WO2007020939A1 - Polishing slurry - Google Patents

Polishing slurry Download PDF

Info

Publication number
WO2007020939A1
WO2007020939A1 PCT/JP2006/316096 JP2006316096W WO2007020939A1 WO 2007020939 A1 WO2007020939 A1 WO 2007020939A1 JP 2006316096 W JP2006316096 W JP 2006316096W WO 2007020939 A1 WO2007020939 A1 WO 2007020939A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
polishing
polishing slurry
water
fullerene derivative
Prior art date
Application number
PCT/JP2006/316096
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Miyoshi
Yasuhiro Takaya
Ken Kokubo
Kenji Matsubayashi
Takumi Oshima
Original Assignee
Vitamin C60 Bioresearch Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitamin C60 Bioresearch Corporation filed Critical Vitamin C60 Bioresearch Corporation
Priority to JP2007531007A priority Critical patent/JPWO2007020939A1/en
Publication of WO2007020939A1 publication Critical patent/WO2007020939A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a polishing slurry used for chemical mechanical polishing (CMP).
  • LSI Large Scale Integrated Circuit
  • multilayer wiring technology using copper as a wiring material is known.
  • CMP is applied as a planarization process for each layer.
  • CMP is indispensable in the damascene process in which copper is buried in a groove for wiring formed in advance by sputtering, and then the copper on the surface is removed to form a copper wiring. In this way, CMP is one of the important elemental technologies for further miniaturization and high integration of LSI.
  • Patent Document 1 discloses a slurry for CMP containing a silica abrasive capable of polishing a copper-based metal film.
  • Patent Document 1 JP 2004-071673 A
  • Polishing slurries used in conventional CMP use silica-based particles or alumina-based particles as polishing abrasive grains, so those having a large particle size can reach several hundred nm and have large variations in particle size. there were. Furthermore, since silica-based particles or alumina-based particles are likely to aggregate, it has been difficult to maintain uniform dispersibility of the abrasive cannons in the polishing slurry. Therefore, the flatness when copper wiring is polished using conventional CMP polishing slurry is about 500 nm in 30 mm square, and 7 to 8 layers is the limit when applied to the polishing power of a multilayer wiring structure. Met. In order to achieve higher integration of LSIs, it is necessary to polish the copper wiring more evenly. The conventional polishing slurry for CMP meets this requirement. It is becoming difficult to
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a polishing slurry that can further improve the flatness of the surface when a metal or semiconductor is polished by CMP. Is in the provision of.
  • One embodiment of the present invention is a polishing slurry used for polishing a semiconductor or metal, which contains water and fullerene or a fullerene derivative, and the particle size of the fullerene or the fullerene derivative is less than lOOnm. It is characterized by that.
  • a fullerene single molecule is a very small sphere having a particle size of 0.7 lnm.
  • Fullerene molecules are as hard as diamonds.
  • the particle size of the abrasive particles in the polishing slurry is important.
  • the particle size of the fullerene or fullerene derivative exceeds lOOnm, scratches are generated on the substrate because the particle size of the abrasive grains is too large.
  • the particle size of fullerene or fullerene derivative is greater than or equal to lOOnm, the absolute value of the variation in particle size becomes large, which causes undulation in the substrate and makes flatness difficult.
  • the particle size of fullerene or fullerene derivative is set to less than lOOnm, it is possible to achieve flatness of 2 nm or less in 20 m square. As a result, the flatness of the substrate surface is dramatically improved, and it becomes possible to manufacture LSIs having a wiring structure with ten or more layers.
  • the “particle size of fullerene or fullerene derivative” means the size of the fullerene or fullerene derivative in water, and the fullerene or fullerene derivative in water is a single molecule, cluster or aggregate. Either form may be sufficient.
  • Another aspect of the present invention is a polishing slurry used for polishing a semiconductor or metal, containing water and fullerene or a fullerene derivative, wherein the fullerene or fullerene derivative is dissolved in water.
  • “fullerene or fullerene derivative is dissolved in water” means a state in which water containing fullerene or a fullerene derivative is not suspended and is transparent.
  • fullerene or a fullerene derivative is dissolved in water and is present in water as a single molecule or a cluster of several fullerene molecules associated. For this reason, the polishing slurry of the polishing slurry is extremely fine and the particle size is kept uniform at the molecular level, so that flatness that is difficult to achieve with conventional CMP can be obtained.
  • the fullerene derivative in order to make the particle size of the fullerene derivative in water less than lOOnm or to make the fullerene derivative water-soluble, the fullerene derivative preferably has a hydroxyl group.
  • an oxidizing agent, a preservative, and a chelating agent may be further contained.
  • a polishing slurry further containing an oxidizing agent, a preservative, and a chelating agent is suitable for polishing a metal.
  • the oxidizing agent forms a fragile oxide film on the metal surface.
  • the preservative suppresses the corrosion of the oxidizing agent.
  • the chelating agent serves to dissolve the oxide film formed by the oxidizing agent into the slurry as complex ions. In such an aqueous solution, fullerene nanoparticles that rotate under constant pressure with a polishing pad act as polishing particles and play a role in smoothly removing fragile oxide films without scratching or roughness. .
  • a semiconductor or metal can be polished more flatly.
  • FIG. 1 is a schematic view showing a configuration of a general CMP apparatus used in the present embodiment.
  • FIG. 3 FT-IR ⁇ vector diagram of water-insoluble C ( ⁇ ) ⁇ 5 ⁇ ⁇ of reaction raw material.
  • FIG. 5 is a graph showing the relationship between polishing time and surface roughness.
  • FIG. 6 is an example of an AFM observation image of the substrate surface obtained by a polishing experiment using the polishing slurry of this example.
  • FIG. 7 is an example of an AFM observation image of the substrate surface obtained by a polishing experiment using the polishing slurry of this example.
  • polishing surface plate 10 polishing surface plate, 12 polishing pad, 20 pressure head, 30 substrate, 40 polishing slurry supply means, 50 polishing slurry.
  • FIG. 1 is a schematic diagram showing a configuration of a general CMP apparatus used in the present embodiment.
  • the CMP apparatus 1 includes a polishing surface plate 10, a polishing pad 12, a pressure head 20, and polishing slurry supply means 40.
  • the polishing surface plate 10 has a mechanism that can rotate at a predetermined rotation speed.
  • a polishing pad 12 is affixed to the polishing surface plate 10.
  • the polishing pad 12 is not particularly limited, and for example, non-woven fabric, foamed polyurethane, porous fluorocarbon resin, etc. can be used.
  • the pressure head 20 has a mechanism that can rotate at a predetermined rotation speed and a mechanism that pressurizes the polishing platen 10 with a predetermined pressure.
  • a substrate 30 that also has metal or Z and semiconductor power is attached to the pressure head 20 with the surface to be polished facing the polishing surface plate 10.
  • the polishing slurry supply means 40 includes piping, a pump (not shown), and the like, and can continuously supply the polishing slurry 50 onto the polishing pad 12 during polishing.
  • the polishing slurry according to the embodiment of the present invention is a polishing slurry containing water and fullerene or a fullerene derivative, and has a particle size force of less than SlOOnm.
  • fullerene is not limited as long as it satisfies the purpose, but may be, for example, C60, C70 or higher, and a mixture thereof. Among these fullerenes, C60 is preferable.
  • the fullerene or fullerene derivative may be in the form of a single molecule, a cluster or an aggregate in the aqueous solution of the polishing slurry.
  • the particle size of the fullerene or fullerene derivative By setting the particle size of the fullerene or fullerene derivative to less than lOOnm, flatness of 2 nm or less in a 20 ⁇ m square can be realized. This dramatically improves the flatness of the substrate surface and enables the manufacture of LSIs with a dozen levels of wiring structures.
  • the fullerene or fullerene derivative is dissolved in water.
  • Fullerene or fullerene induction The polishing slurry in which the body is dissolved in water is transparent, and the particle size of fullerene or fullerene derivative is naturally less than lOOnm. Since the fullerene or fullerene derivative is dissolved in water, it becomes difficult for abrasive particles to remain on the surface of the semiconductor or metal, and the polishing slurry can be easily removed after the polishing process.
  • the fullerene derivative preferably has a hydroxyl group. Further, it is expected that the fullerene derivative can further improve water solubility without increasing the number of hydroxyl groups by further having a hydrophilic group such as an amino group. it can.
  • the functional group of the fullerene derivative is not limited to the above-described hydroxyl group and amino group as long as it improves water solubility. For example, a carboxyl group, a sulfo group, a morphono group, and a salt thereof can be used as the functional group of the fullerene derivative.
  • the means for dissolving fullerene in water is not limited to the use of fullerene derivatives in which substituents such as hydroxyl groups are introduced into fullerene, but inclusion bodies of fullerene, cyclodextrin, PVP and the like (hereinafter referred to as fullerene inclusion). Body)).
  • fullerene inclusion it is possible to dissolve fullerene without changing the structure of fullerene itself.
  • the fullerene may be dispersed in water by adding it to a large amount of water and stirring.
  • the metal is polished, it is preferable to further contain an oxidizing agent, a preservative, and a chelating agent.
  • the oxidizing agent oxidizes the surface of the metal to be polished.
  • the oxidizing agent is not particularly limited, and examples thereof include aqueous hydrogen peroxide, sodium hydroxide, and potassium hydroxide.
  • the preservative suppresses the corrosion of the oxidizing agent.
  • Preservatives are not particularly limited, but BTA
  • the chelating agent dissolves the acid film formed by the oxidizing agent into the slurry as complex ions.
  • the chelating agent is not particularly limited, and examples thereof include compounds such as malonic acid, citrate, phosphoric acid, nitric acid, malic acid, and ammonium compounds thereof.
  • the type and amount of the oxidizing agent, preservative, and chelating agent are determined depending on the metal material to be polished. It can be changed as appropriate according to the quality.
  • An example of a polishing slurry that can be applied to copper polishing is shown below.
  • Ammonium phosphate (chelating agent) 0.5-: LOwt%
  • the pH of the polishing slurry may be adjusted with a pH adjusting agent such as hydroxide or ammonia.
  • a polishing slurry was prepared using full water and highly water-soluble polyhydroxylene fullerene, which was estimated to have an average of 36 hydroxyl groups modified on fullerene C60, and the resulting copper film was deposited on a silicon wafer. ! A polishing experiment using CMP was conducted.
  • the resulting precipitate is precipitated using a centrifuge, separated by decantation, further washed twice with 50 mL of ether, and then vacuum-dried for 18 hours to dissolve the water-soluble reaction product.
  • a light ocher powder 0.097 g of fullerene hydroxide was obtained.
  • Fig. 2 shows the FT-IR ⁇ vector of the powder thus obtained.
  • C-C and C-0 stretch in based 1620, 1370 showed a broad absorption around 1080cm- 1.
  • These absorption patterns are very similar to the spectrum of the water-insoluble hydroxide-fullerene (Fig. 3) reported by LY Chiang et al. (J. Am. Chem. Soc, 1992, 114, 10154), and the relative intensity ratio of each absorption is slightly different. It was suggested that there is.
  • fullerene hydroxide prepared as described above 0.02 g was dissolved in 20 ml of ultrapure water, and then stirred by ultrasonic vibration. The obtained fullerene aqueous solution was uniformly dispersed with ultrasonic waves to prepare a 0.1 wt% polyhydroxyl-fullerene aqueous solution. Next, the fullerene aqueous solution was passed through an lOOnm filter. As a result, a light yellow uniform filtrate exactly the same as the aqueous solution before filtration was obtained. From this, it was estimated that the fullerene particles in the fullerene aqueous solution were less than lOOnm.
  • FIG. 5 shows the relationship between the polishing time and the surface roughness.
  • the roughness before polishing in the 5 ⁇ m square is more than lOnm in RMS, and a large swell of about 40 nm is seen from the cross-sectional curve.
  • RMS RMS force
  • the polishing time increases, the roughness improves exponentially, and the surface finish is good with an RMS force of S2 nm or less (RMS is 0.339 nm in the cross-section curve) in about 6 minutes.
  • RMS is 0.339 nm in the cross-section curve
  • FIG. 6 and FIG. 7 are examples of AFM observation images of the substrate surface obtained by a polishing experiment using the polishing slurry of this example.
  • Figure 6 shows an AFM image when the measurement area is 20 m square. The RMS at this time was 1.644 nm.
  • Figure 7 shows an AFM image when the measurement area is 5 m square. The RMS at this time was 0.722 nm, and an ultra-smooth surface with a roughness of 1 nm or less was obtained.
  • the number of force hydroxyl groups in which the average number of hydroxyl groups of the fullerene hydroxide is 36 is not limited thereto.
  • a fullerene hydroxide having an average number of hydroxyl groups of 40 can be prepared by the following procedure, and can be used as polishing particles of polishing slurry.
  • Example 2 Following the same procedure as in Example 1 but stir the water-insoluble solution of water-insoluble hydroxide-fullerene in hydrogen peroxide solution at 60 ° C for 4 days to confirm that the solution became completely uniform yellow and transparent. After further reaction for 10 days, the color of the solution gradually faded and became pale yellow and transparent. Further, by the same operation, 0.13 g of a milky white powder of water-soluble hydroxylated fullerene was obtained. [0044] An FT-IR measurement of the powder thus obtained confirmed that the spectrum was almost the same as that of hydroxy-fullerene having an average number of hydroxyl groups of 36 (Fig. 8).
  • a semiconductor or metal can be polished more flatly. More specifically, the polishing slurry of the present invention is useful as a chemical mechanical polishing polishing particle for flattening the surface of a semiconductor or metal, and has great industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A polishing slurry to be used for polishing conductor or metal is characterized in that the polishing slurry contains water, fullerene or fullerene derivative, and the particle diameter of the fullerene or the fullerene devivative is 100nm or smaller. A planarity of 2nm or less in 20μm square is achieved by having the particle diameter of the fullerene or the fullerene derivative 100nm or less.

Description

明 細 書  Specification
研磨スラリー  Polishing slurry
技術分野  Technical field
[0001] 本発明は、化学機械研磨 (CMP)に用いられる研磨スラリーに関する。  The present invention relates to a polishing slurry used for chemical mechanical polishing (CMP).
背景技術  Background art
[0002] 近年、より小型化、高機能化された情報電子機器が求められている。これにともなつ て、 LSI (大規模集積回路)のより一層の微細化、高集積ィ匕が必要とされている。 LSI の高集積ィ匕技術として、銅を配線材料とする多層配線技術が知られている。多層配 線を形成する場合には、多層配線を構成する各配線層の表面を平坦化する必要が ある。各層の平坦化加工として、 CMPが適用されている。また、予め形成した配線用 の溝に銅をスパッタ法などで埋め込んだ後に、表面の余分な銅を除去して銅配線を 形成するダマシンプロセスにおいて、 CMPが不可欠となっている。このように、 CMP は、 LSIのより一層の微細化、高集積ィヒを図る上で、重要な要素技術の一つである。  [0002] In recent years, there has been a demand for information electronic devices that are more compact and highly functional. Along with this, further miniaturization and high integration of LSI (Large Scale Integrated Circuit) are required. As a highly integrated LSI technology for LSIs, multilayer wiring technology using copper as a wiring material is known. When forming a multilayer wiring, it is necessary to flatten the surface of each wiring layer constituting the multilayer wiring. CMP is applied as a planarization process for each layer. In addition, CMP is indispensable in the damascene process in which copper is buried in a groove for wiring formed in advance by sputtering, and then the copper on the surface is removed to form a copper wiring. In this way, CMP is one of the important elemental technologies for further miniaturization and high integration of LSI.
[0003] 銅配線の研磨カ卩ェ用の従来の CMPでは、シリカ系粒子やアルミナ系粒子を研磨 砲粒として含有する研磨スラリーが用いられている。たとえば、特許文献 1は、銅系金 属膜を研磨できるシリカ研磨材を含有する CMP用スラリーを開示する。  [0003] In a conventional CMP for polishing a copper wiring, a polishing slurry containing silica-based particles and alumina-based particles as polishing particles is used. For example, Patent Document 1 discloses a slurry for CMP containing a silica abrasive capable of polishing a copper-based metal film.
特許文献 1 :特開 2004— 071673号公報  Patent Document 1: JP 2004-071673 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 従来の CMPに用いられる研磨スラリーは、シリカ系粒子やアルミナ系粒子を研磨 砥粒とするため、粒径が大きいものでは数百 nmにも達するとともに、粒径に大きなば らつきがあった。さらに、シリカ系粒子またはアルミナ系粒子は凝集しやすいため、研 磨スラリー中の研磨砲粒の分散性を一様に維持することが困難であった。このため、 従来の CMP用研磨スラリーを用いて銅配線を研磨した場合の平坦性は 30mm四方 で 500nm程度であり、多層配線構造の研磨力卩ェに適用した場合には 7〜8階層が 限界であった。 LSIのさらなる高集積ィ匕のためには、銅配線をより一層平坦に研磨カロ ェすることが必要とされている力 従来の CMP用の研磨スラリーではこの要求に応え ることが困難になってきて 、る。 [0004] Polishing slurries used in conventional CMP use silica-based particles or alumina-based particles as polishing abrasive grains, so those having a large particle size can reach several hundred nm and have large variations in particle size. there were. Furthermore, since silica-based particles or alumina-based particles are likely to aggregate, it has been difficult to maintain uniform dispersibility of the abrasive cannons in the polishing slurry. Therefore, the flatness when copper wiring is polished using conventional CMP polishing slurry is about 500 nm in 30 mm square, and 7 to 8 layers is the limit when applied to the polishing power of a multilayer wiring structure. Met. In order to achieve higher integration of LSIs, it is necessary to polish the copper wiring more evenly. The conventional polishing slurry for CMP meets this requirement. It is becoming difficult to
[0005] 本発明はこうした課題に鑑みてなされたものであり、その目的は、金属または半導 体を CMPで研磨カ卩ェしたときの表面の平坦性をさらに向上させることのできる研磨ス ラリーの提供にある。  [0005] The present invention has been made in view of these problems, and an object of the present invention is to provide a polishing slurry that can further improve the flatness of the surface when a metal or semiconductor is polished by CMP. Is in the provision of.
課題を解決するための手段  Means for solving the problem
[0006] 本発明のある態様は、半導体または金属の研磨に用いられる研磨スラリーであって 、水と、フラーレンまたはフラーレン誘導体とを含有し、フラーレンまたは前記フラーレ ン誘導体の粒径が lOOnm未満であることを特徴とする。  [0006] One embodiment of the present invention is a polishing slurry used for polishing a semiconductor or metal, which contains water and fullerene or a fullerene derivative, and the particle size of the fullerene or the fullerene derivative is less than lOOnm. It is characterized by that.
[0007] フラーレンの単分子は粒径が 0. 7 lnmと極めて微小な球体である。フラーレンの単 分子はダイヤモンドと同等の硬さを有している。このためフラーレンを CMP用の研磨 スラリーとして半導体または金属を研磨加工することにより、従来の CMPでは到達が 困難であった平坦性を得ることができる。ただし、平坦性を向上させるためには、研 磨スラリー中の研磨砲粒の粒径が重要である。フラーレンまたはフラーレン誘導体の 粒径が lOOnm以上になると、研磨砥粒としての粒径が大きすぎるために、基板にス クラッチが発生する。また、フラーレンまたはフラーレン誘導体の粒径が lOOnm以上 になると、粒径のばらつきの絶対値が大きくなるため、基板にうねりが発生し、平坦ィ匕 が困難になる。しかし、フラーレンまたはフラーレン誘導体の粒径を lOOnm未満とす ることにより、 20 m四方で 2nm以下の平坦性を実現することができる。これにより、 基板表面の平坦性が飛躍的に向上し、十数階層の配線構造を持つ LSIの製造が可 會 になる。  [0007] A fullerene single molecule is a very small sphere having a particle size of 0.7 lnm. Fullerene molecules are as hard as diamonds. For this reason, by polishing the semiconductor or metal using fullerene as the polishing slurry for CMP, it is possible to obtain flatness that was difficult to achieve with conventional CMP. However, in order to improve the flatness, the particle size of the abrasive particles in the polishing slurry is important. When the particle size of the fullerene or fullerene derivative exceeds lOOnm, scratches are generated on the substrate because the particle size of the abrasive grains is too large. In addition, when the particle size of fullerene or fullerene derivative is greater than or equal to lOOnm, the absolute value of the variation in particle size becomes large, which causes undulation in the substrate and makes flatness difficult. However, by setting the particle size of fullerene or fullerene derivative to less than lOOnm, it is possible to achieve flatness of 2 nm or less in 20 m square. As a result, the flatness of the substrate surface is dramatically improved, and it becomes possible to manufacture LSIs having a wiring structure with ten or more layers.
[0008] ここで、「フラーレンまたはフラーレン誘導体の粒径」とは、水中のフラーレンまたは フラーレン誘導体の粒としての大きさのことであり、水中のフラーレンまたはフラーレン 誘導体は、単分子、クラスターまたは凝集体のいずれの形態でもよい。  Here, the “particle size of fullerene or fullerene derivative” means the size of the fullerene or fullerene derivative in water, and the fullerene or fullerene derivative in water is a single molecule, cluster or aggregate. Either form may be sufficient.
[0009] 本発明の他の態様は、半導体または金属の研磨に用いられる研磨スラリーであつ て、水と、フラーレンまたはフラーレン誘導体とを含有し、フラーレンまたはフラーレン 誘導体が水に溶解していることを特徴とする。ここで、「フラーレンまたはフラーレン誘 導体が水に溶解していること」とは、フラーレンまたはフラーレン誘導体を含有する水 が懸濁せず、かつ透明である状態をいう。 [0010] この態様によれば、フラーレンまたはフラーレン誘導体が水に溶解し、単分子ある いは数個のフラーレン分子が会合したクラスタ一として水中に存在する。このため、研 磨スラリーの研磨砲粒が極めて微小かつ粒径が分子レベルで均一に保たれるので、 従来の CMPでは到達が困難であった平坦性を得ることができる。 [0009] Another aspect of the present invention is a polishing slurry used for polishing a semiconductor or metal, containing water and fullerene or a fullerene derivative, wherein the fullerene or fullerene derivative is dissolved in water. Features. Here, “fullerene or fullerene derivative is dissolved in water” means a state in which water containing fullerene or a fullerene derivative is not suspended and is transparent. [0010] According to this embodiment, fullerene or a fullerene derivative is dissolved in water and is present in water as a single molecule or a cluster of several fullerene molecules associated. For this reason, the polishing slurry of the polishing slurry is extremely fine and the particle size is kept uniform at the molecular level, so that flatness that is difficult to achieve with conventional CMP can be obtained.
[0011] 水中のフラーレン誘導体の粒径を lOOnm未満にするため、あるいはフラーレン誘 導体を水溶化させるためには、フラーレン誘導体が水酸基を有することが好まし 、。 [0011] In order to make the particle size of the fullerene derivative in water less than lOOnm or to make the fullerene derivative water-soluble, the fullerene derivative preferably has a hydroxyl group.
[0012] 上述の態様において、酸化剤、防腐剤およびキレート剤をさらに含有してもよい。 [0012] In the above-described embodiment, an oxidizing agent, a preservative, and a chelating agent may be further contained.
酸化剤、防腐剤およびキレート剤をさらに含有する研磨スラリーは金属を研磨加工す る場合に好適である。酸化剤は、金属表面に脆弱な酸化膜を形成させる。防腐剤は 、酸化剤の腐食を抑制する。また、キレート剤は、酸化剤によって形成された酸化膜 を錯イオンとしてスラリー中へ溶解させる働きをする。このような水溶液中において、 研磨パッドで一定加圧され回転運動するフラーレンナノ粒子は研磨砲粒として作用 し、スクラッチや粗さを付けることなく脆弱な酸ィ匕膜を平滑に除去する役割を果たす。 発明の効果  A polishing slurry further containing an oxidizing agent, a preservative, and a chelating agent is suitable for polishing a metal. The oxidizing agent forms a fragile oxide film on the metal surface. The preservative suppresses the corrosion of the oxidizing agent. The chelating agent serves to dissolve the oxide film formed by the oxidizing agent into the slurry as complex ions. In such an aqueous solution, fullerene nanoparticles that rotate under constant pressure with a polishing pad act as polishing particles and play a role in smoothly removing fragile oxide films without scratching or roughness. . The invention's effect
[0013] 本発明によれば、半導体または金属をより平坦に研磨加工することができる。  [0013] According to the present invention, a semiconductor or metal can be polished more flatly.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本実施形態で用いられる一般的な CMP装置の構成を示す概略図である。  FIG. 1 is a schematic view showing a configuration of a general CMP apparatus used in the present embodiment.
[図 2]水溶性 C (OH) · 9Η Oの FT—IRスペクトル図である。  [Fig. 2] FT-IR spectrum of water-soluble C (OH) 9O.
60 36 2  60 36 2
[図 3]反応原料の非水溶性 C (ΟΗ) · 5Η Οの FT— IR ^ベクトル図である。  [Fig. 3] FT-IR ^ vector diagram of water-insoluble C (ΟΗ) · 5Η の of reaction raw material.
60 12 2  60 12 2
[図 4]水溶性 C (OH) · 9Η Οの TGA測定チャート図である。  [Fig. 4] TGA measurement chart of water-soluble C (OH) 9Η.
60 36 2  60 36 2
[図 5]研磨時間と表面粗さの関係を示す図である。  FIG. 5 is a graph showing the relationship between polishing time and surface roughness.
[図 6]本実施例の研磨スラリーを用いた研磨実験によって得られた基板表面の AFM 観察像の一例である  FIG. 6 is an example of an AFM observation image of the substrate surface obtained by a polishing experiment using the polishing slurry of this example.
[図 7]本実施例の研磨スラリーを用いた研磨実験によって得られた基板表面の AFM 観察像の一例である  FIG. 7 is an example of an AFM observation image of the substrate surface obtained by a polishing experiment using the polishing slurry of this example.
[図 8]水溶性 C (ΟΗ) · 9Η Οの FT—IRスペクトル図である。  [Fig. 8] FT-IR spectrum of water-soluble C (ΟΗ) · 9Η.
60 40 2  60 40 2
[図 9]水溶性 C (ΟΗ) · 9Η Οの TGA測定チャート図である。  [Fig. 9] TGA measurement chart of water-soluble C (ΟΗ) · 9Η.
60 40 2  60 40 2
符号の説明 [0015] 10 研磨定盤、 12 研磨パッド、 20 加圧ヘッド、 30 基板、 40 研磨スラリー供給 手段、 50 研磨スラリー。 Explanation of symbols [0015] 10 polishing surface plate, 12 polishing pad, 20 pressure head, 30 substrate, 40 polishing slurry supply means, 50 polishing slurry.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に、本発明の実施の形態を図面等を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like.
[0017] 図 1は、本実施形態で用いられる一般的な CMP装置の構成を示す概略図である。 FIG. 1 is a schematic diagram showing a configuration of a general CMP apparatus used in the present embodiment.
CMP装置 1は、研磨定盤 10、研磨パッド 12、加圧ヘッド 20、および研磨スラリー供 給手段 40を備える。研磨定盤 10は、所定の回転速度で回転可能な機構を有する。 この研磨定盤 10に研磨パッド 12が貼り付けられている。研磨パッド 12は、特に限定 されないが、たとえば不織布、発泡ポリウレタン、多孔質フッ素榭脂などを用いること ができる。加圧ヘッド 20は、所定の回転速度で回転可能な機構および研磨定盤 10 に対して所定の圧力で加圧する機構を有する。加圧ヘッド 20には、研磨する面を研 磨定盤 10に向けて、金属または Zおよび半導体力もなる基板 30が貼り付けられる。 研磨スラリー供給手段 40は、配管、ポンプ(図示せず)等からなり、研磨時に研磨スラ リー 50を研磨パッド 12の上に連続的に供給することができる。  The CMP apparatus 1 includes a polishing surface plate 10, a polishing pad 12, a pressure head 20, and polishing slurry supply means 40. The polishing surface plate 10 has a mechanism that can rotate at a predetermined rotation speed. A polishing pad 12 is affixed to the polishing surface plate 10. The polishing pad 12 is not particularly limited, and for example, non-woven fabric, foamed polyurethane, porous fluorocarbon resin, etc. can be used. The pressure head 20 has a mechanism that can rotate at a predetermined rotation speed and a mechanism that pressurizes the polishing platen 10 with a predetermined pressure. A substrate 30 that also has metal or Z and semiconductor power is attached to the pressure head 20 with the surface to be polished facing the polishing surface plate 10. The polishing slurry supply means 40 includes piping, a pump (not shown), and the like, and can continuously supply the polishing slurry 50 onto the polishing pad 12 during polishing.
[0018] 本発明の実施の形態に係る研磨スラリーは、水およびフラーレンまたはフラーレン 誘導体を含有する研磨スラリーであって、フラーレンまたはフラーレン誘導体の粒径 力 SlOOnm未満である。本発明では、フラーレンはその目的を満たす限り限定されな いが、たとえば、 C60、 C70あるいはより高次のもの、そして、これらの混合物であつ てもよい。これらフラーレンの中でも好ましいのは、 C60である。フラーレンまたはフラ 一レン誘導体の粒径を lOOnm未満とすることにより、半導体または金属の表面をより 平坦に研磨カ卩ェすることができる。フラーレンまたはフラーレン誘導体の粒径が 100 nm未満であれば、フラーレンまたはフラーレン誘導体は、研磨スラリーの水溶液中 で単分子、クラスターまたは凝集体のいずれの形態でもよい。フラーレンまたはフラ 一レン誘導体の粒径を lOOnm未満とすることにより、 20 μ m四方で 2nm以下の平坦 性を実現することができる。これにより、基板表面の平坦性が飛躍的に向上し、十数 階層の配線構造を持つ LSIの製造が可能になる。 [0018] The polishing slurry according to the embodiment of the present invention is a polishing slurry containing water and fullerene or a fullerene derivative, and has a particle size force of less than SlOOnm. In the present invention, fullerene is not limited as long as it satisfies the purpose, but may be, for example, C60, C70 or higher, and a mixture thereof. Among these fullerenes, C60 is preferable. By setting the particle size of fullerene or fullerene derivative to less than lOOnm, the surface of the semiconductor or metal can be polished more flatly. If the particle size of the fullerene or fullerene derivative is less than 100 nm, the fullerene or fullerene derivative may be in the form of a single molecule, a cluster or an aggregate in the aqueous solution of the polishing slurry. By setting the particle size of the fullerene or fullerene derivative to less than lOOnm, flatness of 2 nm or less in a 20 μm square can be realized. This dramatically improves the flatness of the substrate surface and enables the manufacture of LSIs with a dozen levels of wiring structures.
[0019] 半導体または金属の表面の平坦性をより向上させるためには、フラーレンまたはフ ラーレン誘導体が水に溶解していることが好ましい。フラーレンまたはフラーレン誘導 体が水に溶解している状態の研磨スラリーは透明であり、フラーレンまたはフラーレン 誘導体の粒径は当然に lOOnm未満である。フラーレンまたはフラーレン誘導体が水 に溶解していることにより、半導体または金属の表面に研磨砲粒が残留しにくくなり、 研磨加工後に研磨スラリーを容易に除去することができる。 In order to further improve the flatness of the surface of the semiconductor or metal, it is preferable that the fullerene or fullerene derivative is dissolved in water. Fullerene or fullerene induction The polishing slurry in which the body is dissolved in water is transparent, and the particle size of fullerene or fullerene derivative is naturally less than lOOnm. Since the fullerene or fullerene derivative is dissolved in water, it becomes difficult for abrasive particles to remain on the surface of the semiconductor or metal, and the polishing slurry can be easily removed after the polishing process.
[0020] 水中のフラーレン誘導体の粒径を lOOnm未満にするため、あるいはフラーレン誘 導体を水溶化させるためには、フラーレン誘導体が水酸基を有することが好まし 、。 また、フラーレン誘導体が、アミノ基等の親水基をさらに有することにより、水酸基の 数を増大させなくても、水溶性を向上させることができると期待される。できる。なお、 フラーレン誘導体の官能基は、水溶性を向上させるものであればよぐ上述の水酸基 、ァミノ基に限られない。たとえば、フラーレン誘導体の官能基としてカルボキシル基 、スルホ基、ホルホノ基、およびこれらの塩などを用いることができる。  [0020] In order to reduce the particle size of the fullerene derivative in water to less than lOOnm or to make the fullerene derivative water-soluble, the fullerene derivative preferably has a hydroxyl group. Further, it is expected that the fullerene derivative can further improve water solubility without increasing the number of hydroxyl groups by further having a hydrophilic group such as an amino group. it can. The functional group of the fullerene derivative is not limited to the above-described hydroxyl group and amino group as long as it improves water solubility. For example, a carboxyl group, a sulfo group, a morphono group, and a salt thereof can be used as the functional group of the fullerene derivative.
[0021] フラーレンを水溶ィ匕する手段としては、フラーレンに水酸基などの置換基が導入され たフラーレン誘導体を用いることに限られず、フラーレンとシクロデキストリン、 PVPな どとの包摂体 (以下、フラーレン包摂体という)を用いることもできる。フラーレン包摂 体を用いることにより、フラーレン自体に構造の変化を与えることなぐフラーレンを水 溶ィ匕することができる。また、フラーレンを極性有機溶媒に溶解させたのち、多量の 水に投入'撹拌することにより、フラーレンを水に分散させてもよい。  [0021] The means for dissolving fullerene in water is not limited to the use of fullerene derivatives in which substituents such as hydroxyl groups are introduced into fullerene, but inclusion bodies of fullerene, cyclodextrin, PVP and the like (hereinafter referred to as fullerene inclusion). Body)). By using a fullerene inclusion, it is possible to dissolve fullerene without changing the structure of fullerene itself. Alternatively, after fullerene is dissolved in a polar organic solvent, the fullerene may be dispersed in water by adding it to a large amount of water and stirring.
[0022] 金属を研磨加工する場合には、酸化剤、防腐剤およびキレート剤をさらに含有する ことが好適である。  [0022] When the metal is polished, it is preferable to further contain an oxidizing agent, a preservative, and a chelating agent.
[0023] 酸化剤は、研磨対象の金属の表面を酸化させる。酸化剤としては、特に限定されな いが、過酸化水素水、水酸化ナトリウム、水酸ィ匕カリウムなどが挙げられる。  [0023] The oxidizing agent oxidizes the surface of the metal to be polished. The oxidizing agent is not particularly limited, and examples thereof include aqueous hydrogen peroxide, sodium hydroxide, and potassium hydroxide.
[0024] 防腐剤は、酸化剤の腐食を抑制する。防腐剤としては、特に限定されな ヽが、 BTA  [0024] The preservative suppresses the corrosion of the oxidizing agent. Preservatives are not particularly limited, but BTA
(ベンゾトリァゾール)、およびそのアンモ-ゥム化合物などの化合物、キナルジン酸 などが挙げられる。  (Benzotriazole) and its ammonium compound, quinaldic acid and the like.
[0025] キレート剤は、酸化剤によって形成された酸ィ匕膜を錯イオンとしてスラリー中へ溶解 させる。キレート剤は、特に限定されないが、マロン酸、クェン酸、リン酸、硝酸、リンゴ 酸、およびこれらのアンモ-ゥム化合物などの化合物が挙げられる。  [0025] The chelating agent dissolves the acid film formed by the oxidizing agent into the slurry as complex ions. The chelating agent is not particularly limited, and examples thereof include compounds such as malonic acid, citrate, phosphoric acid, nitric acid, malic acid, and ammonium compounds thereof.
[0026] 酸化剤、防腐剤およびキレート剤の種類および分量は、研磨対象となる金属の材 質に応じて適宜変更することができる。銅の研磨加工に適用可能な研磨スラリーの配 合例を下記に示す。 [0026] The type and amount of the oxidizing agent, preservative, and chelating agent are determined depending on the metal material to be polished. It can be changed as appropriate according to the quality. An example of a polishing slurry that can be applied to copper polishing is shown below.
[0027] ポリ水酸化フラーレン: 0. 1〜0. 5wt%  [0027] Polyhydroxide fullerene: 0.1 to 0.5 wt%
過酸化水素水(酸化剤): 0. 5〜30wt%  Hydrogen peroxide solution (oxidant): 0.5-30wt%
クェン酸アンモ-ゥム(キレート剤):0. 5〜: LOwt%  Quenic acid ammonium (chelating agent): 0.5-: LOwt%
リン酸アンモ-ゥム(キレート剤): 0. 5〜: LOwt%  Ammonium phosphate (chelating agent): 0.5-: LOwt%
BTA (防腐剤): 0. 12〜0. 5%  BTA (preservative): 0.12 ~ 0.5%
[0028] なお、研磨スラリーの pHは研磨速度に影響を及ぼすため、水酸ィ匕アンモ-ゥムな どの pH調整剤により研磨スラリーの pHが調節されて 、てもよ 、。 [0028] Since the pH of the polishing slurry affects the polishing rate, the pH of the polishing slurry may be adjusted with a pH adjusting agent such as hydroxide or ammonia.
[0029] (実施例 1) [0029] (Example 1)
フラーレン C60に水酸基が平均して 36個修飾したと推定される、水溶性の高 、ポリ 水酸ィ匕フラーレンを用いて研磨スラリーを作製し、銅膜をシリコンウェハに電着メツキ した基板につ!、て CMPによる研磨実験を行った。  A polishing slurry was prepared using full water and highly water-soluble polyhydroxylene fullerene, which was estimated to have an average of 36 hydroxyl groups modified on fullerene C60, and the resulting copper film was deposited on a silicon wafer. ! A polishing experiment using CMP was conducted.
[0030] (水溶性水酸化フラーレンの合成) [0030] (Synthesis of water-soluble fullerene hydroxide)
L. Y. Chiangらが報告している方法 (J. Am. Chem. Soc, 1992, 114, 10154)により 合成した非水溶性水酸ィ匕フラーレン (平均推定構造 C (OH) · 5Η Ο) 0. 100gに  Water-insoluble hydroxylated fullerene synthesized by the method reported by LY Chiang et al. (J. Am. Chem. Soc, 1992, 114, 10154) (average estimated structure C (OH) · 5Η Ο) 0. 100g In
60 12 2  60 12 2
、 30%過酸ィ匕水素水 10mLを加え、懸濁溶液を 60°Cで 4日間攪拌した。溶液が完 全に均一な黄色透明になったのを確認した後、反応を停止させ、それぞれ 50mLの 2—プロパノール、ジェチルエーテル、へキサンを順に加えて固体を析出させた。  Then, 10 mL of 30% aqueous hydrogen peroxide solution was added, and the suspension was stirred at 60 ° C. for 4 days. After confirming that the solution was completely uniform and yellow and transparent, the reaction was stopped, and 50 mL of 2-propanol, jetyl ether, and hexane were sequentially added to precipitate a solid.
[0031] 生じた沈殿を遠心分離機を用いて沈降させた後、デカンテーシヨンで分離し、さら に 50mLのエーテルで 2回洗浄後、 18時間真空乾燥することで反応生成物である水 溶性水酸化フラーレンを淡黄土色粉末として 0. 097g得た。  [0031] The resulting precipitate is precipitated using a centrifuge, separated by decantation, further washed twice with 50 mL of ether, and then vacuum-dried for 18 hours to dissolve the water-soluble reaction product. As a light ocher powder, 0.097 g of fullerene hydroxide was obtained.
[0032] このようにして得られた粉末の FT— IR ^ベクトルを図 2に示した。水酸基の O— H伸 縮に基づく 3400cm_1付近の大きなブロードな吸収とともに、 C— Cおよび C— 0伸縮 に基づく 1620、 1370、 1080cm— 1付近にブロードな吸収を示した。これらの吸収パ ターンは L. Y. Chiangらが報告している出発原料である非水溶性水酸ィ匕フラーレン のスペクトル(図 3)とよく似ており(J. Am. Chem. Soc, 1992, 114, 10154)、それぞれ の吸収の相対強度比が若干異なることから水酸基の数が異なる水酸ィ匕フラーレンで あることが示唆された。また、 1720cm_1付近の小さな吸収は水酸基のピナコール転 位反応によるケトン基の存在を示唆しているが(L. Y. Chiang et al., J. Am. Chem. So c, 1993, 115, 5453)、通常カルボ-ル C = 0伸縮に基づく吸収は大きいため、存在 割合としてはわずかであると判断される。 [0032] Fig. 2 shows the FT-IR ^ vector of the powder thus obtained. With large broad absorption around 3400 cm _1 based on O-H Shin contraction of hydroxyl, C-C and C-0 stretch in based 1620, 1370, showed a broad absorption around 1080cm- 1. These absorption patterns are very similar to the spectrum of the water-insoluble hydroxide-fullerene (Fig. 3) reported by LY Chiang et al. (J. Am. Chem. Soc, 1992, 114, 10154), and the relative intensity ratio of each absorption is slightly different. It was suggested that there is. The small absorption around 1720cm_1 suggests the presence of a ketone group due to the pinacol rearrangement reaction of the hydroxyl group (LY Chiang et al., J. Am. Chem. Soc, 1993, 115, 5453). Since the absorption based on carbon C = 0 stretching is large, the existence ratio is judged to be small.
[0033] この水溶性水酸ィ匕フラーレンを熱重量分析計 TGAを用い、窒素雰囲気下、昇温 速度 5°CZminで熱分析を行ったところ、室温〜 150°C付近までに約 9%の重量減 少がみられたことから、水酸基により強固に吸着している水分が 9%程度存在すると 見積もることができた (図 4)。  [0033] When this water-soluble hydroxy-fullerene was subjected to thermal analysis using a thermogravimetric analyzer TGA in a nitrogen atmosphere at a heating rate of 5 ° C Zmin, it was about 9% from room temperature to around 150 ° C. As weight loss was observed, it was estimated that approximately 9% of water was strongly adsorbed by the hydroxyl group (Fig. 4).
[0034] また元素分析の結果、この水溶性水酸化フラーレンは、上述した含水量を考慮す ると、 C (OH) · 9Η Oなる糸且成を有するものとしてよく一致した。上記糸且成の元素 Further, as a result of elemental analysis, this water-soluble fullerene hydroxide was in good agreement as having a C (OH) · 9 糸 O yarn considering the water content described above. The above thread-forming element
60 36 2 60 36 2
分析 ίま C :48. 20%, Η : 3. 640/0であり、実験値 ίま C :48. 06%, H : 3. 610/0であり、 含水量は 10. 8%と見積もられた。 Analysis ί or C:. 48 20%, Η : 3. a 64 0/0, the experimental value ί or C:. 48 06%, H : 3. 61 0/0, water content 10.8% It was estimated.
[0035] この水溶性水酸化フラーレンの水への溶解度を調べたところ 17. 5mg/mL (l. 8 wt%)であり、これまでに報告されている包接ィ匕合物による水溶ィ匕に比べても高い溶 解性を有することがわ力つた。  [0035] The solubility of this water-soluble fullerene hydroxide in water was 17.5 mg / mL (l. 8 wt%). Compared to the above, it has been shown that it has high solubility.
[0036] (研磨スラリーの作製)  [0036] (Preparation of polishing slurry)
上述のように作製された水酸化フラーレン 0. 02gを超純水 20mlに溶解させた後、 超音波振動により攪拌した。得られたフラーレン水溶液を超音波で一様分散させて、 0. lwt%ポリ水酸ィ匕フラーレン水溶液を作製した。次にフラーレン水溶液を lOOnm のフィルタに通した。その結果、濾過前の水溶液と全く同じ薄黄色の一様な濾過液 が得られた。このことより、フラーレン水溶液中のフラーレン粒子は lOOnm未満であ ると推定された。  0.02 g of fullerene hydroxide prepared as described above was dissolved in 20 ml of ultrapure water, and then stirred by ultrasonic vibration. The obtained fullerene aqueous solution was uniformly dispersed with ultrasonic waves to prepare a 0.1 wt% polyhydroxyl-fullerene aqueous solution. Next, the fullerene aqueous solution was passed through an lOOnm filter. As a result, a light yellow uniform filtrate exactly the same as the aqueous solution before filtration was obtained. From this, it was estimated that the fullerene particles in the fullerene aqueous solution were less than lOOnm.
[0037] 続いて、研磨時の化学的作用を進行させる加工液として、過酸化水素水(lwt%) 、クェン酸アンモ-ゥム(0. 5wt%)、リン酸アンモ-ゥム(0. 5wt%)、および BTA(0 . 12wt%)をカロえた。このときも溶液の色に変化が認められなカゝつた。これにより、フ ラーレン粒子の凝集が生じておらず、ポリ水酸ィ匕フラーレンの分散安定性が確認され た。  [0037] Subsequently, hydrogen peroxide water (lwt%), ammonium citrate (0.5wt%), ammonium phosphate (0. 5 wt%) and BTA (0.12 wt%). At this time, no change was observed in the color of the solution. As a result, the aggregation of fullerene particles did not occur, and the dispersion stability of polyhydroxyl-fullerene was confirmed.
[0038] (研磨実験) 上述のように作製した CMP用の研磨スラリーと図 1に示したような CMP装置とを用 いて、銅の CMP研磨実験を行った。研磨対象として、銅膜をシリコンウェハに電着メ ツキした基板を用いた。 [0038] (Polishing experiment) Using the CMP polishing slurry prepared as described above and the CMP apparatus shown in FIG. 1, a copper CMP polishing experiment was conducted. As a polishing target, a substrate in which a copper film was electrodeposited on a silicon wafer was used.
[0039] 図 5は、研磨時間と表面粗さの関係を示す。 5 μ m四方における研磨前の粗さは R MSで lOnm以上あり、また断面曲線から 40nm程度の大きなうねりも見られる。しか し、研磨時間の増加にともない、粗さは指数関数的に改善され、約 6分程度で RMS 力 S2nm以下(断面曲線では RMSは 0. 339nm)の良好な仕上面になっている。また 研磨前に見られる基板表面の大きなうねりも除去されており、極めて平坦な表面が得 られている。なお、研磨条件は以下のとおりである。  FIG. 5 shows the relationship between the polishing time and the surface roughness. The roughness before polishing in the 5 μm square is more than lOnm in RMS, and a large swell of about 40 nm is seen from the cross-sectional curve. However, as the polishing time increases, the roughness improves exponentially, and the surface finish is good with an RMS force of S2 nm or less (RMS is 0.339 nm in the cross-section curve) in about 6 minutes. In addition, the large waviness of the substrate surface seen before polishing has been removed, and an extremely flat surface is obtained. The polishing conditions are as follows.
加圧ヘッドの圧力: 0. 25MPa  Pressure of pressure head: 0.25MPa
研磨定盤 10および加圧ヘッド 20の回転数: 127rpm  Number of rotations of polishing surface plate 10 and pressure head 20: 127 rpm
[0040] 図 6および図 7は、本実施例の研磨スラリーを用いた研磨実験によって得られた基 板表面の AFM観察像の一例である。図 6は測定領域が 20 m四方のときの AFM 像である。このときの RMSは、 1. 644nmであった。また、図 7は測定領域が 5 m四 方のときの AFM像である。このときの RMSは 0. 722nmであり、粗さが lnm以下の 超平滑面が得られた。  FIG. 6 and FIG. 7 are examples of AFM observation images of the substrate surface obtained by a polishing experiment using the polishing slurry of this example. Figure 6 shows an AFM image when the measurement area is 20 m square. The RMS at this time was 1.644 nm. Figure 7 shows an AFM image when the measurement area is 5 m square. The RMS at this time was 0.722 nm, and an ultra-smooth surface with a roughness of 1 nm or less was obtained.
[0041] 本発明は、上述の各実施の形態に限定されるものではなぐ当業者の知識に基づ いて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられ た実施の形態も本発明の範囲に含まれうるものである。  [0041] The present invention is not limited to the above-described embodiments, and modifications such as various design changes can be made based on the knowledge of those skilled in the art, and such modifications can be added. The embodiments may be included in the scope of the present invention.
[0042] 例えば、上述の各実施の形態では、水酸化フラーレンの水酸基の平均数が 36であ る力 水酸基の数はこれに限られない。たとえば、水酸基の平均数が 40の水酸化フ ラーレンは下記の手順で作製可能であり、研磨スラリーの研磨砲粒として用いること ができる。  For example, in each of the embodiments described above, the number of force hydroxyl groups in which the average number of hydroxyl groups of the fullerene hydroxide is 36 is not limited thereto. For example, a fullerene hydroxide having an average number of hydroxyl groups of 40 can be prepared by the following procedure, and can be used as polishing particles of polishing slurry.
[0043] (水溶性水酸化フラーレンの合成)  [0043] (Synthesis of water-soluble fullerene hydroxide)
実施例 1と同様の手順により非水溶性水酸ィ匕フラーレンの過酸ィ匕水素水懸濁溶液 を 60°Cで 4日間攪拌し、溶液が完全に均一な黄色透明になったのを確認した後、さ らに 10日間反応させたところ、溶液の色が徐々に薄くなり淡黄色透明になった。さら に同様の操作により、乳白色粉末の水溶性水酸ィ匕フラーレン 0. 103gを得た。 [0044] このようにして得られた粉末の FT— IR測定を行ったところ、水酸基の平均数が 36 の水酸ィ匕フラーレンとほぼ同じスペクトルであることが確認された(図 8)。 Follow the same procedure as in Example 1 but stir the water-insoluble solution of water-insoluble hydroxide-fullerene in hydrogen peroxide solution at 60 ° C for 4 days to confirm that the solution became completely uniform yellow and transparent. After further reaction for 10 days, the color of the solution gradually faded and became pale yellow and transparent. Further, by the same operation, 0.13 g of a milky white powder of water-soluble hydroxylated fullerene was obtained. [0044] An FT-IR measurement of the powder thus obtained confirmed that the spectrum was almost the same as that of hydroxy-fullerene having an average number of hydroxyl groups of 36 (Fig. 8).
[0045] この水溶性水酸ィ匕フラーレンを熱重量分析計 TGAを用い、窒素雰囲気下、昇温 速度 5°CZminで熱分析を行ったところ、室温〜 150°C付近までに約 10%の重量減 少がみられたことから、水酸基により強固に吸着している水分が 10%程度存在すると 見積もることができた (図 9)。  [0045] When this water-soluble hydroxy-fullerene was subjected to thermal analysis using a thermogravimetric analyzer TGA in a nitrogen atmosphere at a heating rate of 5 ° C Zmin, it was about 10% from room temperature to around 150 ° C. As weight loss was observed, it was estimated that approximately 10% of the water was strongly adsorbed by the hydroxyl groups (Figure 9).
[0046] また元素分析の結果、この水溶性水酸ィ匕フラーレン 3は、上述した含水量を考慮す ると、 C (OH) · 9Η Oなる糸且成を有するものとしてよく一致した。上記糸且成の元素 As a result of elemental analysis, the water-soluble hydroxy-fullerene 3 was in good agreement as having a yarn composition of C (OH) · 9ΗO in consideration of the water content described above. The above thread-forming element
60 40 2 60 40 2
分析 ίま C :46. 110/0、Η : 3. 740/0でぁり、実験値【まじ:46. 26%, Η : 3. 680/0であり、 含水量は 10. 4%と見積もられた。 Analysis ί or C:. 46 11 0/0 , Η: 3. 74 0/0 Deari, Found [Seriously:. 46 26%, Η: 3. a 68 0/0, water content 10. Estimated 4%.
[0047] この水溶性水酸化フラーレン 3の水への溶解度を調べたところ 58. 9mg/mL (5. [0047] When the solubility of this water-soluble fullerene hydroxide 3 in water was examined, 58.9 mg / mL (5.
9wt%)であり、これまでに報告されている包接ィ匕合物による水溶ィ匕に比べてはるか に高 、溶解性を有することがわ力つた。  9 wt%), which is much higher than that of water-soluble solutions using clathrate compounds reported so far.
産業上の利用可能性  Industrial applicability
[0048] 本発明によると、半導体または金属をより平坦に研磨加工することができる。より具 体的には、本発明の研磨スラリーは、半導体または金属の表面を平坦加工する化学 機械研磨の研磨砲粒として有用であり、大きな産業上の利用可能性を有する。 [0048] According to the present invention, a semiconductor or metal can be polished more flatly. More specifically, the polishing slurry of the present invention is useful as a chemical mechanical polishing polishing particle for flattening the surface of a semiconductor or metal, and has great industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] 半導体または金属の研磨に用いられる研磨スラリーであって、  [1] A polishing slurry used for polishing semiconductors or metals,
水と、フラーレンまたはフラーレン誘導体とを含有し、  Containing water and fullerene or fullerene derivative,
前記フラーレンまたは前記フラーレン誘導体の粒径が lOOnm未満であることを特 徴とする研磨スラリー。  A polishing slurry, wherein a particle size of the fullerene or the fullerene derivative is less than lOOnm.
[2] 半導体または金属の研磨に用いられる研磨スラリーであって、 [2] A polishing slurry used for polishing semiconductors or metals,
水と、フラーレンまたはフラーレン誘導体とを含有し、  Containing water and fullerene or fullerene derivative,
前記フラーレンまたは前記フラーレン誘導体が前記水に溶解して ヽることを特徴と する研磨スラリー。  A polishing slurry, wherein the fullerene or the fullerene derivative is dissolved in the water.
[3] 前記フラーレン誘導体が、水酸基を有することを特徴とする請求項 1または 2に記載 の研磨スラリー。  [3] The polishing slurry according to claim 1 or 2, wherein the fullerene derivative has a hydroxyl group.
[4] 酸化剤、防腐剤およびキレート剤をさらに含有することを特徴とする請求項 1乃至3 のいずれか 1項に記載の研磨スラリー。 4. The polishing slurry according to any one of claims 1 to 3 , further comprising an oxidizing agent, a preservative, and a chelating agent.
[5] 前記酸化剤が過酸化水素水、水酸化ナトリウム、および水酸ィ匕カリウム力もなる群よ り選ばれる物質であることを特徴とする請求項 4に記載の研磨スラリー。 5. The polishing slurry according to claim 4, wherein the oxidizing agent is a substance selected from the group consisting of hydrogen peroxide, sodium hydroxide, and potassium hydroxide.
[6] 前記防腐剤が BTA、 BTAのアンモ-ゥム化合物などの化合物、およびキナルジン 酸力 なる群より選ばれる物質であることを特徴とする請求項 4または 5に記載の研磨 スラリー。 6. The polishing slurry according to claim 4 or 5, wherein the preservative is a compound selected from the group consisting of compounds such as BTA, an ammonium compound of BTA, and quinaldine acidity.
[7] 前記キレート剤がマロン酸、クェン酸、リン酸、硝酸、リンゴ酸、およびこれらのアン モ -ゥム化合物などの化合物力 なる群より選ばれる物質であることを特徴とする請 求項 4乃至 6のいずれ力 1項に記載の研磨スラリー。  [7] The claim, wherein the chelating agent is a substance selected from the group consisting of malonic acid, citrate, phosphoric acid, nitric acid, malic acid, and their ammonium compounds. 4. The polishing slurry according to any one of 4 to 6, wherein:
[8] 銅の研磨に用いられることを特徴とする請求項 1乃至 7のいずれか 1項に記載の研 磨スラリー。  [8] The polishing slurry according to any one of claims 1 to 7, which is used for polishing copper.
PCT/JP2006/316096 2005-08-16 2006-08-16 Polishing slurry WO2007020939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007531007A JPWO2007020939A1 (en) 2005-08-16 2006-08-16 Polishing slurry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005236163 2005-08-16
JP2005-236163 2005-08-16

Publications (1)

Publication Number Publication Date
WO2007020939A1 true WO2007020939A1 (en) 2007-02-22

Family

ID=37757598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316096 WO2007020939A1 (en) 2005-08-16 2006-08-16 Polishing slurry

Country Status (2)

Country Link
JP (1) JPWO2007020939A1 (en)
WO (1) WO2007020939A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000899A1 (en) * 2009-07-03 2011-01-06 Commissariat à l'énergie atomique et aux énergies alternatives Method for modifying the crystalline structure of a copper element
JP2012248594A (en) * 2011-05-26 2012-12-13 Kyushu Institute Of Technology Abrasive
JP2013526483A (en) * 2010-04-07 2013-06-24 ガバ・インターナショナル・ホールディング・アクチェンゲゼルシャフト Oral care composition comprising tin and nitrate ions
WO2015001939A1 (en) * 2013-07-03 2015-01-08 三島光産株式会社 Precision polishing method and polishing machine
KR20190081989A (en) * 2017-12-29 2019-07-09 삼성에스디아이 주식회사 Cmp slurry composition for polishing copper and method for polishing using the same
US20190382618A1 (en) * 2018-06-19 2019-12-19 Samsung Electronics Co., Ltd. Hydroxyl fullerene dispersion, method of preparing the same, polishing slurry including the same, and method of manufacturing a semiconductor device
US20200071613A1 (en) * 2018-08-30 2020-03-05 Samsung Electronics Co., Ltd. Slurry composition for chemical mechanical polishing, method of preparing the same, and method of fabricating semiconductor device by using the same
US10961414B2 (en) 2018-07-23 2021-03-30 Samsung Electronics Co., Ltd. Polishing slurry, method of manufacturing the same, and method of manufacturing semiconductor device
CN112812691A (en) * 2019-11-15 2021-05-18 三星电子株式会社 Polishing slurry and method for manufacturing semiconductor device
WO2021124597A1 (en) 2019-12-20 2021-06-24 昭和電工株式会社 Polishing method, mechanical device manufacturing method, and mechanical device
US11254840B2 (en) 2019-03-13 2022-02-22 Samsung Electronics Co., Ltd. Polishing slurry and method of manufacturing semiconductor device
KR102718281B1 (en) * 2018-11-19 2024-10-15 삼성전자주식회사 Polishing slurry and method of manufacturing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184729A (en) * 2000-11-23 2002-06-28 Samsung Electronics Co Ltd Chemical mechanical polishing slurry and method of manufacturing copper wiring by use of the same
JP2003297779A (en) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd Composition for polishing and polishing method
JP2003347244A (en) * 2002-05-29 2003-12-05 Mitsubishi Electric Corp Method of polishing semiconductor wafer
JP2005146036A (en) * 2003-11-12 2005-06-09 Sanwa Kenma Kogyo Kk Precision polishing agent
JP2005203602A (en) * 2004-01-16 2005-07-28 Hitachi Chem Co Ltd One set of polishing solution for cmp and method for polishing substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184729A (en) * 2000-11-23 2002-06-28 Samsung Electronics Co Ltd Chemical mechanical polishing slurry and method of manufacturing copper wiring by use of the same
JP2003297779A (en) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd Composition for polishing and polishing method
JP2003347244A (en) * 2002-05-29 2003-12-05 Mitsubishi Electric Corp Method of polishing semiconductor wafer
JP2005146036A (en) * 2003-11-12 2005-06-09 Sanwa Kenma Kogyo Kk Precision polishing agent
JP2005203602A (en) * 2004-01-16 2005-07-28 Hitachi Chem Co Ltd One set of polishing solution for cmp and method for polishing substrate

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000899A1 (en) * 2009-07-03 2011-01-06 Commissariat à l'énergie atomique et aux énergies alternatives Method for modifying the crystalline structure of a copper element
FR2947571A1 (en) * 2009-07-03 2011-01-07 Commissariat Energie Atomique PROCESS FOR RESTORING A COPPER ELEMENT
US9620412B2 (en) 2009-07-03 2017-04-11 Commissariat à l'énergie atomique et aux énergies alternatives Method for modifying the crystalline structure of a copper element
JP2013526483A (en) * 2010-04-07 2013-06-24 ガバ・インターナショナル・ホールディング・アクチェンゲゼルシャフト Oral care composition comprising tin and nitrate ions
US8926950B2 (en) 2010-04-07 2015-01-06 Gaba International Holding Ag Oral care composition comprising stannous and nitrate ions
JP2012248594A (en) * 2011-05-26 2012-12-13 Kyushu Institute Of Technology Abrasive
WO2015001939A1 (en) * 2013-07-03 2015-01-08 三島光産株式会社 Precision polishing method and polishing machine
KR20190081989A (en) * 2017-12-29 2019-07-09 삼성에스디아이 주식회사 Cmp slurry composition for polishing copper and method for polishing using the same
KR102210254B1 (en) * 2017-12-29 2021-02-01 삼성에스디아이 주식회사 Cmp slurry composition for polishing copper and method for polishing using the same
US20190382618A1 (en) * 2018-06-19 2019-12-19 Samsung Electronics Co., Ltd. Hydroxyl fullerene dispersion, method of preparing the same, polishing slurry including the same, and method of manufacturing a semiconductor device
US10961414B2 (en) 2018-07-23 2021-03-30 Samsung Electronics Co., Ltd. Polishing slurry, method of manufacturing the same, and method of manufacturing semiconductor device
US10829690B2 (en) 2018-08-30 2020-11-10 Samsung Electronics Co., Ltd. Slurry composition for chemical mechanical polishing, method of preparing the same, and method of fabricating semiconductor device by using the same
KR20200025541A (en) * 2018-08-30 2020-03-10 삼성전자주식회사 Slurry composition for chemical mechanical polishing, method of manufacturing the same, and method of fabricating semiconductor device
CN110872472A (en) * 2018-08-30 2020-03-10 三星电子株式会社 Slurry composition, method of preparing the same, and method of manufacturing semiconductor device using the same
US20200071613A1 (en) * 2018-08-30 2020-03-05 Samsung Electronics Co., Ltd. Slurry composition for chemical mechanical polishing, method of preparing the same, and method of fabricating semiconductor device by using the same
KR102653892B1 (en) * 2018-08-30 2024-04-02 삼성전자주식회사 Slurry composition for chemical mechanical polishing, method of manufacturing the same, and method of fabricating semiconductor device
KR102718281B1 (en) * 2018-11-19 2024-10-15 삼성전자주식회사 Polishing slurry and method of manufacturing semiconductor device
US11254840B2 (en) 2019-03-13 2022-02-22 Samsung Electronics Co., Ltd. Polishing slurry and method of manufacturing semiconductor device
US11795347B2 (en) 2019-03-13 2023-10-24 Samsung Electronics Co., Ltd. Polishing slurry and method of manufacturing semiconductor device
CN112812691A (en) * 2019-11-15 2021-05-18 三星电子株式会社 Polishing slurry and method for manufacturing semiconductor device
EP3822327A1 (en) * 2019-11-15 2021-05-19 Samsung Electronics Co., Ltd. Polishing slurry and method of manufacturing semiconductor device
CN112812691B (en) * 2019-11-15 2024-04-09 三星电子株式会社 Polishing slurry and method for manufacturing semiconductor device
WO2021124597A1 (en) 2019-12-20 2021-06-24 昭和電工株式会社 Polishing method, mechanical device manufacturing method, and mechanical device
EP4079450A4 (en) * 2019-12-20 2023-02-15 Showa Denko K.K. Polishing method, mechanical device manufacturing method, and mechanical device

Also Published As

Publication number Publication date
JPWO2007020939A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2007020939A1 (en) Polishing slurry
TWI343944B (en) Cmp slurry, preparation method thereof and method of polishing substrate using the same
JP4814784B2 (en) Modular barrier removal polishing slurry
TWI592471B (en) Polishing composition
TWI433814B (en) Chemical mechanical polishing slurry composition including non-ionized, heat activated nano-catalyst and polishing method using the same
WO2019131874A1 (en) Method for producing chain-like particle dispersion, and dispersion of chain-like particles
TW201031739A (en) Compositions comprising silane modified metal oxides
TWI808121B (en) Composition for chemical mechanical polishing and polishing method
WO2017057156A1 (en) Polishing method
JP2022060218A (en) Tungsten chemical mechanical planarization (cmp) with low dishing and low erosion topography
Lee et al. Preparation and characterization of slurry for CMP
JP2021042377A (en) Abrasive, polishing slurry, and method of manufacturing semiconductor device
JP5090925B2 (en) Polishing liquid for polishing aluminum film and polishing method of aluminum film using the same
Wang et al. Controllable synthesis of core-shell SiO2@ CeO2 abrasives for chemical mechanical polishing on SiO2 film
JP6279156B2 (en) Polishing composition
Zhang et al. The role of ammonium citrate and dodecyl pyridinium chloride on chemical mechanical polishing relevant to SiO2 dielectric layer
TW200840861A (en) Polishing liquid
KR102210254B1 (en) Cmp slurry composition for polishing copper and method for polishing using the same
TWI844518B (en) Polishing composition, method for producing polishing composition, polishing method, and method for producing semiconductor substrate
KR20220060342A (en) Method for producing composite particles in which the core is coated with cerium oxide particles, and composite particles manufactured thereby
Hegde et al. Chemical-mechanical polishing of copper using molybdenum dioxide slurry
JP2009094450A (en) Polishing liquid for polishing aluminum film, and polishing method of substrate
JP2021080436A (en) Polishing slurry and method of manufacturing semiconductor device
KR102718281B1 (en) Polishing slurry and method of manufacturing semiconductor device
Yin et al. Newly designed colloidal silica for copper chemical mechanical polishing in electronic packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007531007

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796456

Country of ref document: EP

Kind code of ref document: A1