JP4461172B2 - Foam molded body having voids - Google Patents

Foam molded body having voids Download PDF

Info

Publication number
JP4461172B2
JP4461172B2 JP2007507590A JP2007507590A JP4461172B2 JP 4461172 B2 JP4461172 B2 JP 4461172B2 JP 2007507590 A JP2007507590 A JP 2007507590A JP 2007507590 A JP2007507590 A JP 2007507590A JP 4461172 B2 JP4461172 B2 JP 4461172B2
Authority
JP
Japan
Prior art keywords
particles
weight
resin
styrene
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007507590A
Other languages
Japanese (ja)
Other versions
JP2008508111A (en
Inventor
英保 松村
達哉 松ヶ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Publication of JP2008508111A publication Critical patent/JP2008508111A/en
Application granted granted Critical
Publication of JP4461172B2 publication Critical patent/JP4461172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、空隙を有する発泡成形体に関する。更に詳しくは、本発明は、断熱性、軽量性及び吸音性に優れ、しかも著しく向上した耐薬品性と曲げ強度とを備えた空隙を有する発泡成形体に関する。本発明の発泡成形体は、特に吸音性能が求められる、例えば天井材や、車両衝突時に乗員を保護する側突パッド、下肢部エネルギー吸収材(ティビアパッド)、フロアースペーサー等に代表される自動車内装材や、バンパー等の自動車部材、及び壁材、床材等の建設用部材として好適に利用できる。   The present invention relates to a foamed molded article having voids. More specifically, the present invention relates to a foamed molded article having a void having excellent heat resistance, light weight and sound absorption, and having significantly improved chemical resistance and bending strength. The foamed molded product of the present invention is particularly required to have sound absorbing performance. For example, a ceiling material, a side impact pad that protects an occupant in the event of a vehicle collision, a lower limb energy absorbing material (tibia pad), an automobile interior material represented by a floor spacer, Also, it can be suitably used as automobile members such as bumpers and construction members such as wall materials and floor materials.

一般に、ポリエチレン系樹脂の発泡体は、弾性が高く、耐衝撃性に優れているので、包装資材として使用されている。しかし、剛性が低く圧縮強度が弱い等の短所を有している。一方、スチレン系樹脂の発泡体は、剛性には優れているが、脆いという短所を有している。   In general, a foam of a polyethylene resin is used as a packaging material because it has high elasticity and excellent impact resistance. However, it has disadvantages such as low rigidity and low compressive strength. On the other hand, styrene resin foams are excellent in rigidity but have the disadvantage of being brittle.

このような欠点を改良する方法として、特公昭51−46138号公報(特許文献1)、特公昭52−10150号公報(特許文献2)、特公昭58−53003号公報(特許文献3)、特開昭62−59642号公報(特許文献4)では、ポリエチレン系樹脂にスチレン系モノマーを含浸させて重合を行い、スチレン改質ポリエチレン系樹脂発泡粒子を得る方法が提案されている。   As methods for improving such defects, Japanese Patent Publication No. 51-46138 (Patent Document 1), Japanese Patent Publication No. 52-10150 (Patent Document 2), Japanese Patent Publication No. 58-53003 (Patent Document 3), Japanese Laid-Open Patent Publication No. 62-59642 (Patent Document 4) proposes a method in which a polyethylene resin is impregnated with a styrene monomer and polymerized to obtain styrene-modified polyethylene resin expanded particles.

また、スチレン改質ポリエチレン系樹脂発泡体小片を金型内で加熱発泡させて小片相互を融着させて得られる発泡成形体として、小片間に10〜40%の空隙を有するように小片同士が融着しているスチレン改質ポリオレフィン系樹脂発泡成形体が特開平7−80873号公報(特許文献5)に記載されている。
特公昭51−46138号公報 特公昭52−10150号公報 特公昭58−53003号公報 特開昭62−59642号公報 特開平7−80873号公報
Moreover, as a foaming molding obtained by heat-foaming a styrene-modified polyethylene resin foam piece in a mold and fusing the pieces together, the pieces have a gap of 10 to 40% between the pieces. A fused styrene-modified polyolefin resin foam molded article is described in JP-A-7-80873 (Patent Document 5).
Japanese Patent Publication No.51-46138 Japanese Patent Publication No.52-10150 Japanese Patent Publication No.58-53003 JP-A-62-59642 Japanese Patent Laid-Open No. 7-80873

特公昭51−46138号公報等に記載された方法では、ポリエチレン系樹脂に無機核剤を使用していないことから、得られた改質樹脂粒子は、特にその表面部付近においてポリエチレン系樹脂中にスチレン系樹脂を粒子状に分散させることが難しく、充分な耐薬品性を発揮できないものとなり易い。更に、ポリエチレン系樹脂に無機核剤を使用した場合でも、スチレンモノマーの重合は通常90℃前後で行われるため、その表面部付近でのポリエチレン系樹脂中に分散されたスチレン系樹脂は1μmを越えるような大きな粒子状となって分散され、充分な耐薬品性を発揮できないものとなり易い。   In the method described in Japanese Patent Publication No. 51-46138, etc., since the inorganic nucleating agent is not used in the polyethylene resin, the obtained modified resin particles are contained in the polyethylene resin particularly near the surface portion thereof. It is difficult to disperse styrenic resin in the form of particles, and it tends to be unable to exhibit sufficient chemical resistance. Furthermore, even when an inorganic nucleating agent is used for the polyethylene resin, since the polymerization of the styrene monomer is usually performed at around 90 ° C., the styrene resin dispersed in the polyethylene resin near the surface exceeds 1 μm. Such a large particle tends to be dispersed and cannot exhibit sufficient chemical resistance.

また、特開平7−80873号公報に記載された発泡成形体は、暗渠排水材としての使用を目的に、その使用に十分耐え得る圧縮強度と安定的に所望の空隙率を得ることができるとされている。このような空隙率を設けた発泡成形体は、良好な吸音性能も発揮できる。
しかしながら、本発明者等は、所望の空隙率を設けた発泡成形体であるが故に、自動車内装材などの工業部材として使用するには、例えば曲げ強度等の強度が不十分となり、その使用に耐えないことを知った。
In addition, the foamed molded article described in JP-A-7-80873 can obtain a desired porosity as well as a compressive strength that can sufficiently withstand the use as a culvert drainage material. Has been. A foamed molded article having such a porosity can also exhibit good sound absorption performance.
However, since the present inventors are a foam-molded article having a desired porosity, for example, the strength such as bending strength is insufficient for use as an industrial member such as an automobile interior material. I knew I couldn't stand it.

本発明は、上記した課題を解決するためなされたもので、このような所望の空隙率を設けて良好な吸音性能を発揮させ、かつ高い曲げ強度をも発揮できる発泡成形体を提供することを目的とする。
かくして本発明によれば、無機核剤を含みメタロセン触媒を使用して得ることができる無架橋で直鎖状の低密度ポリエチレン系樹脂100重量部に対して、スチレン系樹脂を50〜800重量部含有し、かつ、粒子表面から少なくとも5μmまでの表層部及び粒子中心部から半径5μmまでの中心部において粒子状に分散したスチレン系樹脂を有し、粒径が0.8μm以下であるスチレン改質直鎖状低密度ポリエチレン系樹脂粒子に揮発性発泡剤を含浸させた発泡性粒子を予備発泡させ、得られた予備発泡粒子を発泡成形することにより得られ、5〜50%の空隙率を有する発泡成形体が提供される。
The present invention has been made to solve the problems described above, to provide such desired to provide a porosity to exhibit good sound absorbing performance, and a high flexural strength can also exhibit foam molded article With the goal.
Thus, according to the present invention, 50 to 800 parts by weight of a styrenic resin per 100 parts by weight of a non-crosslinked linear low density polyethylene resin that can be obtained using a metallocene catalyst containing an inorganic nucleating agent. A styrene-modified resin containing a styrene resin dispersed in the form of particles in the surface layer part from the particle surface to at least 5 μm and the central part from the particle center to the radius of 5 μm. It is obtained by pre-expanding expandable particles obtained by impregnating a linear low density polyethylene resin particle with a volatile foaming agent, and foaming the resulting pre-expanded particles, and has a porosity of 5 to 50%. A foamed molded article is provided.

本発明の発泡成形体は、以下の構成を有するスチレン改質ポリエチレン系樹脂粒子から得られた発泡成形体である。すなわち、まず、無架橋で直鎖状の低密度ポリエチレン系樹脂の中でも、特にメタロセン触媒を使用して得ることができる無架橋で直鎖状の低密度ポリエチレン系樹脂を使用している。更に、無機核剤を含む前記ポリエチレン系樹脂100重量部に対してスチレン系樹脂を50〜800重量部含むよう改質された樹脂粒子であり、この改質樹脂粒子は、その粒子表面から5μmまでの表層部及び粒子中心部から半径5μmまでの中心部においては0.8μm以下の粒子状にスチレン系樹脂がサブミクロン分散している。そのため粒子表面部は前記ポリエチレン系樹脂層が形成される。   The foamed molded product of the present invention is a foamed molded product obtained from styrene-modified polyethylene resin particles having the following configuration. That is, first, among non-crosslinked and linear low-density polyethylene resins, non-crosslinked and linear low-density polyethylene resins that can be obtained using a metallocene catalyst are used. Furthermore, it is a resin particle modified so as to contain 50 to 800 parts by weight of a styrene resin with respect to 100 parts by weight of the polyethylene resin containing an inorganic nucleating agent, and this modified resin particle is from the particle surface to 5 μm. In the surface layer portion and the central portion from the particle central portion to the radius of 5 μm, the styrenic resin is dispersed in a submicron size in a particle shape of 0.8 μm or less. Therefore, the polyethylene resin layer is formed on the particle surface.

このように粒子表面部には、メタロセン触媒を使用して得ることができる直鎖状の低密度ポリエチレン系樹脂層が形成されるので、発泡成形体の耐薬品性を改善できる。また、粒子中心部から半径5μmまでの中心部においてもスチレン系樹脂をサブミクロンの粒子状に分散することができるので、所望の空隙率を設けた発泡成形体であっても、粒子同士の融着強度を上げ、その強度物性を向上できる。また、チーグラー・ナッタ触媒で重合された直鎖状の低密度ポリエチレン系樹脂粒子では発揮できなかった極めて高い曲げ強度を備えた発泡成形体を得ることができる。   Thus, since the linear low density polyethylene-type resin layer which can be obtained using a metallocene catalyst is formed in the particle | grain surface part, the chemical resistance of a foaming molding can be improved. In addition, since the styrene resin can be dispersed into submicron particles in the central part from the particle central part to the radius of 5 μm, even a foamed molded article having a desired porosity can be melted. The wearing strength can be increased and the strength properties can be improved. Further, it is possible to obtain a foamed molded article having an extremely high bending strength that could not be exhibited by linear low density polyethylene resin particles polymerized with a Ziegler-Natta catalyst.

(図面の簡単な説明)
図1は、本発明による実施例1の改質樹脂粒子の表層部断面のTEM写真である。
図2は、本発明による実施例1の改質樹脂粒子の中心部断面のTEM写真である。
図3は、本発明による実施例2の改質樹脂粒子の表層部断面のTEM写真である。
図4は、本発明による実施例2の改質樹脂粒子の中心部断面のTEM写真である。
図5は、前記図4のTEM写真をトレースした図である。
図6は、比較例1の改質樹脂粒子の表層部断面のTEM写真である。
図7は、比較例1の改質樹脂粒子の中心部断面のTEM写真である。
図8は、比較例2の改質樹脂粒子の表層部断面のTEM写真である。
図9は、比較例2の改質樹脂粒子の中心部断面のTEM写真である。
図10は、比較例9の改質樹脂粒子の表層部断面のTEM写真である。
図11は、比較例9の改質樹脂粒子の中心部断面のTEM写真である。
図12は、本発明に使用できる発泡成形機の概略図である。
(Brief description of the drawings)
FIG. 1 is a TEM photograph of a cross section of a surface layer portion of a modified resin particle of Example 1 according to the present invention.
FIG. 2 is a TEM photograph of a cross-section at the center of the modified resin particle of Example 1 according to the present invention.
FIG. 3 is a TEM photograph of a cross section of the surface layer portion of the modified resin particle of Example 2 according to the present invention.
FIG. 4 is a TEM photograph of a cross-section at the center of the modified resin particle of Example 2 according to the present invention.
FIG. 5 is a diagram obtained by tracing the TEM photograph of FIG.
6 is a TEM photograph of a cross section of the surface layer portion of the modified resin particle of Comparative Example 1. FIG.
FIG. 7 is a TEM photograph of a cross-section at the center of the modified resin particle of Comparative Example 1.
FIG. 8 is a TEM photograph of the cross section of the surface layer of the modified resin particle of Comparative Example 2.
FIG. 9 is a TEM photograph of a cross-section at the center of the modified resin particle of Comparative Example 2.
FIG. 10 is a TEM photograph of the cross section of the surface layer portion of the modified resin particle of Comparative Example 9.
FIG. 11 is a TEM photograph of a cross-section at the center of the modified resin particle of Comparative Example 9.
FIG. 12 is a schematic view of a foam molding machine that can be used in the present invention.

(符号の説明)
1a キャビティ
2 雌金型
2a、3a 蒸気室
2b、3b 蒸気噴出用スリット孔
2c、3c 蒸気供給管
2d、3d 蒸気排出管
3 雄金型
4 蒸気制御器
5 ドレイン弁
6 予備発泡粒子
7 充填器
9 圧力検知装置
10 制御手段
(Explanation of symbols)
1a Cavity 2 Female mold 2a, 3a Steam chamber 2b, 3b Steam ejection slit hole 2c, 3c Steam supply pipe 2d, 3d Steam discharge pipe 3 Male mold 4 Steam controller 5 Drain valve 6 Pre-foamed particle 7 Filler 9 Pressure sensing device 10 control means

本発明の発泡成形体は、スチレン改質ポリエチレン系樹脂粒子(以下、改質樹脂粒子と称する)に揮発性発泡剤を含浸させた発泡性粒子を予備発泡させ、得られた予備発泡粒子を発泡成形することにより得られ、5〜50%の空隙率を有している。
改質樹脂粒子は、無機核剤を含みメタロセン触媒を使用して得ることができる無架橋で直鎖状の低密度ポリエチレン系樹脂(以下、単にポリエチレン系樹脂と称する)100重量部に対して、スチレン系樹脂を50〜800重量部含有し、かつ、粒子表面から少なくとも5μmまでの表層部及び粒子中心部から半径5μmまでの中心部は0.8μm以下の粒子状のスチレン系樹脂が分散されている。
The foamed molded article of the present invention is obtained by pre-foaming expandable particles obtained by impregnating styrene-modified polyethylene resin particles (hereinafter referred to as modified resin particles) with a volatile foaming agent, and foaming the resulting pre-foamed particles. It is obtained by molding and has a porosity of 5 to 50%.
The modified resin particles are based on 100 parts by weight of a non-crosslinked linear low density polyethylene resin (hereinafter simply referred to as polyethylene resin) that can be obtained using a metallocene catalyst containing an inorganic nucleating agent. 50 to 800 parts by weight of styrene resin is contained, and the surface layer part from the particle surface to at least 5 μm and the center part from the particle center part to the radius of 5 μm are dispersed with a particulate styrene resin of 0.8 μm or less. Yes.

まず、発泡成形体製造用の改質樹脂粒子及び予備発泡粒子について説明する。
メタロセン触媒としては、エチレン系モノマーの重合に使用される公知のメタロセン触媒が挙げられる。例えば、四価の遷移金属元素を含むメタロセン触媒が、好適に使用できる。より具体的には、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル−t−ブチルアミドジルコニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル−t−ブチルアミドハフニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル−p−n−ブチルフェニルアミドジルコニウムクロリド、メチルフェニルシリルテトラメチルシクロペンタジエニル−t−ブチルアミドハフニウムジクロリド、インデニルチタニウムトリス(ジメチルアミド)、インデニルチタニウムトリス(ジエチルアミド)、インデニルチタニウムトリス(ジ−n−プロピルアミド)、インデニルチタニウムビス(ジ−n−ブチルアミド)(ジ−n−プロピルアミド)等が挙げられる。これらの四価の遷移金属を含むメタロセン触媒は、単独又は2種類以上併用してもよい。また、例えばメチルアルミノキサンや硼素系化合物等の共触媒と併用してもよい。
First, the modified resin particles and pre-expanded particles for producing a foamed molded product will be described.
Examples of the metallocene catalyst include known metallocene catalysts used for the polymerization of ethylene monomers. For example, a metallocene catalyst containing a tetravalent transition metal element can be suitably used. More specifically, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethylsilyltetramethylcyclopentadienyl-t- Butylamidozirconium dichloride, dimethylsilyltetramethylcyclopentadienyl-t-butylamidohafnium dichloride, dimethylsilyltetramethylcyclopentadienyl-pn-butylphenylamidozirconium chloride, methylphenylsilyltetramethylcyclopentadienyl- t-Butylamide Hafnium Dichloride, Indenyl Titanium Tris (Dimethylamide), Indenyl Titanium Tris (Diethylamide), Indenyl Titanium Tris Di -n- propyl amide), indenyl titanium bis (di -n- butylamide) (di -n- propyl amide) and the like. These metallocene catalysts containing a tetravalent transition metal may be used alone or in combination of two or more. Moreover, you may use together with cocatalysts, such as a methylaluminoxane and a boron type compound, for example.

また、ポリエチレン系樹脂としては、エチレンの単独重合体、エチレンとα−オレフィンとの共重合体等が挙げられる。
α−オレフィンとしてはプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3,3−ジメチル−1−ブテン、4−メチル−1−ペンテン、4,4−ジメチル−1−ペンテン、1−ヘプテン、1−オクテン等が挙げられる。この内、1−ブテン、1−ヘキセンが好ましい。これらα−オレフィンは、単独又は2種類以上併用してもよい。
Moreover, as a polyethylene-type resin, the homopolymer of ethylene, the copolymer of ethylene and an alpha olefin, etc. are mentioned.
As α-olefins, propylene, 1-butene, 1-pentene, 1-hexene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-heptene , 1-octene and the like. Of these, 1-butene and 1-hexene are preferable. These α-olefins may be used alone or in combination of two or more.

エチレンとα−オレフィンとの構成比は、所望する物性に応じて適宜変化してもよいが、1:0.01〜0.1(重量比)の範囲であることが好ましい。なお、低密度とは、約0.910〜0.925g/mlの範囲を意味する。
ポリエチレン系樹脂の重合法は、メタロセン触媒を使用し、例えば、エチレンの単独重合体の場合、気相重合法が使用でき、エチレンとα−オレフィンとの共重合体の場合、不活性媒体を用いる溶液重合法、実質的に不活性媒体の存在しない塊状重合法や気相重合法等が挙げられる。
The constitutional ratio of ethylene and α-olefin may be appropriately changed according to desired physical properties, but is preferably in the range of 1: 0.01 to 0.1 (weight ratio). Note that low density means a range of about 0.910 to 0.925 g / ml.
The polymerization method of the polyethylene resin uses a metallocene catalyst. For example, in the case of an ethylene homopolymer, a gas phase polymerization method can be used. In the case of a copolymer of ethylene and an α-olefin, an inert medium is used. Examples thereof include a solution polymerization method, a bulk polymerization method substantially free of an inert medium, and a gas phase polymerization method.

ポリエチレン系樹脂は、GPC(ゲルパーミエイションクロマトグラフ)で測定した分子量分布(Mw/Mn)が1.5〜3.5であることが好ましい。この分子量分布範囲の場合、成形が容易で、かつ得られた成形体の強度(特に、曲げ強度)を改善できるという効果を奏する。
なお、メタロセン触媒を使用して重合された無架橋で直鎖状のポリエチレン系樹脂としては、日本ユニカー社製FMRNシリーズ、住友化学社製エボリューFシリーズ、三井化学社製エボリューシリーズ、ダウケミカル社製アフィニティーPLシリーズ等が挙げられる。
The polyethylene resin preferably has a molecular weight distribution (Mw / Mn) of 1.5 to 3.5 as measured by GPC (gel permeation chromatography). In the case of this molecular weight distribution range, there is an effect that molding is easy and the strength (particularly bending strength) of the obtained molded body can be improved.
Non-crosslinked, linear polyethylene resins polymerized using a metallocene catalyst include: FMRN series from Nihon Unicar, Evolue F series from Sumitomo Chemical, Evolue series from Mitsui Chemicals, Dow Chemical Affinity PL series manufactured by the company and the like can be mentioned.

また、本発明の目的とする効果を阻害しない範囲で、他の重合体又は共重合体を併用してもよい。その具体例としては、架橋及び/又は分岐鎖を有する低密度ポリエチレン、高密度ポリエチレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体又はエチレンアクリル酸共重合体、及びこれら2種以上の組み合わせが挙げられる。
無機核剤としては、例えば、タルク、二酸化珪素、マイカ、クレー、ゼオライト、炭酸カルシウム等を使用できる。
Moreover, you may use together another polymer or copolymer in the range which does not inhibit the effect made into the objective of this invention. Specific examples thereof include crosslinked and / or branched low density polyethylene, high density polyethylene, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer or ethylene acrylic acid copolymer, and two or more of these Combinations are listed.
As the inorganic nucleating agent, for example, talc, silicon dioxide, mica, clay, zeolite, calcium carbonate and the like can be used.

無機核剤の使用量は、ポリエチレン系樹脂粒子100重量部あたり、0.1〜2重量部が好ましく、0.2〜1.5重量部がより好ましい。0.1重量部未満では、ポリエチレン系樹脂中に0.8μm以下のスチレン系樹脂を粒子状に分散することが困難となるので好ましくない。2重量部を超える場合、発泡成形体の強度が低下する傾向があるので好ましくない。   The amount of the inorganic nucleating agent used is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1.5 parts by weight, per 100 parts by weight of the polyethylene resin particles. If it is less than 0.1 part by weight, it is difficult to disperse a styrene resin of 0.8 μm or less in a polyethylene resin in the form of particles, which is not preferable. If it exceeds 2 parts by weight, the strength of the foamed molded product tends to decrease, such being undesirable.

更に、ポリエチレン系樹脂粒子には、必要に応じて、着色剤、難燃剤、酸化防止剤、紫外線吸収剤等の添加物が含まれていてもよい。
この内、着色剤としては、無機及び有機着色剤のいずれも使用できる。特に、酸化鉄、カーボンブラック等の無機系の着色剤が好ましい。
Furthermore, additives such as a colorant, a flame retardant, an antioxidant, and an ultraviolet absorber may be contained in the polyethylene resin particles as necessary.
Among these, as the colorant, both inorganic and organic colorants can be used. In particular, inorganic colorants such as iron oxide and carbon black are preferred.

酸化鉄としては、黄色系統のものとしてα−FeOOH(含水結晶)、赤色系統のものとしてα−Fe23、黒色系統のものとして(FeO)x(Fe23)y等が挙げられる。これら酸化鉄は、Feの一部が、Zn、Mg等の他の金属で置き換えられていてもよい。更に、これら酸化鉄は、所望の色を得るために、混合して用いてもよい。この内、黒色系統の(FeO)x(Fe23)yに含まれるFe34であることが好ましい。
酸化鉄は、0.1〜1μmの平均粒径を有していることが好ましく、0.2〜0.8μmがより好ましい。平均粒径は、レーザー回折式粒度分布計(日本電子社製ロドス)により測定できる。
Examples of the iron oxide include α-FeOOH (hydrous crystal) as a yellow type, α-Fe 2 O 3 as a red type, and (FeO) x (Fe 2 O 3 ) y as a black type. . In these iron oxides, part of Fe may be replaced with other metals such as Zn and Mg. Further, these iron oxides may be mixed and used in order to obtain a desired color. Among them, the black line (FeO) x (Fe 2 O 3) is preferably Fe 3 O 4 contained to y.
The iron oxide preferably has an average particle size of 0.1 to 1 μm, and more preferably 0.2 to 0.8 μm. The average particle size can be measured with a laser diffraction particle size distribution meter (Rodos manufactured by JEOL Ltd.).

酸化鉄は、ポリエチレン系樹脂粒子中、1.5〜70重量%の範囲で含まれていることが好ましく、5〜40重量%の範囲がより好ましく、10〜30重量%の範囲が更に好ましい。1.5重量%未満であれば、ポリエチレン系樹脂粒子が十分着色されない場合があるため好ましくない。70重量%より多い場合、ポリエチレン系樹脂粒子中に混合することが困難であること、酸化鉄の比重がポリエチレン系樹脂より大きいため、ポリエチレン系樹脂粒子が重くなり、スチレン系モノマーを均一に含浸させることが困難であること等から好ましくない。   The iron oxide is preferably contained in the range of 1.5 to 70% by weight in the polyethylene resin particles, more preferably in the range of 5 to 40% by weight, and still more preferably in the range of 10 to 30% by weight. If it is less than 1.5% by weight, the polyethylene resin particles may not be sufficiently colored, which is not preferable. When it is more than 70% by weight, it is difficult to mix in the polyethylene resin particles, and since the specific gravity of iron oxide is larger than that of the polyethylene resin, the polyethylene resin particles become heavy and uniformly impregnate the styrene monomer. It is not preferable because it is difficult.

カーボンブラックとしては、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛、炭素繊維等が挙げられる。
カーボンブラックは、ポリエチレン系樹脂粒子中、1〜50重量%の範囲で含まれていることが好ましく、2〜30重量%の範囲がより好ましい。1重量%未満であれば、ポリエチレン系樹脂粒子が十分着色されない場合があるため好ましくない。50重量%より多い場合、ポリエチレン系樹脂粒子中に混合することが困難であるため好ましくない。
Examples of carbon black include furnace black, channel black, thermal black, acetylene black, graphite, and carbon fiber.
Carbon black is preferably contained in the range of 1 to 50% by weight in the polyethylene resin particles, and more preferably in the range of 2 to 30% by weight. If it is less than 1% by weight, the polyethylene resin particles may not be sufficiently colored, which is not preferable. When it is more than 50% by weight, it is not preferable because it is difficult to mix in the polyethylene resin particles.

スチレン系樹脂は、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン等のモノマー由来の樹脂が挙げられる。
スチレン系樹脂の量は、ポリエチレン系樹脂100重量部あたり50〜800重量部、好ましくは100〜700重量部である。50重量部未満では、スチレン系樹脂の剛性が良好であるという特性が発現し難い。また、800重量部を超える場合、ポリエチレン系樹脂の弾性が高く、耐油性、耐衝撃性が良好であるという特性が発現し難い。更に、ポリエチレン系樹脂の内部にスチレン系モノマーが十分に吸収されず、スチレン系モノマー自体が単独で重合した重合体粉末を発生することとなる。
Examples of the styrene resin include resins derived from monomers such as styrene, α-methylstyrene, vinyltoluene, and chlorostyrene.
The amount of the styrenic resin is 50 to 800 parts by weight, preferably 100 to 700 parts by weight, per 100 parts by weight of the polyethylene resin. If it is less than 50 parts by weight, the property that the rigidity of the styrene-based resin is good is hardly exhibited. Moreover, when it exceeds 800 weight part, the elasticity of polyethylene-type resin is high, and the characteristic that oil resistance and impact resistance are favorable is hard to express. Furthermore, the styrene monomer is not sufficiently absorbed in the polyethylene resin, and a polymer powder is produced in which the styrene monomer itself is polymerized alone.

また、発泡性粒子の場合、スチレン系樹脂の量が、50重量部未満では、揮発性発泡剤の保持性が極端に悪くなるため、低密度化が困難であり、発泡成形性にも乏しくなる。
特に、スチレン系樹脂の量が300重量部以上の改質樹脂粒子及び発泡性粒子は、従来の方法では、スチレン系樹脂を均一に含む改質樹脂粒子及び発泡性粒子を得ることが困難であるが、本発明では、それを得ることができる。
In the case of expandable particles, if the amount of the styrene resin is less than 50 parts by weight, the retention of the volatile foaming agent becomes extremely poor, so that it is difficult to reduce the density and the foam moldability is poor. .
In particular, it is difficult to obtain modified resin particles and expandable particles in which the amount of the styrene resin is 300 parts by weight or more, and the modified resin particles and expandable particles that uniformly contain the styrene resin by the conventional method. However, in the present invention, it can be obtained.

予備発泡粒子は、改質樹脂粒子に揮発性発泡剤を含浸させて発泡性粒子とし、発泡性粒子を発泡させることで得られる。
揮発性発泡剤としては、例えば、プロパン、n−ブタン、イソブタン、ペンタン、イソペンタン、シクロペンタン、ヘキサン等の炭化水素を単独もしくは2種以上混合して用いることができる。
揮発性発泡剤の含有量は、発泡性粒子を構成する樹脂(ポリエチレン系樹脂及びスチレン系樹脂の合計)100重量部に対して、5〜20重量部であることが好ましい。
The pre-expanded particles are obtained by impregnating the modified resin particles with a volatile foaming agent to form expandable particles, and foaming the expandable particles.
As the volatile blowing agent, for example, hydrocarbons such as propane, n-butane, isobutane, pentane, isopentane, cyclopentane, hexane and the like can be used alone or in admixture of two or more.
The content of the volatile foaming agent is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the resin (the total of polyethylene resin and styrene resin) constituting the foamable particles.

改質樹脂粒子及び発泡性粒子は、粒子の長さをL、平均径をDとした場合のL/Dが0.6〜1.6である円筒状、略球状ないしは球状であり、平均粒径が0.3〜3.0mmであることが好ましい。
L/Dが0.6より小さい、もしくは1.6より大きい、すなわち扁平度が大きい場合は、改質樹脂粒子及び発泡性粒子から得られる予備発泡粒子を、金型に充填して発泡成形体を得る際に、金型への充填性が悪くなり易く好ましくない。
また形状は、充填性をよくするには略球状ないしは球状がより好ましい。
The modified resin particles and the expandable particles are cylindrical, substantially spherical or spherical with L / D of 0.6 to 1.6, where L is the particle length and D is the average diameter. The diameter is preferably 0.3 to 3.0 mm.
When L / D is smaller than 0.6 or larger than 1.6, that is, the flatness is large, pre-expanded particles obtained from the modified resin particles and the expandable particles are filled into a mold and the expanded molded body When obtaining the above, the filling property into the mold is liable to deteriorate, which is not preferable.
Further, the shape is more preferably approximately spherical or spherical in order to improve the filling property.

平均粒径は0.3mm未満の場合、発泡剤の保持性が低くなり、低密度化が困難となり易く好ましくない。3.0mmを超える場合、充填性が悪くなるだけでなく発泡成形体の薄肉化も困難となり易く好ましくない。
特に、本発明ではそれぞれの粒子の断面において、ポリエチレン系樹脂中にスチレン系樹脂が、以下に記載するように、特定の大きさの粒子状態で分散した改質樹脂粒子及び発泡性粒子を提供することができる。
When the average particle size is less than 0.3 mm, the retention of the foaming agent is lowered, and it is difficult to reduce the density, which is not preferable. If it exceeds 3.0 mm, not only is the filling property worsened, but it is also difficult to make the foamed molded product thinner, which is not preferable.
In particular, the present invention provides modified resin particles and expandable particles in which a styrenic resin is dispersed in a specific size in a polyethylene resin in the cross section of each particle as described below. be able to.

すなわち、それぞれの粒子は、その表面から少なくとも5μmまでの表層部及びその中心から半径5μmまでの中心部において、スチレン系樹脂が、ポリエチレン系樹脂中に粒子状に分散された状態の改質樹脂粒子及び発泡性粒子を提供することができる。ここで、比較例1や比較例9の中心部の断面写真のように粒子状のスチレン系樹脂が連続相となり、その結果、粒径が0.8μmを越えた場合には、耐衝撃性の著しい向上が見られないので好ましくない。また、スチレン系樹脂が、ポリエチレン系樹脂中に0.8μm以下、好ましくは0.6μm以下の粒径で粒子状に分散された状態を有している。粒子状のスチレン系樹脂(以下、スチレン系樹脂粒子)の粒径の下限は、0.01μm程度である。このように、粒子の表層部と中心部において、スチレン系樹脂を粒子状態で分散できる。   That is, each of the particles is a modified resin particle in which a styrene resin is dispersed in a polyethylene resin in a surface layer portion at least 5 μm from the surface and a center portion from the center to a radius of 5 μm. And expandable particles. Here, the particulate styrene resin becomes a continuous phase as shown in the cross-sectional photographs of the central part of Comparative Example 1 and Comparative Example 9, and as a result, when the particle diameter exceeds 0.8 μm, the impact resistance It is not preferable because no significant improvement is observed. In addition, the styrene resin has a state of being dispersed in the form of particles having a particle size of 0.8 μm or less, preferably 0.6 μm or less, in the polyethylene resin. The lower limit of the particle size of the particulate styrene resin (hereinafter referred to as styrene resin particles) is about 0.01 μm. In this way, the styrene resin can be dispersed in a particle state in the surface layer portion and the center portion of the particles.

それぞれの粒子の表層部でのスチレン系樹脂粒子の粒径は0.01〜0.8μmであることが好ましく、より好ましくは0.01〜0.6μm、更に好ましくは0.03〜0.4μmである。一方、それぞれの両粒子の中心部でのスチレン系樹脂粒子の粒径は0.01〜0.8μmであり、より好ましくは0.01〜0.6μm、更に好ましくは0.05〜0.55μmである。   The particle size of the styrene resin particles in the surface layer of each particle is preferably 0.01 to 0.8 μm, more preferably 0.01 to 0.6 μm, and still more preferably 0.03 to 0.4 μm. It is. On the other hand, the particle size of the styrenic resin particles at the center of each particle is 0.01 to 0.8 μm, more preferably 0.01 to 0.6 μm, and still more preferably 0.05 to 0.55 μm. It is.

次に、改質樹脂粒子及び発泡性粒子の製造方法を説明する。
まず、分散剤を含む水性懸濁液中に、ポリエチレン系樹脂粒子100重量部と、スチレン系モノマー50〜800重量部と、前記スチレン系モノマー100重量部あたり0.1〜0.9重量部の重合開始剤とを分散させる。なお、予めスチレン系モノマーと重合開始剤とを混合してもよい。
水性懸濁液を構成する水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体が挙げられる。
Next, a method for producing modified resin particles and expandable particles will be described.
First, in an aqueous suspension containing a dispersant, 100 parts by weight of polyethylene resin particles, 50 to 800 parts by weight of styrene monomer, and 0.1 to 0.9 parts by weight per 100 parts by weight of the styrene monomer. Disperse the polymerization initiator. In addition, you may mix a styrene-type monomer and a polymerization initiator previously.
Examples of the aqueous medium constituting the aqueous suspension include water and a mixed medium of water and a water-soluble solvent (for example, lower alcohol).

分散剤としては、特に限定されず、公知のものをいずれも使用することができる。具体的には、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウム等の難溶性無機物が挙げられる。また、ドデシルベンゼンスルホン酸ソーダのような界面活性剤を使用していもよい。   The dispersant is not particularly limited, and any known dispersant can be used. Specific examples include hardly soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate, magnesium oxide. Further, a surfactant such as sodium dodecylbenzenesulfonate may be used.

ポリエチレン系樹脂粒子は、公知の方法により得ることができる。例えば、ポリエチレン系樹脂と無機核剤とを、必要に応じて添加剤と共に、押出機中で溶融混練して押出すことでストランドを得、得られたストランドを、空気中でカット、水中でカット、加熱しつつカットすることで、造粒する方法が挙げられる。   The polyethylene resin particles can be obtained by a known method. For example, a polyethylene-based resin and an inorganic nucleating agent, together with additives as necessary, are melt-kneaded in an extruder and extruded to obtain a strand. The obtained strand is cut in air and cut in water. The method of granulating by cutting while heating is mentioned.

ポリエチレン系樹脂粒子は、粒子の長さをL、平均径をDとした場合のL/Dが0.6〜1.6である円筒状、略球状ないしは球状であり、平均粒径が0.2〜1.5mmであることが好ましい。L/Dが0.6より小さい、もしくは1.6より大きい、すなわち扁平度が大きい場合は、スチレン改質発泡性粒子として予備発泡させ、金型に充填して発泡成形体を得る際に、金型への充填性が悪くなり易く好ましくない。また形状は、充填性をよくするには略球状ないしは球状がより好ましい。平均粒径は0.2mm未満の場合、発泡剤の保持性が低くなり、低密度化が困難となり易く好ましくない。1.5mmを超える場合、充填性が悪くなるだけでなく発泡成形体の薄肉化も困難となり易く好ましくない。   The polyethylene resin particles have a cylindrical shape, a substantially spherical shape or a spherical shape having an L / D of 0.6 to 1.6 when the length of the particle is L and the average diameter is D, and the average particle size is 0.00. It is preferable that it is 2-1.5 mm. When L / D is smaller than 0.6 or larger than 1.6, that is, the flatness is large, when pre-foamed as styrene-modified foamable particles and filled into a mold to obtain a foamed molded product, It is not preferable because the filling property into the mold tends to deteriorate. Further, the shape is more preferably approximately spherical or spherical in order to improve the filling property. When the average particle size is less than 0.2 mm, the retention of the foaming agent is lowered, and it is difficult to reduce the density, which is not preferable. When it exceeds 1.5 mm, not only is the filling property worsened, but it is also difficult to make the foamed molded product thinner, which is not preferable.

重合開始剤としては、一般にスチレン系モノマーの懸濁重合用の開始剤として用いられているものが使用できる。例えば、ジ−t−ブチルパーオキサイド、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチル−パーオキシ−2−エチルヘキシルカーボネート等の有機過酸化物である。これらの重合開始剤は単独もしくは2種以上を併用してもよい。   As the polymerization initiator, those generally used as an initiator for suspension polymerization of a styrene monomer can be used. For example, di-t-butyl peroxide, t-butyl peroxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, t-butylperoxy-3,5 , 5-trimethylhexanoate, t-butyl-peroxy-2-ethylhexyl carbonate, and other organic peroxides. These polymerization initiators may be used alone or in combination of two or more.

重合開始剤の使用量は、スチレン系モノマー100重量部あたり、0.1〜0.9重量部が好ましく、0.2〜0.8重量部がより好ましい。0.1重量部未満ではスチレン系モノマーの重合に時間がかかり過ぎるので好ましくない。0.9重量部を超える重合開始剤の使用は、スチレン系樹脂の分子量が低くなり、耐衝撃性を低下させるため好ましくない。   The amount of the polymerization initiator used is preferably 0.1 to 0.9 parts by weight and more preferably 0.2 to 0.8 parts by weight per 100 parts by weight of the styrene monomer. If it is less than 0.1 part by weight, it takes too much time to polymerize the styrene monomer, which is not preferable. Use of a polymerization initiator in excess of 0.9 parts by weight is not preferable because the molecular weight of the styrene-based resin is lowered and impact resistance is lowered.

良好な物性を得るためにはスチレン系樹脂の分子量は20万〜50万程度が好ましいが、重合開始剤の使用量が0.9重量部を超える量ではこれを下回るものしか得られない場合がある。
スチレン系モノマーをポリエチレン系樹脂粒子100重量部あたり、50〜800重量部添加し、好ましくは攪拌下にて分散させて、得られた分散液をスチレン系モノマーが実質的に重合しない温度に加熱してスチレン系モノマーをポリエチレン系樹脂粒子に含浸させる。
In order to obtain good physical properties, the molecular weight of the styrenic resin is preferably about 200,000 to 500,000, but if the amount of the polymerization initiator used exceeds 0.9 parts by weight, only less than this may be obtained. is there.
The styrene monomer is added in an amount of 50 to 800 parts by weight per 100 parts by weight of the polyethylene resin particles, preferably dispersed under stirring, and the resulting dispersion is heated to a temperature at which the styrene monomer is not substantially polymerized. Then, impregnating the polyethylene resin particles with the styrene monomer.

ポリエチレン系樹脂粒子内部にスチレン系モノマーを十分に含浸させるには、30分〜3時間が適当である。十分に含浸させる前に重合が進行するとスチレン系樹脂の重合体粉末を生成してしまうのを防止するのが望ましい。前記モノマーが実質的に重合しない温度は、高い方が含浸速度を速めるには有利であるが、重合開始剤の分解温度を考慮して決定する必要がある。   In order to sufficiently impregnate the styrene monomer inside the polyethylene resin particles, 30 minutes to 3 hours is appropriate. It is desirable to prevent the formation of a polymer powder of a styrenic resin when the polymerization proceeds before being sufficiently impregnated. The higher the temperature at which the monomer is not substantially polymerized, the more advantageous is the speed of impregnation. However, the temperature must be determined in consideration of the decomposition temperature of the polymerization initiator.

次いで、ポリエチレン系樹脂粒子の結晶化ピーク温度をT℃としたとき、(T+10)〜(T+35)℃の温度で、前記スチレン系モノマーの重合を行う。   Next, when the crystallization peak temperature of the polyethylene resin particles is T ° C., the styrene monomer is polymerized at a temperature of (T + 10) to (T + 35) ° C.

重合温度が、(T+10)℃未満では改質樹脂粒子の中心部付近において、スチレン系樹脂が粒子状に分散できず、連続相となるため好ましくない。更に、(T+35)℃を超える温度では粒子同士が合着した凝集粒子が発生するため好ましくない。   When the polymerization temperature is less than (T + 10) ° C., the styrene resin cannot be dispersed in the form of particles in the vicinity of the center of the modified resin particles, which is not preferable. Furthermore, a temperature exceeding (T + 35) ° C. is not preferable because aggregated particles in which particles are coalesced are generated.

上記工程により改質樹脂粒子を得ることができる。また、発泡性粒子は、上記重合中もしくは重合終了後の改質樹脂粒子に揮発性発泡剤を含浸することで得ることができる。この含浸は、それ自体公知の方法により行うことができる。例えば、重合中での含浸は、重合反応を密閉式の容器中で行い、容器中に揮発性発泡剤を圧入することにより行うことができる。重合終了後の含浸は、密閉式の容器中で、揮発性発泡剤を圧入することにより行われる。   The modified resin particles can be obtained by the above process. Further, the expandable particles can be obtained by impregnating the modified resin particles during the polymerization or after the polymerization with a volatile foaming agent. This impregnation can be performed by a method known per se. For example, the impregnation during the polymerization can be performed by performing the polymerization reaction in a sealed container and press-fitting a volatile foaming agent into the container. Impregnation after completion of the polymerization is performed by press-fitting a volatile foaming agent in a sealed container.

上記方法により良好な特性の改質樹脂粒子及び発泡性粒子を得ることができるが、ポリエチレン系樹脂粒子100重量部に対するスチレン系モノマーが300重量部を超える場合、スチレン系樹脂の重合体粉末が多くなる傾向にある。
換言すれば、上記方法において、ポリエチレン系樹脂粒子100重量部に対するスチレン系モノマーが50〜300重量部であるときは、スチレン系樹脂の重合体粉末の発生は少なく、最も安定した良好な特性を有する改質樹脂粒子及び発泡性粒子を容易に得ることができる。
Modified resin particles and expandable particles having good characteristics can be obtained by the above method, but when the styrene monomer exceeds 100 parts by weight with respect to 100 parts by weight of the polyethylene resin particles, the polymer powder of the styrene resin is large. Tend to be.
In other words, in the above method, when the amount of the styrene monomer relative to 100 parts by weight of the polyethylene resin particles is 50 to 300 parts by weight, the generation of the polymer powder of the styrene resin is small, and the most stable and good characteristics are obtained. Modified resin particles and expandable particles can be easily obtained.

スチレン系モノマーが300重量部を超える場合、重合体粉末の発生を少なくするために、以下のようにスチレン系モノマーを2段階に分けてポリエチレン系樹脂粒子に含浸させることが好ましい。
まず、分散剤を含む水性懸濁液中に、ポリエチレン系樹脂粒子100重量部と、スチレン系モノマー30〜300重量部と、前記スチレン系モノマー100重量部に対して0.1〜0.9重量部の重合開始剤とを分散させる。なお、予めスチレン系モノマーと重合開始剤とを混合しておいてもよい。
When the styrene monomer exceeds 300 parts by weight, it is preferable to impregnate the polyethylene resin particles in two stages as follows in order to reduce the generation of polymer powder.
First, in an aqueous suspension containing a dispersant, 100 parts by weight of polyethylene resin particles, 30 to 300 parts by weight of styrene monomer, and 0.1 to 0.9 weight with respect to 100 parts by weight of styrene monomer. Part of the polymerization initiator is dispersed. A styrene monomer and a polymerization initiator may be mixed in advance.

次に、得られた分散液をスチレン系モノマーが実質的に重合しない温度に加熱して前記スチレン系モノマーを前記ポリエチレン系樹脂粒子に含浸させる。
更に、前記ポリエチレン系樹脂粒子の結晶化ピーク温度をT℃としたとき、(T+10)〜(T+35)℃の温度で、前記スチレン系モノマーの第1の重合を行う。
Next, the obtained dispersion is heated to a temperature at which the styrene monomer is not substantially polymerized to impregnate the polyethylene resin particles with the styrene monomer.
Furthermore, when the crystallization peak temperature of the polyethylene resin particles is T ° C., the first polymerization of the styrene monomer is performed at a temperature of (T + 10) to (T + 35) ° C.

次に、スチレン系モノマーと、スチレン系モノマー100重量部あたり0.1〜0.9重量部の重合開始剤を第1の重合の反応液に加え、かつ前記低密度ポリエチレン系樹脂粒子の結晶化ピーク温度をT℃としたとき、(T+10)〜(T+35)℃の温度とすることで、前記低密度ポリエチレン系樹脂粒子への前記スチレン系モノマーの含浸と第2の重合が行われる。但し、ポリエチレン系樹脂粒子100重量部に対し、第1の重合と第2の重合で使用するスチレン系モノマーの合計は、50〜800重量部である。なお、予めスチレン系モノマーと重合開始剤とを混合しておいてもよい。   Next, a styrene monomer and 0.1 to 0.9 parts by weight of a polymerization initiator per 100 parts by weight of the styrene monomer are added to the reaction liquid for the first polymerization, and the low density polyethylene resin particles are crystallized. When the peak temperature is T ° C., the low-density polyethylene resin particles are impregnated with the styrene monomer and the second polymerization is performed at a temperature of (T + 10) to (T + 35) ° C. However, the total amount of styrene monomers used in the first polymerization and the second polymerization is 50 to 800 parts by weight with respect to 100 parts by weight of the polyethylene resin particles. A styrene monomer and a polymerization initiator may be mixed in advance.

2回目のスチレン系モノマーと重合開始剤の添加は、連続的でも断続的でもよいが、重合体粉末の生成をより効果的に防ぐためには、ポリエチレン系樹脂粒子内部への含浸と重合を、ほぼ同時に行うことが好ましい。比較的高い温度での重合であるため、あまり添加速度が速いと含浸される前に重合が進んでしまうため好ましくない。例えば、添加速度は、30〜100重量部/時間が好ましい。   The second addition of the styrenic monomer and the polymerization initiator may be continuous or intermittent. However, in order to more effectively prevent the formation of the polymer powder, the impregnation and polymerization inside the polyethylene resin particles are almost performed. It is preferable to carry out simultaneously. Since the polymerization is performed at a relatively high temperature, if the addition rate is too high, the polymerization proceeds before impregnation, which is not preferable. For example, the addition rate is preferably 30 to 100 parts by weight / hour.

上記工程により改質樹脂粒子を得ることができる。また、発泡性粒子は、前記と同様にして、重合中もしくは重合終了後の樹脂粒子に揮発性発泡剤を含浸することで得ることができる。この含浸は、実施例に記載したようなそれ自体公知の方法により行うことができる。
更に、発泡性粒子は、公知の方法で所定の嵩密度(例えば、10〜300kg/m3、より好ましくは10〜60kg/m3)に予備発泡させることで予備発泡粒子とすることができる。嵩密度の測定法は、実施例に記載する。
The modified resin particles can be obtained by the above process. In addition, the expandable particles can be obtained by impregnating resin particles during polymerization or after completion of polymerization with a volatile foaming agent in the same manner as described above. This impregnation can be carried out by a method known per se as described in the Examples.
Furthermore, expandable particles can be made into pre-expanded particles by pre-expanding to a predetermined bulk density (for example, 10 to 300 kg / m 3 , more preferably 10 to 60 kg / m 3 ) by a known method. The method for measuring the bulk density is described in the Examples.

更に、予備発泡粒子を発泡成形機の金型内に充填し、再度加熱して予備発泡粒子を発泡させながら、発泡粒同士を熱融着させることで、5〜50%の空隙率を有する発泡成形体を得ることができる。空隙率が5%未満の場合、十分な吸音性を持たない発泡成形体となる。一方、50%より大きい場合、曲げ強度が不十分であり、音波が通過するため吸音性も得られない。好ましい空隙率は、5〜30%の範囲である。   Further, pre-expanded particles are filled in a mold of a foam molding machine, and heated again to foam the pre-expanded particles, and the foamed particles are heat-sealed to form a foam having a porosity of 5 to 50%. A molded body can be obtained. When the porosity is less than 5%, the foamed molded article does not have sufficient sound absorption. On the other hand, if it is larger than 50%, the bending strength is insufficient, and sound absorption is not obtained because sound waves pass. A preferable porosity is in the range of 5 to 30%.

発泡成形機は、特に限定されず、公知の発泡成形機をいずれも使用できる。図12は発泡成形機の一例である。この発泡成形機は、雌金型2と雄金型3を有し、両金型2と3が合わさることによりキャビティ1aが形成される。各金型2と3にはそれぞれ蒸気室2aと3aが内蔵されると共に、各蒸気室2a及び3aとキャビティ1aとをそれぞれ連通する蒸気噴出用スリット孔2bと3bが複数それぞれ穿設されている。一方、各蒸気室2aと3aに蒸気を供給する蒸気供給管2cと3c、及びその蒸気を排出する蒸気排出管2dと3dが配置されている。また、各蒸気供給管2cと3cにはそれぞれ蒸気制御器4が、また各蒸気排出管2dと3dにはそれぞれドレイン弁5が配置されている。   The foam molding machine is not particularly limited, and any known foam molding machine can be used. FIG. 12 shows an example of a foam molding machine. This foam molding machine has a female mold 2 and a male mold 3, and the cavities 1 a are formed by combining both the molds 2 and 3. The molds 2 and 3 have steam chambers 2a and 3a, respectively, and are provided with a plurality of steam ejection slit holes 2b and 3b communicating with the steam chambers 2a and 3a and the cavity 1a, respectively. . On the other hand, steam supply pipes 2c and 3c for supplying steam to the respective steam chambers 2a and 3a and steam discharge pipes 2d and 3d for discharging the steam are arranged. A steam controller 4 is disposed in each of the steam supply pipes 2c and 3c, and a drain valve 5 is disposed in each of the steam discharge pipes 2d and 3d.

更に、雌金型2には、キャビティ1a内に予備発泡粒子6を充填する充填器7が設けられており、加えて、キャビティ1a内での予備発泡粒子6の発泡圧力を検出する圧力検知装置9が設置されている。そして、圧力検知装置9、各蒸気制御器4及びドレイン弁5等を制御する制御手段10が設けられている。   Further, the female die 2 is provided with a filling device 7 for filling the pre-expanded particles 6 in the cavity 1a, and in addition, a pressure detection device for detecting the foaming pressure of the pre-expanded particles 6 in the cavity 1a. 9 is installed. And the control means 10 which controls the pressure detection apparatus 9, each steam controller 4, drain valve 5, etc. is provided.

予備発泡粒子を用いた発泡成形方法は大別して加熱工程と冷却工程に分けることができ、加熱工程は、通常、(1)金型加熱工程、(2)一方加熱工程、(3)逆一方加熱工程、(4)両面加熱工程のように細分化して行われることが多く、加熱工程の後に冷却工程が行われ成形体が取り出される。図12を用いてその一例を説明する。
(1)金型加熱工程において、金型2と3の昇温を主として行う。具体的には、金型間のキャビティ1a内に充填器7により予備発泡粒子6を充填した後に、雌型2、雄型3の双方の金型の蒸気室2aと3aにそれぞれの蒸気供給管2cと3cから蒸気を導入し、かつそれぞれの蒸気排出管2dと3dに設けたドレイン弁5から蒸気室に存在する空気を排出する。
(2)一方加熱工程は、予備発泡粒子6を再発泡させるための前加熱やキャビティ1a内の空気の排除の目的で行われるものであり、蒸気を一方の金型、例えば雄金型3の蒸気室3aからキャビティ1a内に充填された予備発泡粒子6の間隙に流し、これを他方の金型(雌金型2)の蒸気室2aを通して系外に排出する工程である。通常この工程の終点は導入する蒸気の圧力とキャビティ内の発泡圧力とが同等になった時点とされる。
(3)逆一方加熱工程は、前の一方加熱工程により生じた予備発泡粒子6の温度勾配を平衡させるための工程であり、蒸気を逆のルートですなわち雌金型2の蒸気室2aからキャビティ1a内に導入して予備発泡粒子6を加熱し、蒸気は雄金型3の蒸気室3a側から排出される。
(4)両面加熱工程は、予備発泡粒子6を二次発泡させて最終的に発泡粒同志を融着させる工程であり、両金型2と3の蒸気室2aと3aに蒸気を送入し昇圧することによって行われる。
(1)〜(4)の加熱工程にそって成形を進めれば粒子間に空隙のない、発泡粒同士が面で融着された発泡成形体が得られるが、本発明の発泡成形体は空隙を有しており、発泡成形時に粒子間に空間を残すことが要求される。そのため下記のような方法で発泡成形を行うことが好ましい。
The foam molding method using pre-expanded particles can be roughly divided into a heating step and a cooling step. The heating step is usually (1) mold heating step, (2) one heating step, and (3) reverse one heating. Step (4) In many cases, it is carried out in a subdivided manner, such as a double-sided heating step. An example will be described with reference to FIG.
(1) In the mold heating step, the molds 2 and 3 are mainly heated. Specifically, after the pre-expanded particles 6 are filled in the cavity 1a between the molds by the filler 7, the steam supply pipes are respectively connected to the steam chambers 2a and 3a of both the female mold 2 and the male mold 3. Steam is introduced from 2c and 3c, and air existing in the steam chamber is discharged from the drain valve 5 provided in each of the steam discharge pipes 2d and 3d.
(2) The one heating step is performed for the purpose of preheating for re-foaming the pre-expanded particles 6 or eliminating air in the cavity 1a. This is a step of flowing from the vapor chamber 3a into the gap between the pre-expanded particles 6 filled in the cavity 1a and discharging it out of the system through the vapor chamber 2a of the other mold (female mold 2). Usually, the end point of this process is the time when the pressure of the introduced steam becomes equal to the foaming pressure in the cavity.
(3) The reverse one-side heating step is a step for equilibrating the temperature gradient of the pre-expanded particles 6 generated by the previous one-side heating step, and the steam is discharged from the vapor chamber 2a of the female mold 2 through the reverse route. The pre-expanded particles 6 are introduced into 1 a and heated, and the steam is discharged from the steam chamber 3 a side of the male mold 3.
(4) The double-sided heating process is a process in which the pre-expanded particles 6 are secondarily expanded and finally the expanded particles are fused, and steam is fed into the steam chambers 2a and 3a of both molds 2 and 3. This is done by boosting.
If the molding is carried out along the heating steps (1) to (4), a foamed molded article in which the foamed particles are fused with each other with no voids between the particles can be obtained. It has voids and is required to leave a space between particles during foam molding. Therefore, it is preferable to perform foam molding by the following method.

(A)金型加熱工程は、上記通常の発泡成形方法と同様にできる。なお、この工程は、3〜12秒程度行うことが好ましい。
(B)一方加熱工程により発泡粒子間の空気を排除する。この工程では、導入する蒸気圧力とキャビティ内の発泡圧力とが同等になるまで加熱を続け、更に加熱し続けることにより、発泡粒子間の空間を適宜埋めることができる。そのため、この工程は、5〜25秒間行うことが好ましい。
(A) The mold heating step can be performed in the same manner as in the normal foam molding method. In addition, it is preferable to perform this process for about 3 to 12 seconds.
(B) On the other hand, the air between expanded particles is excluded by a heating process. In this step, heating is continued until the vapor pressure to be introduced is equal to the foaming pressure in the cavity, and the space between the foamed particles can be appropriately filled by further heating. Therefore, this step is preferably performed for 5 to 25 seconds.

なお、逆一方加熱工程は、空隙率を所定の範囲に維持できれば、予備発泡粒子6の温度勾配を平衡させるために行ってもよい。具体的には、0〜1秒程度行うことが好ましい。逆一方加熱工程は、一方加熱工程の前に行ってもよい。
(C)両面加熱は、急激に発泡粒子間の空間を埋める効果があるため、実施しないか、もしくは両面加熱を3秒以下の短い時間実施してもよい。
Note that the reverse one-side heating step may be performed in order to balance the temperature gradient of the pre-expanded particles 6 as long as the porosity can be maintained within a predetermined range. Specifically, it is preferable to carry out for about 0 to 1 second. The reverse one heating step may be performed before the one heating step.
(C) Since the double-sided heating has an effect of rapidly filling the space between the expanded particles, the double-sided heating may not be performed, or the double-sided heating may be performed for a short time of 3 seconds or less.

以上のような成形方法により、発泡粒子同士の点での接着を強固とすることが可能であるため強度を向上させた空隙を有する発泡成形体を得ることができる。
得られた発泡成形体は、耐薬品性に優れ、強靭であり、曲げ強度に優れたものである。また、スチレン系樹脂で改質されているため剛性も高い。更に、特定の空隙率を有するので、断熱性、軽量性及び吸音性に優れている。
By the molding method as described above, it is possible to strengthen the adhesion between the foamed particles, so that a foamed molded product having voids with improved strength can be obtained.
The obtained foamed molded article is excellent in chemical resistance, tough and excellent in bending strength. Moreover, since it is modified with a styrene resin, the rigidity is high. Furthermore, since it has a specific porosity, it is excellent in heat insulation, light weight and sound absorption.

本発明の発泡成形体は、種々の用途に使用できるが、特に自動車内装材、バンパー内部に装着されるエネルギー吸収材、重量物の梱包材等に好適に使用できる。
特に、本発明では、ポリエチレン系樹脂に、メタロセン触媒を使用した樹脂を使用しているので、0.3MPa以上の曲げ強度を有する発泡成形体を得ることが可能である。曲げ強度が0.3MPa以上であれば容易に割れ欠けを生じることがなく、エネルギー吸収材等に特に好適に使用できる。より好ましくは、0.32MPa以上である。なお、曲げ強度の測定法は、実施例に記載する。
The foamed molded article of the present invention can be used for various applications, and in particular, can be suitably used for automobile interior materials, energy absorbing materials mounted inside bumpers, heavy-weight packaging materials, and the like.
In particular, in the present invention, since a resin using a metallocene catalyst is used as the polyethylene resin, it is possible to obtain a foamed molded article having a bending strength of 0.3 MPa or more. If the bending strength is 0.3 MPa or more, cracks are not easily generated, and it can be used particularly suitably for an energy absorbing material or the like. More preferably, it is 0.32 MPa or more. In addition, the measuring method of bending strength is described in an Example.

以下、実施例及び比較例により本発明を説明するが、本発明はこれに限定されるものではない。なお、実施例及び比較例中の各種値の測定方法を下記する。
(ポリエチレン系樹脂の結晶化ピーク温度の測定)
結晶化ピーク温度は、示差走査熱量計(DSC)を使用して、JIS K7121に準拠して測定する。具体的には、測定試料として樹脂をDSCの測定容器にセットし、10℃/分の昇温速度で280℃まで昇温し、280℃で10分間保持した後、室温(23℃)まで放冷し、その後再び10℃/分の昇温速度で昇温しながら、結晶化ピーク温度を測定する。
(ポリエチレン系樹脂のメルトフローレートの測定)
メルトフローレートはJIS K7210に準拠し、230℃、10kgf荷重にて測定する。
(ポリエチレン系樹脂の密度の測定)
密度はJIS K6992−2に準拠して測定する。
Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this. In addition, the measuring method of the various values in an Example and a comparative example is described below.
(Measurement of crystallization peak temperature of polyethylene resin)
The crystallization peak temperature is measured using a differential scanning calorimeter (DSC) according to JIS K7121. Specifically, resin is set as a measurement sample in a DSC measurement container, heated to 280 ° C. at a heating rate of 10 ° C./min, held at 280 ° C. for 10 minutes, and then released to room temperature (23 ° C.). After cooling, the crystallization peak temperature is measured while raising the temperature again at a rate of 10 ° C./min.
(Measurement of melt flow rate of polyethylene resin)
The melt flow rate is measured in accordance with JIS K7210 at 230 ° C. and 10 kgf load.
(Measurement of density of polyethylene resin)
The density is measured according to JIS K6992-2.

(分子量分布:Mw/Mnの測定)
GPCにより下記条件で測定する。
装置:日本ウォーターズ社製GPC装置 150C型
カラム:東ソー社製TSK GMH−6
溶媒:オルトジクロロベンゼン(ODCB)
温度:135℃
流量:1ml/分
注入濃度:10mg/10mlODCB(注入量500μl)
標準ポリスチレンを用いた校正曲線から換算した重量平均分子量Mw及び数平均分子量Mnを求め、Mw/Mnを算出する。
(嵩密度の測定)
JIS K 6911:1995「熱硬化性プラスチック一般試験方法」記載の方法に準拠して測定する。具体的には、見かけ密度測定器により予備発泡粒子をメスシリンダー内に自然落下させ、その重量を測定し、次式により算出する。
嵩密度(kg/m3)=重量(kg)/メスシリンダー内の粒子容積(m3
(Molecular weight distribution: Mw / Mn measurement)
Measurement is performed by GPC under the following conditions.
Apparatus: GPC apparatus 150C type manufactured by Nippon Waters Co. Column: TSK GMH-6 manufactured by Tosoh Corporation
Solvent: orthodichlorobenzene (ODCB)
Temperature: 135 ° C
Flow rate: 1 ml / min Injection concentration: 10 mg / 10 ml ODCB (injection volume 500 μl)
A weight average molecular weight Mw and a number average molecular weight Mn converted from a calibration curve using standard polystyrene are obtained, and Mw / Mn is calculated.
(Measurement of bulk density)
Measured according to the method described in JIS K 6911: 1995 “General Test Method for Thermosetting Plastics”. Specifically, the pre-expanded particles are naturally dropped into a graduated cylinder with an apparent density measuring device, the weight thereof is measured, and the following formula is calculated.
Bulk density (kg / m 3 ) = Weight (kg) / Particle volume in graduated cylinder (m 3 )

(空隙率)
見かけのかさ容積(V1)の発泡成形体を一定量の水を張ったメスシリンダー中に浸漬し、その時の増加容積(V2)を測定し、次式により空隙率を求める。
空隙率={(V1−V2)/V1}×100
(曲げ強度)
最大曲げ強さはJIS K9511:1999「発泡プラスチック保温材」記載の方法に準じて測定する。すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用いて、試験体サイズは75×300×15mmとし、圧縮速度を10mm/分、先端治具は加圧くさび10R、支持台10Rで、支点間距離は200mmとして測定する。
(吸音率)
吸音率はJIS A 1405:1998「音響−インピーダンス管による吸音率及びインピーダンスの測定−定在波比法」記載の方法により測定する。すなわち、電子測器社製の垂直入射吸音率測定器TYPE10041(プローブチューブマイクロホン)を用いて1kHzでの吸音率を測定する。試料は、30mm厚とし、試料ホルダーの背面板に密着させて測定する。
(Porosity)
The foamed molded body having an apparent bulk volume (V1) is immersed in a graduated cylinder filled with a certain amount of water, the increased volume (V2) at that time is measured, and the porosity is obtained by the following equation.
Porosity = {(V1-V2) / V1} × 100
(Bending strength)
The maximum bending strength is measured according to the method described in JIS K9511: 1999 “Foamed plastic heat insulating material”. That is, using a Tensilon universal testing machine UCT-10T (Orientec Co., Ltd.), the specimen size is 75 × 300 × 15 mm, the compression speed is 10 mm / min, the tip jig is a pressure wedge 10R, and a support base 10R. The distance between fulcrums is measured as 200 mm.
(Sound absorption rate)
The sound absorption coefficient is measured by the method described in JIS A 1405: 1998 “Acoustics—Measurement of sound absorption coefficient and impedance by impedance tube—standing wave ratio method”. That is, the sound absorption coefficient at 1 kHz is measured using a normal incident sound absorption coefficient measuring device TYPE10041 (probe tube microphone) manufactured by Electronic Instruments. The sample is 30 mm thick and is measured in close contact with the back plate of the sample holder.

(耐薬品性)
発泡成形体から縦100mm×横100mm×厚み20mmの平面長方形状の板状試験片を3枚切り出し、23℃、湿度50%の条件で24時間放置する。なお、発泡成形体の成形面を使用して下記試験を行う。
次に、3枚の試験片の成形面毎に別々の薬品(ガソリン、灯油、ジブチルフタレート(DBP))1gを均一に塗布し、23℃、湿度50%の条件で60分放置する。その後、試験片の成形面から薬品を拭き取り、試験片の成形面を目視観察して下記基準に基づいて判断する。
○:良好 変化なし
△:やや悪い 表面軟化
×:悪い 表面陥没(収縮)
(chemical resistance)
Three flat rectangular plate-shaped test pieces having a length of 100 mm, a width of 100 mm, and a thickness of 20 mm are cut out from the foamed molded article and left to stand at 23 ° C. and a humidity of 50% for 24 hours. In addition, the following test is performed using the molding surface of a foaming molding.
Next, 1 g of different chemicals (gasoline, kerosene, dibutyl phthalate (DBP)) is uniformly applied to the molding surfaces of the three test pieces, and left for 60 minutes at 23 ° C. and 50% humidity. Then, the chemical | medical agent is wiped off from the molding surface of a test piece, the molding surface of a test piece is visually observed, and it judges based on the following reference | standard.
○: Good No change △: Slightly bad Surface softening ×: Bad Surface depression (shrinkage)

実施例1
無架橋の直鎖状低密度ポリエチレン系樹脂を、メタロセン触媒を使用して合成したLLDPE(日本ユニカー社製 商品名「FMRN−063」、結晶化ピーク温度:101℃、メルトフローレート:1.3g/10分、密度:0.914g/cm3、分子量分布(Mw/Mn):2.77)とし、LLDPE100重量部及びタルク0.5重量部を押出機に供給した。供給物を溶融混練し、水中カット方式により造粒することで楕円球状(卵状)のポリエチレン系樹脂粒子を得た。ポリエチレン系樹脂粒子の平均重量は0.6mgであった。
Example 1
LLDPE (trade name “FMRN-063” manufactured by Nippon Unicar Co., Ltd., crystallization peak temperature: 101 ° C., melt flow rate: 1.3 g, synthesized from a non-crosslinked linear low density polyethylene resin using a metallocene catalyst / 10 minutes, density: 0.914 g / cm 3 , molecular weight distribution (Mw / Mn): 2.77), and 100 parts by weight of LLDPE and 0.5 parts by weight of talc were fed to the extruder. The feed was melt-kneaded and granulated by an underwater cutting method to obtain oval (egg-like) polyethylene resin particles. The average weight of the polyethylene resin particles was 0.6 mg.

次に、ピロリン酸マグネシウム(分散剤)0.8重量部、及びドデシルベンゼンスルホン酸ソーダ(界面活性剤)0.02重量部を水100重量部に分散させて分散用媒体を得た。
分散用媒体に上記ポリエチレン系樹脂粒子100.5重量部を分散させて懸濁液を得た。
更に、重合開始剤としてのジクミルパーオキサイド0.19重量部を予めスチレンモノマー100重量部に溶解した。
Next, 0.8 parts by weight of magnesium pyrophosphate (dispersant) and 0.02 parts by weight of sodium dodecylbenzenesulfonate (surfactant) were dispersed in 100 parts by weight of water to obtain a dispersion medium.
A suspension was obtained by dispersing 100.5 parts by weight of the polyethylene resin particles in a dispersion medium.
Furthermore, 0.19 part by weight of dicumyl peroxide as a polymerization initiator was dissolved in 100 parts by weight of styrene monomer in advance.

ポリエチレン系樹脂粒子の分散液の温度を60℃に調節し、重合開始剤を含むスチレンモノマーを30分かけて定量で添加したのち、60℃の温度で1時間攪拌することでポリエチレン系樹脂粒子中にスチレンモノマーを含浸させた。   After adjusting the temperature of the dispersion of the polyethylene resin particles to 60 ° C. and adding a styrene monomer containing a polymerization initiator over a period of 30 minutes, the mixture is stirred for 1 hour at a temperature of 60 ° C. in the polyethylene resin particles. Was impregnated with styrene monomer.

次に、分散液の温度を130℃に昇温して2時間保持し、スチレンモノマーをポリエチレン系樹脂粒子中で重合させることで、改質樹脂粒子を得た。
得られた改質樹脂粒子中のスチレン樹脂の分散状態をTEM(透過型電子顕微鏡)にて観察したところ、表層部(22500倍)(表面から約5μmまでの領域)に0.04〜0.2μm及び中心部(12800倍)(中心から半径約5μmまでの領域)に0.05〜0.5μmの粒径でスチレン樹脂が粒子状で分散されていた。なお、表層部の断面写真を図1に、中心部の断面写真を図2に示す。
Next, the temperature of the dispersion was raised to 130 ° C. and held for 2 hours, and the styrene monomer was polymerized in the polyethylene resin particles to obtain modified resin particles.
When the dispersion state of the styrene resin in the obtained modified resin particles was observed with a TEM (transmission electron microscope), 0.04 to 0.00 in the surface layer portion (22500 times) (region from the surface to about 5 μm). The styrene resin was dispersed in the form of particles with a particle size of 0.05 to 0.5 μm in 2 μm and the center (12800 times) (region from the center to a radius of about 5 μm). In addition, the cross-sectional photograph of a surface layer part is shown in FIG. 1, and the cross-sectional photograph of a center part is shown in FIG.

続いて、内容積が1m3の耐圧V型回転混合機に、改質樹脂粒子100重量部、ステアリン酸モノグリセリド0.15重量部及びジイソブチルアジペート0.5重量部を供給して回転させながら常温で揮発性発泡剤としてブタン(n−ブタン:i−ブタン=7:3)14重量部を圧入した。その後70℃に昇温して4時間保持した後に25℃まで冷却することで発泡性粒子を得た。得られた発泡性粒子も前述の改質樹脂粒子同様に表層部には0.04〜0.2μmの粒径でスチレン樹脂が粒子状で分散され、中心部には0.05〜0.5μmの粒径でスチレン樹脂が粒子状で分散されていた。 Subsequently, 100 parts by weight of the modified resin particles, 0.15 parts by weight of stearic acid monoglyceride and 0.5 parts by weight of diisobutyl adipate are supplied to a pressure resistant V-type rotary mixer having an internal volume of 1 m 3 and rotated at room temperature. As a volatile blowing agent, 14 parts by weight of butane (n-butane: i-butane = 7: 3) was injected. Thereafter, the temperature was raised to 70 ° C. and held for 4 hours, and then cooled to 25 ° C. to obtain expandable particles. Similarly to the modified resin particles described above, the obtained expandable particles were dispersed in the form of styrene resin in a particle size of 0.04 to 0.2 μm in the surface layer part, and 0.05 to 0.5 μm in the center part. The styrene resin was dispersed in the form of particles with a particle size of.

得られた発泡性粒子を直ちに水蒸気で嵩密度30kg/m3に予備発泡させて予備発泡粒子を得た。次に、予備発泡粒子を発泡成形機の金型内に充填し、蒸気圧力0.08MPaの蒸気を使用して、加熱時間:(1)金型加熱7秒、(2)一方加熱15秒、(3)逆一方加熱0.5秒、(4)両面加熱0.5秒を順次行い、その後水冷して発泡成形体を取り出した。 The obtained expandable particles were immediately prefoamed with water vapor to a bulk density of 30 kg / m 3 to obtain prefoamed particles. Next, the pre-expanded particles are filled in a mold of a foam molding machine, and using steam with a steam pressure of 0.08 MPa, heating time: (1) mold heating for 7 seconds, (2) one heating for 15 seconds, (3) Reverse one-side heating for 0.5 seconds and (4) Double-sided heating for 0.5 seconds were sequentially performed, and then water-cooled to take out the foamed molded article.

なお、発泡成形には、下記の発泡成形機を使用した。
使用成形機:ACE−3SP(積水工機社製)
金型サイズ:300×400×30mm
得られた発泡成形体は空隙を有していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
The following foam molding machine was used for foam molding.
Molding machine used: ACE-3SP (manufactured by Sekisui Koki Co., Ltd.)
Mold size: 300 × 400 × 30mm
The obtained foamed molded product had voids. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例2
実施例1と同様にして得られたポリエチレン系樹脂粒子100.5重量部を、実施例1と同様にして得られた分散用媒体中に分散させた。
更に、重合開始剤としてのジクミルパーオキサイド0.19重量部を予めスチレンモノマー66重量部に溶解して第1のスチレンモノマーを得た。
ポリエチレン系樹脂粒子の分散液の温度を60℃に調節し、重合開始剤を含む第1のスチレンモノマーを30分かけて一定量で添加したのち、60℃の温度で1時間攪拌することでポリエチレン系樹脂粒子中に第1のスチレンモノマーを含浸させた。
Example 2
100.5 parts by weight of polyethylene resin particles obtained in the same manner as in Example 1 were dispersed in the dispersion medium obtained in the same manner as in Example 1.
Further, 0.19 part by weight of dicumyl peroxide as a polymerization initiator was previously dissolved in 66 parts by weight of styrene monomer to obtain a first styrene monomer.
The temperature of the dispersion of polyethylene resin particles is adjusted to 60 ° C., a first styrene monomer containing a polymerization initiator is added in a constant amount over 30 minutes, and then the mixture is stirred for 1 hour at a temperature of 60 ° C. The resin particles were impregnated with the first styrene monomer.

次に、分散液の温度を130℃に昇温して2時間保持し、第1のスチレンモノマーをポリエチレン系樹脂粒子中で重合(第1の重合)させた。
引き続いて、重合開始剤としてのジクミルパーオキサイド0.3重量部をスチレンモノマー534重量部に溶解させて第2のスチレンモノマーを得、第1の重合の反応液に1時間あたり80重量部の割合で8時間かけて連続的に第1の重合の反応液に滴下し、ポリエチレン系樹脂粒子中に含浸させながら重合(第2の重合)させることで、改質樹脂粒子を得た。
Next, the temperature of the dispersion was raised to 130 ° C. and held for 2 hours, and the first styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
Subsequently, 0.3 part by weight of dicumyl peroxide as a polymerization initiator was dissolved in 534 parts by weight of styrene monomer to obtain a second styrene monomer, and 80 parts by weight per hour was added to the reaction liquid for the first polymerization. Modified resin particles were obtained by continuously dropping into the reaction liquid for the first polymerization over a period of 8 hours and polymerizing (second polymerization) while impregnating into the polyethylene resin particles.

得られた改質樹脂粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(19300倍)(表面から約5μmまでの領域)に0.05〜0.35μm及び中心部(38600倍)(中心から半径約5μmまでの領域)に0.06〜0.4μmの粒径でスチレン樹脂が粒子状で分散されていた。なお、表層部の断面写真を図3に、中心部の断面写真を図4に示す。   When the dispersion state of the styrene resin in the obtained modified resin particles was observed with a TEM, 0.05 to 0.35 μm and a central portion (38600) in the surface layer portion (19300 times) (region from the surface to about 5 μm). (Times) (region from the center to a radius of about 5 μm) with a particle size of 0.06 to 0.4 μm, styrene resin was dispersed in the form of particles. In addition, the cross-sectional photograph of a surface layer part is shown in FIG. 3, and the cross-sectional photograph of a center part is shown in FIG.

次に、実施例1と同様にして発泡性粒子を得た。得られた発泡性粒子も前述の改質樹脂粒子同様に表層部には0.05〜0.35μmの粒径でスチレン樹脂粒子が分散され、中心部には0.06〜0.4μmの粒径でスチレン樹脂が粒子状で分散されていた。   Next, expandable particles were obtained in the same manner as in Example 1. Similarly to the modified resin particles described above, styrene resin particles having a particle diameter of 0.05 to 0.35 μm are dispersed in the surface layer portion, and 0.06 to 0.4 μm particles are formed in the center portion. The diameter of the styrene resin was dispersed in the form of particles.

得られた発泡性粒子を直ちに水蒸気で嵩密度30kg/m3に予備発泡させて予備発泡粒子を得た。次に、実施例1と同様にして成形して発泡成形体を製造した。成形には実施例1と同様の成形機を使用した。
得られた発泡成形体は空隙を有していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
The obtained expandable particles were immediately prefoamed with water vapor to a bulk density of 30 kg / m 3 to obtain prefoamed particles. Next, it was molded in the same manner as in Example 1 to produce a foam molded article. The same molding machine as in Example 1 was used for molding.
The obtained foamed molded product had voids. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

なお、表層部及び中心部のスチレン樹脂粒子の粒径は、次の方法により確認した。即ち、例えば、図4を図5のように粒子の面積がほぼ同一になるようにトレースして、粒径を1つずつ測定することで、粒径の範囲が0.06〜0.4μmであることを確認した。   In addition, the particle size of the styrene resin particles in the surface layer portion and the central portion was confirmed by the following method. That is, for example, by tracing FIG. 4 so that the particle areas are almost the same as shown in FIG. 5 and measuring the particle size one by one, the particle size range is 0.06 to 0.4 μm. I confirmed that there was.

実施例3
直鎖状低密度ポリエチレン系樹脂を住友化学社製 商品名「エボリュー F−201」、融点:117℃、結晶化ピーク温度:108℃、メルトフローレート:1.5グラム/10分、密度:0.915g/cm3、分子量分布(Mw/Mn):2.5)とすること以外は実施例2と同様に改質樹脂粒子を得た。
Example 3
A linear low density polyethylene resin manufactured by Sumitomo Chemical Co., Ltd., trade name “Evolu F-201”, melting point: 117 ° C., crystallization peak temperature: 108 ° C., melt flow rate: 1.5 g / 10 min, density: 0 Modified resin particles were obtained in the same manner as in Example 2 except that 915 g / cm 3 and molecular weight distribution (Mw / Mn): 2.5).

得られた改質樹脂粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)に0.05〜0.3μm及び中心部(中心から半径約5μmまでの領域)に0.1〜0.5μmの粒径でスチレン樹脂が粒子状で分散されていた。   When the dispersion state of the styrene resin in the obtained modified resin particles was observed with a TEM, it was 0.05 to 0.3 μm in the surface layer portion (region from the surface to about 5 μm) and the central portion (radius about 5 μm from the center). The styrene resin was dispersed in the form of particles with a particle size of 0.1 to 0.5 μm in the region up to.

次に、実施例1と同様にして発泡性粒子を得た。得られた発泡性粒子も前述の改質樹脂粒子同様に表層部には0.05〜0.3μmの粒径でスチレン樹脂粒子が分散され、中心部には0.1〜0.5μmの粒径でスチレン樹脂が粒子状で分散されていた。   Next, expandable particles were obtained in the same manner as in Example 1. Similarly to the modified resin particles described above, the obtained expandable particles were dispersed with styrene resin particles having a particle size of 0.05 to 0.3 μm in the surface layer portion, and 0.1 to 0.5 μm particles in the center portion. The diameter of the styrene resin was dispersed in the form of particles.

この発泡性粒子を実施例2と同様に予備発泡して予備発泡粒子を得た。次に、予備発泡粒子を成形機の金型内に充填し、蒸気圧力0.08MPaの蒸気を使用して、加熱時間:(1)金型加熱7秒、(2)一方加熱15秒、(3)逆一方加熱0.5秒、(4)両面加熱2秒を順次行い、その後水冷して発泡成形体を取り出した。
得られた発泡成形体は空隙を有する発泡成形体であった。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
The foamable particles were prefoamed in the same manner as in Example 2 to obtain prefoamed particles. Next, the pre-expanded particles are filled in a mold of a molding machine, and using steam with a steam pressure of 0.08 MPa, heating time: (1) mold heating for 7 seconds, (2) one heating for 15 seconds, ( 3) Reverse one-sided heating for 0.5 seconds and (4) Double-sided heating for 2 seconds were sequentially performed, and then water-cooled to take out the foamed molded article.
The obtained foamed molded product was a foamed molded product having voids. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例4
実施例1と同じ直鎖状低密度ポリエチレン系樹脂100重量部、酸化鉄粒子(Fe34)25重量部及びタルク0.5重量部を押出機に供給した。供給物を溶融混練して水中カット方式により造粒することで楕円球状(卵状)の黒に着色されたポリエチレン系樹脂粒子を得た。酸化鉄含有ポリエチレン系樹脂粒子の平均重量は0.7mgであった。
得られた酸化鉄含有ポリエチレン系樹脂粒子を用いること以外は実施例2と同様にして、改質樹脂粒子及び発泡性粒子を得た。
Example 4
100 parts by weight of the same linear low-density polyethylene resin as in Example 1, 25 parts by weight of iron oxide particles (Fe 3 O 4 ), and 0.5 parts by weight of talc were supplied to the extruder. The feed was melt-kneaded and granulated by an underwater cutting method to obtain oval (egg-like) black colored polyethylene resin particles. The average weight of the iron oxide-containing polyethylene resin particles was 0.7 mg.
Modified resin particles and expandable particles were obtained in the same manner as in Example 2 except that the obtained iron oxide-containing polyethylene-based resin particles were used.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態を実施例1と同様にTEMにて観察したところ、表層部には0.05〜0.3μmの粒径でスチレン樹脂粒子が分散され、中心部には0.1〜0.45μmの粒径でスチレン樹脂が粒子状で分散されていた。
この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
得られた発泡成形体は空隙を有していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed by TEM in the same manner as in Example 1, the surface layer portion had styrene resin particles with a particle size of 0.05 to 0.3 μm. The styrene resin was dispersed in the form of particles with a particle size of 0.1 to 0.45 μm in the center.
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
The obtained foamed molded product had voids. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例5
酸化鉄粒子に代えてカーボンブラック粒子3重量部を使用すること以外は実施例4と同様にして楕円球状(卵状)の黒に着色されたポリエチレン系樹脂粒子を得た。カーボンブラック含有ポリエチレン系樹脂粒子の平均重量は0.6mgであった。
得られた酸化鉄含有ポリエチレン系樹脂粒子を用いること以外は実施例1と同様にして、改質樹脂粒子を得、次いで実施例1と同様にして発泡性粒子を得た。
Example 5
Except for using 3 parts by weight of carbon black particles instead of iron oxide particles, polyethylene resin particles colored oval (egg-like) black were obtained in the same manner as in Example 4. The average weight of the carbon black-containing polyethylene resin particles was 0.6 mg.
Modified resin particles were obtained in the same manner as in Example 1 except that the obtained iron oxide-containing polyethylene-based resin particles were used, and then expandable particles were obtained in the same manner as in Example 1.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態を実施例1と同様にTEMにて観察したところ、表層部には0.06〜0.3μmの粒径でスチレン樹脂粒子が分散され、中心部には0.1〜0.55μmの粒径でスチレン樹脂が粒子状で分散されていた。   When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed by TEM in the same manner as in Example 1, the surface layer portion had styrene resin particles with a particle size of 0.06 to 0.3 μm. The styrene resin was dispersed in the form of particles with a particle size of 0.1 to 0.55 μm in the center.

この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
得られた発泡成形体は空隙を有していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
The obtained foamed molded product had voids. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例6
スチレンモノマーを95重量部、α−メチルスチレンモノマーを5重量部としたこと以外は実施例1と同様に改質樹脂粒子及び発泡性粒子を得た。
得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)に0.04〜0.2μm及び中心部(中心から半径約5μmまでの領域)に0.05〜0.5μmの粒径でスチレン樹脂が粒子状で分散されていた。
Example 6
Modified resin particles and expandable particles were obtained in the same manner as in Example 1 except that 95 parts by weight of the styrene monomer and 5 parts by weight of the α-methylstyrene monomer were used.
When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed by TEM, 0.04 to 0.2 μm and the central portion (center) were observed in the surface layer portion (region from the surface to about 5 μm). To a radius of about 5 μm), the styrene resin was dispersed in the form of particles with a particle size of 0.05 to 0.5 μm.

この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
得られた発泡成形体は空隙を有していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
The obtained foamed molded product had voids. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例7
第1のスチレンモノマー量を50重量部、第2のスチレンモノマー量を350重量部とし、重合開始剤としてのt−ブチルパーオキシベンゾエートを用い、重合温度を115℃としたこと以外は実施例2と同様に改質樹脂粒子を得、次いで実施例1と同様にして発泡性粒子を得た。
Example 7
Example 2 except that the amount of the first styrene monomer was 50 parts by weight, the amount of the second styrene monomer was 350 parts by weight, t-butyl peroxybenzoate was used as the polymerization initiator, and the polymerization temperature was 115 ° C. Modified resin particles were obtained in the same manner as in Example 1, and then expandable particles were obtained in the same manner as in Example 1.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)に0.05〜0.4μm及び中心部(中心から半径約5μmまでの領域)に0.1〜0.5μmの粒径でスチレン樹脂が粒子状で分散されていた。   When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed with a TEM, 0.05 to 0.4 μm and a central portion (center) were formed on the surface layer portion (region from the surface to about 5 μm). To a radius of about 5 μm), the styrene resin was dispersed in a particle shape with a particle size of 0.1 to 0.5 μm.

この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
得られた発泡成形体は空隙を有していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
The obtained foamed molded product had voids. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例8
添加する無機核剤をシリカとし、重合開始剤としてのジクミルパーオキサイドを用い、重合温度を140℃とすること以外は実施例7と同様に改質樹脂粒子を得、次いで実施例1と同様にして発泡性粒子を得た。
Example 8
Modified resin particles were obtained in the same manner as in Example 7 except that the inorganic nucleating agent to be added was silica, dicumyl peroxide as a polymerization initiator was used, and the polymerization temperature was 140 ° C. Thus, expandable particles were obtained.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)に0.03〜0.3μm及び中心部(中心から半径約5μmまでの領域)に0.08〜0.4μmの粒径でスチレン樹脂が粒子状で分散されていた。   When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed by TEM, 0.03 to 0.3 μm and the central portion (center) in the surface layer portion (region from the surface to about 5 μm). To a radius of about 5 μm), styrene resin was dispersed in the form of particles with a particle size of 0.08 to 0.4 μm.

この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次に、予備発泡粒子を成形機の金型内に充填し、蒸気圧力0.08MPaの蒸気を使用して、加熱時間:(1)金型加熱7秒、(2)一方加熱12秒、(3)逆一方加熱0.5秒、(4)両面加熱0.5秒を順次行い、その後水冷して発泡成形体を取り出した。
得られた発泡成形体は空隙を有していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Next, the pre-expanded particles are filled in a mold of a molding machine, and using steam with a steam pressure of 0.08 MPa, heating time: (1) mold heating for 7 seconds, (2) one heating for 12 seconds, ( 3) Reverse one-sided heating for 0.5 seconds and (4) Double-sided heating for 0.5 seconds were sequentially performed, and then water-cooled to take out the foamed molded article.
The obtained foamed molded product had voids. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例9
第1のスチレンモノマー量を120重量部、第2のスチレンモノマー量を80重量部としたこと以外は実施例2と同様に改質樹脂粒子を得、次いで実施例1と同様にして発泡性粒子を得た。
Example 9
Modified resin particles were obtained in the same manner as in Example 2 except that the amount of the first styrene monomer was 120 parts by weight and the amount of the second styrene monomer was 80 parts by weight. Got.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)に0.04〜0.3μm及び中心部(中心から半径約5μmまでの領域)に0.05〜0.5μmの粒径でスチレン樹脂が粒子状で分散されていた。
この発泡性粒子を実施例1と同様に予備発泡した予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
得られた発泡成形体は空隙していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed with a TEM, 0.04 to 0.3 μm and the center (center) of the surface layer portion (region from the surface to about 5 μm) were observed. To a radius of about 5 μm), the styrene resin was dispersed in the form of particles with a particle size of 0.05 to 0.5 μm.
Pre-expanded particles obtained by pre-expanding the expandable particles in the same manner as in Example 1 were obtained. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
The obtained foamed molding was void. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例10
スチレンモノマーを50重量部使用し、重合開始剤としてのジクミルパーオキサイドを0.19重量部使用して135℃で重合(第1の重合)した後、反応系の温度を125℃に下げ、次いで第1の重合の反応液に、更に重合開始剤としてのジクミルパーオキサイド0.30重量部をスチレンモノマー350重量部に溶解させた第2のスチレンモノマーを1時間あたり50重量部の割合で連続的に滴下することで、第2のスチレンモノマーを樹脂粒子中に含浸させながら重合(第2の重合)をさせたこと以外は実施例2と同様に改質樹脂粒子を得、次いで実施例1と同様にして発泡性粒子を得た。
Example 10
After 50 parts by weight of styrene monomer and 0.19 parts by weight of dicumyl peroxide as a polymerization initiator were polymerized at 135 ° C. (first polymerization), the temperature of the reaction system was lowered to 125 ° C., Next, a second styrene monomer obtained by dissolving 0.30 part by weight of dicumyl peroxide as a polymerization initiator in 350 parts by weight of styrene monomer in the reaction liquid for the first polymerization at a rate of 50 parts by weight per hour. By continuously dropping, modified resin particles were obtained in the same manner as in Example 2 except that the resin particles were polymerized while being impregnated with the second styrene monomer (second polymerization). In the same manner as in Example 1, expandable particles were obtained.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)に0.03〜0.3μm及び中心部(中心から半径約5μmまでの領域)に0.08〜0.4μmの粒径でスチレン樹脂が粒子状で分散されていた。   When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed by TEM, 0.03 to 0.3 μm and the central portion (center) in the surface layer portion (region from the surface to about 5 μm). To a radius of about 5 μm), styrene resin was dispersed in the form of particles with a particle size of 0.08 to 0.4 μm.

この発泡性粒子を実施例1と同様に予備発泡した予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
得られた発泡成形体は空隙していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
Pre-expanded particles obtained by pre-expanding the expandable particles in the same manner as in Example 1 were obtained. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
The obtained foamed molding was void. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

実施例11
実施例10と同様にして改質樹脂粒子を得、発泡剤としてのブタンの代わりにペンタン(n−ペンタン:イソペンタン=80:20、体積比)14重量部を添加した。続いて回転混合機内の温度を30℃に昇温して6時間保持した後に、25℃まで冷却して発泡性粒子を得た。
Example 11
Modified resin particles were obtained in the same manner as in Example 10, and 14 parts by weight of pentane (n-pentane: isopentane = 80: 20, volume ratio) was added instead of butane as a blowing agent. Subsequently, the temperature in the rotary mixer was raised to 30 ° C. and held for 6 hours, and then cooled to 25 ° C. to obtain expandable particles.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)に0.03〜0.3μm及び中心部(中心から半径約5μmまでの領域)に0.08〜0.4μmの粒径でスチレン樹脂が粒子状で分散されていた。
この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
得られた発泡成形体は空隙していた。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。
When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed by TEM, 0.03 to 0.3 μm and the central portion (center) in the surface layer portion (region from the surface to about 5 μm). To a radius of about 5 μm), styrene resin was dispersed in the form of particles with a particle size of 0.08 to 0.4 μm.
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
The obtained foamed molding was void. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

比較例1
チーグラー・ナッタ触媒により得られた直鎖状低密度ポリエチレン系樹脂(LLDPE)として、日本ユニカー社製 商品名「TUF−2032」(結晶化ピーク温度:113℃、メルトフローレート:0.9g/10分、密度:0.923g/cm3、分子量分布(Mw/Mn):4.5)を使用し、重合温度を119℃とし、加えるスチレンモノマー量を185重量部としたこと以外は実施例1と同様にして改質樹脂粒子及び発泡性粒子を得た。
Comparative Example 1
As a linear low density polyethylene resin (LLDPE) obtained by a Ziegler-Natta catalyst, trade name “TUF-2032” manufactured by Nippon Unicar Co., Ltd. (crystallization peak temperature: 113 ° C., melt flow rate: 0.9 g / 10) Example 1 except that the polymerization temperature was 119 ° C., and the amount of styrene monomer added was 185 parts by weight, using a minute, density: 0.923 g / cm 3 , molecular weight distribution (Mw / Mn): 4.5). In the same manner, modified resin particles and expandable particles were obtained.

得られた改質樹脂粒子及び発泡性粒子のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(12800倍)(表面から約5μmまでの領域)に0.05〜0.15μmのスチレン樹脂が粒子状で分散していたが、中心部(12800倍)(粒子の中心から半径約5μmまでの領域)ではスチレン樹脂粒子の分散は見られず、連続相となっていることが確認された。なお、改質樹脂粒子の表層部の断面写真を図6に、中心部の断面写真を図7に示す。   When the styrene resin dispersion state of the resulting modified resin particles and expandable particles was observed by TEM, 0.05 to 0.15 μm styrene was formed on the surface layer (12800 times) (region from the surface to about 5 μm). The resin was dispersed in the form of particles, but in the central part (12800 times) (region from the center of the particle to a radius of about 5 μm), no dispersion of styrene resin particles was seen, confirming that it was a continuous phase. It was. In addition, the cross-sectional photograph of the surface layer part of the modified resin particle is shown in FIG. 6, and the cross-sectional photograph of the central part is shown in FIG.

この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
空隙を有する発泡成形体を得ることはできたが、得られた発泡成形体は実施例1で得たものと対比して曲げ強度に劣るものとなった。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表2に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
Although it was possible to obtain a foamed molded article having voids, the obtained foamed molded article was inferior in bending strength as compared with that obtained in Example 1. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 2.

比較例2
エチレン−酢酸ビニル共重合体(以下、EVAと称す)(日本ユニカー社製 商品名「NUC−3221」、酢酸ビニル含有量:5重量%、融点:107℃、メルトフローレート:0.2g/10分、密度:0.92g/cm3)100重量部及び合成含水二酸化珪素0.5重量部を押出機に供給して溶融混連して水中カット方式により造粒して楕円球状(卵状)のEVA樹脂粒子を得た。EVA樹脂粒子の平均重量は0.6mgであった。
Comparative Example 2
Ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) (trade name “NUC-3221” manufactured by Nippon Unicar Co., Ltd., vinyl acetate content: 5% by weight, melting point: 107 ° C., melt flow rate: 0.2 g / 10 Min., Density: 0.92 g / cm 3 ) 100 parts by weight and 0.5 parts by weight of synthetic hydrous silicon dioxide are fed into an extruder, melted and mixed, and granulated by an underwater cutting method to form an oval (egg) EVA resin particles were obtained. The average weight of the EVA resin particles was 0.6 mg.

次に、ピロリン酸マグネシウム0.8重量部、及びドデシルベンゼンスルホン酸ソーダ0.02重量部を水100重量部に分散させて分散用媒体を得た。   Next, 0.8 parts by weight of magnesium pyrophosphate and 0.02 parts by weight of sodium dodecylbenzenesulfonate were dispersed in 100 parts by weight of water to obtain a dispersion medium.

分散用媒体に上記合成含水二酸化珪素含有のEVA樹脂粒子100.5重量部を分散させて懸濁液を得た。
更に、重合開始剤としてのジクミルパーオキサイド0.19重量部を予めスチレンモノマー40重量部に溶解させて第1のスチレンモノマーを作製した。
A suspension was obtained by dispersing 100.5 parts by weight of the synthetic hydrous silicon dioxide-containing EVA resin particles in a dispersion medium.
Further, 0.19 part by weight of dicumyl peroxide as a polymerization initiator was previously dissolved in 40 parts by weight of styrene monomer to prepare a first styrene monomer.

EVA樹脂粒子を含む水系媒体の温度60℃に調節し、上記スチレンモノマーを30分かけて定量で添加したのち、1時間攪拌することでEVA樹脂粒子中に第1のスチレンモノマーを含浸させた。
次に反応系を85℃に昇温して2時間保持し、第1のスチレンモノマーをEVA樹脂粒子中で重合(第1の重合)させた。
The temperature of the aqueous medium containing EVA resin particles was adjusted to 60 ° C., the styrene monomer was added in a fixed amount over 30 minutes, and then stirred for 1 hour to impregnate the first styrene monomer in the EVA resin particles.
Next, the reaction system was heated to 85 ° C. and held for 2 hours, and the first styrene monomer was polymerized (first polymerization) in the EVA resin particles.

次いで、第1の重合の反応液に、更に重合開始剤としてのジクミルパーオキサイド0.19重量部をスチレンモノマー240重量部に溶解させた第2のスチレンモノマーを1時間あたり50重量部の割合で連続的に滴下することで、第2のスチレンモノマーをEVA樹脂粒子に含浸させながら重合(第2の重合)させた。   Next, a ratio of 50 parts by weight of a second styrene monomer in which 0.19 parts by weight of dicumyl peroxide as a polymerization initiator was further dissolved in 240 parts by weight of styrene monomer in the reaction liquid for the first polymerization. Then, polymerization (second polymerization) was performed while the EVA resin particles were impregnated with the second styrene monomer.

得られた改質樹脂粒子中のスチレン樹脂の分散状態をTEM(表層部22500倍、中心部12800倍)にて観察したところ、表層部(表面から約5μmまでの領域)には1μmを越える粒径でスチレン樹脂が粒子状で分散していた。また、中心部(中心から半径約5μmまでの領域)ではスチレン樹脂は粒子状で存在せず、連続した状態であった。なお、表層部の断面写真を図8に、中心部の断面写真を図9に示す。   When the dispersion state of the styrene resin in the obtained modified resin particles was observed with a TEM (surface layer portion 22500 times, center portion 12800 times), particles exceeding 1 μm were observed in the surface layer portion (region from the surface to about 5 μm). The diameter of the styrene resin was dispersed in the form of particles. In the central part (region from the center to a radius of about 5 μm), the styrene resin was not present in the form of particles and was in a continuous state. A cross-sectional photograph of the surface layer portion is shown in FIG.

次に、実施例1と同様にして発泡性粒子を得た。得られた発泡性粒子も前述の改質樹脂粒子同様に表層部には1μmを越える粒径でスチレン樹脂が粒子状で分散していた。また、中心部ではスチレン樹脂は粒子状で存在せず、連続した状態であった。   Next, expandable particles were obtained in the same manner as in Example 1. Similarly to the modified resin particles described above, the obtained expandable particles had a styrene resin dispersed in the surface layer with a particle size exceeding 1 μm. Moreover, the styrene resin was not present in the form of particles at the center, and was in a continuous state.

この発泡性粒子を実施例1と同様に予備発泡させて予備発泡粒子を得た。次いで、実施例1同様に成形して発泡成形体を製造した。
空隙を有する発泡成形体を得ることはできたが、得られた発泡成形体は実施例1で得たものと対比して耐薬品性と曲げ強度に劣るものとなった。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表2に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
Although a foamed molded article having voids could be obtained, the obtained foamed molded article was inferior in chemical resistance and bending strength as compared with that obtained in Example 1. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 2.

比較例3
スチレンモノマーの使用量を10重量部とすること以外は実施例1と同様に改質樹脂粒子及び発泡性粒子を得た。
得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)には粒子状のスチレン樹脂はほとんど存在せず、中心部(中心から半径約5μmまでの領域)にも粒子状のスチレン樹脂は存在しなかった。
Comparative Example 3
Modified resin particles and expandable particles were obtained in the same manner as in Example 1 except that the amount of styrene monomer used was 10 parts by weight.
When the styrene resin dispersed in the obtained modified resin particles and expandable particles was observed with a TEM, there was almost no particulate styrene resin in the surface layer (region from the surface to about 5 μm), There was no particulate styrene resin in the center (region from the center to a radius of about 5 μm).

次に、得られた発泡性粒子を直ちに予備発泡機に供給し、0.02MPaの圧力の蒸気を導入して予備発泡させたが、ほとんど発泡せず、発泡成形可能な予備発泡粒子を得ることはできなかった。   Next, the obtained expandable particles were immediately supplied to a pre-foaming machine and pre-foamed by introducing steam at a pressure of 0.02 MPa, but hardly foamed to obtain pre-foamed particles capable of foam molding. I couldn't.

比較例4
重合開始剤を1.0重量部使用すること以外は実施例1と同様に樹脂粒子を得た。得られた樹脂粒子には、改質樹脂粒子以外の大量の微粉末が含まれていた。この微粉末はスチレン樹脂粉末であった。スチレン樹脂粉末は、スチレンモノマーがポリエチレン系樹脂内部に含浸される前に重合することにより生じたものである。従って、ポリエチレン系樹脂を目的量のスチレン樹脂で改質できなかった。また、微粒子は、発泡成形時に発泡粒子同士が融着することを阻害するため、物性を評価するための発泡成形体を得ることができなかった。
Comparative Example 4
Resin particles were obtained in the same manner as in Example 1 except that 1.0 part by weight of the polymerization initiator was used. The obtained resin particles contained a large amount of fine powder other than the modified resin particles. This fine powder was a styrene resin powder. The styrene resin powder is produced by polymerization before the styrene monomer is impregnated into the polyethylene resin. Therefore, the polyethylene resin could not be modified with the target amount of styrene resin. Further, since the fine particles inhibit the foamed particles from fusing together during foam molding, a foam molded product for evaluating physical properties could not be obtained.

比較例5
第1の重合において、重合開始剤としてのベンゾイルパーオキサイドを使用し、重合温度を90℃とすること、及び第2の重合において、重合開始剤としてのジクミルパーオキサイドを使用し、重合温度を130℃とすること以外は実施例7と同様にして改質樹脂粒子を得、次いで、実施例1と同様にして発泡性粒子を得た。
Comparative Example 5
In the first polymerization, benzoyl peroxide is used as a polymerization initiator, the polymerization temperature is 90 ° C., and in the second polymerization, dicumyl peroxide is used as a polymerization initiator, and the polymerization temperature is Modified resin particles were obtained in the same manner as in Example 7 except that the temperature was 130 ° C., and then expandable particles were obtained in the same manner as in Example 1.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)及び中心部(中心から半径約5μmまでの領域)では1μmを超える粒径でスチレン樹脂が粒子状で分散していた。   When the dispersion state of the styrene resin in the resulting modified resin particles and expandable particles was observed with a TEM, the surface layer portion (region from the surface to about 5 μm) and the center portion (region from the center to a radius of about 5 μm) Then, the styrene resin was dispersed in the form of particles with a particle diameter exceeding 1 μm.

この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
空隙を有する発泡成形体を得ることはできたが、得られた発泡成形体は実施例1で得たものと対比して耐薬品性と曲げ強度に劣るものとなった。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表2に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
Although a foamed molded article having voids could be obtained, the obtained foamed molded article was inferior in chemical resistance and bending strength as compared with that obtained in Example 1. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 2.

比較例6
重合開始剤としてのベンゾイルパーオキサイドを使用し、重合温度を90℃とすること以外は実施例1と同様にして改質樹脂粒子及び発泡性粒子を得た。
得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)には1μmを超える粒径でスチレン樹脂が粒子状で分散していた。また、中心部(中心から半径約5μmまでの領域)ではスチレン樹脂は粒子の一部が連続した状態で存在していた。
Comparative Example 6
Modified resin particles and expandable particles were obtained in the same manner as in Example 1 except that benzoyl peroxide as a polymerization initiator was used and the polymerization temperature was 90 ° C.
When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed with a TEM, the surface layer portion (region from the surface to about 5 μm) had a particle size exceeding 1 μm in the form of styrene resin. Was dispersed. In the central portion (region from the center to a radius of about 5 μm), the styrene resin was present in a state where some of the particles were continuous.

この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
空隙を有する発泡成形体を得ることはできたが、得られた発泡成形体は実施例1で得たものと対比して耐薬品性と曲げ強度に劣るものとなった。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表2に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
Although a foamed molded article having voids could be obtained, the obtained foamed molded article was inferior in chemical resistance and bending strength as compared with that obtained in Example 1. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 2.

比較例7
第1の重合において、重合開始剤としてのジクミルパーオキサイドを使用し、重合温度を130℃とすること、及び第2の重合において、重合開始剤としてのベンゾイルパーオキサイドを使用し、重合温度を90℃とすること以外は実施例7と同様にして改質樹脂粒子を得、次いで、実施例1と同様にして発泡性粒子を得た。
Comparative Example 7
In the first polymerization, dicumyl peroxide is used as a polymerization initiator, the polymerization temperature is 130 ° C., and in the second polymerization, benzoyl peroxide is used as a polymerization initiator, and the polymerization temperature is Modified resin particles were obtained in the same manner as in Example 7 except that the temperature was 90 ° C., and then expandable particles were obtained in the same manner as in Example 1.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(表面から約5μmまでの領域)には1μmを超える粒径でスチレン樹脂が粒子状で分散していた。また、中心部(中心から半径約5μmまでの領域)ではスチレン樹脂は連続して存在していた。   When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed with a TEM, the surface layer portion (region from the surface to about 5 μm) had a particle size exceeding 1 μm in the form of styrene resin. Was dispersed. Further, styrene resin was continuously present in the central portion (region from the center to a radius of about 5 μm).

この発泡性粒子を実施例1と同様に予備発泡して予備発泡粒子を得た。次いで、実施例1と同様に成形して発泡成形体を製造した。
空隙を有する発泡成形体を得ることはできたが、得られた発泡成形体は実施例1で得たものと対比して耐薬品性と曲げ強度に劣るものとなった。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表2に示す。
The expandable particles were pre-expanded in the same manner as in Example 1 to obtain pre-expanded particles. Subsequently, it molded similarly to Example 1, and manufactured the foaming molding.
Although a foamed molded article having voids could be obtained, the obtained foamed molded article was inferior in chemical resistance and bending strength as compared with that obtained in Example 1. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 2.

比較例8
実施例10で得られた改質樹脂粒子を使用して、実施例1と同様の方法で発泡性粒子を製造し、これを実施例1と同様に予備発泡した予備発泡粒子を得た。次に、予備発泡粒子を成形機の金型内に充填し、蒸気圧力0.08MPaの蒸気を使用して、加熱時間:(1)金型加熱7秒、(2)一方加熱15秒、(3)逆一方加熱2秒、(4)両面加熱10秒を順次行い、その後水冷して発泡成形体を取り出した。
得られた発泡成形体は空隙率が小さいため実施例1で得たものと対比して吸音率に劣るものとなった。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表2に示す。
Comparative Example 8
Using the modified resin particles obtained in Example 10, expandable particles were produced in the same manner as in Example 1 to obtain pre-expanded particles that were pre-expanded in the same manner as in Example 1. Next, the pre-expanded particles are filled in a mold of a molding machine, and using steam with a steam pressure of 0.08 MPa, heating time: (1) mold heating for 7 seconds, (2) one heating for 15 seconds, ( 3) Reverse one-side heating for 2 seconds and (4) Double-sided heating for 10 seconds were sequentially performed, and then water-cooled to take out the foamed molded article.
Since the obtained foamed molded article had a small porosity, it was inferior in the sound absorption coefficient as compared with that obtained in Example 1. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 2.

比較例9
第2のスチレンモノマーを834重量部とし、10時間かけて連続的に第1の重合の反応液に滴下すること以外は、実施例2と同様にして改質樹脂粒子を得、次いで実施例1と同様にして発泡性粒子を得た。
Comparative Example 9
Modified resin particles were obtained in the same manner as in Example 2 except that 834 parts by weight of the second styrene monomer was continuously added dropwise to the reaction liquid for the first polymerization over 10 hours, and then Example 1 was obtained. In the same manner, expandable particles were obtained.

得られた改質樹脂粒子及び発泡性粒子中のスチレン樹脂の分散状態をTEMにて観察したところ、表層部(19300倍)(表面から約5μmまでの領域)に0.07〜0.4μmのスチレン樹脂が粒子状で分散されていたが、中心部(19300倍)(中心から半径約5μmまでの領域)では粒子状のスチレン樹脂が連続相となり、その結果、粒径が0.8μmを越えていた。なお、表層部の断面写真を図10に、中心部の断面写真を図11に示す。   When the dispersion state of the styrene resin in the obtained modified resin particles and expandable particles was observed by TEM, the surface layer portion (19300 times) (region from the surface to about 5 μm) was 0.07 to 0.4 μm. Styrene resin was dispersed in the form of particles, but in the center (19300 times) (region from the center to a radius of about 5 μm), the particulate styrene resin became a continuous phase. As a result, the particle size exceeded 0.8 μm. It was. In addition, the cross-sectional photograph of a surface layer part is shown in FIG. 10, and the cross-sectional photograph of a center part is shown in FIG.

得られた発泡性粒子を直ちに水蒸気で嵩密度20kg/m3に予備発泡させて予備発泡粒子を得た。次に、予備発泡粒子を成形機の金型内に充填し、蒸気圧力0.08MPaの蒸気を使用して、加熱時間:(1)金型加熱5秒、(2)一方加熱12秒、(3)逆一方加熱0.5秒、(4)両面加熱0.5秒を順次行い、その後水冷して発泡成形体を取り出した。
なお、成形には実施例1と同様の成形機を使用した。
The obtained expandable particles were immediately prefoamed with water vapor to a bulk density of 20 kg / m 3 to obtain prefoamed particles. Next, the pre-expanded particles are filled in a mold of a molding machine, and using steam with a steam pressure of 0.08 MPa, heating time: (1) mold heating for 5 seconds, (2) one heating for 12 seconds, ( 3) Reverse one-sided heating for 0.5 seconds and (4) Double-sided heating for 0.5 seconds were sequentially performed, and then water-cooled to take out the foamed molded article.
In addition, the molding machine similar to Example 1 was used for shaping | molding.

空隙を有する発泡成形体を得ることはできたが、得られた発泡成形体は実施例1で得たものと対比して曲げ強度に劣るものとなった。得られた発泡成形体の空隙率、曲げ強度、吸音率及び耐薬品性を測定した。結果を表1に示す。   Although it was possible to obtain a foamed molded article having voids, the obtained foamed molded article was inferior in bending strength as compared with that obtained in Example 1. The obtained foamed molded product was measured for porosity, bending strength, sound absorption rate and chemical resistance. The results are shown in Table 1.

Figure 0004461172
Figure 0004461172

Figure 0004461172
Figure 0004461172

上記表1及び2中、PEはポリエチレン、SMはスチレンモノマー、αMSMはα−メチルスチレンモノマーを意味する。
本発明は、上記のように説明されるが、同様に多くの手段により自明に変形されうる。そのような変形例は、本発明の趣旨及び範囲から離れるものではなく、そのような当業者に自明である全ての変形例は、請求の範囲の範囲内に含まれることを意図されている。
また、この出願は2004年9月22日に出願された特願2004−275278号に関し、その開示をそのまま参照として入れる。
In Tables 1 and 2, PE means polyethylene, SM means styrene monomer, and αMSM means α-methylstyrene monomer.
While the invention has been described above, it can be readily modified by many means as well. Such variations do not depart from the spirit and scope of the invention, and all such variations obvious to one skilled in the art are intended to be included within the scope of the claims.
This application relates to Japanese Patent Application No. 2004-275278 filed on Sep. 22, 2004, the disclosure of which is incorporated by reference.

本発明による実施例1の改質樹脂粒子の表層部断面のTEM写真である。It is a TEM photograph of the surface layer section of the modified resin particle of Example 1 according to the present invention. 本発明による実施例1の改質樹脂粒子の中心部断面のTEM写真である。It is a TEM photograph of the center section of the modification resin particle of Example 1 by the present invention. 本発明による実施例2の改質樹脂粒子の表層部断面のTEM写真である。It is a TEM photograph of the surface layer section of the modified resin particle of Example 2 according to the present invention. 本発明による実施例2の改質樹脂粒子の中心部断面のTEM写真である。It is a TEM photograph of the central section of the modified resin particles of Example 2 according to the present invention. 前記図4のTEM写真をトレースした図である。It is the figure which traced the TEM photograph of the said FIG. 比較例1の改質樹脂粒子の表層部断面のTEM写真である。4 is a TEM photograph of a cross section of a surface layer portion of a modified resin particle of Comparative Example 1. 比較例1の改質樹脂粒子の中心部断面のTEM写真である。4 is a TEM photograph of a cross-section at the center of the modified resin particle of Comparative Example 1. 比較例2の改質樹脂粒子の表層部断面のTEM写真である。4 is a TEM photograph of a cross section of a surface layer portion of a modified resin particle of Comparative Example 2. 比較例2の改質樹脂粒子の中心部断面のTEM写真である。4 is a TEM photograph of a cross-section at the center of modified resin particles in Comparative Example 2. 比較例9の改質樹脂粒子の表層部断面のTEM写真である。10 is a TEM photograph of a cross section of a surface layer portion of a modified resin particle of Comparative Example 9. 比較例9の改質樹脂粒子の中心部断面のTEM写真である。10 is a TEM photograph of a cross-section at the center of modified resin particles in Comparative Example 9. 本発明に使用できる発泡成形機の概略図である。It is the schematic of the foam molding machine which can be used for this invention.

符号の説明Explanation of symbols

1a キャビティ
2 雌金型
2a、3a 蒸気室
2b、3b 蒸気噴出用スリット孔
2c、3c 蒸気供給管
2d、3d 蒸気排出管
3 雄金型
4 蒸気制御器
5 ドレイン弁
6 予備発泡粒子
7 充填器
9 圧力検知装置
10 制御手段
1a Cavity 2 Female mold 2a, 3a Steam chamber 2b, 3b Steam ejection slit hole 2c, 3c Steam supply pipe 2d, 3d Steam discharge pipe 3 Male mold 4 Steam controller 5 Drain valve 6 Pre-foamed particle 7 Filler 9 Pressure sensing device 10 control means

Claims (4)

無機核剤を含みメタロセン触媒を使用して得ることができる無架橋で直鎖状の低密度ポリエチレン系樹脂100重量部に対して、スチレン系樹脂を50〜800重量部含有し、かつ、粒子表面から少なくとも5μmまでの表層部及び粒子中心部から半径5μmまでの中心部において粒子状に分散したスチレン系樹脂を有し、粒径が0.8μm以下であるスチレン改質直鎖状低密度ポリエチレン系樹脂粒子に揮発性発泡剤を含浸させた発泡性粒子を予備発泡させ、得られた予備発泡粒子を発泡成形することにより得られ、5〜50%の空隙率を有する発泡成形体。50 to 800 parts by weight of a styrene resin with respect to 100 parts by weight of a non-crosslinked linear low density polyethylene resin that can be obtained by using a metallocene catalyst containing an inorganic nucleating agent , and the particle surface A styrene-modified linear low-density polyethylene system having a styrene-based resin dispersed in the form of particles in a surface layer portion of at least 5 μm and a central portion of the particle center to a radius of 5 μm and a particle size of 0.8 μm or less A foam molded article obtained by pre-foaming expandable particles obtained by impregnating resin particles with a volatile foaming agent and foam-molding the obtained pre-foamed particles, and having a porosity of 5 to 50%. 前記無機核剤が、前記無架橋で直鎖状の低密度ポリエチレン系樹脂100重量部に対して0.1〜2重量部含まれる請求項1に記載の発泡成形体。The foamed molded product according to claim 1, wherein the inorganic nucleating agent is contained in an amount of 0.1 to 2 parts by weight with respect to 100 parts by weight of the non-crosslinked linear low-density polyethylene resin. 自動車内装材、自動車部材又は建築用部材に使用される請求項1又は2に記載の発泡成形体。The foaming molding of Claim 1 or 2 used for a motor vehicle interior material, a motor vehicle member, or a building member. 0.3MPa以上の曲げ強度を有する請求項1又は2に記載の発泡成形体。The foaming molding of Claim 1 or 2 which has a bending strength of 0.3 Mpa or more.
JP2007507590A 2004-09-22 2005-09-20 Foam molded body having voids Expired - Fee Related JP4461172B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004275278 2004-09-22
PCT/JP2005/017673 WO2006033449A1 (en) 2004-09-22 2005-09-20 Expanded molded article having voids

Publications (2)

Publication Number Publication Date
JP2008508111A JP2008508111A (en) 2008-03-21
JP4461172B2 true JP4461172B2 (en) 2010-05-12

Family

ID=35229915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007507590A Expired - Fee Related JP4461172B2 (en) 2004-09-22 2005-09-20 Foam molded body having voids

Country Status (6)

Country Link
US (1) US7579384B2 (en)
EP (1) EP1791877A1 (en)
JP (1) JP4461172B2 (en)
KR (1) KR100873525B1 (en)
CN (1) CN101001898B (en)
WO (1) WO2006033449A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717001B2 (en) * 2004-09-06 2011-07-06 積水化成品工業株式会社 Styrene-modified linear low-density polyethylene resin particles, styrene-modified linear low-density polyethylene-based expandable resin particles, production methods thereof, pre-expanded particles, and foamed molded articles
JP4718597B2 (en) * 2006-02-28 2011-07-06 積水化成品工業株式会社 Styrene-modified polypropylene resin particles, expandable styrene-modified polypropylene resin particles, styrene-modified polypropylene resin foam particles, styrene-modified polypropylene resin foam moldings
JP5485611B2 (en) 2008-08-07 2014-05-07 積水化学工業株式会社 Thermally expandable microcapsules and foamed molded articles
KR20110079572A (en) * 2008-09-30 2011-07-07 세키스이가가쿠 고교가부시키가이샤 Masterbatch for foam molding and molded foam
US8796344B2 (en) 2008-12-26 2014-08-05 Sekisui Plastics Co., Ltd. Pre-expanded particles, process for producing the same, and expanded molded article
JP6173657B2 (en) * 2011-07-14 2017-08-02 キョーラク株式会社 Molding method of resin molded products
DE112013001815T5 (en) * 2012-03-30 2015-02-05 Sekisui Plastics Co., Ltd. Composite resin particles, foamable composite resin particles, pre-expanded particles, molded foam parts and core material for bumpers
JP6170703B2 (en) * 2013-03-29 2017-07-26 積水化成品工業株式会社 POLYSTYRENE COMPOSITE RESIN PARTICLE AND METHOD FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE AND FOAM MOLDED
JP6136601B2 (en) * 2013-06-07 2017-05-31 株式会社ジェイエスピー Composite resin foam particles
EP2884020A1 (en) * 2013-12-11 2015-06-17 Lumir Oy An acoustic element comprising a molded hollow shell structure and a method for producing the same
US9878479B2 (en) 2013-12-30 2018-01-30 Toray Plastics (America), Inc. Method to direct compound extruded structure for the production of irradiation crosslinked polypropylene foam
US9663958B2 (en) 2013-12-31 2017-05-30 Toray Plastics (America), Inc. Methods of producing foam structures from recycled metallized polyolefin material
JP6118749B2 (en) * 2014-03-26 2017-04-19 積水化成品工業株式会社 Expandable composite resin particles, pre-expanded particles, and foamed molded body
US10066072B2 (en) * 2014-09-26 2018-09-04 Sekisui Plastics Co., Ltd. Composite resin particles, process for producing same, expandable beads, expanded beads, foamed molded object, and automotive interior trim
US10384388B2 (en) 2014-12-30 2019-08-20 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures and methods of making the same
US9821533B2 (en) 2014-12-30 2017-11-21 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures from recycled metallized polyolefin material and methods of making the same
US9669600B2 (en) 2014-12-30 2017-06-06 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures from recycled polyolefin foam material and methods of making the same
EP3275928B1 (en) * 2015-03-27 2019-09-18 Kaneka Corporation Method for manufacturing polyethylene resin foam molded article
CN108884261B (en) * 2016-03-30 2021-06-25 株式会社钟化 Method for producing polyethylene resin foamed particles and method for producing polyethylene resin in-mold foamed molded article
US11007761B2 (en) 2017-03-31 2021-05-18 Toray Plastics (America), Inc. Method of making coextruded, cross-linked polyolefin foam with TPU cap layers
JP2018175601A (en) * 2017-04-18 2018-11-15 株式会社ジェイエスピー Composite mold and manufacturing method thereof, and seat cushion core material for vehicle
US10501598B2 (en) 2017-06-29 2019-12-10 Toray Plastics (America), Inc. Method of making coextruded, crosslinked multilayer polyolefin foam structures from recycled crosslinked polyolefin foam material
US11590730B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Coextruded, crosslinked polyolefin foam with KEE cap layers
US11590677B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Method of making coextruded, crosslinked polyolefin foam with KEE cap layers

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959189A (en) * 1973-12-20 1976-05-25 Sekisui Kaseihin Kabushiki Kaisha Process for producing polyethylene resin particles and foamable polyethylene resin particles
GB1512638A (en) 1974-08-22 1978-06-01 Crosfield Electronics Ltd Apparatus for maintaining the position of a working head in relation to a cylindrical workpiece
FR2317669A1 (en) 1975-07-10 1977-02-04 Siemens Ag METHOD FOR CONNECTING INDIVIDUAL LIGHT WAVE GUIDES
JPS5853003A (en) 1981-09-22 1983-03-29 Fujitsu Ltd Magnetic read system
JPS6259642A (en) 1985-09-09 1987-03-16 Japan Styrene Paper Co Ltd Pre-expanded particle of modified polyethylene resin and production thereof
JP2668384B2 (en) * 1988-05-12 1997-10-27 鐘淵化学工業株式会社 Method for producing modified polyethylene resin foam molded article
JP2753039B2 (en) * 1989-04-26 1998-05-18 三菱化学ビーエーエスエフ株式会社 Method for producing carbon-containing styrene-modified foamable olefin-based resin particles
CA2040890A1 (en) * 1990-04-23 1991-10-24 Daniel W. Klosiewicz Uhmwpe/styrenic molding compositions with improved flow properties and impact strength
JP2915134B2 (en) * 1990-11-19 1999-07-05 三菱化学ビーエーエスエフ株式会社 Method for producing styrene-modified polyethylene resin particles
JP2786393B2 (en) 1993-09-10 1998-08-13 三菱化学ビーエーエスエフ株式会社 Styrene-modified polyolefin resin foam molding
JPH0859754A (en) * 1994-08-18 1996-03-05 Sekisui Plastics Co Ltd Production of impact-resistant foamable resin particle
US6849688B2 (en) * 2002-03-26 2005-02-01 Sachem, Inc. Polymer grafted support polymers
EP1607437B2 (en) * 2003-03-25 2016-08-24 Sekisui Plastics Co., Ltd. Expandable resin beads of styrene-modified, linear low-density polyethylene, process for production thereof, pre-expanded beads, and foams
WO2004085527A1 (en) * 2003-03-25 2004-10-07 Sekisui Plastics Co. Ltd. Expandable resin beads of styrene-modified, straight -chain, and low-density polyethylene, process for the production thereof, pre-expanded beads, and foams
DE602004024415D1 (en) * 2003-08-29 2010-01-14 Sekisui Plastics PREEXPENDED PARTICLE OF OLEFIN MODIFIED POYLSTYROL RESIN, METHOD OF MANUFACTURING THEREOF AND FORMING FOAM
DE602005026410D1 (en) * 2004-09-03 2011-03-31 Sekisui Plastics POLYETHYLENE RESIN-MODIFIED PEARLS, EXPANDABLE STYRENE-MODIFIED PEARLS FROM POLYETHYLENE RESIN, MANUFACTURING METHOD, PREEXPENDED BEADS AND EXPANSION FORMING PRODUCTS
JP4717001B2 (en) * 2004-09-06 2011-07-06 積水化成品工業株式会社 Styrene-modified linear low-density polyethylene resin particles, styrene-modified linear low-density polyethylene-based expandable resin particles, production methods thereof, pre-expanded particles, and foamed molded articles

Also Published As

Publication number Publication date
CN101001898A (en) 2007-07-18
EP1791877A1 (en) 2007-06-06
JP2008508111A (en) 2008-03-21
US7579384B2 (en) 2009-08-25
KR20070033358A (en) 2007-03-26
US20070287003A1 (en) 2007-12-13
CN101001898B (en) 2010-05-05
WO2006033449A1 (en) 2006-03-30
KR100873525B1 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP4461172B2 (en) Foam molded body having voids
JP4717001B2 (en) Styrene-modified linear low-density polyethylene resin particles, styrene-modified linear low-density polyethylene-based expandable resin particles, production methods thereof, pre-expanded particles, and foamed molded articles
JP4685788B2 (en) Styrene-modified polyethylene-based resin particles, styrene-modified polyethylene-based expandable resin particles, methods for producing them, pre-expanded particles, and foamed molded products
JP5927343B2 (en) Propylene-based resin expanded particles and expanded molded articles
JPWO2009047998A1 (en) Polypropylene resin pre-expanded particles and method for producing the same
JP4809730B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP2012197373A (en) Foamed molded product and its use
JP5553983B2 (en) Styrene-modified polyethylene resin particles and pre-expanded particles obtained from the resin particles
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP5722564B2 (en) Automotive exterior materials
JP4721680B2 (en) Styrene-modified polyethylene-based resin particles, styrene-modified polyethylene-based expandable resin particles, methods for producing them, pre-expanded particles, and foamed molded products
JP2006070202A (en) Particle of styrene modified polyethylene based resin, particle of styrene modified polyethylene based foaming resin, their manufacturing method, prefoamed particle, and foamed molded article
JP5546002B2 (en) Method for producing styrene-modified polyethylene-based resin particles, method for producing styrene-modified polyethylene-based expandable resin particles
JP5581138B2 (en) Parts packing material
JP2006088450A (en) Foam molded product having voids
JP2006088439A (en) Foam molded product having voids
JP2012025908A (en) Automotive interior material
JP2006088442A (en) Foam molded product having voids
JP2012025477A (en) Refrigerated transport container
JP2012026551A (en) Shock absorber
JP2012025909A (en) Heat insulating material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4461172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees