JP2005203602A - One set of polishing solution for cmp and method for polishing substrate - Google Patents

One set of polishing solution for cmp and method for polishing substrate Download PDF

Info

Publication number
JP2005203602A
JP2005203602A JP2004009129A JP2004009129A JP2005203602A JP 2005203602 A JP2005203602 A JP 2005203602A JP 2004009129 A JP2004009129 A JP 2004009129A JP 2004009129 A JP2004009129 A JP 2004009129A JP 2005203602 A JP2005203602 A JP 2005203602A
Authority
JP
Japan
Prior art keywords
polishing
compound
polishing liquid
cmp
triazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009129A
Other languages
Japanese (ja)
Inventor
Yoshikazu Omori
義和 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004009129A priority Critical patent/JP2005203602A/en
Publication of JP2005203602A publication Critical patent/JP2005203602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide polishing solution for CMP and a polishing method for carrying out high planarization and for suppressing dishing or sinning without lowering a polishing speed at the time of forming the embedded wiring(pattern) of a metallic film by a CMP method. <P>SOLUTION: At the time of forming a conductor embedded wiring in a semiconductor integrated circuit, a first process (1) to polish the deposition film of a conductor to the middle by using first polishing solution containing abrasive grains, an oxidant for oxidizing a conductor, benzotriazol or its dielectric, and a second process (2) for polishing the residual deposition film of the conductor by using a second polishing solution containing the abrasive grains, an oxidant for oxidizing the conductor and a compound having an amino-triazole frame are sequentially performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一揃いの化学機械研磨(以下、CMPという)用研磨液及び基体の研磨方法に関するものである。更に詳しくは、あらかじめ溝を形成した基体(基板)上に導体膜を堆積し、上記溝に導体を埋め込む半導体デバイスの配線工程で用いる一揃いの導体用研磨液と、この導体用研磨液を用いた基体の研磨方法とに関するものである。   The present invention relates to a set of polishing liquid for chemical mechanical polishing (hereinafter referred to as CMP) and a method for polishing a substrate. More specifically, a conductor film is deposited on a substrate (substrate) in which grooves are formed in advance, and a set of conductor polishing liquids used in the wiring process of a semiconductor device in which conductors are embedded in the grooves, and the conductor polishing liquids are used. The present invention relates to a polishing method for a substrate.

近年、半導体集積回路(以下、LSIと略す)の高集積化・高性能化に伴って新たな微細加工技術が開発されている。CMP法はその一つであり、LSI製造工程、特に、多層配線形成工程における層間絶縁膜の平坦化、金属プラグの形成、埋め込み配線の形成等において頻繁に利用される技術である(特許文献1参照)。   In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor integrated circuits (hereinafter abbreviated as LSI). The CMP method is one of them, and is a technique that is frequently used in the LSI manufacturing process, in particular, the flattening of the interlayer insulating film, the formation of the metal plug, the formation of the embedded wiring in the multilayer wiring forming process (Patent Document 1). reference).

また、最近は、LSIを高性能化するために、配線材料として従来のアルミニウム合金に代わって銅合金も使われ始めている。しかし、銅合金はアルミニウム合金配線の形成で用いられるドライエッチング法による微細加工が困難であるため、あらかじめ溝を形成した基体上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金薄膜をCMPにより除去して埋め込み配線を形成する方法(いわゆる、ダマシン法)が主として採用されている。なお、ダマシン法については、例えば、特許文献2に開示がある。   Recently, copper alloys have begun to be used as wiring materials in place of conventional aluminum alloys in order to improve the performance of LSIs. However, since copper alloy is difficult to be finely processed by the dry etching method used in forming aluminum alloy wiring, a copper alloy thin film is deposited and embedded on a substrate on which a groove has been formed in advance, and the copper alloy thin film other than the groove is CMPed. A method (so-called damascene method) in which buried wiring is formed by removing by the above method is mainly employed. The damascene method is disclosed in Patent Document 2, for example.

金属をCMP法で平坦化する一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用研磨液で潤し、基体の金属膜形成面を押し付けて、その裏面から所定の圧力(以下、研磨圧力という)を加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦によって金属膜の凸部を除去するものである。
CMPに用いられる金属用研磨液は、通常は固体砥粒及び酸化剤からなっており、先ず、酸化によって金属膜表面を酸化し、その酸化層を固体砥粒によって削り取ると考えられている。金属表面の凹部の酸化層では研磨パッドにあまり触れず、固体砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基体表面は平坦化される(非特許文献1参照)。
A general method for planarizing metal by CMP is to apply a polishing pad on a circular polishing platen (platen), moisten the polishing pad surface with a metal polishing liquid, and press the metal film forming surface of the substrate. In this state, the polishing platen is turned with a predetermined pressure (hereinafter referred to as polishing pressure) applied from the back surface, and the convex portion of the metal film is removed by mechanical friction between the polishing liquid and the convex portion of the metal film. .
The metal polishing liquid used for CMP is usually composed of solid abrasive grains and an oxidizing agent. It is considered that the metal film surface is first oxidized by oxidation and the oxidized layer is scraped off by solid abrasive grains. Since the oxide layer in the concave portion on the metal surface does not touch the polishing pad so much and the effect of scraping with solid abrasive grains does not reach, the metal layer on the convex portion is removed with the progress of CMP, and the substrate surface is flattened (non-patent) Reference 1).

CMP法における研磨速度を高める方法の一つとして、研磨液にグリシン等のアミノ酢酸又はアミド硫酸からなる金属酸化物溶解剤を配合する方法が知られている(特許文献3)。固体砥粒によって削り取られた金属酸化物を金属酸化物溶解剤の作用で溶解させると砥粒による削り取りの効果が増すためと説明されている。ただ、凹部における金属膜表面の酸化層も溶解(エッチング)されて金属膜表面が露出すると、その金属膜表面が酸化剤によってさらに酸化され、これが繰り返されると凹部における金属膜のエッチングが進行し、平坦化効果が損なわれる。これを防ぐために、研磨液に更にベンゾトリアゾール等のエッチング防止剤(保護膜形成剤)を配合している(同じく、特許文献3)。しかしこの方法では、金属酸化物溶解剤と保護膜形成剤との両剤のバランスを取ることは必ずしも容易ではない。   As one method for increasing the polishing rate in the CMP method, a method is known in which a metal oxide solubilizer composed of aminoacetic acid or amide sulfuric acid such as glycine is blended in the polishing liquid (Patent Document 3). It is described that the metal oxide scraped by the solid abrasive grains is dissolved by the action of the metal oxide solubilizing agent, so that the effect of scraping by the abrasive grains is increased. However, when the oxide layer on the surface of the metal film in the recess is also dissolved (etched) and the surface of the metal film is exposed, the surface of the metal film is further oxidized by the oxidizing agent, and when this is repeated, the etching of the metal film in the recess proceeds. The flattening effect is impaired. In order to prevent this, an etching inhibitor (protective film forming agent) such as benzotriazole is further blended in the polishing liquid (similarly, Patent Document 3). However, in this method, it is not always easy to balance both the metal oxide dissolving agent and the protective film forming agent.

また、本出願人は、金属膜のエッチングを低く抑えるための、金属酸化物溶解剤と酸化剤とアミノ−トリアゾール骨格を有する化合物とを含有してなる金属用研磨液、及びこれを利用した研磨方法を先に提案した(特許文献4)。   Further, the applicant of the present invention provides a metal polishing liquid containing a metal oxide solubilizer, an oxidizer, and a compound having an amino-triazole skeleton, and polishing using the same, in order to keep the etching of the metal film low. The method was proposed previously (Patent Document 4).

米国特許No.4944836U.S. Pat. 4944836 特開平2−278822号公報JP-A-2-278822 特開平8−83780号公報JP-A-8-83780 特開2003−183628号公報JP 2003-183628 A ジャ−ナル・オブ・エレクトロケミカルソサエティ誌(Journal of Electrochemical Society)、第138巻、第11号(1991年発行)、3460〜3464頁Journal of Electrochemical Society, Vol. 138, No. 11 (published in 1991), pages 3460-3464

従来のCMP用研磨液を用いてCMP法で埋め込み配線を形成させる場合には、次のような問題が起こりやすい。
(1)埋め込まれた金属配線の表面中央部分が等方的に腐食されて皿の様に窪む現象(以下、ディッシングという)が発生する問題。
(2)高密度配線部の絶縁膜が目減りする減少(以下、シニングという)が発生する問題。
When a buried wiring is formed by CMP using a conventional CMP polishing liquid, the following problems are likely to occur.
(1) A problem that the central portion of the surface of the embedded metal wiring is isotropically corroded to become a dish-like depression (hereinafter referred to as dishing).
(2) A problem that a decrease (hereinafter referred to as “thinning”) occurs in which the insulating film of the high-density wiring portion is reduced.

本発明は、先に本出願人が提案したCMP用研磨液及び研磨方法を更に発展させるものであり、その目的とするところは、CMP法で金属膜の埋め込み配線(パターン)を形成させる際に、研磨速度を落とさずに、高平坦化はもとより、ディッシング及びシニングを抑制できるCMP用研磨液を提供することであり、また、これを用いた基体の研磨方法を提供することである。   The present invention further develops the CMP polishing liquid and polishing method previously proposed by the present applicant. The object of the present invention is to form a metal film embedded wiring (pattern) by the CMP method. It is to provide a polishing slurry for CMP that can suppress dishing and thinning as well as high flatness without reducing the polishing rate, and to provide a method for polishing a substrate using the same.

〔発明の概要〕
上記課題を達成するために、本発明者らは、種々検討していたところ、次の(i)、引き続いて(ii)を見出し、本発明を完成することができた。
(i)砥粒及び酸化剤のほかに、アミノ−トリアゾール骨格を有する化合物、アミノ基を有さないトリアゾール骨格を有する化合物又はイミダゾール化合物のいずれかを含むCMP研磨液で、銅又は銅合金を研磨すると、研磨速度の低下が見られたものの、ディッシングやシニングの発生が抑制されたこと。
(ii)上記知見を更に進めて、CMPの工程を、
a)ベンゾトリアゾール又はその誘導体を含むCMP研磨液で、銅又は銅合金を途中まで研磨する第1の工程、及び
b)アミノ基を有しても有さなくともよいトリアゾール骨格を有する化合物又はイミダゾール化合物を含むCMP研磨液で、残りの銅又は銅合金を研磨する第2の工程、
の二つの工程に分けることにより、研磨速度を落とさずに、ディッシング及びシニングの発生を抑制できたこと。
[Summary of the Invention]
In order to achieve the above object, the present inventors have made various studies and found the following (i) and subsequently (ii) to complete the present invention.
(I) Polishing copper or a copper alloy with a CMP polishing liquid containing either a compound having an amino-triazole skeleton, a compound having a triazole skeleton not having an amino group, or an imidazole compound in addition to the abrasive grains and the oxidizing agent Then, although the polishing rate was reduced, the occurrence of dishing and thinning was suppressed.
(Ii) Further advance the above knowledge and perform the CMP process.
a) a first step of polishing copper or a copper alloy halfway with a CMP polishing liquid containing benzotriazole or a derivative thereof; and b) a compound or imidazole having a triazole skeleton which may or may not have an amino group. A second step of polishing the remaining copper or copper alloy with a CMP polishing liquid containing the compound;
By dividing into these two steps, the occurrence of dishing and thinning could be suppressed without reducing the polishing rate.

すなわち、本発明は、砥粒と、酸化剤と、ベンゾトリアゾール又はその誘導体(保護膜形成剤)とを含有してなる研磨液をCMP用第1研磨液とし、
砥粒と、酸化剤と、アミノ−トリアゾール骨格を有する化合物とを含有してなる研磨液をCMP用第2研磨液として、
前記両液を組み合わせた一揃いのCMP用研磨液である。
That is, in the present invention, a polishing liquid containing abrasive grains, an oxidizing agent, and benzotriazole or a derivative thereof (protective film forming agent) is used as a first polishing liquid for CMP.
A polishing liquid containing abrasive grains, an oxidizing agent, and a compound having an amino-triazole skeleton is used as the second polishing liquid for CMP.
A set of polishing liquids for CMP in which the two liquids are combined.

また、本発明は、半導体集積回路における導体埋め込み配線を形成させる研磨方法であって、
(1)砥粒と、導体を酸化する酸化剤と、ベンゾトリアゾール又はその誘導体(保護膜形成剤)とを含有する第1研磨液を用いて、導体の堆積膜を途中まで研磨する第1の工程;つづいて、
(2)砥粒と、導体を酸化する酸化剤と、アミノ−トリアゾール骨格を有する化合物(保護膜形成剤)とを含有する第2研磨液を用いて、残りの導体の堆積膜を研磨する第2の工程;
を順に行うことを特徴とする基体の研磨方法も提供する。
Further, the present invention is a polishing method for forming a conductor embedded wiring in a semiconductor integrated circuit,
(1) First polishing a deposited film of a conductor halfway using a first polishing liquid containing abrasive grains, an oxidizing agent that oxidizes a conductor, and benzotriazole or a derivative thereof (protective film forming agent) Process;
(2) polishing the deposited film of the remaining conductor using a second polishing liquid containing abrasive grains, an oxidizing agent that oxidizes the conductor, and a compound having an amino-triazole skeleton (protective film forming agent). Two steps;
A substrate polishing method is also provided, characterized in that the steps are sequentially performed.

〔発明の更に詳しい説明〕
本発明を更に詳しく説明する。
本発明で、削り取られるほうの導体は、銅又は銅合金(銅/クロム等)の少なくとも1種の金属層を有する堆積膜からなる金属膜である。
[Detailed description of the invention]
The present invention will be described in more detail.
In the present invention, the conductor to be scraped off is a metal film made of a deposited film having at least one metal layer of copper or a copper alloy (copper / chromium or the like).

本発明において、第1研磨液及び第2研磨液で用いる砥粒としては、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニア、炭化珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒のいずれも使えるが、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数が少ない点で、平均粒径が100nm以下のコロイダルシリカ、コロイダルアルミナが好ましい。コロイダルシリカはシリコンアルコキシドの加水分解又は珪酸ナトリウムのイオン交換により製造でき、コロイダルアルミナは硝酸アルミニウムの加水分解により製造できる。
また、研磨液中における砥粒の濃度は、第1研磨液及び第2研磨液のいずれにおいても、0.01重量%〜10重量%が好ましく、0.05重量%〜5重量%の範囲が更に好ましい。0.01重量%未満では砥粒を含まない場合の研磨速度と差がなく、10重量%を超えると研磨速度は飽和し、それ以上加えても余り意味がない。
In the present invention, the abrasive grains used in the first polishing liquid and the second polishing liquid are inorganic abrasive grains such as silica, alumina, ceria, titania, zirconia, germania, silicon carbide, polystyrene, polyacryl, polyvinyl chloride, etc. Although any organic abrasive can be used, colloidal silica and colloidal alumina having an average particle size of 100 nm or less are used in that the dispersion stability in the polishing liquid is good and the number of scratches generated by CMP is small. preferable. Colloidal silica can be produced by hydrolysis of silicon alkoxide or ion exchange of sodium silicate, and colloidal alumina can be produced by hydrolysis of aluminum nitrate.
Further, the concentration of the abrasive grains in the polishing liquid is preferably 0.01% by weight to 10% by weight in both the first polishing liquid and the second polishing liquid, and is in the range of 0.05% by weight to 5% by weight. Further preferred. If it is less than 0.01% by weight, there is no difference from the polishing rate when no abrasive grains are contained, and if it exceeds 10% by weight, the polishing rate is saturated, and adding more than that makes little sense.

本発明において、第1研磨液及び第2研磨液に用いる酸化剤としては、過酸化水素(H)、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水等があり、その中でも過酸化水素が好ましい。基体が集積回路用素子を含むシリコン基板である場合は、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染を避けるため、不揮発成分を含まない酸化剤が好ましい。また、オゾン水は組成の時間変化が激しいので注意を要する。なお、適用対象の基体が半導体素子を含まないガラス基板である場合は不揮発成分を含む酸化剤であっても差し支えない。 In the present invention, the oxidizing agent used in the first polishing liquid and the second polishing liquid includes hydrogen peroxide (H 2 O 2 ), nitric acid, potassium periodate, hypochlorous acid, ozone water, and the like. Hydrogen peroxide is preferred. When the substrate is a silicon substrate including an integrated circuit element, an oxidizing agent that does not contain a nonvolatile component is preferable in order to avoid contamination with alkali metal, alkaline earth metal, halide, and the like. In addition, attention is required because ozone water has a severe compositional change over time. Note that when the substrate to be applied is a glass substrate that does not include a semiconductor element, an oxidizing agent that includes a nonvolatile component may be used.

酸化剤の配合量は、第1研磨液においては、研磨液の総量100gに対して、0.003mol〜0.7molとすることが好ましく、0.03mol〜0.5molとすることが更に好ましく、0.1mol〜0.3molとすることが特に好ましい。
酸化剤の配合量は、第2研磨液においては、研磨液の総量100gに対して、0.003mol〜0.7molとすることが好ましく、0.03mol〜0.5molとすることが更に好ましく、0.05mol〜0.3molとすることが特に好ましい。
第1研磨液、第2研磨液のいずれの場合も、0.003mol未満では、金属の酸化が不十分で研磨速度が低くなる傾向となり、0.7molを超えると、研磨面に荒れが生じる傾向になる。
The blending amount of the oxidizing agent is preferably 0.003 mol to 0.7 mol, more preferably 0.03 mol to 0.5 mol, with respect to the total amount of polishing liquid 100 g in the first polishing liquid. It is especially preferable to set it as 0.1 mol-0.3 mol.
In the second polishing liquid, the amount of the oxidizing agent is preferably 0.003 mol to 0.7 mol, more preferably 0.03 mol to 0.5 mol, with respect to 100 g of the total amount of the polishing liquid. It is especially preferable to set it as 0.05 mol-0.3 mol.
In both cases of the first polishing liquid and the second polishing liquid, if the amount is less than 0.003 mol, the metal oxidation is insufficient and the polishing rate tends to be low, and if the amount exceeds 0.7 mol, the polished surface tends to be rough. become.

本発明において、第1研磨液に用いるベンゾトリアゾール又はベンゾトリアゾール誘導体は、従来から、CMP用研磨液に広く用いられてきたものであり、保護膜形成剤の機能があるものである。
ここで、ベンゾトリアゾール誘導体としては、例えば、ベンゾトリアゾールのベンゼン環の一つの水素原子をメチル基で置換したもの(トリルトリアゾール)、カルボキシル基で置換したもの(ベンゾトリアゾール−4−カルボン酸)、前記カルボキシル基で置換したもののカルボキシル基の水素原子をエチル基、プロピル基、ブチル基又はオクチル基で置換したもの、あるいは、ナフトトリアゾール、ナフトトリアゾール誘導体等がある。
第1研磨液におけるベンゾトリアゾール又はベンゾトリアゾール誘導体(保護膜形成剤)の配合量は、第1研磨液の総量100gに対して0.0001mol〜0.05molとすることが好ましく、0.0003mol〜0.005molとすることが更に好ましく、0.0005mol〜0.0035molとすることが特に好ましい。0.0001mol未満では、エッチングの抑制が困難となる傾向になり、0.05molを超えると研磨速度が低下する傾向になる。
In the present invention, the benzotriazole or benzotriazole derivative used in the first polishing liquid has hitherto been widely used in CMP polishing liquids and has a function as a protective film forming agent.
Here, as the benzotriazole derivative, for example, one in which one hydrogen atom of the benzene ring of benzotriazole is substituted with a methyl group (tolyltriazole), one substituted with a carboxyl group (benzotriazole-4-carboxylic acid), There are those in which the hydrogen atom of the carboxyl group is substituted with an ethyl group, a propyl group, a butyl group or an octyl group, or naphthotriazole, naphthotriazole derivatives, and the like.
The blending amount of benzotriazole or benzotriazole derivative (protective film forming agent) in the first polishing liquid is preferably 0.0001 mol to 0.05 mol, and 0.0003 mol to 0 mol with respect to 100 g of the total amount of the first polishing liquid. More preferably, the amount is 0.005 mol, and particularly preferably 0.0005 mol to 0.0035 mol. If it is less than 0.0001 mol, it tends to be difficult to suppress etching, and if it exceeds 0.05 mol, the polishing rate tends to decrease.

本発明で、第2研磨液に用いるアミノ−トリアゾール骨格を有する化合物(保護膜形成剤)は、トリアゾール環の窒素にアミノ基が結合した化合物であり、好ましいものは1−アミノ−1,2,4−トリアゾールである。
そのアミノ−トリアゾール骨格を有する化合物の配合量は、第2研磨液の総量100gに対して0.0001mol〜0.010molとすることが好ましく、0.0003mol〜0.0050molとすることが更に好ましく、0.0005mol〜0.0030molとすることが特に好ましい。0.0001mol未満では、エッチングの抑制が困難となる傾向になり、0.010molを超えると研磨速度が低くなる傾向になる。
In the present invention, the compound (protective film forming agent) having an amino-triazole skeleton used in the second polishing liquid is a compound in which an amino group is bonded to nitrogen of a triazole ring, and preferable ones are 1-amino-1,2, 4-triazole.
The compounding amount of the compound having an amino-triazole skeleton is preferably 0.0001 mol to 0.010 mol, more preferably 0.0003 mol to 0.0050 mol with respect to 100 g of the total amount of the second polishing liquid, It is especially preferable to set it as 0.0005 mol-0.0030 mol. If it is less than 0.0001 mol, it tends to be difficult to suppress etching, and if it exceeds 0.010 mol, the polishing rate tends to be low.

ここで、上記第2研磨液には、更に、アミノ−トリアゾール骨格を有する化合物以外のトリアゾール骨格を有する化合物又はイミダゾール化合物を保護膜形成剤として添加することが好ましい。   Here, it is preferable that a compound having a triazole skeleton other than a compound having an amino-triazole skeleton or an imidazole compound is further added to the second polishing liquid as a protective film forming agent.

アミノ−トリアゾール骨格を有する化合物以外のトリアゾール骨格を有する化合物としては、1,2,3−トリアゾ−ル、1,2,4−トリアゾ−ル、ベンゾトリアゾ−ル又は1−ヒドロキシベンゾトリアゾ−ル等がある。
また、イミダゾール化合物としては、2−メチルイミダゾール、2−エチルイミダゾール、2−(イソプロピル)イミダゾール、2−プロピルイミダゾール、2−ブチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2,4−ジメチルイミダゾール又は2−エチル−4−メチルイミダゾール等がある。
Examples of the compound having a triazole skeleton other than the compound having an amino-triazole skeleton include 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1-hydroxybenzotriazole and the like. There is.
Examples of imidazole compounds include 2-methylimidazole, 2-ethylimidazole, 2- (isopropyl) imidazole, 2-propylimidazole, 2-butylimidazole, 4-methylimidazole, 4-ethylimidazole, and 2,4-dimethylimidazole. Or 2-ethyl-4-methylimidazole.

第1研磨液及び第2研磨液には、必要に応じて、酸、水溶性高分子又は水を添加することができる。
酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコ−ル酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸等、又はこれら有機酸のアンモニウム塩等の塩、硫酸、硝酸、アンモニア、アンモニウム塩類、例えば、過硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム等、クロム酸等がある。これらの中では、実用的な研磨速度が得られる点で、リンゴ酸、酒石酸、クエン酸又はグリコール酸が好ましく用いられる。
An acid, a water-soluble polymer, or water can be added to the first polishing liquid and the second polishing liquid as necessary.
Examples of acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2 -Methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, Examples thereof include phthalic acid, malic acid, tartaric acid, citric acid and the like, or salts such as ammonium salts of these organic acids, sulfuric acid, nitric acid, ammonia, ammonium salts such as ammonium persulfate, ammonium nitrate, ammonium chloride, and chromic acid. Among these, malic acid, tartaric acid, citric acid or glycolic acid is preferably used in that a practical polishing rate can be obtained.

第1研磨液で用いる酸の配合量は、第1研磨液の総量100gに対して0〜0.005molとすることが好ましく、0.00005mol〜0.0025molとすることが更に好ましく、0.0005mol〜0.0020molとすることが特に好ましい。
第2研磨液で用いる酸の配合量は、第2研磨液の総量100gに対して0〜0.005molとすることが好ましく、0.00005mol〜0.0025molとすることが更に好ましく、0.0001mol〜0.0020molとすることが特に好ましい。第1研磨液、第2研磨液のいずれの場合も、酸の配合量が0.005molを超えると、エッチングの抑制が困難となる傾向になる。
The amount of acid used in the first polishing liquid is preferably 0 to 0.005 mol, more preferably 0.00005 mol to 0.0025 mol, and more preferably 0.0005 mol with respect to 100 g of the total amount of the first polishing liquid. It is especially preferable to set it to -0.0020 mol.
The amount of acid used in the second polishing liquid is preferably 0 to 0.005 mol, more preferably 0.00005 mol to 0.0025 mol, and more preferably 0.0001 mol with respect to 100 g of the total amount of the second polishing liquid. It is especially preferable to set it to -0.0020 mol. In both cases of the first polishing liquid and the second polishing liquid, if the amount of the acid exceeds 0.005 mol, it becomes difficult to suppress etching.

また、水溶性高分子としては、ポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアクリルアミド等のカルボキシル基を持つモノマーを基本構成単位とするポリマーおよびその塩、ポリビニルアルコール、ポリビニルピロリドン等のビニル基を持つモノマーを基本構成単位とするポリマーがある。ただ、適用する基板が半導体集積回路用シリコン基板などの場合は、アルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染を避けるため、水溶性高分子はポリアクリル酸又はポリアクリル酸アンモニウム塩が好ましい。なお、基板がガラス基板等である場合はこの限りではない。また、水溶性高分子の重量平均分子量は500以上とすることが好ましく、1500以上とすることが更に好ましく、5000以上とすることが特に好ましい。重量平均分子量の上限は特に規定するものではないが、溶解性の観点から500万以下が好ましい。
これらの水溶性高分子は、金属の表面を保護する保護膜形成効果を有し、含有する保護膜形成剤(ベンゾトリアゾール又はその誘導体)の作用と併せて、ディッシングの抑制等の平坦化特性を向上させるものである。
Examples of water-soluble polymers include polyacrylic acid, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyacrylamide and other monomers having a carboxyl group. And a salt thereof, a polymer having a vinyl group monomer such as polyvinyl alcohol and polyvinylpyrrolidone as a basic structural unit. However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, the water-soluble polymer is preferably polyacrylic acid or ammonium polyacrylate in order to avoid contamination by alkali metal, alkaline earth metal, halide, etc. . Note that this is not the case when the substrate is a glass substrate or the like. The weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 1500 or more, and particularly preferably 5000 or more. The upper limit of the weight average molecular weight is not particularly specified, but is preferably 5 million or less from the viewpoint of solubility.
These water-soluble polymers have the effect of forming a protective film that protects the surface of the metal, and in combination with the action of the protective film forming agent (benzotriazole or its derivative), it has flattening properties such as suppression of dishing. It is to improve.

第1研磨液で用いる水溶性高分子の配合量は、第1研磨液の総量100gに対して、0〜3重量%とすることが好ましく、0.03重量%〜1重量%とすることが更に好ましく、0.1重量%〜0.8重量%とすることが特に好ましい。
第2研磨液で用いる研磨液の水溶性高分子の配合量は、第2研磨液の総量に対して0〜1重量%とすることが好ましく、0.003重量%〜0.5重量%とすることが更に好ましく、0.01重量%〜0.1重量%とすることが特に好ましい。第1研磨液、第2研磨液のいずれの場合も、水溶性高分子の配合量が1重量%を超えると研磨速度が低下傾向となる。
The blending amount of the water-soluble polymer used in the first polishing liquid is preferably 0 to 3% by weight and preferably 0.03% to 1% by weight with respect to 100 g of the total amount of the first polishing liquid. More preferred is 0.1 to 0.8% by weight.
The blending amount of the water-soluble polymer in the polishing liquid used in the second polishing liquid is preferably 0 to 1% by weight with respect to the total amount of the second polishing liquid, and is 0.003% to 0.5% by weight. More preferably, it is particularly preferably 0.01% to 0.1% by weight. In both cases of the first polishing liquid and the second polishing liquid, the polishing rate tends to decrease when the amount of the water-soluble polymer exceeds 1% by weight.

本発明の基体の研磨方法は、先に述べたように、
(1)砥粒と、導体を酸化する酸化剤と、ベンゾトリアゾール又はその誘導体(保護膜形成剤)とを含有する第1研磨液を用いて、導体の堆積膜を途中まで研磨する第1の工程;つづいて、
(2)砥粒と、導体を酸化する酸化剤と、アミノ−トリアゾール骨格を有する化合物とを含有する第2研磨液を用いて、残りの導体の堆積膜を研磨する第2の工程;
を順に行うことを特徴としている。
As described above, the substrate polishing method of the present invention is as follows.
(1) First polishing a deposited film of a conductor halfway using a first polishing liquid containing abrasive grains, an oxidizing agent that oxidizes a conductor, and benzotriazole or a derivative thereof (protective film forming agent) Process;
(2) a second step of polishing the deposited film of the remaining conductor using a second polishing liquid containing abrasive grains, an oxidizing agent that oxidizes the conductor, and a compound having an amino-triazole skeleton;
Are performed in order.

基体側では表面に凹部が設けられて、その上に銅又は銅合金(銅/クロム等)を含む金属膜が形成・充填されている。これを本発明の研磨方法で研磨すると、基体の凸部の金属膜が削り取られて、前記凹部に金属膜を残して、所望の導体パタ−ンが得られる。   On the substrate side, a recess is provided on the surface, and a metal film containing copper or a copper alloy (copper / chromium or the like) is formed and filled thereon. When this is polished by the polishing method of the present invention, the metal film on the convex portion of the substrate is scraped off, leaving the metal film in the concave portion, and a desired conductor pattern is obtained.

基体の研磨は、研磨定盤の研磨布上に本発明に係る研磨液を供給しながら、導体堆積膜を有する基体(基板)を研磨布に押圧した状態で、研磨定盤と基体との相対的位置を動かすことによって行うことができる。   The polishing of the substrate is performed by supplying the polishing liquid according to the present invention onto the polishing cloth of the polishing surface plate, while pressing the substrate (substrate) having the conductor deposition film against the polishing cloth, relative to the polishing surface plate and the substrate. This can be done by moving the target position.

本発明の基体の研磨方法における銅又は銅合金の膜を途中まで研磨する第1の工程において、銅又は銅合金の膜の研磨時間は、銅又は銅合金の膜が除去され下地膜または基体の一部がウエハ表面に露出する時間の75〜95%とすることが好ましく、80〜93%とすることが更に好ましく、85〜92%とすることが特に好ましい。この研磨時間が75%未満では、第2の工程で銅又は銅合金の膜の研磨時間が長くなる傾向がある。また、95%を超えると、続く第2の工程において銅又は銅合金を完全に除去した後のディッシングおよびシニングが大きくなる傾向がある。   In the first step of polishing the copper or copper alloy film halfway in the substrate polishing method of the present invention, the polishing time of the copper or copper alloy film is such that the copper or copper alloy film is removed and the base film or substrate It is preferable to set it as 75 to 95% of the time which a part exposes to the wafer surface, It is more preferable to set it as 80 to 93%, It is especially preferable to set it as 85 to 92%. If the polishing time is less than 75%, the polishing time of the copper or copper alloy film tends to be long in the second step. On the other hand, if it exceeds 95%, dishing and thinning after copper or copper alloy is completely removed in the subsequent second step tends to be large.

本発明によれば、CMP法で金属膜の埋め込み配線(パターン)を形成させる際に、研磨速度を落とさずに、高平坦化はもとより、ディッシング及びシニングを抑制できる。   According to the present invention, dishing and thinning as well as high planarization can be suppressed without decreasing the polishing rate when forming a metal film embedded wiring (pattern) by CMP.

以下、実施例により、本発明を更に具体的に説明する。
実施例1
(1)第1研磨液の調製
アンモニア水溶液中で、テトラエトキシシランの加水分解により製造した平均粒径20nmのコロイダルシリカ(砥粒)を0.3重量部、ベンゾトリアゾール(保護膜形成剤)を0.29重量部、リンゴ酸を0.21重量部、ポリアクリル酸アンモニウム(水溶性高分子)を0.57重量部、メタノールを0.71重量部、水を97.92重量部量りとり、よく撹拌・混合した。次に、この混合液と過酸化水素(試薬特級、30%水溶液)とを7:3の重量比率で混合し、第1研磨液とした。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
(1) Preparation of first polishing liquid 0.3 parts by weight of colloidal silica (abrasive grains) having an average particle diameter of 20 nm produced by hydrolysis of tetraethoxysilane in an aqueous ammonia solution and benzotriazole (protective film forming agent) 0.29 parts by weight, 0.21 parts by weight of malic acid, 0.57 parts by weight of ammonium polyacrylate (water-soluble polymer), 0.71 parts by weight of methanol, 97.92 parts by weight of water, Stir and mix well. Next, this liquid mixture and hydrogen peroxide (special grade reagent, 30% aqueous solution) were mixed at a weight ratio of 7: 3 to obtain a first polishing liquid.

(2)第2研磨液の調製
同じく平均粒径20nmのコロイダルシリカ(砥粒)を0.56重量部、1−アミノ−1,2,4−トリアゾールを0.06重量部、2−メチル−4−メチルイミダゾール(保護膜形成剤)を0.22重量部、リンゴ酸を0.07重量部、ポリアクリル酸アンモニウム(水溶性高分子)を0.02重量部、水を99.07重量部量りとり、よく撹拌・混合した。次に、この混合液と過酸化水素(試薬特級、30%水溶液)とを9:1の重量比率で混合し、第2研磨液とした。
(2) Preparation of Second Polishing Liquid Similarly, 0.56 parts by weight of colloidal silica (abrasive grains) having an average particle diameter of 20 nm, 0.06 parts by weight of 1-amino-1,2,4-triazole, 2-methyl- 0.22 parts by weight of 4-methylimidazole (protective film forming agent), 0.07 parts by weight of malic acid, 0.02 parts by weight of ammonium polyacrylate (water-soluble polymer), 99.07 parts by weight of water Weighed and stirred and mixed well. Next, this liquid mixture and hydrogen peroxide (special grade reagent, 30% aqueous solution) were mixed at a weight ratio of 9: 1 to obtain a second polishing liquid.

(3)研磨条件
・基体:二酸化シリコンの表面に深さ0.5μmの溝を形成して、公知のスパッタ法によって厚さ50nmの窒化タンタル膜(バリア層)を形成した。同様にスパッタ法により銅膜を形成して公知の熱処理によって埋め込んだシリコン基板を用いた。
・研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂を用いた。
・研磨圧力:140gf/cm
・基板と研磨定盤との相対速度:100m/min
(3) Polishing conditions / Substrate: A groove having a depth of 0.5 μm was formed on the surface of silicon dioxide, and a tantalum nitride film (barrier layer) having a thickness of 50 nm was formed by a known sputtering method. Similarly, a silicon substrate in which a copper film was formed by sputtering and embedded by a known heat treatment was used.
Polishing pad: A foamed polyurethane resin having closed cells was used.
Polishing pressure: 140 gf / cm 2
・ Relative speed between substrate and polishing platen: 100 m / min

(4)研磨品の評価方法
・ディッシング量:上記基体を用いて研磨を行い、触針式段差計で配線金属部幅100μm及び絶縁膜部幅100μmが交互に並んだストライプ状パターン部の表面形状から、絶縁膜部に対する配線金属部の膜減り量を求めた。
・シニング量:上記ディッシング量評価用基体に形成された、配線金属部幅45μm及び絶縁膜部幅5μmが交互に並んだ総幅2.5mmのストライプ状パターン部の表面形状を触針式段差計により測定し、ストライプ状パターン周辺の絶縁膜フィールド部に対するパターン中央付近の絶縁膜部の膜減り量を求めた。
(4) Polishing product evaluation method and dishing amount: Polishing using the above-mentioned substrate, and the surface shape of the striped pattern part in which the wiring metal part width of 100 μm and the insulating film part width of 100 μm are alternately arranged by a stylus type step gauge From this, the amount of reduction of the wiring metal part relative to the insulating film part was determined.
Thinning amount: The surface shape of the striped pattern portion having a total width of 2.5 mm in which the wiring metal portion width of 45 μm and the insulating film portion width of 5 μm are alternately formed on the dishing amount evaluation base is measured with a stylus type step meter. The amount of film reduction of the insulating film portion near the center of the pattern with respect to the insulating film field portion around the stripe pattern was determined.

(5)基体の研磨及び結果
予備試験として、初めに第1研磨液を用いて、予備の基体を銅の下地の層が一部露出するまで研磨した。研磨時間は82秒であった。
そこで、次に、本試験用の基体を第1研磨液を用いて74秒(予備試験における82秒の90%)研磨を行い、続いて第2研磨液を用いて残りの銅を完全に除去するまで研磨した。第2研磨液での研磨時間は126秒であった。この基材のディッシングは50nmであり、シニングは30nmであった。第1研磨液および第2研磨液によるトータルの研磨時間は200秒(3分20秒)であった。
(5) Polishing and results of substrate As a preliminary test, first, the first polishing liquid was used to polish the preliminary substrate until a part of the underlying copper layer was exposed. The polishing time was 82 seconds.
Then, next, the substrate for this test is polished for 74 seconds (90% of 82 seconds in the preliminary test) using the first polishing liquid, and then the remaining copper is completely removed using the second polishing liquid. Polished until The polishing time with the second polishing liquid was 126 seconds. The dishing of this substrate was 50 nm and the thinning was 30 nm. The total polishing time with the first polishing liquid and the second polishing liquid was 200 seconds (3 minutes and 20 seconds).

比較として、第1研磨液のみを用いて、銅がなくなるまで研磨したとき、ウエハのディッシングは120nm、シニングは80nm、研磨時間は160秒であった(比較1)。   For comparison, when polishing was performed using only the first polishing liquid until copper was exhausted, the dishing of the wafer was 120 nm, the thinning was 80 nm, and the polishing time was 160 seconds (Comparative 1).

また、第2研磨液のみを用いて、銅がなくなるまで研磨したとき、ウエハのディッシングは50nm、シニングは40nm、研磨時間は600秒であった(比較2)。   Further, when polishing was performed using only the second polishing liquid until copper was exhausted, the dishing of the wafer was 50 nm, the thinning was 40 nm, and the polishing time was 600 seconds (Comparative 2).

本発明による基体の研磨方法は、比較1の研磨方法に比べ、ディッシングが良好であることが分かる。また、比較2の研磨方法に比べ、ディッシング、シニングとも同等の値であるが、研磨時間が短いことが分かる。   It can be seen that the substrate polishing method of the present invention has better dishing than the polishing method of Comparative Example 1. Further, it can be seen that, compared with the polishing method of Comparative Example 2, both dishing and thinning have the same value, but the polishing time is short.

Claims (6)

砥粒と、酸化剤と、ベンゾトリアゾール又はその誘導体とを含有してなる研磨液をCMP用第1研磨液とし、
砥粒と、酸化剤と、アミノ−トリアゾール骨格を有する化合物とを含有してなる研磨液をCMP用第2研磨液として、
前記両液を組み合わせた一揃いのCMP用研磨液。
A polishing liquid containing abrasive grains, an oxidizing agent, and benzotriazole or a derivative thereof is used as a first polishing liquid for CMP.
A polishing liquid containing abrasive grains, an oxidizing agent, and a compound having an amino-triazole skeleton is used as the second polishing liquid for CMP.
A set of polishing liquids for CMP in which both liquids are combined.
アミノ−トリアゾール骨格を有する化合物が、トリアゾール環の窒素にアミノ基が結合した化合物である、請求項1のCMP用研磨液。 The polishing slurry for CMP according to claim 1, wherein the compound having an amino-triazole skeleton is a compound in which an amino group is bonded to nitrogen of a triazole ring. トリアゾール環の窒素にアミノ基が結合した化合物が、1−アミノ−1,2,4−トリアゾールである、請求項2のCMP用研磨液。 The polishing slurry for CMP according to claim 2, wherein the compound in which an amino group is bonded to nitrogen of the triazole ring is 1-amino-1,2,4-triazole. アミノ−トリアゾール骨格を有する化合物以外のトリアゾール骨格を有する化合物、又はイミダゾール化合物を、更に含有してなる請求項1〜請求項3のいずれか一つのCMP用研磨液。 The polishing slurry for CMP according to any one of claims 1 to 3, further comprising a compound having a triazole skeleton other than a compound having an amino-triazole skeleton, or an imidazole compound. アミノ−トリアゾール骨格を有する化合物以外のトリアゾール骨格を有する化合物が、1,2,3−トリアゾ−ル、1,2,4−トリアゾ−ル、ベンゾトリアゾ−ル又は1−ヒドロキシベンゾトリアゾ−ルであり、
イミダゾール化合物が、2−メチルイミダゾール、2−エチルイミダゾール、2−(イソプロピル)イミダゾール、2−プロピルイミダゾール、2−ブチルイミダゾール、4−メチルイミダゾール、4−メチルイミダゾール、2,4−ジメチルイミダゾール又は2−エチル−4−メチルイミダゾールである、請求項4のCMP用研磨液。
The compound having a triazole skeleton other than the compound having an amino-triazole skeleton is 1,2,3-triazole, 1,2,4-triazole, benzotriazole, or 1-hydroxybenzotriazole. ,
The imidazole compound is 2-methylimidazole, 2-ethylimidazole, 2- (isopropyl) imidazole, 2-propylimidazole, 2-butylimidazole, 4-methylimidazole, 4-methylimidazole, 2,4-dimethylimidazole or 2- The polishing slurry for CMP according to claim 4, which is ethyl-4-methylimidazole.
半導体集積回路における導体埋め込み配線を形成させる基体の研磨方法であって、
砥粒と、酸化剤と、ベンゾトリアゾール又はその誘導体とを含有してなる第1研磨液を用いて、導体の堆積膜を途中まで研磨する第1の工程、つづいて、
砥粒と、酸化剤と、アミノ−トリアゾール骨格を有する化合物とを含有する第2研磨液を用いて、残りの導体の堆積膜を研磨する第2の工程、
を順に行うことを特徴とする基体の研磨方法。
A method of polishing a substrate for forming a conductor-embedded wiring in a semiconductor integrated circuit,
A first step of polishing the deposited film of the conductor halfway using a first polishing liquid containing abrasive grains, an oxidizing agent, and benzotriazole or a derivative thereof;
A second step of polishing the remaining conductor deposited film using a second polishing liquid containing abrasive grains, an oxidizing agent, and a compound having an amino-triazole skeleton;
A method for polishing a substrate, comprising sequentially performing steps.
JP2004009129A 2004-01-16 2004-01-16 One set of polishing solution for cmp and method for polishing substrate Pending JP2005203602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009129A JP2005203602A (en) 2004-01-16 2004-01-16 One set of polishing solution for cmp and method for polishing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009129A JP2005203602A (en) 2004-01-16 2004-01-16 One set of polishing solution for cmp and method for polishing substrate

Publications (1)

Publication Number Publication Date
JP2005203602A true JP2005203602A (en) 2005-07-28

Family

ID=34822258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009129A Pending JP2005203602A (en) 2004-01-16 2004-01-16 One set of polishing solution for cmp and method for polishing substrate

Country Status (1)

Country Link
JP (1) JP2005203602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020939A1 (en) * 2005-08-16 2007-02-22 Vitamin C60 Bioresearch Corporation Polishing slurry
JP2010245148A (en) * 2009-04-02 2010-10-28 Jsr Corp Chemical mechanical polishing method, semiconductor device using the same, and kit for preparing aqueous dispersion for chemical mechanical polishing
US20130344696A1 (en) * 2011-03-11 2013-12-26 Basf Se Method for forming through-base wafer vias

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020939A1 (en) * 2005-08-16 2007-02-22 Vitamin C60 Bioresearch Corporation Polishing slurry
JP2010245148A (en) * 2009-04-02 2010-10-28 Jsr Corp Chemical mechanical polishing method, semiconductor device using the same, and kit for preparing aqueous dispersion for chemical mechanical polishing
US20130344696A1 (en) * 2011-03-11 2013-12-26 Basf Se Method for forming through-base wafer vias
KR20140012660A (en) * 2011-03-11 2014-02-03 바스프 에스이 Method for forming through-base wafer vias
US9496146B2 (en) * 2011-03-11 2016-11-15 Basf Se Method for forming through-base wafer vias

Similar Documents

Publication Publication Date Title
JP4568604B2 (en) Polishing liquid and polishing method
JP5472049B2 (en) Abrasives for chemical mechanical polishing
KR101418626B1 (en) Metal polishing liquid and polishing method
JP5567293B2 (en) Polishing composition for planarizing metal layers in both stages of chemical mechanical polishing process to remove copper in two stages
JP2008263215A (en) Polishing liquid, and method of polishing
JP4400562B2 (en) Polishing liquid for metal and polishing method
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
JP4951808B2 (en) Polishing liquid for metal and polishing method
JP4555990B2 (en) CMP polishing liquid for semiconductor metal film and method for polishing substrate
JP2008270826A (en) Polishing solution and polishing method
JP4164941B2 (en) Polishing liquid for metal and polishing method
JP4759779B2 (en) Substrate polishing method
JP4683681B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP4224221B2 (en) Polishing liquid for conductor and polishing method using the same
JP2005203602A (en) One set of polishing solution for cmp and method for polishing substrate
KR101203599B1 (en) Method for chemical mechanical planarization of a copper-containing substrate
JP2003188120A (en) Polishing liquid and polishing method for metal
JP5088352B2 (en) Polishing liquid for metal and polishing method
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JP2009152647A (en) Metal polishing solution and substrate polishing method using the same
JP4710915B2 (en) Polishing method
JP3902896B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP2003183628A (en) Polishing liquid for metal and method for grinding
JP2008118112A (en) Polishing solution for cmp and polishing method of substrate
JP2006216828A (en) Polishing method using polishing liquid for metal