JP2009241691A - Automobile interior part - Google Patents

Automobile interior part Download PDF

Info

Publication number
JP2009241691A
JP2009241691A JP2008089271A JP2008089271A JP2009241691A JP 2009241691 A JP2009241691 A JP 2009241691A JP 2008089271 A JP2008089271 A JP 2008089271A JP 2008089271 A JP2008089271 A JP 2008089271A JP 2009241691 A JP2009241691 A JP 2009241691A
Authority
JP
Japan
Prior art keywords
automobile interior
heating
interior part
mold
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008089271A
Other languages
Japanese (ja)
Inventor
Koji Mori
浩司 森
Hideo Matsumura
英保 松村
Hidekazu Kobayashi
英一 小林
Yuji Sakakibara
有史 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2008089271A priority Critical patent/JP2009241691A/en
Publication of JP2009241691A publication Critical patent/JP2009241691A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automobile interior part having an improved sound-absorbing performance while maintaining a shock absorbing characteristic equal to that of the conventional one. <P>SOLUTION: The automobile interior part such as a tibia pad or a bulk-increasing material is formed of a polyolefin based resin foam where an air flow resistance value per unit thickness is >3,000 N×s/m<SP>4</SP>and <50,000 N×s/m<SP>4</SP>, and the ratio of the static compression stress in a distortion rate of 50% and the static compression stress in a distortion rate of 10% is 0.3 to 0.6. The static compression stress in the distortion rate of 5% of the automobile interior part is ≥0.1 MPa and <2.2 MPa. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車乗員の下肢部保護部材であるティビアパッド、車室のフロア上に設置される嵩上げ材のような自動車内装部品に関する。   The present invention relates to an automobile interior part such as a tibia pad, which is a lower limb protection member of an automobile occupant, and a raising member installed on a floor of a passenger compartment.

自動車内装部品として、ティビアパッドが使われている。従来のティビアパッドを以下に示す。
フロントシート(30)の乗員用の下肢部保護部材として、図7に示すような発泡樹脂製のティビアパッド(6)が車室(3)内にて周壁(33)に接して配備される(特許文献1参照)。発泡樹脂としては、例えばスチレン改質ポリエチレン系樹脂の発泡樹脂が用いられ、これは予備発泡させて所定の粒径の粒子にした樹脂を、金型に充填し加熱して成形される。
Tibia pads are used as automotive interior parts. A conventional tibia pad is shown below.
As a lower limb protection member for the occupant of the front seat (30), a tibia pad (6) made of foamed resin as shown in FIG. 7 is provided in contact with the peripheral wall (33) in the passenger compartment (3) (patent) Reference 1). As the foamed resin, for example, a foamed resin of a styrene-modified polyethylene resin is used, which is molded by filling a mold with a resin that has been pre-foamed into particles of a predetermined particle size and heating.

斯種ティビアパッド(6)のような自動車内装部品には、フットレストとして衝撃吸収特性が求められる。また、更に、車内静粛性に鑑みて、吸音性能特性も求められている(特許文献2参照)。この吸音性能特性を評価する値として、空気流れ抵抗値があり、この空気流れ抵抗値が低いほど、吸音性能特性が良い。特許文献2に開示された自動車内装部品は、ポリプロピレン樹脂から形成され、その空気流れ抵抗値は、試験片の厚みが0.02mで3000N・s/m3より大きく50000N・s/m3以下であった。また、衝撃吸収特性を評価する手法としては、JIS K6767「発泡プラスチック ポリエチレン 試験方法」に規定する歪み率10%の静的圧縮応力と、歪み率50%の静的圧縮応力との比を求める手法がある。特許文献2には、自動車内装部品の該比は0.3以上0.5以下であることが開示されている。 An automobile interior part such as the tibia pad (6) is required to have a shock absorbing characteristic as a footrest. Furthermore, in view of quietness in the vehicle, sound absorption performance characteristics are also required (see Patent Document 2). As a value for evaluating the sound absorption performance characteristic, there is an air flow resistance value. The lower the air flow resistance value, the better the sound absorption performance characteristic. Automobile interior parts disclosed in Patent Document 2 is formed of a polypropylene resin, the air flow resistance value is greater than 50000N · s / m 3 or less 3000N · s / m 3 thickness of the test piece at 0.02m there were. In addition, as a method for evaluating the impact absorption characteristics, a method for obtaining a ratio of a static compressive stress having a strain rate of 10% and a static compressive stress having a strain rate of 50% as defined in JIS K6767 “Testing method for foamed plastic and polyethylene”. There is. Patent Document 2 discloses that the ratio of automobile interior parts is 0.3 or more and 0.5 or less.

かかる発泡樹脂が用いられる自動車内装部品には、ティビアパッドのみならず、図8に示すように、自動車のフロア(4)面上に配備されて、リアシート(31)の高さを設定する嵩上げ材(1)がある(特許文献3参照)。嵩上げ材(1)上には、カーペット(5)が敷かれる。   The automobile interior parts in which such foamed resin is used are not only tibia pads but also a raised material (see FIG. 8) that is arranged on the floor (4) surface of the automobile and sets the height of the rear seat (31). 1) (see Patent Document 3). A carpet (5) is laid on the raising material (1).

特開2007−98964号公報JP 2007-98964 A 特開2007−45979号公報JP 2007-45979 A 特開2000−280809号公報JP 2000-280809 A

特許文献2に開示された自動車内装部品の空気流れ抵抗値は、試験片の厚みが0.02mで3000N・s/m3より大きく50000N・s/m3以下であった。ここで、空気流れ抵抗値は試験片の厚みによって異なるから、吸音性能特性を客観的に評価するには、空気流れ抵抗値を厚みで除して求められる単位厚さ空気流れ抵抗値を用いる必要がある。
特許文献2に開示された自動車内装部品の単位厚さ空気流れ抵抗値は、空気流れ抵抗値を厚み0.02mで除した150000N・s/m4より大きく2500000N・s/m4以下である。
出願人は、衝撃吸収特性を特許文献2に開示された値と同等として、衝撃吸収特性を維持しつつ、吸音性能特性を特許文献2に開示された値よりも改善することを試みた。具体的には、発泡体が膨らむのを抑制すれば、得られる発泡成形体は通気性を有すると考えられる。
本発明の目的は、衝撃吸収特性を従来と同等に維持しつつ、吸音性能特性を改善した自動車内装部品を提供することにある。
The value of the airflow resistance of the automobile interior parts disclosed in Patent Document 2, the thickness of the test piece was 50000N · s / m 3 or less larger than 3000N · s / m 3 at 0.02 m. Here, since the air flow resistance value varies depending on the thickness of the test piece, in order to objectively evaluate the sound absorption performance characteristics, it is necessary to use the unit thickness air flow resistance value obtained by dividing the air flow resistance value by the thickness. There is.
The unit thickness air flow resistance value of the automobile interior part disclosed in Patent Document 2 is larger than 150,000 N · s / m 4 obtained by dividing the air flow resistance value by the thickness of 0.02 m and not more than 2500,000 N · s / m 4 .
The applicant tried to improve the sound absorption performance characteristic from the value disclosed in Patent Document 2 while maintaining the shock absorption characteristic, assuming that the shock absorption characteristic is equivalent to the value disclosed in Patent Document 2. Specifically, if the foam is prevented from expanding, the resulting foamed molded product is considered to have air permeability.
An object of the present invention is to provide an automobile interior part with improved sound absorption performance characteristics while maintaining shock absorption characteristics equivalent to the conventional one.

自動車内装部品は、単位厚さ空気流れ抵抗値が3000N・s/m4より大きく50000N・s/m4以下であり、歪み率50%時の静的圧縮応力と、歪み率10%の静的圧縮応力との比が0.3以上0.6以下である熱可塑性樹脂発泡体から形成される。 Automobile interior parts, unit thickness value of the airflow resistance is at large 50000N · s / m 4 or less than 3000N · s / m 4, and static compressive stress when the strain rate of 50%, the strain rate of 10% of the static It is formed from a thermoplastic resin foam having a ratio to the compressive stress of 0.3 or more and 0.6 or less.

出願人が、種々の実験から得た熱可塑性樹脂発泡体であるポリオレフィン系樹脂発泡体は、単位厚さ空気流れ抵抗値が3000N・s/m4より大きく50000N・s/m4以下であり、従来品よりも吸音性能特性を大きく改善することができた。また、歪み率50%時の静的圧縮応力と、歪み率10%の静的圧縮応力との比が0.3以上0.6以下であり、衝撃吸収特性を従来と同等に維持することができた。即ち、衝撃吸収特性を従来と同等に維持しつつ、吸音性能特性を改善した自動車内装部品を得ることができた。 Applicant, polyolefin resin foam is a thermoplastic resin foam obtained from the various experiments, unit thickness value of the airflow resistance is at large 50000N · s / m 4 or less than 3000N · s / m 4, Sound absorption performance characteristics can be greatly improved compared to conventional products. In addition, the ratio of the static compressive stress at the strain rate of 50% and the static compressive stress at the strain rate of 10% is 0.3 or more and 0.6 or less, and the shock absorption characteristics can be maintained at the same level as the conventional one. did it. That is, it was possible to obtain an automobile interior part with improved sound absorption performance characteristics while maintaining shock absorption characteristics equivalent to the conventional one.

以下、本発明の一実施例を詳述する。嵩上げ材(1)及びティビアパッド(6)は従来と同様の形状であるが、構成するポリオレフィン系樹脂は、スチレン改質ポリエチレン系の発泡性樹脂である。
先ず、かかる発泡性樹脂を成形する金型を説明する。図1(a)、(b)は、該金型(7)の断面図であり、周知の如く、金型(7)は雄型(70)と雌型(71)を突き合わせて構成され、両型(70)(71)間のキャビティ(72)に発泡性樹脂が導入される。可動型である雄型(70)は左右に移動するが、雌型(71)が移動してもよい。
雌型(71)の外側、雄型(70)の外側には、加熱蒸気が導入される第1加熱室(73)、第2加熱室(74)が夫々形成され、第1加熱室(73)は第1蒸気導入筒(75)と蒸気が排出される第1ドレン弁(76)を、第2加熱室(74)は第2蒸気導入筒(77)と蒸気が排出される第2ドレン弁(78)を夫々具える。キャビティ(72)内へは、供給筒(79)から発泡樹脂の粒子が供給される。
雌型(71)、雄型(70)には蒸気が通過することができる微小孔(図示せず)が開設され、該微小孔の径は成形される発泡性樹脂の径よりも小さく、発泡性樹脂は微小孔から脱落しない。
Hereinafter, an embodiment of the present invention will be described in detail. The raising material (1) and the tibia pad (6) have the same shape as in the prior art, but the polyolefin resin is a styrene-modified polyethylene foaming resin.
First, the metal mold | die which shape | molds this foamable resin is demonstrated. 1 (a) and 1 (b) are cross-sectional views of the mold (7). As is well known, the mold (7) is constructed by abutting a male mold (70) and a female mold (71). A foamable resin is introduced into the cavity (72) between the two molds (70) (71). The movable mold (70) moves left and right, but the female mold (71) may move.
A first heating chamber (73) and a second heating chamber (74) into which heating steam is introduced are formed outside the female mold (71) and the male mold (70), respectively. ) Is the first steam introduction cylinder (75) and the first drain valve (76) from which the steam is discharged, and the second heating chamber (74) is the second steam introduction cylinder (77) and the second drain from which the steam is discharged. Each has a valve (78). Foamed resin particles are supplied into the cavity (72) from the supply cylinder (79).
The female mold (71) and the male mold (70) have micropores (not shown) through which steam can pass, and the diameter of the micropores is smaller than the diameter of the foamable resin to be molded. Resin does not fall out of the micropores.

成形時には、「金型加熱」、「一方加熱」、「逆一方加熱」、「両面加熱」の4工程がある。
「金型加熱」とは、成形開始前に冷えている金型(7)を暖める目的で、第1、第2蒸気導入筒(75)(77)から夫々第1、第2加熱室(73)(74)に加熱蒸気を導入するが、両ドレン弁(76)(78)は開いている工程を指す。従って、第1、第2加熱室(73)(74)に入った蒸気は金型(7)を暖めるとともに金型内の余分な空気を排除し、ドレン弁(76)(78)から排出される。
「一方加熱」とは、第1ドレン弁(76)を閉じて、第1蒸気導入筒(75)から第1加熱室(73)に加熱蒸気を導入する工程であって、第2ドレン弁(78)は開いている。加熱蒸気はキャビティ(72)内の発泡成形体を加熱した後に、第2ドレン弁(78)から排出される。
At the time of molding, there are four steps of “mold heating”, “one side heating”, “reverse one side heating”, and “both sides heating”.
“Mold heating” means that the first and second heating chambers (73, 73) from the first and second steam introduction cylinders (75) and (77) are respectively heated for the purpose of warming the mold (7) that is cooled before the start of molding. ) (74) refers to a process in which heated steam is introduced, and both drain valves (76) and (78) are open. Therefore, the steam that has entered the first and second heating chambers 73 and 74 warms the mold 7 and eliminates excess air in the mold, and is discharged from the drain valves 76 and 78. The
The “one-side heating” is a process of closing the first drain valve (76) and introducing the heating steam from the first steam introducing cylinder (75) into the first heating chamber (73). 78) is open. The heated steam is discharged from the second drain valve (78) after heating the foamed molded body in the cavity (72).

「逆一方加熱」とは「一方加熱」の次の工程であって、第2ドレン弁(78)を閉じて、第2蒸気導入筒(77)から第2加熱室(74)に加熱蒸気を導入し、第1ドレン弁(76)を閉じている。加熱蒸気はキャビティ(72)内の発泡成形体を第2加熱室(74)側から加熱する。
「両面加熱」とは、「逆一方加熱」の後の工程であって、両ドレン弁(76)(78)を閉じて、両蒸気導入筒(75)(77)から加熱蒸気を第1、第2加熱室(73)(74)に導入する工程である。加熱蒸気は、キャビティ(72)内の発泡成形体を加熱して、発泡成形体の表面の延びを促進する。
“Reverse one-sided heating” is the next step after “one-sided heating”, in which the second drain valve (78) is closed and the heated steam is transferred from the second steam introduction cylinder (77) to the second heating chamber (74). The first drain valve (76) is closed. The heating steam heats the foam molded body in the cavity (72) from the second heating chamber (74) side.
“Double-sided heating” is a process after “reverse one-sided heating”, in which both drain valves (76), (78) are closed and heated steam is first supplied from both steam introducing cylinders (75), (77). This is a step of introducing the second heating chamber (73) (74). The heated steam heats the foam molded body in the cavity (72) and promotes the extension of the surface of the foam molded body.

また、上記金型(7)を用いて、発泡成形体を成形する際に、クラッキングと呼ばれる手法が用いられる。これは、雄型(70)と雌型(71)を突き合わせて、発泡成形体となる発泡性樹脂の粒子をキャビティ(72)内に充填するが、この後、図1(b)に示すように、発泡性樹脂の粒子が漏れない程度に、雄型(70)を僅かに雌型(71)から離すことを意味する。雄型(70)を雌型(71)から離す距離(図1(b)のL)をクラッキング量と呼ぶ。これは、キャビティ(72)内の一部の箇所にて、何かの拍子に発泡性樹脂の粒子が充填されていない部分が生じることがあり、かかる充填不足を解消する為の手法である。出願人は種々の実験を通じて、このクラッキング量を調整することにより、成形される発泡性樹脂の通気性を変更することができることが判った。   Further, a technique called cracking is used when a foamed molded article is molded using the mold (7). This is because the male mold (70) and the female mold (71) are brought into contact with each other to fill the foam (72) with particles of the foamable resin to be a foam-molded product. Thereafter, as shown in FIG. 1 (b). Furthermore, it means that the male mold (70) is slightly separated from the female mold (71) to such an extent that the foamable resin particles do not leak. The distance separating the male mold (70) from the female mold (71) (L in FIG. 1 (b)) is called the cracking amount. This is a technique for solving such a shortage of filling in which a portion of the cavity (72) that is not filled with foamable resin particles may be generated at some points. Through various experiments, the applicant has found that the breathability of the foamable resin to be molded can be changed by adjusting the amount of cracking.

出願人は、上記の金型(7)を用いて、自動車内装部品の吸音率、単位長さ空気流れ抵抗値、静的圧縮応力を測定するためのサンプルとして5種類のスチレン改質ポリエチレン系樹脂からなる発泡成形体を用意し、これを実施例1−実施例4とした。実施例1−実施例4の発泡成形体は、通気性を有する。更に、粒子間の隙間がなく、通気性のない発泡成形体を作成し、これを比較例とした。一般に加熱時間を長くすると、発泡性の粒子が大きく膨らむから、隙間のない発泡成形体が得られる。発泡成形体は、何れも厚さ0.03mの板状の母材(後記する)である。
実施例1にあっては、原料にて成形時に、発泡力が抑制されたものを使用することで、比較例と同じ成形条件でも通気性のある発泡成形体を得た。
実施例2−4にあっては、原料は比較例と同じく、成形時に発泡力のある原料を用い、加熱時間を比較例より短くする事で、発泡体が膨らむのを抑制し通気性のある成形体を得た。
比較例にあっては、原料は実施例2−4と同じ発泡力のある原料を用い、加熱を十分に行うことで隙間のない発泡成形体を得た。
実施例1−実施例4の発泡成形体及び比較例の発泡成形体の製法を以下に、記載する。
The applicant uses the above-described mold (7) to provide five types of styrene-modified polyethylene resins as samples for measuring the sound absorption coefficient, unit length air flow resistance, and static compressive stress of automobile interior parts. A foamed molded body was prepared, and this was designated as Example 1 to Example 4. Example 1 The foamed molded product of Example 4 has air permeability. Further, a foamed molded article having no gap between the particles and having no air permeability was prepared and used as a comparative example. In general, when the heating time is lengthened, the foamable particles swell greatly, so that a foamed molded product having no gap can be obtained. Each of the foam molded bodies is a plate-like base material (described later) having a thickness of 0.03 m.
In Example 1, a foamed molded article having air permeability was obtained even under the same molding conditions as in the comparative example by using a material whose foaming force was suppressed during molding with the raw material.
In Example 2-4, as in the comparative example, the raw material used was a foaming raw material at the time of molding, and the heating time was shorter than that of the comparative example, thereby suppressing the foam from expanding and having air permeability. A molded body was obtained.
In the comparative example, a raw material having the same foaming force as that of Example 2-4 was used as a raw material, and a foamed molded body having no gap was obtained by sufficiently heating.
The manufacturing method of the foaming molding of Example 1-Example 4 and the foaming molding of a comparative example is described below.

実施例1の発泡成形体の製法
エチレン−酢酸ビニル共重合体(以下、EVAと略す)(日本ユニカー社製 商品名「NUC−3450」、酢酸ビニル含有量:5重量%、融点:107℃、メルトフローレート:0.5g/10分、密度:0.93g/cm3)を押出機に供給して溶融混連して水中カット方式により造粒し、楕円球状(卵状)のEVA樹脂粒子(ポリエチレン系樹脂粒子)を得た。EVA樹脂粒子の平均重量は0.6mgであった。尚、EVAのメルトフローレート及び密度は、JIS K6992−2に準拠して測定した値である。
次にピロリン酸マグネシウム0.8重量部及びドデシルベンゼンスルホン酸ソーダ0.02重量部を水100重量部に分散させて分散用媒体を得た。分散用媒体に上記EVA樹脂粒子100重量部を分散させて懸濁液を得た。
更に、重合開始剤としてベンゾイルパーオキサイド0.19重量部、ジクミルパーオキサイド1.5重量部をスチレンモノマー200重量部に溶解させてスチレン系モノマーを作成した。
EVA樹脂粒子を含む懸濁液を温度90℃に調節し、上記スチレン系モノマーを1時間あたり50重量部の割合で連続的に滴下することで、スチレン系モノマーをEVA樹脂粒子に含浸させながら重合させた。
Production Method of Foam Molded Body of Example 1 Ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVA) (trade name “NUC-3450” manufactured by Nihon Unicar Co., Ltd., vinyl acetate content: 5% by weight, melting point: 107 ° C., Melt flow rate: 0.5 g / 10 min, density: 0.93 g / cm 3 ) is supplied to an extruder, melted and mixed, granulated by an underwater cutting method, and oval spherical (egg) EVA resin particles (Polyethylene resin particles) were obtained. The average weight of the EVA resin particles was 0.6 mg. The melt flow rate and density of EVA are values measured according to JIS K6992-2.
Next, 0.8 parts by weight of magnesium pyrophosphate and 0.02 parts by weight of sodium dodecylbenzenesulfonate were dispersed in 100 parts by weight of water to obtain a dispersion medium. A suspension was obtained by dispersing 100 parts by weight of the EVA resin particles in a dispersion medium.
Further, 0.19 parts by weight of benzoyl peroxide and 1.5 parts by weight of dicumyl peroxide as a polymerization initiator were dissolved in 200 parts by weight of styrene monomer to prepare a styrene monomer.
The suspension containing EVA resin particles is adjusted to a temperature of 90 ° C., and the styrene monomer is continuously added dropwise at a rate of 50 parts by weight per hour to polymerize the EVA resin particles while impregnating the EVA resin particles. I let you.

次に反応系の温度を140℃に昇温して3時間保持し、EVA樹脂を架橋させ、スチレン改質EVA樹脂粒子を得た。得られた樹脂粒子の架橋度(ゲル分)は55%であった。
続いて、内容積が1m3の密閉式耐圧V型回転混合機に、改質樹脂粒子100重量部、ステアリン酸モノグリセリド0.15重量部及びジイソブチルアジベート0.5重量部を供給して回転させながら常温でブタン(n−ブタン:I−ブタン=7:3)14重量部を圧入した。そして、回転混合機内を70℃に昇温して4時間保持しブタンを含浸させた後に25℃まで冷却して発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を直ちに水蒸気で嵩密度30kg/m3に予備発泡させて予備発泡粒子を得た。次に、予備発泡粒子を発泡成形機の中に充填するが、このときクラッキング量を3mmに設定して金型を僅かに開いた状態で充填し、蒸気圧力0.08MPaの蒸気を使用して、第1に金型加熱7秒、次に一方加熱15秒、次に逆一方加熱7秒、次に両面加熱10秒を順次行い、その後水冷して発泡成形体である通気性を有する母材を取り出した。
なお、発泡成形には、下記の発泡成形機を使用した。
使用成形機:ACE−3SP(積水工機社製)
金型サイズ:300×400×30mm
Next, the temperature of the reaction system was raised to 140 ° C. and held for 3 hours to crosslink the EVA resin to obtain styrene-modified EVA resin particles. The degree of crosslinking (gel content) of the obtained resin particles was 55%.
Subsequently, 100 parts by weight of the modified resin particles, 0.15 parts by weight of stearic acid monoglyceride and 0.5 parts by weight of diisobutyl adipate are fed to a sealed pressure-resistant V-type rotary mixer having an internal volume of 1 m 3 and rotated. However, 14 parts by weight of butane (n-butane: I-butane = 7: 3) was injected at room temperature. Then, the inside of the rotary mixer was heated to 70 ° C., held for 4 hours, impregnated with butane, and then cooled to 25 ° C. to obtain expandable resin particles.
The obtained expandable resin particles were immediately prefoamed with water vapor to a bulk density of 30 kg / m 3 to obtain prefoamed particles. Next, the pre-expanded particles are filled into the foam molding machine. At this time, the cracking amount is set to 3 mm and the mold is opened slightly, and steam with a steam pressure of 0.08 MPa is used. First, mold heating for 7 seconds, then one heating for 15 seconds, then reverse one heating for 7 seconds, then double-sided heating for 10 seconds, and then water-cooled to form a foamed base material having air permeability Was taken out.
The following foam molding machine was used for foam molding.
Molding machine used: ACE-3SP (manufactured by Sekisui Koki Co., Ltd.)
Mold size: 300 × 400 × 30mm

実施例2の発泡成形体の製法
実施例1と同様の手法で、EVA樹脂粒子を得て、懸濁液を得た。
更に、重合開始剤としてt−ブチルパーオキシベンゾエート0.19重量部をスチレンモノマー40重量部に溶解させてスチレン系モノマーを作成した。
EVA樹脂粒子を含む懸濁液を温度60℃に調節し、上記スチレン系モノマーを30分かけて定量で添加したのち、1時間攪拌することでEVA樹脂粒子中にスチレン系モノマーを含浸させた。
次に反応系の温度を130℃に昇温して3時間保持し、スチレン系モノマーをEVA樹脂粒子中で重合させた。
次に、該重合の反応液に、更に重合開始剤としてt−ブチルパーオキシベンゾエート0.19重量部をスチレンモノマー160重量部に溶解させたスチレン系モノマーを1時間当たり50重量部の割合で連続的に滴下することで、スチレン系モノマーをEVA樹脂粒子に含浸させながら重合させ、スチレン改質EVA樹脂粒子を得た。
続いて、内容積が1m3の密閉式耐圧V型回転混合機に、改質樹脂粒子100重量部、ステアリン酸モノグリセリド0.15重量部及びジイソブチルアジベート0.5重量部を供給して回転させながら常温でブタン(n−ブタン:I−ブタン=7:3)14重量部を圧入した。そして、回転混合機内を70℃に昇温して4時間保持しブタンを含浸させた後に25℃まで冷却して発泡性樹脂粒子を得た。
Production method of foam molded article of Example 2 EVA resin particles were obtained in the same manner as in Example 1 to obtain a suspension.
Further, 0.19 part by weight of t-butyl peroxybenzoate as a polymerization initiator was dissolved in 40 parts by weight of styrene monomer to prepare a styrene monomer.
The suspension containing EVA resin particles was adjusted to a temperature of 60 ° C., and the styrene monomer was added in a fixed amount over 30 minutes, and then stirred for 1 hour to impregnate the styrene monomer in the EVA resin particles.
Next, the temperature of the reaction system was raised to 130 ° C. and maintained for 3 hours, and the styrene monomer was polymerized in the EVA resin particles.
Next, a styrene monomer in which 0.19 part by weight of t-butyl peroxybenzoate was further dissolved in 160 parts by weight of styrene monomer as a polymerization initiator was continuously added at a rate of 50 parts by weight per hour. The styrene monomer was polymerized while being impregnated with EVA resin particles to obtain styrene-modified EVA resin particles.
Subsequently, 100 parts by weight of the modified resin particles, 0.15 parts by weight of stearic acid monoglyceride and 0.5 parts by weight of diisobutyl adipate are fed to a sealed pressure-resistant V-type rotary mixer having an internal volume of 1 m 3 and rotated. However, 14 parts by weight of butane (n-butane: I-butane = 7: 3) was injected at room temperature. Then, the inside of the rotary mixer was heated to 70 ° C., held for 4 hours, impregnated with butane, and then cooled to 25 ° C. to obtain expandable resin particles.

得られた発泡性樹脂粒子を直ちに水蒸気で嵩密度30kg/m3に予備発泡させて予備発泡粒子を得た。次に、予備発泡粒子を発泡成形機の中に充填するが、このときクラッキングを2mmに設定して金型を僅かに開いた状態で充填し、蒸気圧力0.08MPaの蒸気を使用して、先ず金型加熱7秒、次に一方加熱15秒、次に逆一方加熱0.5秒、次に両面加熱0.5秒を順次行い、その後水冷して発泡成形体を取り出した。
なお、発泡成形には、下記の発泡成形機を使用した。
使用成形機:ACE−3SP(積水工機社製)
金型サイズ:300×400×30mm
得られた発泡体である母材は、通気性を有する発泡成形体であった。
The obtained expandable resin particles were immediately prefoamed with water vapor to a bulk density of 30 kg / m 3 to obtain prefoamed particles. Next, the pre-expanded particles are filled into the foam molding machine. At this time, the cracking is set to 2 mm and the mold is slightly opened, and steam with a steam pressure of 0.08 MPa is used. First, mold heating was performed for 7 seconds, then one heating for 15 seconds, then reverse one heating for 0.5 seconds, and then double-sided heating for 0.5 seconds, followed by water cooling to take out the foamed molded product.
The following foam molding machine was used for foam molding.
Molding machine used: ACE-3SP (manufactured by Sekisui Koki Co., Ltd.)
Mold size: 300 × 400 × 30mm
The base material which is the obtained foam was a foamed molded article having air permeability.

実施例3の発泡成形体の製法
クラッキング量を3mmに設定した以外は、実施例2と同様にして、通気性を有する発泡成形体、即ち母材を得た。
実施例4の発泡成形体の製法
クラッキング量を7mmに設定した以外は、実施例2と同様にして、通気性を有する発泡成形体、即ち母材を得た。
A foamed molded article having air permeability, that is, a base material, was obtained in the same manner as in Example 2 except that the manufacturing cracking amount of the foamed molded article of Example 3 was set to 3 mm.
A foamed molded product having air permeability, that is, a base material, was obtained in the same manner as in Example 2 except that the manufacturing cracking amount of the foamed molded product of Example 4 was set to 7 mm.

比較例の発泡成形体の製法
成形時の加熱時間を、先ず金型加熱7秒、次に一方加熱15秒、次に逆一方加熱7秒、次に両面加熱10秒とした以外は、実施例2と同様にして、通気性の少ない発泡成形体、即ち母材を得た。即ち、逆一方加熱と両面加熱を実施例2よりも長くすることにより、通気性の少ない発泡成形体を得た。
Except that the heating time at the time of molding of the foamed molded product of the comparative example was first mold heating 7 seconds, then one heating 15 seconds, then reverse one heating 7 seconds, then double-sided heating 10 seconds In the same manner as in No. 2, a foamed molded product having a low air permeability, that is, a base material was obtained. That is, by making the reverse one-side heating and the double-sided heating longer than those in Example 2, a foamed molded article with less air permeability was obtained.

上記の実施例1−4及び比較例の発泡成形体である母材(20)から、図2に示すように、サンプル(2)を刳り抜いた。各サンプル(2)は、電子ノギスで厚みが測定され、電子秤で重量が求められ、密度が演算された。
出願人は、各サンプル(2)について、吸音率(単位:%)、単位長さ空気流れ抵抗値(単位:N・s/m4)、静的圧縮応力(単位:MPa)を測定した。
As shown in FIG. 2, the sample (2) was punched out from the base material (20) which is the foam molded body of Examples 1-4 and Comparative Examples. The thickness of each sample (2) was measured with an electronic caliper, the weight was obtained with an electronic balance, and the density was calculated.
The applicant measured the sound absorption coefficient (unit:%), unit length air flow resistance value (unit: N · s / m 4 ), and static compressive stress (unit: MPa) for each sample (2).

吸音率の測定
図3は、吸音率を測定する装置の図である。サンプル(2)は、直径29.7mmで、厚み30mmである。サンプル(2)はインピーダンス管(21)の先端部に取り付けられて、該インピーダンス管(21)の基端部にはスピーカ(22)が取り付けられている。スピーカ(22)の入力側にはアンプ(23)を介して正弦波発生器(24)が取り付けられ、該スピーカ(22)の出力側には、マイク(25)、アンプ(26)を介してアナライザ(27)が取り付けられている。正弦波発生器(24)から1kHzの信号をインピーダンス管(21)を通って、サンプル(2)に垂直に入射し、サンプル(2)が反射した信号をマイク(25)で拾ってアンプ(26)を介してアナライザ(27)で分析した。アナライザ(27)ではサンプル(2)が反射した信号の音圧極大値と、音圧極小値をJIS A1405「音響−インピ−ダンス管による吸音率及びインピーダンスの測定−定在波比法」に規定する公式に当てはめて演算した。吸音率が高いほど、車内の静粛性を高めることができる良い材質である。
Measurement of Sound Absorption Rate FIG. 3 is a diagram of an apparatus for measuring the sound absorption rate. Sample (2) has a diameter of 29.7 mm and a thickness of 30 mm. The sample (2) is attached to the distal end portion of the impedance tube (21), and the speaker (22) is attached to the proximal end portion of the impedance tube (21). A sine wave generator (24) is attached to the input side of the speaker (22) via an amplifier (23), and a microphone (25) and an amplifier (26) are connected to the output side of the speaker (22). An analyzer (27) is attached. A 1 kHz signal from the sine wave generator (24) passes through the impedance tube (21) and enters the sample (2) perpendicularly, and the signal reflected by the sample (2) is picked up by the microphone (25) and amplifier (26 ) Through an analyzer (27). In the analyzer (27), the maximum sound pressure value and the minimum sound pressure value of the signal reflected by the sample (2) are defined in JIS A1405 “Sound absorption coefficient and impedance measurement using impedance tube—standing wave ratio method”. The calculation was applied to the formula. The higher the sound absorption coefficient, the better the material can improve the quietness in the vehicle.

単位長さ空気流れ抵抗の測定
単位長さ空気流れ抵抗値は、図4に示す装置にて、ISO9053A法により測定される空気流れ抵抗値に基づいて求められる。測定管本体(8)には、空気流れ抵抗値を測定するサンプル(2)が取り付けられ、該サンプル(2)にコンプレッサ(80)から流量調整器(81)を介して圧縮空気が送られる。サンプル(2)は、直径40mmで、厚み30mmである。
サンプル(2)に入る空気とサンプル(2)を通過した空気の圧力差を微差圧計センサ(82)にて測定し、該センサ(82)の値を微差圧計読取部(83)にて読みとって、差圧信号を計測コントローラ(84)に送って空気流れ抵抗値を求めた。このようにして得られた空気流れ抵抗値(単位:N・s/m3)をサンプル(2)の厚みである0.03mで除して単位長さ空気流れ抵抗値(単位:N・s/m4)を求めた。
測定管本体(8)の内径は、40mmであり、サンプル(2)の周囲と測定管本体(8)の内面との隙間に、シリコングリスを塗布して、該隙間を埋めた。
Unit Length Air Flow Resistance Measurement The unit length air flow resistance value is determined based on the air flow resistance value measured by the ISO9053A method with the apparatus shown in FIG. A sample (2) for measuring an air flow resistance value is attached to the measuring tube main body (8), and compressed air is sent to the sample (2) from the compressor (80) via the flow rate regulator (81). Sample (2) has a diameter of 40 mm and a thickness of 30 mm.
The pressure difference between the air entering the sample (2) and the air passing through the sample (2) is measured by the micro differential pressure gauge sensor (82), and the value of the sensor (82) is measured by the micro differential pressure gauge reading unit (83) After reading, the differential pressure signal was sent to the measurement controller (84) to determine the air flow resistance value. The air flow resistance value (unit: N · s / m 3 ) obtained in this way is divided by 0.03 m which is the thickness of the sample (2) to obtain a unit length air flow resistance value (unit: N · s). / M 4 ).
The inner diameter of the measurement tube main body (8) was 40 mm, and silicon grease was applied to the gap between the periphery of the sample (2) and the inner surface of the measurement tube main body (8) to fill the gap.

静的圧縮応力の測定
静的圧縮応力は、JIS K 6767「発泡プラスチック−ポリエチレン−試験方法」に基づき、静的圧縮荷重をサンプル上に付加し、歪み率10%の静的圧縮応力と、歪み率50%の静的圧縮応力との比を求めた。合わせて、歪み率5%の静的圧縮応力を求めた。サンプルのサイズは、50×50×25mmであり、サンプルの圧縮速度は0.01m/minであった。
吸音率、単位長さ空気流れ抵抗値、静的圧縮応力のデータを、図5の表に、静的圧縮応力を縦軸に、歪み率を横軸にしたグラフを図6に示す。
実施例1−4のサンプル(2)は、比較例のサンプル(2)に比して、吸音率が良い。また、実施例1−4のサンプル(2)は、単位厚さ空気流れ抵抗値が3000N・s/m4より大きく50000N・s/m4以下であり、従来品よりも吸音性能特性を大きく改善することができたことが判る。図5の表から判るように、歪み率5%時の静的圧縮応力は、0.1MPa以上0.2MPa以下、即ち0.1MPa以上2.2MPa未満であった。
また、歪み率50%時の静的圧縮応力と、歪み率10%の静的圧縮応力との比は、0.3以上0.6以下であった。この比が0.3以上0.6以下であることは、衝撃吸収特性が従来と同等であることを示していると考えられる。
Measurement of Static Compressive Stress Static Compressive Stress is measured based on JIS K 6767 “Foamed Plastics-Polyethylene Test Method” by applying a static compressive load on the sample, A ratio with a static compressive stress of 50% was obtained. In addition, a static compressive stress with a strain rate of 5% was determined. The sample size was 50 × 50 × 25 mm, and the compression speed of the sample was 0.01 m / min.
The data of the sound absorption coefficient, unit length air flow resistance, and static compressive stress are shown in the table of FIG. 5, and the graph with the static compressive stress on the vertical axis and the strain rate on the horizontal axis is shown in FIG.
The sample (2) of Example 1-4 has a better sound absorption rate than the sample (2) of the comparative example. Also, samples of Examples 1-4 (2), the unit thickness value of the airflow resistance is at large 50000N · s / m 4 or less than 3000N · s / m 4, greatly improved the sound absorption performance characteristics than conventional products I can see that I was able to. As can be seen from the table of FIG. 5, the static compressive stress at a strain rate of 5% was 0.1 MPa or more and 0.2 MPa or less, that is, 0.1 MPa or more and less than 2.2 MPa.
The ratio of the static compressive stress when the strain rate was 50% and the static compressive stress when the strain rate was 10% was 0.3 or more and 0.6 or less. It can be considered that this ratio of 0.3 or more and 0.6 or less indicates that the impact absorption characteristics are equivalent to the conventional one.

図5の表及び図6のグラフから判るように、出願人が、種々の実験から得たポリオレフィン系樹脂発泡体であるスチレン改質ポリエチレン系樹脂は、単位厚さ空気流れ抵抗値が3000N・s/m4より大きく50000N・s/m4以下であり、従来品よりも吸音性能特性を大きく改善することができた。また、歪み率50%時の静的圧縮応力と、歪み率10%の静的圧縮応力との比が0.3以上0.6以下であり、衝撃吸収特性を従来と同等に維持することができた。即ち、衝撃吸収特性を従来と同等に維持しつつ、吸音性能特性を改善した自動車内装部品を得ることができた。 As can be seen from the table in FIG. 5 and the graph in FIG. 6, the styrene-modified polyethylene resin, which is a polyolefin resin foam obtained by the applicant from various experiments, has a unit thickness air flow resistance value of 3000 N · s. It was larger than / m 4 and 50000 N · s / m 4 or less, and the sound absorption performance characteristics could be greatly improved as compared with the conventional product. In addition, the ratio of the static compressive stress at the strain rate of 50% and the static compressive stress at the strain rate of 10% is 0.3 or more and 0.6 or less, and the shock absorption characteristics can be maintained at the same level as the conventional one. did it. That is, it was possible to obtain an automobile interior part with improved sound absorption performance characteristics while maintaining shock absorption characteristics equivalent to the conventional one.

上記実施例の発泡成形体の原料には、発泡性合成樹脂粒子を3倍〜50倍に予備発泡させて得られた1mm〜5mm程度の予備発泡粒子が使用できる。
発泡性合成樹脂粒子は、合成樹脂に物理型発泡剤を含浸させてなり、加熱によって発泡するものであり、予備発泡させたものも含まれる。なお、本発明の実施の形態では、予備発泡させた、いわゆる予備発泡粒子を主に使用する。上記発泡性合成樹脂粒子を構成する合成樹脂としては、例えばスチレン改質ポリエチレン系樹脂、ポリスチレン、ハイインパクトポリスチレン、スチレン−エチレン共重合体、スチレン−無水マレイン酸共重合体、スチレン−アクリロニトリル共重合体等のポリスチレン系樹脂、ポリメチルメタクリレート樹脂等のポリメタクリル系樹脂、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂等が挙げられる。これら合成樹脂の混合物やモノマーの共重合体なども使用できる。
また、物理型発泡剤としては、例えばプロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素類、シクロペンタン、シクロブタン等の脂肪族環化水素類、二酸化炭素、窒素、空気等の無機ガス等が挙げられる。これらの物理型発泡剤は単体で用いても、2種類以上を併用してもよい。
As the raw material of the foamed molded product of the above-mentioned Examples, pre-expanded particles of about 1 mm to 5 mm obtained by pre-expanding the expandable synthetic resin particles 3 to 50 times can be used.
The expandable synthetic resin particles are obtained by impregnating a synthetic resin with a physical foaming agent and foam by heating, and include those pre-foamed. In the embodiment of the present invention, pre-expanded so-called pre-expanded particles are mainly used. Examples of the synthetic resin constituting the foamable synthetic resin particles include styrene-modified polyethylene resin, polystyrene, high impact polystyrene, styrene-ethylene copolymer, styrene-maleic anhydride copolymer, and styrene-acrylonitrile copolymer. And polystyrene resins such as polymethyl methacrylate resin, polyolefin resins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, and polyester resins such as polyethylene terephthalate. Mixtures of these synthetic resins and copolymer of monomers can also be used.
Examples of the physical foaming agent include aliphatic hydrocarbons such as propane, butane, pentane and hexane, aliphatic cyclized hydrogens such as cyclopentane and cyclobutane, and inorganic gases such as carbon dioxide, nitrogen and air. Can be mentioned. These physical foaming agents may be used alone or in combination of two or more.

上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。   The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. In addition, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

(a)、(b)は、発泡性樹脂を成形する金型の断面図である。(a), (b) is sectional drawing of the metal mold | die which shape | molds a foamable resin. サンプルと母材の斜視図である。It is a perspective view of a sample and a base material. 吸音率を測定する装置の図である。It is a figure of the apparatus which measures a sound absorption coefficient. 空気流れ抵抗値を測定する装置の図である。It is a figure of the apparatus which measures an air flow resistance value. 吸音率、単位長さ空気流れ抵抗値、静的圧縮応力のデータを示す表である。It is a table | surface which shows the data of a sound absorption coefficient, unit length airflow resistance value, and a static compressive stress. 静的圧縮応力を縦軸に、歪み率を横軸にしたグラフである。It is the graph which made the static compressive stress the vertical axis and made the distortion rate the horizontal axis. 従来のティビアパッドの斜視図である。It is a perspective view of the conventional tibia pad. 嵩上げ材の断面図である。It is sectional drawing of a raising material.

符号の説明Explanation of symbols

(2) サンプル
(3) 車室
(6) ティビアパッド
(7) 金型
(2) Sample
(3) Car compartment
(6) Tibia pad
(7) Mold

Claims (4)

単位厚さ空気流れ抵抗値が3000N・s/m4より大きく50000N・s/m4以下であり、歪み率50%時の静的圧縮応力と、歪み率10%の静的圧縮応力との比が0.3以上0.6以下である熱可塑性樹脂発泡体から形成される自動車内装部品。 The ratio of unit thickness value of the airflow resistance is at large 50000N · s / m 4 or less than 3000N · s / m 4, and static compressive stress when the strain rate of 50%, the strain rate of 10% of the static compressive stress An automobile interior part formed from a thermoplastic resin foam having a value of 0.3 or more and 0.6 or less. 歪み率5%時の静的圧縮応力が、0.1MPa以上2.2MPa未満である、請求項1に記載の自動車内装部品。 The automobile interior part according to claim 1, wherein a static compressive stress at a strain rate of 5% is 0.1 MPa or more and less than 2.2 MPa. 熱可塑性樹脂発泡体は、スチレン改質ポリオレフィン系樹脂である、請求項1又は2に記載の自動車内装部品。 The automotive interior part according to claim 1 or 2, wherein the thermoplastic resin foam is a styrene-modified polyolefin resin. スチレン改質ポリオレフィン系樹脂発泡体は、スチレン成分が50%以上である、請求項3に記載の自動車内装部品。 The automobile interior part according to claim 3, wherein the styrene-modified polyolefin resin foam has a styrene component of 50% or more.
JP2008089271A 2008-03-31 2008-03-31 Automobile interior part Pending JP2009241691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089271A JP2009241691A (en) 2008-03-31 2008-03-31 Automobile interior part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089271A JP2009241691A (en) 2008-03-31 2008-03-31 Automobile interior part

Publications (1)

Publication Number Publication Date
JP2009241691A true JP2009241691A (en) 2009-10-22

Family

ID=41304120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089271A Pending JP2009241691A (en) 2008-03-31 2008-03-31 Automobile interior part

Country Status (1)

Country Link
JP (1) JP2009241691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095240A (en) * 2016-12-08 2018-06-21 積水化成品工業株式会社 Fender body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045979A (en) * 2005-08-11 2007-02-22 Kaneka Corp Interior material for automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045979A (en) * 2005-08-11 2007-02-22 Kaneka Corp Interior material for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095240A (en) * 2016-12-08 2018-06-21 積水化成品工業株式会社 Fender body

Similar Documents

Publication Publication Date Title
JP4461172B2 (en) Foam molded body having voids
JP4346042B2 (en) Hollow foam blow molding
WO1996031558A1 (en) Foamed particles of propylene homopolymer and moldings of said particles
JP2012197373A (en) Foamed molded product and its use
JP6243744B2 (en) Interior material for vehicles made of molded polyolefin resin foam
JP5553983B2 (en) Styrene-modified polyethylene resin particles and pre-expanded particles obtained from the resin particles
JP4281969B2 (en) Method for producing hollow foam molding
JP2009241691A (en) Automobile interior part
JP5324027B2 (en) Styrene-modified thermoplastic polyurethane resin particles, expandable styrene-modified thermoplastic polyurethane resin particles, styrene-modified thermoplastic polyurethane resin foam particles, styrene-modified thermoplastic polyurethane resin foamed moldings, and methods for producing them
CN115427487B (en) Polypropylene resin foam beads and polypropylene resin foam bead molded article
JP2011084593A (en) Method for producing styrene-modified polyethylene-based resin preliminary foamed particles
JP2010180295A (en) Polyolefin resin pre-expanded bead in control of sound of friction
JP5536357B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam
JP4837356B2 (en) Thermoplastic resin in-mold foam molding and production method
TW201343759A (en) Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper
JP6923796B2 (en) Structures, vehicle structures and vehicle air conditioning ducts
JP2007045979A (en) Interior material for automobile
JP2010209221A (en) Sound-absorbing modified polystyrene resin foam and method for producing the same
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
JP5151020B2 (en) Thermoplastic resin in-mold foam molding
JP2012025908A (en) Automotive interior material
JP4984482B2 (en) Thermoplastic resin foam molding
JP2001341248A (en) Polypropylene resin composite molding for automobile
JP2006088442A (en) Foam molded product having voids
JP2009203417A (en) Modified polystyrene-based resin pre-expanded particles, and acoustic modified polystyrene-based resin expansion-molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120