JP4837356B2 - Thermoplastic resin in-mold foam molding and production method - Google Patents

Thermoplastic resin in-mold foam molding and production method Download PDF

Info

Publication number
JP4837356B2
JP4837356B2 JP2005292796A JP2005292796A JP4837356B2 JP 4837356 B2 JP4837356 B2 JP 4837356B2 JP 2005292796 A JP2005292796 A JP 2005292796A JP 2005292796 A JP2005292796 A JP 2005292796A JP 4837356 B2 JP4837356 B2 JP 4837356B2
Authority
JP
Japan
Prior art keywords
expanded particles
thermoplastic resin
mold
less
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005292796A
Other languages
Japanese (ja)
Other versions
JP2006240285A (en
Inventor
昌彦 鮫島
健二 山口
憲司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005292796A priority Critical patent/JP4837356B2/en
Publication of JP2006240285A publication Critical patent/JP2006240285A/en
Application granted granted Critical
Publication of JP4837356B2 publication Critical patent/JP4837356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molding Of Porous Articles (AREA)

Description

本発明は、熱可塑性樹脂予備発泡粒子を成形してなる、主に吸音材、通水材として利用可能な高い空隙率を有する、熱可塑性樹脂型内発泡成形体の製造方法に関する。
The present invention relates to a method for producing an in- mold foam molded body of a thermoplastic resin, which is formed by molding thermoplastic resin pre-foamed particles and has a high porosity that can be used mainly as a sound absorbing material and a water-permeable material.

ポリプロピレン等に代表される熱可塑性樹脂予備発泡粒子を成形してなり、連通した空隙を有する発泡成形体の製造方法として、L/Dが2〜10の柱状ポリオレフィン系樹脂発泡粒子を、金型内に充填率が40〜55%となり且つ粒子相互が不規則な方向を向くように充填させた後、蒸気で加熱する方法が開示されている(特許文献1)。   As a method for producing a foamed molded article having thermoplastic resin pre-expanded particles typified by polypropylene or the like and having continuous voids, a columnar polyolefin resin foamed particle having an L / D of 2 to 10 is used in a mold. (Patent Document 1) discloses a method of heating with steam after filling the particles so that the filling rate is 40 to 55% and particles are oriented in an irregular direction.

その他には、中空円筒ないし中空異形状、あるいは断面形状が十字形のような凹凸を有するポリプロピレン系樹脂発泡粒子を加熱成形する方法が開示されている(特許文献2、特許文献3)。さらには、鼓形状の予備発泡粒子を用い、10〜60%の空隙率を有する発泡成形体もある(特許文献4)。   In addition, there is disclosed a method of heat-molding polypropylene resin foamed particles having irregularities such as hollow cylinders or hollow irregular shapes or cross-shaped cross sections (Patent Documents 2 and 3). Furthermore, there is also a foamed molded article having a porosity of 10 to 60% using drum-shaped pre-foamed particles (Patent Document 4).

何れも、透水性、通気性、吸音性を得るために、異形の予備発泡粒子あるいはL/Dを大きくした予備発泡粒子を使用することで、発泡成形体の内部に空隙を設けるものである。しかしながら、このような構成の発泡成形体は空隙を多く含むため、空隙のない成形体に比べ、圧縮特性が低下する、あるいは予備発泡粒子同士の融着強度が低下するために、発泡成形体の端面部分で予備発泡粒子が剥離しやすい、即ち形状保持性に劣るという課題を有していた。即ち、通気性、透水性、吸音性能を維持しつつ、端面の剥離しやすい部分を補強する、或いは、所望の箇所にのみ透水性、通気性や吸音性を付与された成形体や製造方法が望まれていた。   In any case, in order to obtain water permeability, air permeability, and sound absorption, a pre-expanded particle having an irregular shape or a pre-expanded particle having an enlarged L / D is used to provide a void in the foam molded body. However, since the foamed molded article having such a structure contains a large number of voids, the compression property is reduced or the fusion strength between the pre-expanded particles is reduced as compared with a molded article without voids. There was a problem that the pre-expanded particles were easily peeled off at the end face portion, that is, the shape retention was poor. That is, there is a molded product or a manufacturing method that reinforces a part where the end face is easily peeled while maintaining air permeability, water permeability, and sound absorption performance, or is provided with water permeability, air permeability, and sound absorption only at a desired location. It was desired.

一方、例えば特許文献5のように、異なる予備発泡粒子を略区画状に一体的に成形する技術があるが、異なる予備発泡粒子の記載として、発泡倍率をはじめとして、ビーズ嵩密度、セル径、ビーズ径、素材の異なるもの、が開示されているが、当該文献は、一般的な真球に近い予備発泡粒子についての開示であり、特定の成形条件が必要とされるようなL/Dの異なる予備発泡粒子を使用することについては具体的に記載されていない。
特開平3−224727号公報 特開平7−138399号公報 特開平7−138400号公報 特開2000−302909号公報 特開2001−96559号公報
On the other hand, for example, as in Patent Document 5, there is a technique for integrally molding different pre-expanded particles into a substantially divided shape, but as description of different pre-expanded particles, including the expansion ratio, bead bulk density, cell diameter, Although different bead diameters and materials are disclosed, this document is a disclosure of pre-expanded particles that are close to general spheres, and L / D that requires specific molding conditions. There is no specific description of using different pre-expanded particles.
JP-A-3-224727 JP 7-138399 A JP 7-138400 A JP 2000-302909 A JP 2001-96559 A

従って、本発明の課題は、簡便で経済的に製造可能な熱可塑性樹脂予備発泡粒子を用いて、高い空隙率を有し、且つ形状保持性を有した熱可塑性樹脂型内発泡成形体を提供することにある。   Accordingly, an object of the present invention is to provide a thermoplastic resin in-mold foam-molded article having a high porosity and shape retention using thermoplastic resin pre-foamed particles that can be easily and economically produced. There is to do.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、熱可塑性樹脂型内発泡成形体をL/Dが2以上10以下の熱可塑性樹脂予備発泡粒子から形成された部位と、L/Dが0.8以上1.2以下の熱可塑性樹脂予備発泡粒子から形成した部位を略区画状に存在させることにより、L/Dが2以上10以下で構成する部位が吸音性或いは透水性に寄与し、L/Dが0.8以上1.2以下で構成する部位が強度維持あるいは剥離防止機能に寄与することで、吸音性、或いは、透水性と機械的強度、或いは、形状安定性の両立を図れることを見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the thermoplastic resin in-mold foamed molded article is formed from thermoplastic resin pre-expanded particles having an L / D of 2 or more and 10 or less, By making the part formed from the thermoplastic resin pre-expanded particles having an L / D of 0.8 or more and 1.2 or less substantially in a partition shape, the part constituted by the L / D of 2 or more and 10 or less is sound absorbing or water permeable. Contributing to the performance, the part composed of L / D of 0.8 or more and 1.2 or less contributes to strength maintenance or anti-peeling function, so that sound absorption, water permeability and mechanical strength, or shape stability As a result, the present inventors have found that the compatibility of the properties can be achieved.

即ち、本発明の第1は、L/Dが2以上10以下である熱可塑性樹脂予備発泡粒子から形成された部位と、L/Dが0.8以上1.2以下である熱可塑性樹脂予備発泡粒子から形成された部位が略区画状に存在することを特徴とする熱可塑性樹脂型内発泡成形体の製造方法に関する。
ここで、Lは発泡粒子の最長部の長さ、DはL方向と垂直な断面における最大径Dmaxと最小径Dminの平均値であり、L/Dが下記式にて計算される値である。

Figure 0004837356
好ましい実施態様としては、前記熱可塑性型内発泡成形体外周部がL/Dが0.8以上1.2以下の熱可塑性樹脂予備発泡粒子から形成されそれ以外の部位がL/Dが2以上10以下の熱可塑性樹脂予備発泡粒子から形成されたことを特徴とする前記記載の熱可塑性樹脂型内発泡成形体の製造方法に関する。
That is, the first of the present invention is a portion formed from thermoplastic resin pre-foamed particles having an L / D of 2 or more and 10 or less, and a thermoplastic resin pre-treatment having an L / D of 0.8 or more and 1.2 or less. The present invention relates to a method for producing an in- mold foam molded article of a thermoplastic resin , characterized in that portions formed from expanded particles are present in a substantially partitioned shape.
Here, L is the length of the longest part of the expanded particles, D is an average value of the maximum diameter Dmax and the minimum diameter Dmin in a cross section perpendicular to the L direction, and L / D is a value calculated by the following equation. .
Figure 0004837356
As a preferred embodiment, the outer peripheral part of the thermoplastic molded foam-molded body is formed from pre-expanded thermoplastic resin particles having an L / D of 0.8 or more and 1.2 or less, and other parts have an L / D of 2 or more. The present invention relates to a method for producing an in- mold foam molded article of a thermoplastic resin , characterized in that it is formed from 10 or less thermoplastic resin pre-expanded particles.

更に好ましい実施形態としては、熱可塑性樹脂予備発泡粒子を無機ガスで加圧処理して該発泡粒子内に無機ガスを含浸させ所定の発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させるに際し、L/Dが2以上10以下の熱可塑性樹脂予備発泡粒子内圧をL/Dが0.8以上1.2以下の熱可塑性樹脂予備発泡粒子内圧よりも低く、これらの熱可塑性樹脂予備発泡粒子を金型内で同時一体成形することを特徴とする、前記記載の熱可塑性樹脂型内発泡成形体の製造方法に関し、
別の好ましい態様としては、熱可塑性樹脂予備発泡粒子を無機ガスで加圧処理して該発泡粒子内に無機ガスを含浸させ所定の発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させるに際し、L/Dが2以上10以下の熱可塑性樹脂予備発泡粒子内圧を絶対圧力で0.12MPa以上0.17MPa以下、L/Dが0.8以上1.2以下の熱可塑性樹脂予備発泡粒子内圧を絶対圧力で0.18MPa以上0.25MPa以下とし、これらの熱可塑性樹脂予備発泡粒子を型内で同時一体成形することを特徴とする前記記載の熱可塑性樹脂型内発泡成形体の製造方法に関する。
As a more preferred embodiment, the pre-foamed thermoplastic resin particles are pressurized with an inorganic gas, impregnated with the inorganic gas in the foamed particles to give a predetermined foamed particle internal pressure, filled into a mold, and then steamed. When heat-sealing , the L / D of the thermoplastic resin pre-expanded particles having an internal pressure of 2 to 10 is lower than the internal pressure of the thermoplastic resin pre-expanded particles of L / D of 0.8 to 1.2. The thermoplastic resin pre-expanded particles are simultaneously integrally molded in a mold, and the method for producing a thermoplastic resin in-mold foam molded article as described above,
In another preferred embodiment, the thermoplastic resin pre-expanded particles are pressurized with an inorganic gas, impregnated with the inorganic gas in the expanded particles to give a predetermined internal pressure of the expanded particles, filled into a mold, and then steamed. upon thereby heat sealing, L / D is 0.12MPa or more thermoplastic resin pre-expanded particles pressure of 2 to 10 at an absolute pressure 0.17MPa or less, thermoplastic L / D is 0.8 to 1.2 The above-mentioned thermoplastic resin in-mold foam molding, wherein the internal pressure of the resin pre-foamed particles is 0.18 MPa to 0.25 MPa in absolute pressure, and these thermoplastic resin pre-foamed particles are simultaneously integrally molded in the mold. The present invention relates to a method for manufacturing a body.

本発明では、L/Dが2以上10以下である熱可塑性樹脂予備発泡粒子から形成された部位と、L/Dが0.8以上1.2以下である熱可塑性樹脂予備発泡粒子から形成された部位が略区画状に存在する構成を採ることで、所定の空隙率と、圧縮特性或いは形状保持性の両立が可能となり更には所望の箇所を高い空隙率とすることが可能である。本発明の製造方法によれば、主として吸音機能あるいは透水機能を付与したい部位をL/Dが2以上10以下の予備発泡粒子で形成することで、成形後の当該部位の空隙率が25%以上50%以下となるように構成し、予備発泡粒子の剥離の防止あるいは機械的強度を要求する部位は、L/Dが0.8以上1.2以下の予備発泡粒子で形成することで、成形後の当該部位の空隙率が5%以下の強度を高めた構成とすることが可能となる。   In the present invention, a portion formed from thermoplastic resin pre-expanded particles having L / D of 2 or more and 10 or less, and a portion formed from thermoplastic resin pre-expanded particles having L / D of 0.8 or more and 1.2 or less. By adopting a configuration in which the portions are present in a substantially partitioned shape, it is possible to achieve both a predetermined porosity and compression characteristics or shape retention, and it is possible to make a desired portion have a high porosity. According to the production method of the present invention, a portion to which a sound absorbing function or a water permeation function is to be provided is formed with pre-expanded particles having an L / D of 2 or more and 10 or less, so that the porosity of the portion after molding is 25% or more. 50% or less, and the part requiring prevention of exfoliation of the pre-expanded particles or mechanical strength is formed by forming the pre-expanded particles having L / D of 0.8 or more and 1.2 or less. It becomes possible to set it as the structure which increased the intensity | strength of the porosity of the said site | part after 5% or less.

この発泡成形体は、自動車部材、土木・建築資材、産業用資材等において吸音材、通水材等に好適に使用し得る。特に、嵩上げ材、ティビアパッド、ラゲージボックス、側突材等の自動車部材に吸音性能を付与する場合に好適に使用し得る。   This foamed molded article can be suitably used as a sound-absorbing material, a water-permeable material, etc. in automobile members, civil engineering / building materials, industrial materials and the like. In particular, it can be suitably used when sound absorbing performance is imparted to automobile members such as a raising material, a tibia pad, a luggage box, and a side projection material.

以下本発明に関し詳しく説明する。   The present invention will be described in detail below.

本発明において用いられる熱可塑性樹脂とは、型内発泡成形に用いられる熱可塑性樹脂であれば使用でき、例えばポリスチレン系樹脂、ポリオレフィン系樹脂、ポリメチルメタクリレート樹脂等が挙げられる。   The thermoplastic resin used in the present invention can be used as long as it is a thermoplastic resin used for in-mold foam molding, and examples thereof include polystyrene resins, polyolefin resins, and polymethyl methacrylate resins.

本発明に用いることができるポリスチレン系樹脂としては一般的な発泡性ポリスチレン樹脂だけでなく、例えば、スチレン、又はメチルスチレンを50%以上含有してなるポリスチレン系樹脂、ハイインパクトポリスチレン系樹脂、スチレンとブタジエン、スチレン−エチレン共重合体、メチルメタクリレート、無水マレイン酸等との共重合樹脂等が挙げられ、これらは、単独、又は2種以上の組み合わせとして用いられる。   Examples of polystyrene resins that can be used in the present invention include not only general foamable polystyrene resins, but also, for example, polystyrene resins containing 50% or more of styrene or methylstyrene, high impact polystyrene resins, styrene, Examples thereof include copolymer resins such as butadiene, styrene-ethylene copolymer, methyl methacrylate, and maleic anhydride, and these are used alone or in combination of two or more.

本発明に用いることができるポリオレフィン系樹脂としては、低・中・高密度ポリエチレン、線状低・超低密度ポリエチレン、エチレン−酢酸ビニル共重合体で代表されるポリエチレン系樹脂、ポリプロピレン、エチレン―プロピレンランダム共重合体、エチレン−プロピレンブロック共重合体で代表されるポリプロピレン系樹脂が挙げられる。   Examples of polyolefin resins that can be used in the present invention include low / medium / high density polyethylene, linear low / ultra low density polyethylene, polyethylene resins typified by ethylene-vinyl acetate copolymer, polypropylene, and ethylene-propylene. Examples thereof include a polypropylene resin represented by a random copolymer and an ethylene-propylene block copolymer.

これらの中でも、ポリオレフィン系樹脂が好適に用いられ、中でもポリプロピレン系樹脂がより好適に使用される。   Among these, polyolefin resin is preferably used, and polypropylene resin is more preferably used.

本発明におけるポリプロピレン系樹脂は、プロピレンモノマー単位が50重量%以上、好ましくは80重量%以上、更に好ましくは90重量%以上からなる重合体であり、中でもチーグラー型塩化チタン系触媒またはメタロセン触媒で重合された、立体規則性の高いものが好ましい。具体例としては、例えば、プロピレン単独共重合体、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、無水マレイン酸―プロピレンランダム共重合体、無水マレイン酸―プロピレンブロック共重合体、プロピレン−無水マレイン酸グラフト共重合体等が挙げられ、これらは単独あるいは混合して用いられる。特に、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体が好適に使用し得る。また、これらのポリプロピレン系樹脂は無架橋のものが好ましいが、架橋したものも使用できる。   The polypropylene resin in the present invention is a polymer having a propylene monomer unit of 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, and is particularly polymerized with a Ziegler type titanium chloride catalyst or a metallocene catalyst. Those having high stereoregularity are preferred. Specific examples include, for example, propylene homopolymer, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene-butene random copolymer, ethylene-propylene block copolymer, maleic anhydride -Propylene random copolymer, maleic anhydride-propylene block copolymer, propylene-maleic anhydride graft copolymer, etc. are mentioned, and these are used alone or in combination. In particular, an ethylene-propylene random copolymer, a propylene-butene random copolymer, and an ethylene-propylene-butene random copolymer can be suitably used. Further, these polypropylene resins are preferably non-crosslinked, but crosslinked resins can also be used.

本発明に使用することの出来るポリプロピレン系樹脂は、JIS K7210に準拠し、温度230℃、荷重2.16kgで測定したメルトインデックス(以下、MI)が0.1g/10分以上7g/10分以下であることが好ましく、更に好ましくは2g/10分以上6g/10分以下である。MIが0.1g/10分未満では、予備発泡粒子を製造する際の発泡力が低く、高発泡倍率の予備発泡粒子を得るのが難しくなる傾向がある。また、発泡成形体としたときの予備発泡粒子間の融着強度を確保することが難しくなる傾向にある。MIが7g/10分を超えると、発泡成形体としたときの空隙率を安定した値で制御することが難しくなる傾向がある。   The polypropylene resin that can be used in the present invention has a melt index (hereinafter referred to as MI) of 0.1 g / 10 min or more and 7 g / 10 min or less measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210. It is preferable that it is 2g / 10min or more and 6g / 10min or less. When MI is less than 0.1 g / 10 min, the foaming force when producing pre-expanded particles is low, and it tends to be difficult to obtain pre-expanded particles with a high expansion ratio. Moreover, it tends to be difficult to ensure the fusion strength between the pre-expanded particles when a foamed molded body is obtained. When MI exceeds 7 g / 10 minutes, it tends to be difficult to control the porosity of the foamed molded product with a stable value.

また、前記ポリプロピレン系樹脂は、機械的強度、耐熱性に優れた発泡成形体を得るために、融点は、好ましくは130℃以上168℃以下、更に好ましくは135℃以上160℃以下、特に好ましくは140℃以上155℃以下である。融点が当該範囲内である場合、成形性と機械的強度、耐熱性のバランスが取り易い傾向が強い。ここで、前記融点とは、示差走査熱量計によって樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。   The polypropylene resin preferably has a melting point of 130 ° C. or higher and 168 ° C. or lower, more preferably 135 ° C. or higher and 160 ° C. or lower, particularly preferably, in order to obtain a foamed molded article having excellent mechanical strength and heat resistance. 140 ° C. or higher and 155 ° C. or lower. When the melting point is within this range, there is a strong tendency to easily balance moldability, mechanical strength, and heat resistance. Here, the melting point means that 1 to 10 mg of resin is heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter, then cooled to 40 ° C. at a rate of 10 ° C./min, and again The peak temperature of the endothermic peak in the DSC curve obtained when the temperature is increased to 220 ° C. at a rate of 10 ° C./min.

本発明に用いる予備発泡粒子は、上記熱可塑性樹脂を基材樹脂とするものであり、L/Dが2以上10以下の熱可塑性樹脂予備発泡粒子(以下、棒状予備発泡粒子と称す場合がある)とL/Dが0.8以上1.2の熱可塑性樹脂予備発泡粒子(以下、球状予備発泡粒子と称す場合がある)を使用する。   The pre-expanded particles used in the present invention are those using the thermoplastic resin as a base resin, and L / D is 2 to 10 thermoplastic resin pre-expanded particles (hereinafter sometimes referred to as rod-shaped pre-expanded particles). ) And L / D of 0.8 to 1.2 thermoplastic resin pre-expanded particles (hereinafter sometimes referred to as spherical pre-expanded particles).

ここで、本発明にいうL/Dとは、図1に示すように、Lは発泡粒子の最長部の長さ、DはL方向と垂直な断面における最大径Dmaxと最小径Dminの平均値であり、下記式にて計算される。   Here, L / D referred to in the present invention is, as shown in FIG. 1, L is the length of the longest part of the expanded particles, D is an average value of the maximum diameter Dmax and the minimum diameter Dmin in a cross section perpendicular to the L direction. And is calculated by the following formula.

Figure 0004837356
熱可塑性予備発泡粒子のL方向に垂直な断面形状は、円、楕円等の凹部のない閉じた曲線であり、DmaxおよびDminはL方向に沿って略一定の値をとる。予備発泡粒子の具体例としては、円柱形状、楕円柱形状が挙げられる。
Figure 0004837356
The cross-sectional shape perpendicular to the L direction of the thermoplastic pre-expanded particles is a closed curve without a concave portion such as a circle or an ellipse, and Dmax and Dmin take substantially constant values along the L direction. Specific examples of the pre-expanded particles include a cylindrical shape and an elliptical column shape.

先ず、棒状予備発泡粒子について詳細に説明する。   First, the rod-shaped pre-expanded particles will be described in detail.

L/Dが2以上10以下の棒状予備発泡粒子を採用することにより、発泡粒子同士の適度な接触面積を保って、高い空隙を形成することが可能となる。L/Dが10を超えると、金型に充填する際の充填口での目詰まりが発生し易く、充填不良の原因となるばかりか、発泡成形体の局所間での空隙率にバラツキが生じ易くなる。   By adopting rod-shaped pre-expanded particles having an L / D of 2 or more and 10 or less, it is possible to form a high void while maintaining an appropriate contact area between the expanded particles. When L / D exceeds 10, clogging at the filling port is likely to occur when filling the mold, causing not only filling failure but also variation in the void ratio between the parts of the foamed molded product. It becomes easy.

棒状予備発泡粒子は、セル径が好ましくは30μm以上150μm以下、更に好ましくは、50μm以上100μm以下である。セル径がこの範囲にあると、金型への充填の際に生じた空隙を保持して、発泡粒子間を強固に融着させ易い。セル径が30μm未満の場合には、発泡成形体とした時に、ヒケ、収縮が発生し易くなり、形状保持性が悪化する場合がある。セル径が150μmを超えると、発泡成形体とした時の空隙率が低くなる傾向となる。特に、金型面と接触した表面層において空隙率が低下し易い傾向にある。   The rod-shaped pre-expanded particles preferably have a cell diameter of 30 μm to 150 μm, and more preferably 50 μm to 100 μm. When the cell diameter is within this range, it is easy to firmly fuse the foamed particles while maintaining the voids generated when filling the mold. When the cell diameter is less than 30 μm, sinking and shrinkage are likely to occur when the foamed molded article is formed, and the shape retainability may deteriorate. When the cell diameter exceeds 150 μm, the porosity of the foamed molded product tends to be low. In particular, the porosity tends to decrease in the surface layer in contact with the mold surface.

更に、棒状予備発泡粒子は、示差走査熱量測定によって得られるDSC曲線に2つの融解ピークを有し、該低温側ピークの融解熱量α(J/g)、該高温側ピークの融解熱量β(J/g)としたときのβ/(α+β)が、0.35以上0.75以下であることが好ましく、更に好ましくは0.40以上0.70以下である。β/(α+β)が0.35未満の場合、発泡成形体の空隙率を高くすることが困難となる場合がある。これは、発泡粒子の二次発泡力が高くなるため、成形の際に空隙率が低下するためと思われる。β/(α+β)が0.75を超えると発泡粒子間の融着が困難となる場合がある。融着を促進するために成形に用いる蒸気の温度を上げると、発泡成形体の空隙率が低下するため、空隙率の確保と融着の両立が困難となる恐れがある。   Further, the rod-shaped pre-expanded particles have two melting peaks in the DSC curve obtained by differential scanning calorimetry, the heat of fusion α (J / g) of the low temperature side peak, and the heat of fusion β (J of the high temperature side peak) Β / (α + β) is preferably 0.35 or more and 0.75 or less, more preferably 0.40 or more and 0.70 or less. When β / (α + β) is less than 0.35, it may be difficult to increase the porosity of the foamed molded product. This is presumably because the secondary foaming power of the foamed particles is increased and the porosity is reduced during molding. If β / (α + β) exceeds 0.75, fusion between the expanded particles may be difficult. When the temperature of the steam used for molding is increased in order to promote fusion, the porosity of the foamed molded product is lowered, and there is a risk that it is difficult to ensure both porosity and fusion.

ここで、発泡粒子の示差走査熱量測定によって得られるDSC曲線とは、発泡粒子1〜10mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。図2に示す通り、得られたDSC曲線の極大点Aを通る直線とDSC曲線との低温側の接点をB、高温側の接点をCとする。線分ABとDSC曲線で囲まれた面積から低温側ピークの融解熱量α(J/g)、線分ACとDSC曲線で囲まれた面積から高温側ピークの融解熱量β(J/g)が算出される。   Here, the DSC curve obtained by differential scanning calorimetry of the expanded particles is obtained when 1 to 10 mg of expanded particles are heated from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min by a differential scanning calorimeter. It is a DSC curve. As shown in FIG. 2, the contact on the low temperature side between the straight line passing through the maximum point A of the obtained DSC curve and the DSC curve is B, and the contact on the high temperature side is C. From the area surrounded by the line segment AB and the DSC curve, the heat of fusion α (J / g) of the low temperature side peak, and from the area surrounded by the line segment AC and the DSC curve, the heat of fusion β (J / g) of the high temperature side peak. Calculated.

上記要件を満たした棒状予備発泡粒子を用いることにより、好ましくは空隙率25%以上50%以下の熱可塑性樹脂発泡成形部位を容易に得ることができる。発泡成形体の空隙率は吸音特性と強く関係しており、空隙率は、更に好ましくは30%以上45%以下である。空隙率が25%未満となると、ピーク周波数における吸音率が低下し、十分な吸音特性が得られない場合がある。空隙率が50%を超えると、発泡粒子間の接触面積が低下して発泡成形体の割れが生じ易くなり、機械強度が低下する恐れがある。   By using rod-shaped pre-expanded particles that satisfy the above requirements, it is possible to easily obtain a thermoplastic resin foam-molded part having a porosity of preferably 25% or more and 50% or less. The porosity of the foamed molded product is strongly related to the sound absorption characteristics, and the porosity is more preferably 30% or more and 45% or less. When the porosity is less than 25%, the sound absorption rate at the peak frequency is lowered, and sufficient sound absorption characteristics may not be obtained. When the porosity exceeds 50%, the contact area between the foamed particles is reduced, and the foamed molded product is liable to be cracked, which may reduce the mechanical strength.

ここで空隙率とは、発泡体から所定の大きさ(例えば、20×20×40mm)の直方体試料を、表面スキン層を含まないように切り出し、外形寸法より見掛け体積を求め、更に、直方体試料を一定量のエタノールを入れたメスシリンダー中に浸漬し、その時の増加容積(真の体積)を測定し、見掛け体積と真の体積の差を、見掛け体積で除算した値をいう。   Here, the porosity means that a rectangular solid sample having a predetermined size (for example, 20 × 20 × 40 mm) is cut out from the foam so as not to include the surface skin layer, the apparent volume is obtained from the outer dimensions, and further the rectangular parallelepiped sample. Is immersed in a graduated cylinder containing a certain amount of ethanol, the increased volume (true volume) at that time is measured, and the difference between the apparent volume and the true volume is divided by the apparent volume.

次に、球状予備発泡粒子について説明する。   Next, spherical pre-expanded particles will be described.

L/Dが0.8以上1.2以下の略球状の予備発泡粒子は、セル径が200μm以上400μm以下、且つ示差走査熱量測定によって得られるDSC曲線に2つの融解ピークを有し、該低温側ピークの融解熱量α(J/g)、該高温側ピークの融解熱量β(J/g)としたときのβ/(α+β)が0.15以上0.35以下であることが好ましい。これらの要件を満たすことにより、倍率バラツキが小さく、高い強度を有し、且つ空隙率の低い熱可塑性樹脂発泡成形部位を安定的に製造出来る傾向にある。ここで、粒子L/Dは、金型内への本粒子の充填性並びに成形後の融着性、機械的強度保持の観点から、できる限り球状、好ましくはL/Dが0.9以上1.1以下、つまりL/Dが1に近いことが好ましい。   A substantially spherical pre-expanded particle having an L / D of 0.8 or more and 1.2 or less has a cell diameter of 200 μm or more and 400 μm or less, and has two melting peaks in a DSC curve obtained by differential scanning calorimetry. It is preferable that β / (α + β) is 0.15 or more and 0.35 or less when the heat of fusion α (J / g) of the side peak and the heat of fusion β (J / g) of the high temperature side peak are used. By satisfying these requirements, there is a tendency that a thermoplastic resin foam-molded portion having a small magnification variation, high strength, and low porosity can be stably produced. Here, the particles L / D are as spherical as possible from the viewpoints of filling of the present particles into the mold, fusion property after molding, and maintaining mechanical strength, preferably L / D is 0.9 or more and 1 .1 or less, that is, L / D is preferably close to 1.

本発明においては、以上説明した棒状予備発泡粒子と球状予備発泡粒子を併用し、略区画状に存在させることにより、透水性、通気性或いは、吸音性が依存する空隙率と、成形体の形状維持、或いは、機械強度保持を可能とすることができる。吸音率は棒状予備発泡粒子の発泡倍率には大きく依存していないため、任意の発泡倍率を選択することが可能である。また、適用される用途により異なるが、予備発泡粒子の発泡倍率は、5倍以上60倍以下のものが好適に適用される。特に、自動車用途の嵩上げ材、ラゲージボックス、ティビアパッド等には、15倍以上45倍以下のものがより好ましい。   In the present invention, the rod-shaped pre-expanded particles and the spherical pre-expanded particles described above are used in combination and exist in a substantially partitioned shape, so that the water permeability, air permeability or sound absorption depends on the porosity and the shape of the molded body. Maintenance or mechanical strength maintenance can be made possible. Since the sound absorption rate does not greatly depend on the expansion ratio of the rod-shaped pre-expanded particles, any expansion ratio can be selected. Moreover, although it changes with the applications to be applied, the expansion ratio of the pre-expanded particles is preferably 5 to 60 times. In particular, a bulking material for automobile use, a luggage box, a tibia pad, and the like are more preferably 15 times or more and 45 times or less.

次に、本発明に用いる成形装置について述べる。   Next, the molding apparatus used in the present invention will be described.

本発明による金型装置は、図3に示すように、対向配置された1組の金型としてのキャビティー型1及びコア型2とで形成される成形空間3内に空気の流れに乗せて原料ビーズを充填するための充填器6とを備えている。キャビティー型1及びコア型2は、枠状フレーム11,12と裏板13,14とを有するハウジングにそれぞれ取り付けられ、キャビティー型1及びコア型2の背面側には1組のキャビティー型蒸気室7及びコア型蒸気室8がそれぞれ形成され、キャビティー型1及びコア型2には両蒸気室と成形空間5とを連通する多数の通気孔が形成されている。尚、通気孔は、実際には、0.5mmφ程度の丸孔や幅0.5mm程度のスリットを複数個透設した外径7〜12mmの蓋を有する筒体からなるコアベントを、金型に孔明け配置したコアベント取付孔に嵌め込んで形成したものや、金型に直接的に形成した0.5mmφ程度のコアベントホールで構成されている。   As shown in FIG. 3, the mold apparatus according to the present invention is placed on a flow of air in a molding space 3 formed by a cavity mold 1 and a core mold 2 as a pair of molds arranged to face each other. And a filling device 6 for filling the raw material beads. The cavity mold 1 and the core mold 2 are respectively attached to housings having frame-shaped frames 11 and 12 and back plates 13 and 14, and a pair of cavity molds are provided on the back side of the cavity mold 1 and the core mold 2. A steam chamber 7 and a core-type steam chamber 8 are formed, respectively, and the cavity mold 1 and the core mold 2 are formed with a large number of vent holes communicating the both steam chambers and the molding space 5. Incidentally, the vent hole is actually a core vent made of a cylindrical body having a lid having an outer diameter of 7 to 12 mm, in which a plurality of round holes of about 0.5 mmφ and slits of about 0.5 mm width are provided. It is formed by fitting into a core vent mounting hole arranged in a perforated manner, or a core vent hole of about 0.5 mmφ formed directly on a mold.

キャビティー型蒸気室7及びコア型蒸気室8には、蒸気や圧縮空気などの用役流体を供給するための供給管がそれぞれ接続されるとともに、減圧手段やドレン配管に連なる排出管がそれぞれ接続され、供給管及び排出管の途中部には図示外の制御弁がそれぞれ介設され、制御弁の操作により成形空間15への用役流体の供給、排出を制御できるように構成されている。   A supply pipe for supplying a working fluid such as steam or compressed air is connected to the cavity type steam chamber 7 and the core type steam chamber 8, respectively, and a discharge pipe connected to a decompression means or a drain pipe is connected to the cavity type steam chamber 7 and the core type steam chamber 8. A control valve (not shown) is provided in the middle of the supply pipe and the discharge pipe so that the supply and discharge of the working fluid to and from the molding space 15 can be controlled by operating the control valve.

成形空間3内は、仕切部材4を介してL/Dの異なる予備発泡粒子を区画しており、各区画成形空間には予備発泡粒子の充填器6がそれぞれ接続されており、隣接する区画成形空間内にL/Dの異なる予備発泡粒子を充填できるように構成されている。   In the molding space 3, pre-expanded particles having different L / D are partitioned through partition members 4, and pre-foamed particle fillers 6 are connected to the respective partition molding spaces, and adjacent partition moldings are performed. It is comprised so that the pre-expanded particle | grains from which L / D differs can be filled in space.

仕切部材4を用いたL/Dの異なる予備発泡粒子を充填する方法としては、一つには、一方の金型にエアシリンダー等を介して成形空間内に可動仕切部材を設け、この仕切部材により成形空間を複数の区画成形空間に区画する金型装置が挙げられる。ただ、この金型装置は、金型に挿通孔を形成して、この挿通孔に仕切部材を出没自在に装着する関係上、予備発泡粒子が挿通孔や挿通孔の内壁面と仕切部材の間に侵入して、成形体表面に突出状のバリが形成されやすい傾向にある。   As a method of filling pre-expanded particles having different L / D using the partition member 4, one of the molds is provided with a movable partition member in the molding space via an air cylinder or the like, and this partition member Thus, there is a mold apparatus that partitions the molding space into a plurality of partition molding spaces. However, in this mold apparatus, an insertion hole is formed in the mold, and the partition member is removably attached to the insertion hole, so that the pre-expanded particles are inserted between the insertion hole and the inner wall surface of the insertion hole and the partition member. And protruding burrs tend to be easily formed on the surface of the molded body.

別の方法としては、少なくとも一方の金型に、隣接する区画成形空間に充填する予備発泡粒子の少なくとも一方が通り抜け不能な間隔をあけて型開閉方向に片持ち状に延びる複数の櫛歯を固定的に設け、この仕切部材により成形空間内を複数の区画成形空間に区画するとともに、各区画成形空間に対して原料ビーズを供給する充填器を個別に接続し、仕切部材により成形空間内を区画した状態で、隣接する区画成形空間内に例えば発泡倍率の異なる原料ビーズを充填した後、成形空間内に蒸気を供給することで、隣接する原料ビーズを櫛歯を介して加熱融着させて成形体を得るように構成した金型装置である(図3)。この金型装置により成形した成形体には、仕切部材の固定台座に対応する位置に溝が形成され、固定した櫛歯に対応する位置には貫通孔又は有底孔が形成されるものの、仕切部材を駆動するための駆動系が不要のため成形装置を格段に簡素に構成することが可能となり、成形装置の製作コストを低減できる。また、仕切部材の取付位置を変更することで、成形空間の区画領域を容易に変更することが可能のため、成形体の設計変更等に対応できる。さらに、隣接する区画成形空間内に充填したL/Dの異なる予備発泡粒子同士を固定した櫛歯間の隙間を介して十分に融着することになるので、成形体のうちL/Dの異なる予備発泡粒子で成形された成形部位の接合強度を十分に確保することが可能である等の効果が得られる。   As another method, a plurality of comb teeth extending in a cantilevered manner in the mold opening / closing direction are fixed to at least one mold at an interval at which at least one of the pre-foamed particles filling the adjacent partition molding space cannot pass through. The partition space is partitioned into a plurality of partition molding spaces, and a filler for supplying raw material beads is individually connected to each partition molding space, and the partition space is partitioned by the partition member. In this state, for example, after filling raw material beads with different expansion ratios in adjacent partition molding spaces, steam is supplied into the molding space to heat and fuse the adjacent raw material beads through comb teeth. A mold apparatus configured to obtain a body (FIG. 3). In the molded body formed by this mold apparatus, a groove is formed at a position corresponding to the fixed base of the partition member, and a through hole or a bottomed hole is formed at a position corresponding to the fixed comb tooth. Since a drive system for driving the members is not required, the molding apparatus can be remarkably simplified, and the manufacturing cost of the molding apparatus can be reduced. Further, since the partition area of the molding space can be easily changed by changing the mounting position of the partition member, it is possible to cope with a design change of the molded body. Further, since the pre-expanded particles having different L / D filled in the adjacent partition molding spaces are sufficiently fused through the gaps between the comb teeth, the L / D of the molded products is different. The effect that it is possible to sufficiently secure the bonding strength of the molding part molded with the pre-expanded particles is obtained.

以上の点を考慮した場合、本発明には、後者の金型装置を用いることが好適である。よって、ここでは本発明に好適な仕切部材として櫛歯を用いた金型装置についてより詳しく説明する。   In consideration of the above points, it is preferable to use the latter mold apparatus in the present invention. Therefore, here, a mold apparatus using comb teeth as a partition member suitable for the present invention will be described in more detail.

成形空間内は、球状予備発泡粒子で構成された部位は櫛歯を介して、棒状予備発泡粒子で構成された部位に区画化され、各区画成形空間には原料となる予備発泡粒子の充填器6がそれぞれ接続されており、L/Dの異なる予備発泡粒子を充填できるように構成されている。成形空間の区画形状や区画個数や区画位置は、製作する成形体の性能、形状に応じて任意に設定可能である。例えば、成形体の外周部と内部とで異なるL/Dの予備発泡粒子からなる部位を配したり、吸音性や通気性が要求される部位にのみL/Dが2以上10以下である熱可塑性樹脂予備発泡粒子からなる部位を配す等が考えられる。中でも、熱可塑性型内発泡成形体外周部を球状予備発泡粒子で形成し、それ以外の部位を棒状予備発泡粒子で形成することで、発泡成形体の端面部位で予備発泡粒子が剥離しやすいという問題を解消することが可能となる。   In the molding space, the part constituted by spherical pre-expanded particles is partitioned into parts constituted by rod-shaped pre-expanded particles via comb teeth, and each compartment molding space is filled with pre-expanded particles as raw materials. 6 are connected to each other so that pre-expanded particles having different L / Ds can be filled. The section shape, the number of sections, and the section position of the molding space can be arbitrarily set according to the performance and shape of the molded body to be manufactured. For example, heat of L / D being 2 or more and 10 or less is provided only in a portion where pre-expanded particles of L / D that are different between the outer peripheral portion and the inside of the molded body are required, or where sound absorption and air permeability are required. It is conceivable to arrange a site composed of pre-expanded particles of plastic resin. Among them, by forming the outer peripheral portion of the thermoplastic molded foam-molded body with spherical pre-foamed particles and forming the other portions with rod-shaped pre-foamed particles, the pre-foamed particles are easily peeled off at the end surface portion of the foam-molded product. The problem can be solved.

図4〜6に示すように、区画手段としては、型開閉方向に沿って並列状に配置した櫛歯を片側の金型に型持ち状に配置(図4)しても、両方の金型から配置(図5)してもよく、さらには仕切板と型開閉方向に沿って並列状に配置した複数本の櫛歯と櫛歯を片持ち状に支持する支持部材とを併設(図6)してもよい。   As shown in FIGS. 4 to 6, as the partitioning means, even if the comb teeth arranged in parallel in the mold opening / closing direction are arranged in a mold-like manner on one mold (FIG. 4), both molds (FIG. 5), and further, a partition plate and a plurality of comb teeth arranged in parallel along the mold opening / closing direction and a support member for supporting the comb teeth in a cantilever manner (FIG. 6). )

例えば、本発明の場合、図4〜6に示すように、棒状予備発泡粒子部と球状予備発泡粒子部とは正面視略「口」字状の境界面の位置において区画され、成形体表面には複数の有底孔が一定間隔おきに形成されることになる(図7)。有底孔は連続あるいは非連続に構成されてもよいが、成形体を貫通する構成とすることも可能である。なお、境界面は必ずしも正面視「口」字状に形成する必要はなく、正面視L字状や直線状、或いは曲線状の境界に沿って成形体を区画することも可能である(図8)。また、境界面が三角波状や矩形波状、鋸波状、正弦波状になるように、櫛歯を配列してもよい(図9)。   For example, in the case of the present invention, as shown in FIGS. 4 to 6, the rod-shaped pre-expanded particle portion and the spherical pre-expanded particle portion are partitioned at the position of the substantially “mouth” -shaped boundary surface when viewed from the front, A plurality of bottomed holes are formed at regular intervals (FIG. 7). The bottomed hole may be configured to be continuous or discontinuous, but may be configured to penetrate the molded body. Note that the boundary surface does not necessarily have to be formed in a “mouth” shape when viewed from the front, and the molded body can be partitioned along a boundary having an L shape, a straight shape, or a curved shape when viewed from the front (FIG. 8). ). Further, comb teeth may be arranged so that the boundary surface has a triangular wave shape, a rectangular wave shape, a sawtooth wave shape, or a sine wave shape (FIG. 9).

櫛歯18の間隔は、区画成形空間の少なくとも一方に充填する予備発泡粒子が通り抜けできない間隔にそれぞれ設定されており、一般的には球形予備発泡粒子の通り抜けできない間隔に設定される。櫛歯の間隔は、狭すぎると、隣接する区画成形空間内に充填される原料ビーズ同士の密着性が十分に確保できず、成形体の強度が低下するので、通り抜けできない原料の予備発泡粒子短径の30〜90%、より好ましくは50〜80%に設定することが好ましい。   The intervals between the comb teeth 18 are set to intervals at which the pre-expanded particles filled in at least one of the partition molding spaces cannot pass through, and are generally set at intervals at which the spherical pre-expanded particles cannot pass through. If the interval between the comb teeth is too narrow, sufficient adhesion between the raw material beads filled in the adjacent partition molding space cannot be ensured, and the strength of the molded body is reduced. It is preferable to set 30 to 90% of the diameter, more preferably 50 to 80%.

櫛歯は、細長い棒状やパイプ状の部材で構成され、断面形状は円形状、長円状、楕円状、四角形や六角形などの多角形状、星状、L状、H状など任意の断面形状のものを採用できる。また、この区画手段を用いた場合においては、成形体の櫛歯に対応する位置に有底孔や貫通孔がそれぞれ形成されることになるので、櫛歯の相当直径は極力小さく設定することが好ましく、例えば1〜10mm、好ましくは1.5〜5mmに設定されている。ここでの相当直径とは、各形状の櫛歯の断面積を、その面積に相当する円の直径に換算した数値である。   Comb teeth are composed of elongated rod-like or pipe-like members, and their cross-sectional shapes are circular, oval, elliptical, polygonal shapes such as quadrilateral and hexagonal shapes, star shapes, L shapes, H shapes, etc. Can be used. Further, when this partitioning means is used, since the bottomed hole and the through hole are respectively formed at positions corresponding to the comb teeth of the molded body, the equivalent diameter of the comb teeth can be set as small as possible. For example, it is set to 1 to 10 mm, preferably 1.5 to 5 mm. The equivalent diameter here is a numerical value obtained by converting the cross-sectional area of each shape of the comb teeth into a diameter of a circle corresponding to the area.

つまり、この成形装置においては、前述のように成形体に櫛歯により貫通孔又は有底孔が形成されるので、櫛歯の相当直径を10mmよりも大きく設定すると、大きな貫通孔又は有底孔が形成されることになり、成形体の異種予備発泡粒子間の強度低下を招くとともに、成形体の外観が低下する恐れがある。また櫛歯の相当直径を1mmよりも小さく設定すると、櫛歯の強度を十分に確保できず、櫛歯が破損したり変形したりするという不具合が発生する恐れがある。   That is, in this molding apparatus, since the through hole or the bottomed hole is formed by the comb teeth in the molded body as described above, if the equivalent diameter of the comb teeth is set to be larger than 10 mm, the large through hole or the bottomed hole is formed. As a result, the strength between the different types of pre-expanded particles of the molded product is reduced, and the appearance of the molded product may be deteriorated. If the equivalent diameter of the comb teeth is set smaller than 1 mm, the strength of the comb teeth cannot be ensured sufficiently, and there is a risk that the comb teeth may be damaged or deformed.

また、櫛歯の素材は、アルミ、鉄、真鍮、ステンレス等の金属材料、セラミック、耐熱性の合成樹脂材料からなるもの好ましい。とりわけ、弾性変形可能且つ耐熱、耐腐食性に優れたステンレスのバネ鋼を用いることが好ましい。このように構成すると、充填圧や発泡圧により櫛歯が多少変形しても弾性限界範囲内であれば元の形状に復帰できるので、櫛歯の塑性変形による充填不良や離型不良などの成形不良を防止しつつ、櫛歯の断面積を極力小さく設定して、芯材の外観低下や強度低下を抑制できる。さらに金型からの離型安定性と櫛部材の耐久性の観点より、櫛歯と成形体との摩擦抵抗を低減するために、櫛歯の表面をテフロン(登録商標)コーティング処理、或いは、アルマイト処理などの表面処理を行うことが好ましい。   The comb teeth are preferably made of a metal material such as aluminum, iron, brass, or stainless steel, ceramic, or a heat-resistant synthetic resin material. In particular, it is preferable to use stainless spring steel that is elastically deformable and excellent in heat resistance and corrosion resistance. With this configuration, even if the comb teeth are slightly deformed due to filling pressure or foaming pressure, they can be restored to their original shape as long as they are within the elastic limit range. Therefore, molding such as poor filling or mold release due to plastic deformation of the comb teeth is possible. While preventing defects, the cross-sectional area of the comb teeth can be set as small as possible to suppress deterioration in the appearance and strength of the core material. In addition, from the viewpoint of mold release stability and durability of the comb member, the surface of the comb teeth is treated with Teflon (registered trademark) or anodized to reduce the frictional resistance between the comb teeth and the molded body. It is preferable to perform surface treatment such as treatment.

更に、櫛歯の長さは、成形体の厚みにもよるが100mm以下に設定することが好ましく、更には50mm以下に設定することが好ましい。櫛歯を弾性変形可能な素材で構成しても、充填圧や発泡圧により櫛歯に作用する曲げモーメントは、櫛歯の長さによって変化する。従って、弾性変形範囲内の長さに調整することによって、櫛歯の破損または塑性変形といった不具合を防止できることになる。   Further, the length of the comb teeth is preferably set to 100 mm or less, more preferably 50 mm or less, depending on the thickness of the molded body. Even if the comb teeth are made of an elastically deformable material, the bending moment acting on the comb teeth due to the filling pressure and the foaming pressure varies depending on the length of the comb teeth. Therefore, by adjusting the length within the elastic deformation range, it is possible to prevent problems such as breakage of the comb teeth or plastic deformation.

本発明の熱可塑性樹脂型内発泡成形体の製造方法について述べる。   A method for producing the thermoplastic resin in-mold foam molded article of the present invention will be described.

本発明は、従来から知られている発泡力付与方法により、L/Dが2以上10以下の熱可塑性樹脂予備発泡粒子からなる部位と、L/Dが0.8以上1.2以下の熱可塑性樹脂予備発泡粒子からなる部位の両方が存在する熱可塑性樹脂型内発泡成形体を成形することができる。熱可塑性樹脂予備発泡粒子の中でも、ポリプロピレン樹脂等のポリオレフィン系樹脂を採用した場合、該樹脂からなる予備発泡粒子は発泡力が小さいため以下のような成形前処理あるいは充填方法を採用することが望ましい。
A)発泡粒子を無機ガスで加圧処理して発泡粒子内に無機ガスを含浸させ所定の発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法(成形前含浸方法)、
B)発泡粒子をガス圧力で圧縮して金型に充填し、発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法(圧縮充填方法)、
C)特に前処理することなく発泡粒子を、金型が10〜50%程度開いた状態で充填した、金型を完全に閉じた後、水蒸気で加熱融着させる方法(クラッキング圧縮)、
などの方法が利用し得る。
In the present invention, by a conventionally known method for imparting foaming force, a part composed of thermoplastic resin pre-foamed particles having L / D of 2 or more and 10 or less, and heat having L / D of 0.8 or more and 1.2 or less. It is possible to mold a thermoplastic resin in-mold foam molded article in which both of the parts made of the plastic resin pre-foamed particles are present. Among the thermoplastic resin pre-expanded particles, when a polyolefin resin such as polypropylene resin is adopted, it is desirable to adopt the following pre-molding treatment or filling method because the pre-expanded particles made of the resin have a small foaming force. .
A) A method in which foamed particles are pressurized with an inorganic gas to impregnate the foamed particles with an inorganic gas to give a predetermined internal pressure of the foamed particles, and then filled into a mold and heated and fused with water vapor (impregnation method before molding) ),
B) A method in which foamed particles are compressed by gas pressure and filled into a mold, and the recovery force of the foamed particles is used to heat-fuse with water vapor (compression filling method),
C) A method in which foamed particles are filled in a state where the mold is opened about 10 to 50% without any pretreatment, and after the mold is completely closed, heat fusion with water vapor (cracking compression),
Such a method can be used.

B)、C)の成形方法では金型充填後の予備発泡粒子の隙間が殆どなく、閉塞するため、十分な空隙を有する成形体を作り難い傾向にある。よって、上記の成形方法の中でも、特にA)の、発泡粒子を無機ガスで加圧処理して発泡粒子内に無機ガスを含浸させ、所定の発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法が好ましい。   In the molding methods B) and C), there are almost no gaps between the pre-expanded particles after filling the mold, and they are closed. Therefore, it tends to be difficult to produce a molded body having sufficient voids. Therefore, among the above molding methods, in particular, the foamed particles of A) are pressurized with an inorganic gas to impregnate the foamed particles with the inorganic gas, and after applying a predetermined foamed particle internal pressure, the mold is filled. A method of heat-sealing with water vapor is preferable.

具体的に無機ガスの加圧処理に関して、棒状予備発泡粒子は該発泡粒子内圧を絶対圧力で0.12MPa以上0.17MPa以下とするのが好ましく、当該範囲内の発泡粒子内圧とすることにより、空隙率のコントロールがより容易となり、25%以上50%以下の空隙率を有する発泡成形部位をより安定的に製造することができる。また、球状予備発泡粒子は、該発泡粒子内圧を絶対圧力で0.18MPa以上0.25MPa以下とすることが好ましい。このような内圧とすることにより、空隙率5%以下で且つ高い融着率と高い機械的強度を有する発泡成形部位を安定的に製造する事ができる。上記無機ガスとしては、特に限定はなく、例えば、空気、窒素、酸素、ヘリウム、ネオン、アルゴン、炭酸ガスなどが使用できる。これらは単独で用いても、2種以上混合使用してもよい。これらの中でも、汎用性の高い空気、窒素が好ましい。成形工程は、成形空間に予備発泡粒子を充填する充填工程と、成形空間に充填された予備発泡粒子を加熱、発泡融着させる加熱工程と、成形された発泡成形体を冷却する冷却工程と、発泡成形体を金型から離型する離型工程の4つの工程に大別される。   Specifically, regarding the pressure treatment of the inorganic gas, the rod-shaped pre-expanded particles preferably have an internal pressure of the expanded particles of 0.12 MPa or more and 0.17 MPa or less in absolute pressure. It becomes easier to control the porosity, and a foam-molded part having a porosity of 25% to 50% can be more stably produced. The spherical pre-expanded particles preferably have an internal pressure of 0.18 MPa or more and 0.25 MPa or less in terms of absolute pressure. By setting such an internal pressure, it is possible to stably produce a foam molded portion having a porosity of 5% or less, a high fusion rate, and a high mechanical strength. There is no limitation in particular as said inorganic gas, For example, air, nitrogen, oxygen, helium, neon, argon, a carbon dioxide gas etc. can be used. These may be used alone or in combination of two or more. Among these, highly versatile air and nitrogen are preferable. The molding step includes a filling step for filling the molding space with pre-expanded particles, a heating step for heating and foam-fusing the pre-foamed particles filled in the molding space, and a cooling step for cooling the molded foam molded body, The process is roughly divided into four processes, ie, a mold release process for releasing the foamed molded product from the mold.

次に加熱工程について説明する。キャビティー型1及びコア型2のドレンライン16,17を開放にした状態で蒸気供給手段9,10から両蒸気室7,8に蒸気を供給することで、2つの蒸気室内の空気を系外に排出する。次に、一方の蒸気室に蒸気を供給して、他方の蒸気室から排出することで、成形空間の空気を排出するとともに、予備発泡粒子及び金型を予熱する。次に両ドレンライン16,17を閉塞した状態で、両蒸気室7,8に蒸気を供給して、予備発泡粒子を加熱、発泡融着させる。予備発泡粒子の融着温度は原料の結晶化度により異なるが、本発明の場合には、ゲージ圧で0.18〜0.25MPaの蒸気を用いることが好ましい。0.18MPa未満の蒸気圧力では十分な融着強度を得ることができなくなる傾向があり、0.25MPaを超えてのの蒸気圧力では成形体の空隙が減少するため、通気性、透水性あるいは吸音性能の著しい低下を招く傾向がある。   Next, the heating process will be described. By supplying steam to the steam chambers 7 and 8 from the steam supply means 9 and 10 with the drain lines 16 and 17 of the cavity mold 1 and the core mold 2 opened, the air in the two steam chambers is removed from the system. To discharge. Next, steam is supplied to one steam chamber and discharged from the other steam chamber, whereby the air in the molding space is discharged and the pre-expanded particles and the mold are preheated. Next, in a state where both drain lines 16 and 17 are closed, steam is supplied to both the steam chambers 7 and 8 to heat and foam the pre-expanded particles. In the present invention, it is preferable to use steam having a gauge pressure of 0.18 to 0.25 MPa, although the fusion temperature of the pre-expanded particles varies depending on the crystallinity of the raw material. When the steam pressure is less than 0.18 MPa, there is a tendency that sufficient fusion strength cannot be obtained, and when the steam pressure exceeds 0.25 MPa, voids in the molded body are reduced, so that air permeability, water permeability or sound absorption is reduced. There is a tendency to cause a significant decrease in performance.

次の冷却工程は、キャビティー型1及びコア型2に向けて図示外のノズルユニットから冷却水を噴霧し、キャビティー型1及びコア型2を介して成形空間3の発泡成形体を離型可能な成形体の硬度まで冷却・固化させる工程である。本発明の成形体は棒状予備発泡粒子と球状予備発泡粒子が略区画状に存在した構造となっている。棒状予備発泡粒子からなる部位は予備発泡粒子が点融着し空隙を多数有する構造となるため、加熱後に予備発泡粒子あるいは成形体の発泡圧力が急激に低下し、30秒程度の水冷時間で十分である。一方、球状予備発泡粒子からなる部位は、通常の熱可塑性樹脂発泡体と同等に加熱後に大きな発泡圧力を有するため、発泡圧力が十分低下するまで水冷を行う必要がある。よって、水冷時間は通常の球状予備発泡粒子を用いた発泡体と同程度の時間を必要とする。水冷時間は予備発泡粒子の発泡倍率により異なるが、大凡60秒から200秒の範囲である。   In the next cooling step, cooling water is sprayed from a nozzle unit (not shown) toward the cavity mold 1 and the core mold 2, and the foam molded body in the molding space 3 is released through the cavity mold 1 and the core mold 2. It is a process of cooling and solidifying to a possible hardness of the molded body. The molded body of the present invention has a structure in which rod-shaped pre-expanded particles and spherical pre-expanded particles are present in a substantially partitioned shape. Since the part of the rod-shaped pre-expanded particles has a structure in which the pre-expanded particles are point-fused and have a large number of voids, the foaming pressure of the pre-expanded particles or the molded product decreases rapidly after heating, and a water cooling time of about 30 seconds is sufficient. It is. On the other hand, since the site | part which consists of spherical pre-expanded particles has a big foaming pressure after a heating equivalent to a normal thermoplastic resin foam, it is necessary to perform water cooling until a foaming pressure fully falls. Therefore, the water cooling time requires the same time as a foam using normal spherical pre-expanded particles. The water cooling time varies depending on the expansion ratio of the pre-expanded particles, but is generally in the range of 60 seconds to 200 seconds.

離型工程ではキャビティー型1とコア型2とを型開きするが、一般的にはエジェクトピン5を有するキャビティー型1には仕切部材4が形成されて、その分離型抵抗がコア型2よりも大きくなっているので、発泡成形体はキャビティー型1側に残ることになる。但し、移動型に成形体が取り付く場合には、機械的強度の高い球状予備発泡粒子部位にテイパーピンを配置する等の工夫が必要である。こうして、キャビティー型1に発泡成形体を残した状態で、エジェクトピン5で発泡成形体を突き出して金型から離型することになる。   In the mold release process, the cavity mold 1 and the core mold 2 are opened. In general, a partition member 4 is formed in the cavity mold 1 having the eject pin 5, and the separation mold resistance thereof is the core mold 2. Therefore, the foamed molded product remains on the cavity mold 1 side. However, when the molded body is attached to the movable mold, it is necessary to devise such as arranging a taper pin at the spherical pre-expanded particle portion having high mechanical strength. Thus, in a state where the foam molded body remains in the cavity mold 1, the foam molded body is protruded by the eject pin 5 and released from the mold.

離型直後の発泡成形体は水分を多く含むため、常温乾燥あるいは高温乾燥を行うことが好ましい。特に、本発明の成形体は、成形直後に含水率が200〜300%となる場合があるため、例えば、大気圧・常温下において1〜2時間放置し、含水率を50%以下に低減した後、65〜75℃の乾燥室にて5〜24時間養生を行い、最終的に5〜24時間の常温養生を行い、最終成形体となる。   Since the foamed molded article immediately after release contains a lot of moisture, it is preferable to perform room temperature drying or high temperature drying. In particular, since the molded product of the present invention may have a moisture content of 200 to 300% immediately after molding, for example, the molded product of the present invention is allowed to stand for 1 to 2 hours at atmospheric pressure and room temperature to reduce the moisture content to 50% or less. Thereafter, curing is performed in a drying chamber at 65 to 75 ° C. for 5 to 24 hours, and finally, room temperature curing is performed for 5 to 24 hours to obtain a final molded body.

以上のようにして得られる発泡成形体は優れた吸音効果、或いは、透水効果を有し、かつ機械的強度、或いは、形状安定性を有するため、吸音材、ドレン材などの様々な用途に使用することが可能である。例えば、フロアスペーサー、ティビアパッド、ピラー内部の衝撃吸収材、ドアトリム内部の衝撃吸収材、等の車両用内装材、コンサートホール、一般住宅等の建築物の床材を構成する芯材も含む床材や壁材を構成する芯材も含む壁材に好適に使用することができる。   The foamed molded article obtained as described above has excellent sound absorption effect or water permeability effect, and has mechanical strength or shape stability, so it can be used for various applications such as sound absorption material and drain material. Is possible. For example, floor spacers, tibia pads, shock absorbers inside pillars, shock absorbers inside door trims, and other interior materials for vehicles such as flooring materials for buildings such as concert halls and ordinary houses. It can be suitably used for a wall material including a core material constituting the wall material.

適用の具体例としては、主に吸音性能が要求されフロアスペーサーで組立ラインでの原料剥離を防止したい場合には、外周を球状予備発泡粒子、それ以外の部位を、吸音性能を有する棒状予備発泡粒子で構成すればよい。また、吸音性能と曲げ剛性が要求されるツールボックスなどには、曲げ剛性を必要としない部位には吸音性能を有する棒状予備発泡粒子で構成し、曲げ剛性を必要とする部位には球状予備発泡粒子にて構成、あるいは海島状に棒状予備発泡粒子と球状予備発泡粒子を混在させるなどでの対応が可能である。また、主に吸音あるいは透水用途である成形体に支持部、あるいは他部品との組立上で融着融着強度が部位的に必要な場合にも、本発明が適用される。以上のように吸音性、透水性、通気性と製品で融着強度が必要とする部位での強度との両立が図れ、幅広い用途に適用可能である。   As a specific example of application, when the sound absorption performance is mainly required and it is desired to prevent the peeling of the raw material in the assembly line with the floor spacer, the spherical pre-foamed particles are used for the outer periphery, and the other parts are rod-shaped pre-foams having sound absorption performance. What is necessary is just to comprise with particle | grains. In addition, toolboxes that require sound absorption performance and bending rigidity are composed of rod-shaped pre-expanded particles that have sound absorption performance in parts that do not require bending rigidity, and spherical pre-expanded parts that require bending rigidity. It is possible to cope with the structure by using particles, or by mixing rod-shaped pre-expanded particles and spherical pre-expanded particles in a sea-island shape. Further, the present invention is also applied to the case where the fusion-bonding strength is necessary locally in the assembly of the molded body mainly used for sound absorption or water permeation with the support portion or other parts. As described above, it is possible to achieve both sound absorption, water permeability, air permeability and strength at the site where fusion strength is required in the product, and it can be applied to a wide range of applications.

以下、本発明を実施例にてさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.

(実施例1)
ポリプロピレン製の棒状予備発泡粒子を作製するために、基材樹脂として、MI:4.5g/10分、融点:144℃、エチレン含量:2.8%、ブテン含量:1.3%を用い、セル造核剤としてタルク300ppmを添加して押出機内で溶融混練した後、円形ダイよりストランド状に押出し、水冷後、カッターで切断し、一粒の重量が1.8mg/粒、該円柱形状で、L/Dが6.3である樹脂粒子を得た。
Example 1
In order to produce the rod-shaped pre-expanded particles made of polypropylene, MI: 4.5 g / 10 min, melting point: 144 ° C., ethylene content: 2.8%, butene content: 1.3%, After adding 300 ppm of talc as a cell nucleating agent and melt-kneading in an extruder, it is extruded in a strand form from a circular die, cooled with water, cut with a cutter, and the weight of one grain is 1.8 mg / grain. Resin particles having L / D of 6.3 were obtained.

得られた樹脂粒子100重量部(65kg)、水200重量部、塩基性第三リン酸カルシウム0.5重量部、アルキルスルフォン酸ソーダ0.01重量部を容量0.35m3の耐圧オートクレーブ中に仕込み、攪拌下、発泡剤としてイソブタンを16部添加した後、オートクレーブ内容物を135℃の発泡温度まで加熱した。その後、イソブタンを追加圧入して2.2MPaの発泡圧力まで昇圧し、該発泡温度、発泡圧力で30分間保持した後、オートクレーブ下部のバルブを開き、4.4mmφの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出して発泡粒子を得た。得られた発泡粒子は、L/D:2.2、セル径:103μm、β/(α+β):0.60、嵩密度:0.019g/cm3であった。 100 parts by weight (65 kg) of the obtained resin particles, 200 parts by weight of water, 0.5 parts by weight of basic tricalcium phosphate and 0.01 parts by weight of sodium alkyl sulfonate are charged into a pressure-resistant autoclave having a capacity of 0.35 m 3 . Under stirring, 16 parts of isobutane was added as a blowing agent, and then the autoclave contents were heated to a foaming temperature of 135 ° C. Thereafter, isobutane was additionally injected and the pressure was increased to a foaming pressure of 2.2 MPa. After maintaining the foaming temperature and the foaming pressure for 30 minutes, the valve at the bottom of the autoclave was opened, and the autoclave contents were passed through a 4.4 mmφ orifice. Release under atmospheric pressure to obtain expanded particles. The obtained expanded particles had L / D: 2.2, cell diameter: 103 μm, β / (α + β): 0.60, and bulk density: 0.019 g / cm 3 .

ポリプロピレン製の球状予備発泡粒子には市販されている(株)カネカ製のDBS45(45倍品)で、L/D:1.05を用いた。   For the spherical pre-expanded particles made of polypropylene, L / D: 1.05 was used, which is DBS45 (45 times product) manufactured by Kaneka Corporation.

ここで得られた発泡粒子に空気加圧処理により空気を含浸させ、棒状予備発泡粒子には絶対圧力で0.14MPa、球状予備発泡粒子には0.20MPaの内圧を付与した。   The foamed particles thus obtained were impregnated with air by air pressure treatment, and an internal pressure of 0.14 MPa in absolute pressure was applied to the rod-shaped pre-expanded particles and 0.20 MPa was applied to the spherical pre-expanded particles.

金型は300×400×50mmのブロック形状で、且つ略外周端部50mmと内部を櫛部材で区画化し、櫛部はステンレスバネ鋼を素材とし、櫛長さ49mm、櫛径φ2.5mm、櫛間隔2.5mmのものを用いた。   The mold has a block shape of 300 x 400 x 50 mm, and the inner periphery is divided into 50 mm and the inside by a comb member. The comb part is made of stainless spring steel, the comb length is 49 mm, the comb diameter is φ2.5 mm, the comb spacing A 2.5 mm one was used.

充填工程は金型を2mm開いた状態で球形予備発泡粒子、棒状予備発泡粒子の順に充填し、続いて金型を完全に閉じ、ゲージ圧力0.22MPaの蒸気にて予備発泡粒子の加熱融着を行った。その後、水冷を60秒間行い、発泡体を離型した。ここで得られた発泡成形体は多くの空隙を有し、蒸気・冷却水による含水を多量に含んでいたため、常温で1時間放置し、その後75℃、24時間の乾燥、24時間の常温養生を行うことで、空隙率の確保と形状保持性を両立させた発泡成形体を得た。   In the filling step, the spherical pre-expanded particles and rod-shaped pre-expanded particles are filled in this order with the mold opened 2 mm, and then the mold is completely closed, and the pre-expanded particles are heat-sealed with steam at a gauge pressure of 0.22 MPa. Went. Thereafter, water cooling was performed for 60 seconds to release the foam. The foamed molding obtained here had many voids and contained a large amount of water content by steam / cooling water, so it was left at room temperature for 1 hour, then dried at 75 ° C. for 24 hours, and then at room temperature for 24 hours. By performing the curing, a foamed molded article having both ensuring of porosity and shape retention was obtained.

(比較例1)
実施例1で用いた同棒状予備発泡粒子に、空気加圧処理により空気を含浸させ、絶対圧力で0.14MPaの予備発泡粒子を得た。これを300×400×50mmのブロック形状金型に充填し、蒸気圧力をゲージ圧力0.22MPaで加熱、水冷60秒を行い、棒状予備発泡粒子のみで形成された発泡体を得た。これを常温で1時間放置し、その後75℃、24時間の乾燥、24時間の常温養生を行った。
(Comparative Example 1)
The rod-shaped pre-expanded particles used in Example 1 were impregnated with air by an air pressurization treatment to obtain pre-expanded particles having an absolute pressure of 0.14 MPa. This was filled in a 300 × 400 × 50 mm block mold, heated at a gauge pressure of 0.22 MPa, and water-cooled for 60 seconds to obtain a foam formed only of rod-shaped pre-expanded particles. This was left to stand at room temperature for 1 hour, and then subjected to drying at 75 ° C. for 24 hours and curing at room temperature for 24 hours.

得られた成形体評価の結果を表1に示す。   Table 1 shows the results of evaluation of the obtained molded body.

Figure 0004837356
空隙率は前記したように、発泡体から20×20×40mmの直方体試料を、表面スキン層を含まないように切り出し、外形寸法より見掛け体積を求めた。更に、直方体試料を一定量のエタノールを入れたメスシリンダー中に浸漬し、その時の増加容積(真の体積)を測定し、見掛け体積と真の体積の差を、見掛け体積で除算した値を空隙率と定義した。
Figure 0004837356
As described above, a 20 × 20 × 40 mm rectangular parallelepiped sample was cut out from the foam so as not to include the surface skin layer, and the apparent volume was determined from the external dimensions. Furthermore, a rectangular parallelepiped sample is immersed in a graduated cylinder containing a certain amount of ethanol, the volume increased (true volume) at that time is measured, and the value obtained by dividing the difference between the apparent volume and the true volume by the apparent volume is a gap. Defined as rate.

吸音率測定は、垂直入射式測定と、残響室を用いた測定方法の2種の方法で行った。表中の数値は最高値を示す。垂直入射式測定はJIS A1405に準拠し、試料厚み40mmで500〜6400Hzでの垂直入射吸音率を測定した。試料は得られた発泡成形体より、表面スキン層を有する面が音波入射面となるように、厚み40mmで切り出した。測定は、音波を反射する剛体壁と試料が密着した状態、つまり背後空気が無い状態でおこなった。測定には小野測器社製の垂直入射吸音率測定装置SR−4100を用いた。残響室による測定は、JIS A1409に従い、9m3の残響室(日東紡音響エンジニアリング製)、サンプルサイズ700×700mmを用いて500〜5000Hzでの測定を行った。ここで、残響室測定に用いたサンプルは、実施例あるいは比較例で示す金型にて成形した成形体を張り合わせたものを用いた。 The sound absorption coefficient was measured by two methods, ie, a normal incidence measurement and a measurement method using a reverberation chamber. The numbers in the table represent the highest values. The normal incidence type measurement was based on JIS A1405, and the normal incident sound absorption coefficient was measured at 500 to 6400 Hz with a sample thickness of 40 mm. The sample was cut out from the obtained foamed molded article with a thickness of 40 mm so that the surface having the surface skin layer became the sound wave incident surface. The measurement was performed in a state where the sample was in close contact with the rigid wall that reflects sound waves, that is, in the absence of air behind. For the measurement, a normal incidence sound absorption measuring device SR-4100 manufactured by Ono Sokki Co., Ltd. was used. The reverberation chamber was measured according to JIS A1409 using a 9 m 3 reverberation chamber (manufactured by Nittobo Acoustic Engineering) and a sample size of 700 × 700 mm at 500 to 5000 Hz. Here, the sample used for the reverberation chamber measurement was a laminate of molded bodies molded with the molds shown in the examples or comparative examples.

剥離評価は、高さ1mの位置から成形体を角部が床面に当たるように10回落下させ、成形体から予備発泡粒子が剥離するか否かで評価した。評価基準は剥離なし:○、2回以下の剥離:△、3回以上の剥離:×とした。   Peeling evaluation was performed by dropping the molded body 10 times from a position having a height of 1 m so that the corners hit the floor surface, and evaluating whether or not the pre-expanded particles were peeled from the molded body. Evaluation criteria were as follows: No peeling: ○, 2 times or less peeling: Δ, 3 times or more peeling: x.

本発明に使用する熱可塑性樹脂予備発泡粒子のL/Dについて示した図である。It is the figure shown about L / D of the thermoplastic resin pre-expanded particle used for this invention. 示差走査熱量計を用い、本発明記載の熱可塑性樹脂予備発泡粒子を測定した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。低温側がα、高温側がβである。It is an example of the DSC curve obtained when measuring the thermoplastic resin pre-expanded particle of this invention using a differential scanning calorimeter. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. The low temperature side is α and the high temperature side is β. 本発明で用いる金型の概略を示した図である。It is the figure which showed the outline of the metal mold | die used by this invention. 本発明で用いる金型の区画手段を示した図である。It is the figure which showed the division means of the metal mold | die used by this invention. 本発明で用いる金型の別の区画手段を示した図である。It is the figure which showed another division means of the metal mold | die used by this invention. 本発明で用いる金型の別の区画手段を示した図であるIt is the figure which showed another division means of the metal mold | die used by this invention. 棒状予備発泡粒子と球状予備発泡粒子が正面視略「口」字状の境界面を介して、略区画状に存在していることを示した図である。It is the figure which showed that the rod-shaped pre-expanded particle and the spherical pre-expanded particle exist in the shape of a substantially partition through the frontal surface substantially "mouth" -shaped boundary surface. 棒状予備発泡粒子と球状予備発泡粒子が略区画状に存在している他の形状を示した図である。It is the figure which showed the other shape in which the rod-shaped pre-expanded particle and spherical pre-expanded particle exist in the substantially partition shape. 本発明において用いる金型に設置する仕切部材の櫛歯の配列を示した図である。It is the figure which showed the arrangement | sequence of the comb tooth of the partition member installed in the metal mold | die used in this invention.

符号の説明Explanation of symbols

1 キャビティー型
2 コア型
3 成形空間
4 仕切部材
5 エジェクトピン
6 充填器
7 キャビティー型蒸気室
8 コア型蒸気室
9 キャビティー型蒸気供給口
10 コア型蒸気供給口
11 キャビティー型フレーム
12 コア型フレーム
13 キャビティー型裏板
14 コア型裏板
15 コアベント
16 キャビティー型ドレン口
17 コア型ドレン口
18 櫛歯
19 仕切板
DESCRIPTION OF SYMBOLS 1 Cavity type 2 Core type 3 Molding space 4 Partition member 5 Eject pin 6 Filler 7 Cavity type vapor chamber 8 Core type vapor chamber 9 Cavity type vapor supply port 10 Core type vapor supply port 11 Cavity type frame 12 Core Mold frame 13 Cavity mold back plate 14 Core mold back plate 15 Core vent 16 Cavity mold drain port 17 Core mold drain port 18 Comb teeth 19 Partition plate

Claims (4)

L/Dが2以上10以下である熱可塑性樹脂予備発泡粒子から形成された部位と、L/Dが0.8以上1.2以下である熱可塑性樹脂予備発泡粒子から形成された部位が、略区画状に存在することを特徴とする熱可塑性樹脂型内発泡成形体の製造方法。
ここで、Lは発泡粒子の最長部の長さ、DはL方向と垂直な断面における最大径Dmaxと最小径Dminの平均値であり、L/Dが下記式にて計算される値である。
Figure 0004837356
Sites formed from thermoplastic resin pre-expanded particles having an L / D of 2 or more and 10 or less, and sites formed from thermoplastic resin pre-expanded particles having an L / D of 0.8 or more and 1.2 or less, characterized by the presence in the substantially compartment shape, method for producing a thermoplastic resin mold foamed articles.
Here, L is the length of the longest part of the expanded particles, D is an average value of the maximum diameter Dmax and the minimum diameter Dmin in a cross section perpendicular to the L direction, and L / D is a value calculated by the following equation. .
Figure 0004837356
熱可塑性型内発泡成形体外周部がL/Dが0.8以上1.2以下の熱可塑性樹脂予備発泡粒子から形成され、
それ以外の部位がL/Dが2以上10以下の熱可塑性樹脂予備発泡粒子から形成されたことを特徴とする請求項1に記載の熱可塑性樹脂型内発泡成形体の製造方法。
The outer peripheral part of the thermoplastic mold-molded molded body is formed from thermoplastic resin pre-expanded particles having an L / D of 0.8 or more and 1.2 or less,
The other portion is, L / D is equal to or formed from 2 to 10 of the thermoplastic resin pre-expanded particles, method for producing a thermoplastic resin mold foamed articles according to claim 1.
熱可塑性樹脂予備発泡粒子を無機ガスで加圧処理して該発泡粒子内に無機ガスを含浸させ所定の発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させるに際し、
L/Dが2以上10以下の熱可塑性樹脂予備発泡粒子内圧をL/Dが0.8以上1.2以下の熱可塑性樹脂予備発泡粒子内圧よりも低く、これらの熱可塑性樹脂予備発泡粒子を金型内で同時一体成形することを特徴とする請求項1または2に記載の熱可塑性樹脂型内発泡成形体の製造方法。
When the thermoplastic resin pre-expanded particles are pressurized with an inorganic gas, the expanded particles are impregnated with the inorganic gas, and after applying a predetermined internal pressure of the expanded particles, the mold is filled and heated and fused with water vapor .
The thermoplastic resin pre-expanded particle internal pressure having an L / D of 2 to 10 is lower than the internal pressure of the thermoplastic resin pre-expanded particle having an L / D of 0.8 to 1.2, and these thermoplastic resin pre-expanded particles The method for producing a thermoplastic resin in-mold foam-molded article according to claim 1 or 2 , wherein the molding is simultaneously integrally molded in a mold.
熱可塑性樹脂予備発泡粒子を無機ガスで加圧処理して該発泡粒子内に無機ガスを含浸させ所定の発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させるに際し、
L/Dが2以上10以下の熱可塑性樹脂予備発泡粒子内圧を、絶対圧力で0.12MPa以上0.17MPa以下、
L/Dが0.8以上1.2以下の熱可塑性樹脂予備発泡粒子内圧を絶対圧力で0.18MPa以上0.25MPa以下とし、これらの熱可塑性樹脂予備発泡粒子を型内で同時一体成形することを特徴とする請求項1または2に記載の熱可塑性樹脂型内発泡成形体の製造方法。
When the thermoplastic resin pre-expanded particles are pressurized with an inorganic gas, the expanded particles are impregnated with the inorganic gas, and after applying a predetermined internal pressure of the expanded particles, the mold is filled and heated and fused with water vapor .
L / D is an internal pressure of the thermoplastic resin pre-expanded particles of 2 or more and 10 or less, 0.12 MPa or more and 0.17 MPa or less in absolute pressure,
The internal pressure of the thermoplastic resin pre-expanded particles having an L / D of 0.8 or more and 1.2 or less is set to 0.18 MPa or more and 0.25 MPa or less in absolute pressure, and these thermoplastic resin pre-expanded particles are simultaneously integrally molded in the mold. The method for producing a foamed molded article in a thermoplastic resin mold according to claim 1 or 2 , characterized in that:
JP2005292796A 2005-02-01 2005-10-05 Thermoplastic resin in-mold foam molding and production method Expired - Fee Related JP4837356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292796A JP4837356B2 (en) 2005-02-01 2005-10-05 Thermoplastic resin in-mold foam molding and production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005025192 2005-02-01
JP2005025192 2005-02-01
JP2005292796A JP4837356B2 (en) 2005-02-01 2005-10-05 Thermoplastic resin in-mold foam molding and production method

Publications (2)

Publication Number Publication Date
JP2006240285A JP2006240285A (en) 2006-09-14
JP4837356B2 true JP4837356B2 (en) 2011-12-14

Family

ID=37047139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292796A Expired - Fee Related JP4837356B2 (en) 2005-02-01 2005-10-05 Thermoplastic resin in-mold foam molding and production method

Country Status (1)

Country Link
JP (1) JP4837356B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234169B2 (en) * 2005-02-01 2013-07-10 株式会社カネカ Thermoplastic resin foam molding and method for producing the same
JP5510510B2 (en) * 2005-02-01 2014-06-04 株式会社カネカ Method for producing foamed molded article in thermoplastic resin mold
JP6722428B2 (en) * 2015-07-02 2020-07-15 東北資材工業株式会社 Foam resin molding

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847338B2 (en) * 1975-03-25 1983-10-21 凸版印刷株式会社 Manufacturing method for foamed plastic moldings
JPS5829737B2 (en) * 1977-10-24 1983-06-24 積水化成品工業株式会社 Simultaneously molded products using different raw materials
JPS6042433A (en) * 1983-08-16 1985-03-06 Japan Styrene Paper Co Ltd Expanded synthetic resin in-mold molding and its production
JPS6135240A (en) * 1984-07-27 1986-02-19 新東工業株式会社 Foamed molded shape for full mold
JPH03224727A (en) * 1990-01-31 1991-10-03 Jsp Corp Polyolefin resin foam molded body and its manufacture
JPH10136331A (en) * 1996-10-30 1998-05-22 Sanyo Electric Co Ltd Telephone communication equipment
JP4503720B2 (en) * 1999-01-26 2010-07-14 株式会社ジェイエスピー Method for producing foamed article with skin
JP2001096559A (en) * 1999-09-29 2001-04-10 Kanegafuchi Chem Ind Co Ltd Method for in-mold foam molding polyolefin resin
JP4902825B2 (en) * 2000-05-24 2012-03-21 株式会社カネカ In-mold foam molding method and apparatus for thermoplastic synthetic resin
JP2001328134A (en) * 2000-05-24 2001-11-27 Kanegafuchi Chem Ind Co Ltd Method and apparatus for in-mold foam molding of thermoplastic synthetic resin, and in-mold foamed molded article

Also Published As

Publication number Publication date
JP2006240285A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
WO2012081490A1 (en) Process for producing molded body of expanded polyolefin resin particles, and molded body of expanded polyolefin resin particles
JP4971793B2 (en) Method for producing polypropylene resin foam molding
JP2022127578A (en) Foamed particle and method for producing the same
JP4837356B2 (en) Thermoplastic resin in-mold foam molding and production method
JP2003039565A (en) Foamed particle molded object
JPH04294133A (en) Form molding having various density range
JP4503720B2 (en) Method for producing foamed article with skin
US9545739B2 (en) Method for producing a composite body comprising a particle foam molded part connected to a hollow body in a force-closed manner
CN115427487B (en) Polypropylene resin foam beads and polypropylene resin foam bead molded article
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
JP4984482B2 (en) Thermoplastic resin foam molding
JP5151020B2 (en) Thermoplastic resin in-mold foam molding
JP2000302909A (en) Drum-shaped thermoplastic resin expanded particle, its production and thermoplastic resin expanded molding product having void
JP5510510B2 (en) Method for producing foamed molded article in thermoplastic resin mold
US20020006507A1 (en) Polypropylene resin molding composite for automobile
WO2023084881A1 (en) Method for manufacturing polypropylene-based resin foamed particle molded article
JP7417179B1 (en) Method for manufacturing thermoplastic resin expanded particle molded product
JP7299555B2 (en) POLYPROPYLENE RESIN EXPANDED BEET MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
JP7096873B2 (en) Method of manufacturing a laminate
WO2022270426A1 (en) Polypropylene resin foam particles, method for producing same, and polypropylene resin foam particle molded body
JP7417178B1 (en) Method for producing thermoplastic resin expanded particle molded product
JP2010158842A (en) Mold for manufacturing block expansion molded form
JP2001301076A (en) Polyolefinic resin composite molded object
JP2022035812A (en) Complex
TW202330750A (en) Expanded polypropylene-based-resin particles and method for producing molded expanded-particle object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees