformity tends to deteriorate.

本発明における面内均一性向上材は、水溶性で研磨速度の面内均一性を向上させるものであれば特に制限はないが、オルトリン酸、メタリン酸、ポリリン酸 、ピロリン酸、亜リン酸ジフェニル、ホスホン酸エステル、亜リン酸エステルが挙げられ、入手の容易さからオルトリン酸、ポリリン酸、メタリン酸が好ましい。   The in-plane uniformity improving material in the present invention is not particularly limited as long as it is water-soluble and improves the in-plane uniformity of the polishing rate, but orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, pyrophosphoric acid, diphenyl phosphite , Phosphonic acid esters, and phosphorous acid esters, and orthophosphoric acid, polyphosphoric acid, and metaphosphoric acid are preferable because they are easily available.

面内均一性向上剤の配合量は、金属用研磨液の総量に対して、0.01〜10重量%とすることが好ましく、0.02〜8重量%とすることがより好ましく、0.03〜6重量%とすることが特に好ましい。配合量が 0.01重量%未満では、金属の面内均一性が向上しない傾向があり、10重量%を超えて添加しても面内均一性の向上が見られない傾向がある。 The compounding amount of the in-plane uniformity improver is preferably 0.01 to 10% by weight, more preferably 0.02 to 8% by weight, based on the total amount of the metal polishing slurry. It is especially preferable to set it as 03 to 6 weight%. If the blending amount is less than 0.01% by weight, the in-plane uniformity of the metal tends not to be improved, and even if it exceeds 10% by weight, the in-plane uniformity tends not to be improved.

本発明における酸化剤としては、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸、過硫酸塩及びオゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。これらは1種類単独で又は2種類以上組み合わせて用いることができる。   Examples of the oxidizing agent in the present invention include hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, persulfate, and ozone water. Among them, hydrogen peroxide is particularly preferable. These can be used alone or in combination of two or more.

基体が集積回路用素子を含むシリコン基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染は望ましくないので、不揮発成分を含まない酸化剤が望ましい。但し、オゾン水は組成の時間変化が激しいので過酸化水素が最も適している。但し、適用対象の基体が半導体素子を含まないガラス基板などである場合は不揮発成分を含む酸化剤であっても差し支えない。   When the substrate is a silicon substrate including an integrated circuit element, contamination by alkali metal, alkaline earth metal, halide, etc. is not desirable, so an oxidizing agent that does not contain a nonvolatile component is desirable. However, hydrogen peroxide is most suitable because ozone water has a severe compositional change over time. However, when the substrate to be applied is a glass substrate or the like that does not include a semiconductor element, an oxidizing agent that includes a nonvolatile component may be used.

酸化剤の配合量は、金属用研磨液の総量に対して、0.1〜20重量%とすることが好ましく、0.2〜19重量%とすることがより好ましく、0.3〜18重量%とすることが特に好ましい。配合量が 0.1重量%未満では、金属の酸化が不充分でCMP速度が低くなる傾向があり、20重量%を超えると、研磨面に荒れが生じる傾向がある。   The blending amount of the oxidizing agent is preferably 0.1 to 20% by weight, more preferably 0.2 to 19% by weight, and more preferably 0.3 to 18% by weight with respect to the total amount of the metal polishing liquid. % Is particularly preferable. If the blending amount is less than 0.1% by weight, metal oxidation is insufficient and the CMP rate tends to be low, and if it exceeds 20% by weight, the polished surface tends to be rough.

本発明における酸化金属溶解剤は、水溶性のものであれば特に制限はなく、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコ−ル酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸等の有機酸、これらの有機酸エステル及びこれら有機酸のアンモニウム塩等が挙げられる。   The metal oxide solubilizer in the present invention is not particularly limited as long as it is water-soluble, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malon Examples thereof include organic acids such as acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid and citric acid, organic acid esters thereof, and ammonium salts of these organic acids.

また、塩酸、硫酸、硝酸等の無機酸、これら無機酸のアンモニウム塩類、例えば硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム等、クロム酸等が挙げられる。これらの中で特に、効果的に研磨できるという点でギ酸、マロン酸、リンゴ酸、酒石酸、クエン酸が金属層のCMPに対して好適である。これらは1種類単独で又は2種類以上組み合わせて用いることができる。   Further, inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and ammonium salts of these inorganic acids such as ammonium sulfate, ammonium nitrate and ammonium chloride, chromic acid and the like can be mentioned. Among these, formic acid, malonic acid, malic acid, tartaric acid, and citric acid are particularly suitable for CMP of the metal layer because they can be effectively polished. These can be used alone or in combination of two or more.

酸化金属溶解剤成分の配合量は、金属用研磨液の総量に対して0.001〜10重量%とすることが好ましく、0.01〜8重量%とすることがより好ましく、0.02〜5重量%とすることが特に好ましい。この配合量が0.001重量%以下になると研磨速度が極端に減少する傾向があり、10重量%を超えると、エッチングの抑制が困難となる傾向がある。   The compounding amount of the metal oxide solubilizer component is preferably 0.001 to 10% by weight, more preferably 0.01 to 8% by weight, more preferably 0.02 to 0.02% by weight based on the total amount of the metal polishing slurry. It is especially preferable to set it as 5 weight%. When the amount is 0.001% by weight or less, the polishing rate tends to be extremely reduced, and when it exceeds 10% by weight, it is difficult to suppress etching.

本発明の含窒素複素環化合物は、トリアゾ−ル化合物、イミダゾ−ル化合物、テトラゾール化合物等が挙げられる。   Examples of the nitrogen-containing heterocyclic compound of the present invention include triazole compounds, imidazole compounds, and tetrazole compounds.

本発明におけるトリアゾ−ル化合物としては水溶性のものであれば特に制限はなく、例えば、2−メルカプトベンゾチアゾ−ル、1,2,3−トリアゾ−ル、1,2,4−トリアゾ−ル、3−アミノ−1H−1,2,4−トリアゾ−ル、ベンゾトリアゾ−ル、1−ヒドロキシベンゾトリアゾ−ル、1−ジヒドロキシプロピルベンゾトリアゾ−ル、2,3−ジカルボキシプロピルベンゾトリアゾ−ル、4−ヒドロキシベンゾトリアゾ−ル、4−カルボキシル(−1H−)ベンゾトリアゾ−ル、4−カルボキシル(−1H−)ベンゾトリアゾ−ルメチルルエステル、4−カルボキシル(−1H−)ベンゾトリアゾ−ルブチルエステル、4−カルボキシル(−1H−)ベンゾトリアゾ−ルオクチルエステル、5−ヘキシルベンゾトリアゾ−ル、[1,2,3−ベンゾトリアゾリル−1−メチル][1,2,4−トリアゾリル−1−メチル][2−エチルヘキシル]アミン、トリルトリアゾ−ル、ナフトトリアゾ−ル、ビス[(1−ベンゾトリアゾリル)メチル]ホスホン酸、3−アミノトリアゾ−ル等を挙げることができる。   The triazole compound in the present invention is not particularly limited as long as it is water-soluble, and examples thereof include 2-mercaptobenzothiazol, 1,2,3-triazole, 1,2,4-triazol. 3-amino-1H-1,2,4-triazole, benzotriazole, 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotri Azol, 4-hydroxybenzotriazole, 4-carboxyl (-1H-) benzotriazole, 4-carboxyl (-1H-) benzotriazole methyl ester, 4-carboxyl (-1H-) benzotriazole Butyl ester, 4-carboxyl (-1H-) benzotriazol octyl ester, 5-hexylbenzotriazole, [1 2,3-benzotriazolyl-1-methyl] [1,2,4-triazolyl-1-methyl] [2-ethylhexyl] amine, tolyltriazole, naphthotriazole, bis [(1-benzotriazolyl) ) Methyl] phosphonic acid, 3-aminotriazole and the like.

イミダゾ−ル化合物としては水溶性であれば特に制限はなく、例えば、2−メチルイミダゾ−ル、2−エチルイミダゾ−ル、2−イソプロピルイミダゾ−ル、2−プロピルイミダゾ−ル、2−ブチルイミダゾ−ル、4−メチルイミダゾ−ル、2、4−ジメチルイミダゾ−ル、2−エチル−4−メチルイミダゾ−ル、2−ウンデシルイミダゾ−ル、2−アミノイミダゾ−ル等を挙げることができる。   The imidazole compound is not particularly limited as long as it is water-soluble. For example, 2-methyl imidazole, 2-ethyl imidazole, 2-isopropyl imidazole, 2-propyl imidazole, 2-butyl imidazole. -Methyl, 4-methylimidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-aminoimidazole and the like. .

テトラゾール化合物としては水溶性であれば特に制限はなく、例えば5−メチルテトラゾール、5−アミノテトラゾール、1−(2−ジアミノエチ)−5−メルカプトテトラゾール等が挙げられる。   The tetrazole compound is not particularly limited as long as it is water-soluble, and examples thereof include 5-methyltetrazole, 5-aminotetrazole, 1- (2-diaminoethi) -5-mercaptotetrazole and the like.

これらの中で特に、効果的に研磨できるという点で1,2,3−トリアゾ−ル、1,2,4−トリアゾ−ル、ベンゾトリアゾ−ル、1−ヒドロキシベンゾトリアゾ−ル、3−アミノ−1,2,4−トリアゾ−ルが好適である。これら含窒素複素環化合物は1種類単独で又は2種類以上混合して用いることができる。   Among these, 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1-hydroxybenzotriazole, 3-amino are particularly effective in that they can be polished effectively. -1,2,4-triazole is preferred. These nitrogen-containing heterocyclic compounds can be used alone or in combination of two or more.

本発明の含窒素複素環化合物の総配合量は、金属用研磨液の総量に対して0.001〜10重量%とすることが好ましく、0.01〜8重量%とすることがより好ましく、0.02〜5重量%とすることが特に好ましい。この配合量が0.001重量未満では、エッチングの抑制が困難となる傾向があり、10重量%を超えると研磨速度が低くなってしまう傾向がある。   The total amount of the nitrogen-containing heterocyclic compound of the present invention is preferably 0.001 to 10% by weight, more preferably 0.01 to 8% by weight, based on the total amount of the metal polishing slurry. It is especially preferable to set it as 0.02 to 5 weight%. If the blending amount is less than 0.001 weight, it is difficult to suppress etching, and if it exceeds 10 wt%, the polishing rate tends to be low.

本発明の金属用研磨液は、さらに水溶性ポリマを含むことができる。この水溶性ポリマとしては、例えば、アルギン酸、ペクチン酸、カルボキシメチルセルロ−ス、寒天、カ−ドラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコ−ル、ポリビニルピロリドン及びポリアクロレインのビニル系ポリマ等が挙げられる。   The metal polishing slurry of the present invention can further contain a water-soluble polymer. Examples of the water-soluble polymer include polysaccharides such as alginic acid, pectic acid, carboxymethyl cellulose, agar, cardran and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid. Acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyacrylic acid, polyacrylamide, aminopolyacrylamide, ammonium polyacrylate, polyacrylic Polycarboxylic acids such as sodium acid salt, polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt and polyglyoxylic acid and salts thereof; polyvinyl alcohol, polyvinylpyrrolidone and polyacrolein Le based polymers and the like.

その中でもペクチン酸、寒天、ポリリンゴ酸、ポリメタクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリルアミド、ポリビニルアルコ−ル及びポリビニルピロリドン、それらのエステル並びにそれらのアンモニウム塩が好ましい。   Among these, pectinic acid, agar, polymalic acid, polymethacrylic acid, ammonium polyacrylate, polyacrylamide, polyvinyl alcohol and polyvinylpyrrolidone, esters thereof and ammonium salts thereof are preferable.

また、適用する基体が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸又はそのアンモニウム塩が望ましい。なお、基体がガラス基板等である場合はその限りではない。   In addition, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, contamination with an alkali metal, an alkaline earth metal, a halide, or the like is not desirable, so an acid or an ammonium salt thereof is desirable. This is not the case when the substrate is a glass substrate or the like.

水溶性ポリマの配合量は、金属用研磨液の総量に対して0〜10重量%とすることが好ましく、0.01〜8重量%とすることがより好ましく、0.02〜5重量%とすることが特に好ましい。この配合量が10重量%を超えると研磨速度が低下する傾向がある。   The blending amount of the water-soluble polymer is preferably 0 to 10% by weight, more preferably 0.01 to 8% by weight, and 0.02 to 5% by weight based on the total amount of the metal polishing slurry. It is particularly preferable to do this. If this amount exceeds 10% by weight, the polishing rate tends to decrease.

水溶性ポリマの重量平均分子量(GPC測定、標準ポリスチレン換算)は500以上とすることが好ましく、1500以上とすることがより好ましく5000以上とすることが特に好ましい。重量平均分子量の上限は特に制限はないが、溶解性の観点から500万以下である。重量平均分子量が500未満では高い研磨速度が発現しない傾向がある。本発明では、重量平均分子量が500以上である少なくとも1種以上の水溶性ポリマを用いることが好ましい。   The weight average molecular weight (GPC measurement, standard polystyrene conversion) of the water-soluble polymer is preferably 500 or more, more preferably 1500 or more, and particularly preferably 5000 or more. The upper limit of the weight average molecular weight is not particularly limited, but is 5 million or less from the viewpoint of solubility. When the weight average molecular weight is less than 500, there is a tendency that a high polishing rate does not appear. In the present invention, it is preferable to use at least one water-soluble polymer having a weight average molecular weight of 500 or more.

本発明の金属用研磨液には、上述した材料の他に、アルミナ、シリカ、セリア等の固体砥粒、界面活性剤、ビクトリアピュアブル−等の染料、フタロシアニングリ−ン等の顔料等の着色剤を0.01〜1重量%、好ましくは0.1〜0.8重量%程度含有させてもよい。   In the metal polishing slurry of the present invention, in addition to the materials described above, solid abrasives such as alumina, silica and ceria, surfactants, dyes such as Victoria Pure Blue, and colorants such as pigments such as phthalocyanine May be contained in an amount of 0.01 to 1% by weight, preferably about 0.1 to 0.8% by weight.

本発明を適用する金属膜としては、銅、銅合金及び銅又は銅合金の酸化物(以下銅合金という)が挙げられ、公知のスパッタ法、メッキ法により成膜できる。   Examples of the metal film to which the present invention is applied include copper, a copper alloy, and an oxide of copper or a copper alloy (hereinafter referred to as a copper alloy), and can be formed by a known sputtering method or plating method.

本発明の研磨方法は、研磨定盤の研磨布上に前記の金属用研磨液を供給しながら、被研磨膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって被研磨膜を研磨する研磨方法である。研磨する装置として、半導体基板を保持するホルダと研磨布(パッド)を貼り付けた(回転数が変更可能なモ−タなどを取り付けてある)定盤を有する一般的な研磨装置が使用できる。   The polishing method of the present invention moves the polishing platen and the substrate relatively while pressing the substrate having the film to be polished against the polishing cloth while supplying the metal polishing liquid onto the polishing cloth of the polishing platen. This is a polishing method for polishing the film to be polished. As a polishing apparatus, a general polishing apparatus having a surface plate with a holder for holding a semiconductor substrate and a polishing cloth (pad) (a motor having a variable number of rotations attached) can be used.

研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、定盤の回転速度は基板が飛び出さないように200min−1以下の低回転が好ましい。 As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 200 min −1 or less so that the substrate does not jump out.

被研磨膜を有する半導体基板の研磨布への押し付け圧力は、1〜100kPaであることが好ましく、CMP速度のウエハー面内均一性及びパタ−ンの平坦性を満足するためには、5〜50kPaであることがより好ましい。   The pressure applied to the polishing cloth of the semiconductor substrate having the film to be polished is preferably 1 to 100 kPa, and 5 to 50 kPa for satisfying the uniformity in the wafer surface of the CMP rate and the flatness of the pattern. It is more preferable that

研磨している間、研磨布には金属用研磨液をポンプなどで連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。研磨終了後の半導体基板は、流水中でよく洗浄後、スピンドライ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。   During polishing, a polishing solution for metal is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with polishing liquid. The semiconductor substrate after completion of polishing is preferably washed in running water and then dried after removing water droplets adhering to the semiconductor substrate using spin drying or the like.

本発明の銅研磨速度は、研磨前後での膜厚差を電気抵抗値から換算して求めた。
また、面内均一性は以下のように定義した。
n箇所研磨速度を測定し、i番目の箇所の研磨速度をRi、研磨速度の平均値をRavとしたとき、面内均一性(NU)は次式のようになる。
The copper polishing rate of the present invention was determined by converting the film thickness difference before and after polishing from the electrical resistance value.
In-plane uniformity was defined as follows.
When the n-point polishing rate is measured, the i-th polishing rate is Ri, and the average polishing rate is Rav, the in-plane uniformity (NU) is expressed by the following equation.

Figure 2009253151
Figure 2009253151

本発明金属用研磨液は、信頼性の高い半導体デバイス及び機器に用いられる銅膜の研磨に好適であるが、他の銅膜の研磨に用いることもできる。   The metal polishing slurry of the present invention is suitable for polishing copper films used in highly reliable semiconductor devices and equipment, but can also be used for polishing other copper films.

以下、実施例により本発明を説明する。本発明はこれらの実施例により制限するものではない。
(金属用研磨液作製方法)
金属用研磨液は全量を2000gとしたとき、純水900gに対して金属酸化膜溶解剤、面内均一性向上剤、水溶性ポリマ10g及び含窒素複素環化合物2.0gを溶解させた後、砥粒としてコロイダルシリカ粒子5g(二次粒径50nm)を添加、pH調整剤としてアンモニア適量を添加してpHを3.6にし、残りの重量分の純水を加えて1000gとして作製した液に、さらに30wt%の過酸化水素水溶液1000gを添加して作製した。
Hereinafter, the present invention will be described by way of examples. The present invention is not limited by these examples.
(Metal polishing liquid preparation method)
When the total amount of the metal polishing liquid is 2000 g, after dissolving a metal oxide film dissolving agent, an in-plane uniformity improver, 10 g of a water-soluble polymer and 2.0 g of a nitrogen-containing heterocyclic compound in 900 g of pure water, To the liquid prepared as 1000 g by adding 5 g of colloidal silica particles (secondary particle size 50 nm) as abrasive grains, adding an appropriate amount of ammonia as a pH adjuster to pH 3.6, and adding pure water for the remaining weight. Further, 1000 g of a 30 wt% aqueous hydrogen peroxide solution was added.

金属酸化膜溶解剤と面内均一性向上剤は添加量を足して3.5gになるように添加した。金属用研磨液の組成を表1に示す。 砥粒の粒径は、研磨液を8000min−1、10分間遠心分離し、その上澄み液をマルバーン社製のゼータサイザー3000HSで測定した。   The metal oxide film solubilizer and the in-plane uniformity improver were added so that the addition amount was 3.5 g. Table 1 shows the composition of the metal polishing slurry. The grain size of the abrasive grains was measured by centrifuging the polishing liquid at 8000 min −1 for 10 minutes, and measuring the supernatant with a Zetasizer 3000HS manufactured by Malvern.

(銅基板の研磨)
上記研磨液を定盤に貼り付けたパッドに滴下しながら、下記に示す研磨条件でCMP処理を行い、下記に示す評価を行った。
(Copper substrate polishing)
While dripping the polishing liquid onto the pad attached to the surface plate, CMP treatment was performed under the following polishing conditions, and the following evaluation was performed.

(研磨条件)
研磨装置:アプライドマテリアル社製Mirra
研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂
研磨圧力:14kPa/cm(140gf/cm
研磨ヘッドの回転数:60min−1
研磨定盤の回転速度:50min−1
研磨液流量:200cc/min
研磨時間:2分
(Polishing conditions)
Polishing device: Mirror made by Applied Materials
Polishing pad: Polyurethane resin with closed cells Polishing pressure: 14 kPa / cm 2 (140 gf / cm 2 )
Rotation speed of polishing head: 60 min −1
Rotation speed of polishing surface plate: 50 min −1
Polishing fluid flow rate: 200cc / min
Polishing time: 2 minutes

(使用基板)
厚さ15000Aの銅膜を形成したシリコン基板(直径8インチ)
(評価項目及び評価方法)
CMPによるアルミニウム研磨速度:基板の研磨前後での膜厚差をシート抵抗変化から換算して求めた。測定点は直径方向81ポイントとし、平均研磨速度(研磨速度と定義)、面内均一性を算出した。
(Substrate used)
Silicon substrate with a 15000A thick copper film (8 inches in diameter)
(Evaluation items and evaluation methods)
Aluminum polishing rate by CMP: The difference in film thickness before and after polishing the substrate was calculated from the change in sheet resistance. The measurement point was 81 points in the diameter direction, and the average polishing rate (defined as polishing rate) and in-plane uniformity were calculated.

銅研磨速度に関しては400nm/min以上、面内均一性に関しては10.0%以下を良好であるとした。
表1に銅基体に対するCMPの研磨速度、面内均一性の評価結果を示す。
Regarding the copper polishing rate, 400 nm / min or more and 10.0% or less were considered good for the in-plane uniformity.
Table 1 shows the evaluation results of the polishing rate and in-plane uniformity of CMP on the copper substrate.

実施例1
(研磨液の調整)
酒石酸2.0g、ポリアクリル酸10g、ベンゾトリアゾール2g及びオルトリン酸1.5gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Example 1
(Polishing liquid adjustment)
After dissolving 2.0 g of tartaric acid, 10 g of polyacrylic acid, 2 g of benzotriazole and 1.5 g of orthophosphoric acid in 900 g of pure water, 25 g of a colloidal silica 20 wt% aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred. .

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は400nm/min、面内均一性7.2%であり、面内均一性向上剤を用いていない系(比較例1)に対し研磨速度が同等で面内均一性が向上する良好な結果が得られた。その結果を表1に示す。   As a result of polishing in accordance with the above method using the polishing liquid obtained above, the copper polishing rate is 400 nm / min, in-plane uniformity 7.2%, and a system that does not use an in-plane uniformity improver ( Good results were obtained in which the polishing rate was the same as that of Comparative Example 1) and the in-plane uniformity was improved. The results are shown in Table 1.

実施例2
(研磨液の調整)
コハク酸2.0g、ポリアクリル酸10g、ベンゾトリアゾール2g及びオルトリン酸1.5gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Example 2
(Polishing liquid adjustment)
After dissolving 2.0 g of succinic acid, 10 g of polyacrylic acid, 2 g of benzotriazole and 1.5 g of orthophosphoric acid in 900 g of pure water, 25 g of a 20 wt% colloidal silica aqueous dispersion having a secondary particle size of 50 nm is added and sufficiently stirred. did.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は480nm/min、面内均一性5.4%であり、面内均一性向上剤を用いていない系(比較例2)に対し研磨速度が同等で面内均一性が向上する良好な結果が得られた。その結果を表1に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the polishing rate of copper is 480 nm / min, in-plane uniformity is 5.4%, and a system that does not use an in-plane uniformity improver ( Good results were obtained in which the polishing rate was the same as that of Comparative Example 2) and the in-plane uniformity was improved. The results are shown in Table 1.

実施例3
(研磨液の調整)
リンゴ酸2.0g、ポリアクリル酸10g、ベンゾトリアゾール2g及びオルトリン酸1.5gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Example 3
(Polishing liquid adjustment)
After 2.0 g of malic acid, 10 g of polyacrylic acid, 2 g of benzotriazole and 1.5 g of orthophosphoric acid were dissolved in 900 g of pure water, 25 g of a 20 wt% colloidal silica aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred. did.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は550nm/min、面内均一性6.2%であり、面内均一性向上剤を用いていない系(比較例3)に対し研磨速度が同等で面内均一性が向上する良好な結果が得られた。その結果を表1に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the polishing rate of copper is 550 nm / min, in-plane uniformity is 6.2%, and a system that does not use an in-plane uniformity improver ( Good results were obtained in which the polishing rate was the same as that of Comparative Example 3) and the in-plane uniformity was improved. The results are shown in Table 1.

実施例4
(研磨液の調整)
リンゴ酸2.0g、ポリアクリル酸10g、1,2,4−トリアゾール2g及びオルトリン酸1.5gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Example 4
(Polishing liquid adjustment)
After dissolving 2.0 g of malic acid, 10 g of polyacrylic acid, 2 g of 1,2,4-triazole and 1.5 g of orthophosphoric acid in 900 g of pure water, 25 g of a colloidal silica 20 wt% aqueous dispersion having a secondary particle size of 50 nm And stirred well.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は560nm/min、面内均一性5.8%であり、研磨速度、面内均一性ともに良好な結果が得られた。その結果を表1に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the copper polishing rate is 560 nm / min, in-plane uniformity is 5.8%, and both the polishing rate and in-plane uniformity are good. Obtained. The results are shown in Table 1.

実施例5
(研磨液の調整)
リンゴ酸2.0g、ポリアクリル酸10g、ベンゾトリアゾール2g及びメタリン酸1.5gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Example 5
(Polishing liquid adjustment)
After 2.0 g of malic acid, 10 g of polyacrylic acid, 2 g of benzotriazole and 1.5 g of metaphosphoric acid were dissolved in 900 g of pure water, 25 g of a 20 wt% colloidal silica aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred. did.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、30wt%のさらに過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of 30 wt% hydrogen peroxide aqueous solution is further added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は580nm/min、面内均一性6.5%であり、研磨速度、面内均一性ともに良好な結果が得られた。その結果を表1に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the polishing rate of copper is 580 nm / min, the in-plane uniformity is 6.5%, and both the polishing rate and the in-plane uniformity are good results. Obtained. The results are shown in Table 1.

実施例6
(研磨液の調整)
リンゴ酸1.0g、ポリアクリル酸10g、ベンゾトリアゾール2g及びオルトリン酸2.0gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Example 6
(Polishing liquid adjustment)
After dissolving 1.0 g of malic acid, 10 g of polyacrylic acid, 2 g of benzotriazole and 2.0 g of orthophosphoric acid in 900 g of pure water, 25 g of a 20 wt% colloidal silica aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred. did.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は580nm/min、面内均一性6.5%であり、研磨速度、面内均一性ともに良好な結果が得られた。その結果を表1に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the polishing rate of copper is 580 nm / min, the in-plane uniformity is 6.5%, and both the polishing rate and the in-plane uniformity are good results. Obtained. The results are shown in Table 1.

実施例7
(研磨液の調整)
リンゴ酸1.0g、ポリアクリル酸10g、ベンゾトリアゾール2g及びオルトリン酸1.0gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Example 7
(Polishing liquid adjustment)
After dissolving 1.0 g of malic acid, 10 g of polyacrylic acid, 2 g of benzotriazole and 1.0 g of orthophosphoric acid in 900 g of pure water, 25 g of a colloidal silica 20 wt% aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred. did.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は600nm/min、面内均一性8.8%であり、研磨速度、面内均一性ともに良好な結果が得られた。その結果を表1に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the copper polishing rate is 600 nm / min and the in-plane uniformity is 8.8%, and both the polishing rate and the in-plane uniformity are good. Obtained. The results are shown in Table 1.

比較例1
(研磨液の調整)
酒石酸2.0g、ポリアクリル酸10g及びベンゾトリアゾール2gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Comparative Example 1
(Polishing liquid adjustment)
After dissolving 2.0 g of tartaric acid, 10 g of polyacrylic acid and 2 g of benzotriazole in 900 g of pure water, 25 g of a colloidal silica 20 wt% aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は400nm/min、面内均一性11.0%であり、面内均一性向上剤を用いた系(実施例1)に対し研磨速度が同等だったが面内均一性は悪化する結果が得られた。その結果を表2に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the copper polishing rate was 400 nm / min, in-plane uniformity 11.0%, and a system using an in-plane uniformity improver (implementation) The polishing rate was the same as in Example 1), but the in-plane uniformity was deteriorated. The results are shown in Table 2.

比較例2
(研磨液の調整)
コハク酸2.0g、ポリアクリル酸10g及びベンゾトリアゾール2gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Comparative Example 2
(Polishing liquid adjustment)
After dissolving 2.0 g of succinic acid, 10 g of polyacrylic acid and 2 g of benzotriazole in 900 g of pure water, 25 g of a 20 wt% colloidal silica aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は490nm/min、面内均一性14.0%であり、面内均一性向上剤を用いた系(実施例2)に対し研磨速度が同等だったが面内均一性は悪化する結果が得られた。その結果を表2に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the copper polishing rate was 490 nm / min, in-plane uniformity 14.0%, and a system using an in-plane uniformity improver (implementation) The polishing rate was the same as in Example 2), but the in-plane uniformity was deteriorated. The results are shown in Table 2.

比較例3
(研磨液の調整)
リンゴ酸2.0g、ポリアクリル酸10g及びベンゾトリアゾール2gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Comparative Example 3
(Polishing liquid adjustment)
After 2.0 g of malic acid, 10 g of polyacrylic acid and 2 g of benzotriazole were dissolved in 900 g of pure water, 25 g of a 20 wt% colloidal silica aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は550nm/min、面内均一性12%であり、面内均一性向上剤を用いた系(実施例3)に対し研磨速度が同等だったが面内均一性は悪化する結果が得られた。その結果を表2に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the copper polishing rate was 550 nm / min, the in-plane uniformity was 12%, and a system using an in-plane uniformity improver (Example 3) ), The polishing rate was the same, but the in-plane uniformity was deteriorated. The results are shown in Table 2.

比較例4
(研磨液の調整)
リンゴ酸2.0g、ポリアクリル酸10g、ベンゾトリアゾール2g及びオルトリン酸0.1gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Comparative Example 4
(Polishing liquid adjustment)
After 2.0 g of malic acid, 10 g of polyacrylic acid, 2 g of benzotriazole and 0.1 g of orthophosphoric acid were dissolved in 900 g of pure water, 25 g of a colloidal silica 20 wt% aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred. did.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は560nm/min、面内均一性12%であり、面内均一性向上剤を十分量用いた系(実施例3、6)に対し研磨速度が同等だったが面内均一性は悪化する結果が得られた。その結果を表2に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the copper polishing rate was 560 nm / min, in-plane uniformity was 12%, and a system using a sufficient amount of in-plane uniformity improver (implementation) Although the polishing rate was the same as in Examples 3 and 6), the in-plane uniformity was deteriorated. The results are shown in Table 2.

比較例5
(研磨液の調整)
ポリアクリル酸10g、ベンゾトリアゾール2g及びオルトリン酸0.3gを純水900g中に溶解した後、二次粒径が50nmのコロイダルシリカ20wt%水分散液25gを加え十分に攪拌した。
Comparative Example 5
(Polishing liquid adjustment)
After 10 g of polyacrylic acid, 2 g of benzotriazole and 0.3 g of orthophosphoric acid were dissolved in 900 g of pure water, 25 g of a 20 wt% colloidal silica aqueous dispersion having a secondary particle size of 50 nm was added and sufficiently stirred.

次に、濃度25wt%のアンモニア水によりpHを3.5に調整して研磨液とし、最後に全量が1000gとなるように純水を加えた後、さらに30wt%の過酸化水素水溶液を1000g添加して研磨液を得た。   Next, the pH is adjusted to 3.5 with 25 wt% ammonia water to obtain a polishing liquid. Finally, pure water is added so that the total amount becomes 1000 g, and then 1000 g of a 30 wt% aqueous hydrogen peroxide solution is added. Thus, a polishing liquid was obtained.

上記で得た研磨液を用いて上記方法に従い研磨を行った結果、銅の研磨速度は200nm/min、面内均一性4.2%であり、酸化金属溶解剤を用いた系(実施例3,6)に対し面内均一性は同等だったが研磨速度が大きく低下する結果が得られた。その結果を表2に示す。   As a result of polishing according to the above method using the polishing liquid obtained above, the polishing rate of copper was 200 nm / min, the in-plane uniformity was 4.2%, and a system using a metal oxide dissolving agent (Example 3) 6), the in-plane uniformity was the same, but the polishing rate was greatly reduced. The results are shown in Table 2.

Figure 2009253151
Figure 2009253151

Figure 2009253151
Figure 2009253151

Claims (9)

酸化剤、酸化金属溶解剤、水溶性ポリマ、含窒素複素環化合物、水及び銅研磨速度の面内均一性向上剤を含有してなる金属用研磨液。   A metal-polishing liquid comprising an oxidizing agent, a metal oxide solubilizer, a water-soluble polymer, a nitrogen-containing heterocyclic compound, water and an in-plane uniformity improver for copper polishing rate. 前記面内均一性向上剤が、オルトリン酸、メタリン酸及びポリリン酸から選ばれる少なくとも1種である請求項1記載の金属用研磨液。   The metal polishing slurry according to claim 1, wherein the in-plane uniformity improver is at least one selected from orthophosphoric acid, metaphosphoric acid, and polyphosphoric acid. 前記含酸化金属溶解剤が、有機酸、有機酸エステル及び有機酸のアンモニウム塩からなる群より選ばれる少なくとも1種である請求項1又は2記載の金属用研磨液。   The metal polishing slurry according to claim 1 or 2, wherein the oxidizing metal solubilizer is at least one selected from the group consisting of organic acids, organic acid esters, and ammonium salts of organic acids. 前記含窒素複素環化合物が、1,2,3−トリアゾ−ル、1,2,4−トリアゾ−ル、ベンゾトリアゾ−ル、1−ヒドロキシベンゾトリアゾ−ル及び3−アミノ−1,2,4−トリアゾ−ルから選ばれる少なくとも1種である請求項1〜3のいずれかに記載の金属用研磨液。   The nitrogen-containing heterocyclic compounds are 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1-hydroxybenzotriazole and 3-amino-1,2,4. The metal polishing slurry according to any one of claims 1 to 3, which is at least one selected from -triazole. 前記水溶性ポリマが、多糖類、ポリカルボン酸、ポリカルボン酸エステル及びその塩並びにビニル系ポリマから選ばれた少なくとも1種である請求項1〜4のいずれかに記載の金属用研磨液。   The metal-polishing liquid according to any one of claims 1 to 4, wherein the water-soluble polymer is at least one selected from polysaccharides, polycarboxylic acids, polycarboxylic acid esters and salts thereof, and vinyl polymers. 金属の酸化剤が、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸、過硫酸塩及びオゾン水からなる群より選ばれる少なくとも1種である請求項1〜5のいずれかに記載の金属用研磨液。   The metal oxidizing agent is at least one selected from the group consisting of hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, persulfate, and ozone water. Metal polishing liquid. 請求項1〜6のいずれかに記載の金属研用磨液に、さらに砥粒を含む金属研用磨液。   A polishing slurry for metal polishing further comprising abrasive grains in the polishing slurry for metal polishing according to any one of claims 1 to 6. 研磨される金属膜が、銅、銅合金及び銅又は銅合金の酸化物からなる群より選ばれる少なくとも1種である請求項1〜7のいずれかに記載の金属用研磨液。   The metal polishing slurry according to any one of claims 1 to 7, wherein the metal film to be polished is at least one selected from the group consisting of copper, copper alloys, and copper or copper alloy oxides. 研磨定盤の研磨布上に請求項1〜8のいずれかに記載の金属用研磨液を供給しながら、金属膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって金属膜を研磨する基板の研磨方法。   While supplying the metal polishing liquid according to any one of claims 1 to 8 onto the polishing cloth of the polishing surface plate, the polishing surface plate and the substrate are relatively moved while pressing the substrate having the metal film against the polishing cloth. A substrate polishing method for polishing a metal film by moving the substrate.
JP2008101572A 2008-04-09 2008-04-09 Polishing solution for metal and method of polishing substrate Pending JP2009253151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101572A JP2009253151A (en) 2008-04-09 2008-04-09 Polishing solution for metal and method of polishing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101572A JP2009253151A (en) 2008-04-09 2008-04-09 Polishing solution for metal and method of polishing substrate

Publications (1)

Publication Number Publication Date
JP2009253151A true JP2009253151A (en) 2009-10-29

Family

ID=41313541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101572A Pending JP2009253151A (en) 2008-04-09 2008-04-09 Polishing solution for metal and method of polishing substrate

Country Status (1)

Country Link
JP (1) JP2009253151A (en)

Similar Documents

Publication Publication Date Title
KR101418626B1 (en) Metal polishing liquid and polishing method
JP5240202B2 (en) CMP polishing liquid and substrate polishing method using the same
US8486837B2 (en) Polishing slurry for metal, and polishing method
JP5567293B2 (en) Polishing composition for planarizing metal layers in both stages of chemical mechanical polishing process to remove copper in two stages
JP2012182473A (en) Polishing agent for chemical mechanical polishing
JP2004031443A (en) Polishing solution and polishing method
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
JP4992826B2 (en) Polishing liquid and polishing method
JP4951808B2 (en) Polishing liquid for metal and polishing method
JP5369597B2 (en) CMP polishing liquid and polishing method
JP2012134358A (en) Cmp polishing liquid and polishing method
JP2010103409A (en) Metal polishing solution and polishing method using same
JP5277640B2 (en) Polishing liquid and polishing method for CMP
JP2003068683A (en) Polishing liquid for metal and method for polishing
US20060143990A1 (en) Polishing fluid for metal, and polishing method
JP4759779B2 (en) Substrate polishing method
JPWO2004012248A1 (en) Polishing liquid and polishing method
JP2003188120A (en) Polishing liquid and polishing method for metal
JP5088352B2 (en) Polishing liquid for metal and polishing method
JP2004363141A (en) Liquid and method for polishing metal
JP2004123931A (en) Polishing solution and polishing method
JP2003183628A (en) Polishing liquid for metal and method for grinding
JP2009253151A (en) Polishing solution for metal and method of polishing substrate
JP2005203602A (en) One set of polishing solution for cmp and method for polishing substrate
JP2008118112A (en) Polishing solution for cmp and polishing method of substrate