JP2009203417A - Modified polystyrene-based resin pre-expanded particles, and acoustic modified polystyrene-based resin expansion-molded body - Google Patents

Modified polystyrene-based resin pre-expanded particles, and acoustic modified polystyrene-based resin expansion-molded body Download PDF

Info

Publication number
JP2009203417A
JP2009203417A JP2008049512A JP2008049512A JP2009203417A JP 2009203417 A JP2009203417 A JP 2009203417A JP 2008049512 A JP2008049512 A JP 2008049512A JP 2008049512 A JP2008049512 A JP 2008049512A JP 2009203417 A JP2009203417 A JP 2009203417A
Authority
JP
Japan
Prior art keywords
modified polystyrene
particles
polystyrene resin
weight
based resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008049512A
Other languages
Japanese (ja)
Other versions
JP5032366B2 (en
Inventor
Shingo Terasaki
慎悟 寺崎
Naoyuki Futamura
直行 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2008049512A priority Critical patent/JP5032366B2/en
Publication of JP2009203417A publication Critical patent/JP2009203417A/en
Application granted granted Critical
Publication of JP5032366B2 publication Critical patent/JP5032366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide modified polystyrene-based resin pre-expanded particles that can exhibit the excellent weldability and can give the expansion-molded item which is excellent in chemical resistance and bending strength and which has voided parts. <P>SOLUTION: The modified polystyrene-based resin for producing its pre-expanded particles is obtained by impregnating polyolefin-based resin particles with styrene-based monomers followed by polymerizing, and contains a polystyrene-based resin of 100-500 pts.wt. based on 100 pts.wt. of the polyolefin-based resin. The modified polystyrene-based resin has a ratio of the absorbance D<SB>698</SB>at 698 cm<SP>-1</SP>to the absorbance D<SB>2850</SB>at 2,850 cm<SP>-1</SP>of 0.1-2.5 and a gel fraction of 15-50 wt.%. The pre-expanded particles of the modified polystyrene-based resin are formed by impregnating the particle of the above resin with a hydrocarbon-based foaming agent and then pre-expanding them. The pre-expanded particle contains a residual foaming agent of 0.3-2.5 wt.% and has a bulk density of 0.012-0.20 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、改質ポリスチレン系樹脂予備発泡粒子及びこれを用いて得られた改質ポリスチレン系樹脂発泡成形体に関する。   The present invention relates to modified polystyrene resin pre-expanded particles and a modified polystyrene resin expanded foam obtained using the same.

従来から発泡体は、該発泡体に空隙部を形成して吸音材として用いられている。このような空隙を有するスチレン改質ポリオレフィン系樹脂発泡成形体としては、特許文献1に、スチレン改質ポリオレフィン系樹脂発泡体小片同士を加熱発泡させて熱融着させてなり、小片間に10〜40%の空隙を有するスチレン改質ポリオレフィン系樹脂発泡成形体が開示されている。   Conventionally, a foam has been used as a sound absorbing material by forming a void in the foam. As a styrene-modified polyolefin resin foam molded article having such voids, Patent Document 1 discloses that styrene-modified polyolefin resin foam pieces are heat-foamed and thermally fused together, and 10 to 10 between the pieces. A styrene-modified polyolefin resin foam molding having 40% voids is disclosed.

しかしながら、発泡成形体に空隙率を10〜40%形成させるためには、成形時の二次発泡を抑える必要があり、その結果、発泡体小片の発泡圧が低下し、発泡体小片同士の熱融着性が低下し、得られる発泡成形体の機械的強度が低いといった問題点を有していた。   However, in order to form a porosity of 10 to 40% in the foamed molded product, it is necessary to suppress secondary foaming during molding. As a result, the foaming pressure of the foam small pieces is reduced, and the heat between the foam small pieces is reduced. There was a problem that the fusing property was lowered and the mechanical strength of the obtained foamed molded article was low.

また、特許文献2には、嵩密度が0.012〜0.20g/cm3であると共に、ATR法赤外分光分析により測定された粒子表面の赤外線吸収スペクトルから得られる698cm-1及び2850cm-1での吸光度比(D698/D2850)が0.1〜2.5の範囲であり、ポリオレフィン樹脂成分100重量部に対して、スチレン系樹脂成分を100〜1000重量部含有するスチレン改質ポリオレフィン系樹脂予備発泡粒子を発泡成形することにより得られ、5〜50%の空隙率を有する発泡成形体が提案されている。 Patent Document 2 discloses that the bulk density is 0.012 to 0.20 g / cm 3 and 698 cm −1 and 2850 cm obtained from the infrared absorption spectrum of the particle surface measured by ATR infrared spectroscopy. Styrene modification in which the absorbance ratio at 1 (D 698 / D 2850 ) is in the range of 0.1 to 2.5 and contains 100 to 1000 parts by weight of styrene resin component with respect to 100 parts by weight of polyolefin resin component A foam-molded article obtained by foam-molding polyolefin resin pre-expanded particles and having a porosity of 5 to 50% has been proposed.

しかしながら、この発泡成形体も特許文献1の発泡成形体と同様に予備発泡粒子同士の熱融着性が低く、得られる発泡成形体は機械的強度が低いといった問題点を有していた。   However, as with the foamed molded product of Patent Document 1, this foamed molded product also has a problem that the heat-fusibility between the pre-expanded particles is low, and the resulting foamed molded product has low mechanical strength.

更に、特許文献3には、ゲル分率が基材樹脂中に2〜40重量%含有されていることが記載されている(第5頁第11行)が、特許文献3には空隙のない発泡体のみが記載されており、ゲル分率の調整だけでは空隙を有する発泡体を得ることはできない。   Furthermore, Patent Document 3 describes that the gel fraction is contained in the base resin in an amount of 2 to 40% by weight (page 11, line 11), but Patent Document 3 has no voids. Only the foam is described, and a foam having voids cannot be obtained only by adjusting the gel fraction.

特開平7−80873号公報Japanese Patent Laid-Open No. 7-80873 WO2004/085528号公報WO 2004/085528 特開2006−88456号公報JP 2006-88456 A

本発明は、型内発泡成形において優れた熱融着性を発揮し、耐薬品性及び曲げ強度に優れ且つ空隙部を有する発泡成形体を得ることができる改質ポリスチレン系樹脂予備発泡粒子(以下「予備発泡粒子」と略することがある)及びこの改質ポリスチレン系樹脂予備発泡粒子を用いて得られた吸音性改質ポリスチレン系樹脂発泡成形体(以下「発泡成形体」と略することがある)を提供する。   The present invention is a modified polystyrene resin pre-expanded particle (hereinafter referred to as “modified polystyrene-based resin pre-expanded particle”) that exhibits excellent heat-fusibility in in-mold foam molding, and is capable of obtaining a foam molded article having excellent chemical resistance and bending strength and having voids. (Sometimes abbreviated as “pre-expanded particles”) and a sound-absorbing modified polystyrene-based resin foam molded article (hereinafter referred to as “foam molded article”) obtained by using this modified polystyrene resin pre-expanded particle. Provide).

本発明の改質ポリスチレン系樹脂予備発泡粒子は、ポリオレフィン系樹脂粒子にスチレン系単量体を含浸、重合させて得られ且つポリオレフィン系樹脂100重量部に対してポリスチレン系樹脂100〜500重量部を含有する改質ポリスチレン系樹脂を含有し、ATR法赤外分光分析により測定された粒子表面の赤外線吸収スペクトルから得られる698cm-1における吸光度D698と2850cm-1における吸光度D2850との比(D698/D2850)が0.1〜2.5であると共に、ゲル分率が15〜50重量%である改質ポリスチレン系樹脂粒子に炭化水素系発泡剤を含浸させた上で予備発泡させてなり、残存発泡剤を0.3〜2.5重量%含有し且つ嵩密度が0.012〜0.20g/cm3であることを特徴とする。 The modified polystyrene resin pre-expanded particles of the present invention are obtained by impregnating and polymerizing a polyolefin resin particle with a styrene monomer, and 100 to 500 parts by weight of a polystyrene resin per 100 parts by weight of the polyolefin resin. Ratio of absorbance D 698 at 698 cm −1 and absorbance D 2850 at 2850 cm −1 obtained from the infrared absorption spectrum of the particle surface containing the modified polystyrene resin contained and measured by ATR infrared spectroscopy (D 698 / D 2850 ) is 0.1 to 2.5, and a modified polystyrene resin particle having a gel fraction of 15 to 50% by weight is impregnated with a hydrocarbon foaming agent and then pre-foamed. The residual foaming agent is contained in an amount of 0.3 to 2.5% by weight, and the bulk density is 0.012 to 0.20 g / cm 3 .

上記改質ポリスチレン系樹脂予備発泡粒子を構成する改質ポリスチレン系樹脂は、ポリオレフィン系樹脂粒子にスチレン系単量体を含浸、重合させて得られる。上記ポリオレフィン系樹脂粒子を構成するポリオレフィン系樹脂としては、特に限定されず、例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体などのポリエチレン系樹脂、プロピレン単独重合体、エチレン−プロピレンランダム共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−ブテンランダム共重合体などのポリプロピレン系樹脂が挙げられ、ポリエチレン系樹脂が好ましく、高密度ポリエチレンがより好ましい。   The modified polystyrene resin constituting the modified polystyrene resin pre-expanded particles is obtained by impregnating and polymerizing polyolefin resin particles with a styrene monomer. The polyolefin resin constituting the polyolefin resin particles is not particularly limited. For example, branched low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, Polyethylene resins such as ethylene-methyl methacrylate copolymer, polypropylene resins such as propylene homopolymer, ethylene-propylene random copolymer, propylene-1-butene copolymer, ethylene-propylene-butene random copolymer Polyethylene-based resin is preferable, and high-density polyethylene is more preferable.

なお、ポリオレフィン系樹脂粒子は、公知の要領で製造され、例えば、ポリオレフィン系樹脂を押出機に供給して溶融混練しストランド状に押出し、このストランドを所定間隔毎に切断してポリオレフィン系樹脂粒子を得ることができる。なお、ストランドの切断は、押出機から押出された直後或いは所定時間経過後に行ってもよいし、ストランドを水などで冷却してから行ってもよい。なお、ポリオレフィン系樹脂粒子には、必要に応じて、着色剤、難燃剤、酸化防止剤、紫外線吸収剤などの添加剤が含有されていてもよい。   The polyolefin-based resin particles are produced in a known manner. For example, the polyolefin-based resin is supplied to an extruder, melt-kneaded, extruded into a strand, and the strand is cut at predetermined intervals to obtain polyolefin-based resin particles. Obtainable. The strand may be cut immediately after being extruded from the extruder or after a predetermined time has elapsed, or after the strand is cooled with water or the like. The polyolefin resin particles may contain additives such as a colorant, a flame retardant, an antioxidant, and an ultraviolet absorber as necessary.

そして、ポリオレフィン系樹脂粒子に含浸させるスチレン系単量体としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、t−ブチルスチレン、ジメチルスチレンなどが挙げられる。   The styrene monomer impregnated in the polyolefin resin particles is not particularly limited. For example, styrene, α-methyl styrene, vinyl toluene, chlorostyrene, ethyl styrene, isopropyl styrene, t-butyl styrene, dimethyl styrene. Etc.

次に、ポリオレフィン系樹脂粒子にスチレン系単量体を含浸、重合させて改質ポリスチレン系樹脂粒子を製造する要領を説明する。はじめに、分散剤を含有する水性媒体中にポリオレフィン系樹脂粒子を分散させて、その後にスチレン系単量体及び重合開始剤を添加して分散液を作製する。なお、後述するように、スチレン系単量体は、水性媒体中に二回に分けて添加され、必要に応じて、はじめに添加するスチレン系単量体を第一スチレン系単量体と、二回目に添加するスチレン系単量体を第二スチレン系単量体と称して区別する。   Next, a procedure for producing modified polystyrene resin particles by impregnating and polymerizing polyolefin resin particles with a styrene monomer will be described. First, polyolefin resin particles are dispersed in an aqueous medium containing a dispersant, and then a styrene monomer and a polymerization initiator are added to prepare a dispersion. As will be described later, the styrenic monomer is added to the aqueous medium in two portions, and if necessary, the styrenic monomer to be added first and the first styrenic monomer, The styrene monomer added at the second time is referred to as a second styrene monomer for distinction.

なお、第一スチレン系単量体と重合開始剤とを予め混合しておいてもよい。又、水性媒体としては、例えば、メチルアルコール、エチルアルコールなどの低級アルコール、水などが挙げられ、水が好ましい。   The first styrene monomer and the polymerization initiator may be mixed in advance. Examples of the aqueous medium include lower alcohols such as methyl alcohol and ethyl alcohol, water, and the like, and water is preferable.

上記分散剤としては、特に限定されず、例えば、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウムなどの難水溶性無機物や、ドデシルベンゼンスルホン酸ナトリウムのような界面活性剤などが挙げられる。   The dispersant is not particularly limited, and examples thereof include poorly water-soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate, and magnesium oxide, and surfactants such as sodium dodecylbenzenesulfonate.

水性媒体中に添加する第一スチレン系単量体の量は、少ないと、第二スチレン系単量体の量が多くなり、樹脂粒子の表層にポリスチレン系樹脂が多く分布し、得られる発泡成形体の衝撃強性や曲げ強度などの機械的強度や耐薬品性が低下することがある一方、多いと、ポリオレフィン系樹脂粒子に吸収されず、ポリスチレン系樹脂の重合粉末が多く発生することがあるので、ポリオレフィン系樹脂粒子100重量部に対して10〜80重量部が好ましい。   If the amount of the first styrene monomer added to the aqueous medium is small, the amount of the second styrene monomer will increase, and a large amount of polystyrene resin will be distributed on the surface layer of the resin particles. While mechanical strength and chemical resistance such as impact strength and bending strength of the body may be reduced, if it is large, it may not be absorbed by the polyolefin resin particles, and a large amount of polymer powder of polystyrene resin may be generated. Therefore, 10-80 weight part is preferable with respect to 100 weight part of polyolefin resin particles.

上記重合開始剤としては、従来からシード重合で用いられているものであれば、特に限定されず、例えば、ベンゾイルパーオキサイド、ジt−ブチルパーオキサイド、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチル−パーオキシ−2−エチルヘキシルカーボネートなどが挙げられ、単独で用いられても二種以上が併用されてもよい。   The polymerization initiator is not particularly limited as long as it is conventionally used in seed polymerization, and examples thereof include benzoyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, and dicumyl peroxide. 2,5-dimethyl-2,5-di-t-butylperoxyhexane, t-butylperoxy-3,5,5-trimethylhexanoate, t-butyl-peroxy-2-ethylhexyl carbonate, etc. Or two or more of them may be used in combination.

そして、水性媒体中に添加する重合開始剤の量は、少ないと、スチレン系単量体の重合に時間がかかり過ぎる一方、多いと、得られるポリスチレン系樹脂の分子量が低下するので、第一スチレン系単量体100重量部に対して0.1〜1.5重量部が好ましく、0.3〜0.6重量部がより好ましい。   When the amount of the polymerization initiator added to the aqueous medium is too small, it takes too much time to polymerize the styrene monomer. On the other hand, when the amount is large, the molecular weight of the resulting polystyrene resin is lowered. 0.1-1.5 weight part is preferable with respect to 100 weight part of a system monomer, and 0.3-0.6 weight part is more preferable.

次に、得られた分散液を第一スチレン系単量体が実質的に重合しない温度に加熱して第一スチレン系単量体をポリオレフィン系樹脂粒子に含浸させた後、分散液を重合開始剤の分解温度以上に加熱して第一スチレン系単量体をポリオレフィン系樹脂粒子中にて重合させる。   Next, after heating the obtained dispersion to a temperature at which the first styrene monomer does not substantially polymerize and impregnating the polyolefin resin particles with the first styrene monomer, polymerization of the dispersion is started. The first styrene monomer is polymerized in the polyolefin resin particles by heating above the decomposition temperature of the agent.

続いて、上記分散液中に第二スチレン系単量体を添加してポリオレフィン系樹脂粒子中に第二スチレン系単量体を含浸させながら重合させて、改質ポリスチレン系樹脂粒子を得ることができる。   Subsequently, the second styrene monomer is added to the dispersion and polymerized while impregnating the polyolefin resin particles with the second styrene monomer to obtain modified polystyrene resin particles. it can.

分散液中に添加する第二スチレン系単量体の量は、少ないと、第一スチレン系単量体の量が多くなり、ポリオレフィン系樹脂粒子に吸収されず、ポリスチレン系樹脂の重合粉末が多く発生することがある一方、多いと、樹脂粒子の表層にポリスチレン系樹脂が多く分布し、得られる発泡成形体の衝撃強性や曲げ強度などの機械的強度や耐薬品性が低下することがあるので、ポリオレフィン系樹脂粒子100重量部に対して50〜200重量部が好ましい。   If the amount of the second styrene monomer added to the dispersion is small, the amount of the first styrene monomer will increase and will not be absorbed by the polyolefin resin particles, and there will be a large amount of polymerized powder of polystyrene resin. On the other hand, if the amount is large, a large amount of polystyrene-based resin is distributed on the surface layer of the resin particles, and mechanical strength and chemical resistance such as impact strength and bending strength of the obtained foamed molded product may be lowered. Therefore, 50-200 weight part is preferable with respect to 100 weight part of polyolefin resin particles.

そして、分散液中に添加されるスチレン系単量体の総量は、得られる改質ポリスチレン系樹脂中において、ポリオレフィン系樹脂成分100重量部に対してポリスチレン系樹脂成分が100〜500重量部となるように調整されればよいが、具体的には、ポリオレフィン系樹脂粒子100重量部に対して150〜250重量部が好ましい。   The total amount of the styrene monomer added to the dispersion is 100 to 500 parts by weight of the polystyrene resin component with respect to 100 parts by weight of the polyolefin resin component in the resulting modified polystyrene resin. Specifically, 150 to 250 parts by weight is preferable with respect to 100 parts by weight of the polyolefin resin particles.

上述のように、改質ポリスチレン系樹脂中におけるポリスチレン系樹脂成分とポリオレフィン系樹脂成分の重量比が上記割合に限定されるのは、改質ポリスチレン系樹脂中におけるポリスチレン系樹脂成分の含有量が少ないと、ポリオレフィン系樹脂成分の量が多くなり、耐熱性が上がりすぎて、改質ポリスチレン系樹脂粒子を予備発泡する際に、所望の嵩密度にまで発泡できず、得られる発泡成形体の軽量性が損なわれる一方、多いと、得られる発泡成形体の機械的強度及び耐薬品性が損なわれてしまうからである。   As described above, the weight ratio of the polystyrene resin component to the polyolefin resin component in the modified polystyrene resin is limited to the above ratio, and the content of the polystyrene resin component in the modified polystyrene resin is small. And when the amount of polyolefin resin component increases, the heat resistance increases too much, and when the modified polystyrene resin particles are pre-foamed, they cannot be foamed to the desired bulk density, and the resulting molded foam is lightweight. On the other hand, if the amount is too large, the mechanical strength and chemical resistance of the obtained foamed molded product are impaired.

そして、得られた改質ポリスチレン系樹脂の表面における赤外線吸収スペクトルから得られる698cm-1における吸光度D698と2850cm-1における吸光度D2850との比(D698/D2850)(以下「吸光度比」という)は、0.1〜2.5に限定され、1.5〜2.4が好ましい。 Then, the ratio between the absorbance D 2850 in the absorbance D 698 and 2850 cm -1 in the 698cm -1 obtained from an infrared absorption spectrum of the surface of the obtained modified polystyrene-based resin (D 698 / D 2850) (hereinafter "absorbance ratio" Is limited to 0.1 to 2.5, preferably 1.5 to 2.4.

これは、吸光度比が低いと、改質ポリスチレン系樹脂粒子の表面におけるポリオレフィン系樹脂の比率が高くなり、耐熱性が上がりすぎて、改質ポリスチレン系樹脂粒子を予備発泡させる際に、所望の嵩密度にまで発泡できず、得られる発泡成形体の軽量性が損なわれるからである。   This is because when the absorbance ratio is low, the ratio of the polyolefin resin on the surface of the modified polystyrene resin particles becomes high, the heat resistance is excessively increased, and when the modified polystyrene resin particles are pre-foamed, the desired volume is increased. This is because the foam cannot be expanded to the density, and the lightweight property of the obtained foamed molded article is impaired.

一方、吸光度比が高いと、改質ポリスチレン系樹脂粒子の表面におけるポリスチレン系樹脂の比率が高くなり、得られる発泡成形体の耐薬品性や耐衝撃性が低下するからである。   On the other hand, when the absorbance ratio is high, the ratio of the polystyrene resin on the surface of the modified polystyrene resin particles is high, and the chemical resistance and impact resistance of the obtained foamed molded product are lowered.

ここで、改質ポリスチレン系樹脂粒子の表面の赤外線吸収スペクトルから得られる698cm-1における吸光度D698と2850cm-1における吸光度D2850との比(D698/D2850)は下記の要領で測定される。 Here, the ratio (D 698 / D 2850 ) of the absorbance D 698 at 698 cm −1 and the absorbance D 2850 at 2850 cm −1 obtained from the infrared absorption spectrum of the surface of the modified polystyrene resin particles is measured as follows. The

改質ポリスチレン系樹脂粒子の表面をATR法赤外分光分析により粒子表面分析を行なって赤外線吸収スペクトルを得る。赤外線吸収スペクトルから吸光度比(D698/D2850)を算出する。この要領を10個の改質ポリスチレン系樹脂粒子について行い、698cm-1における吸光度D698と、2850cm-1における吸光度D2850のそれぞれにおいて、最小値と最大値を除いた8個の吸光度の相加平均値を算出して、698cm-1における吸光度D698と、2850cm-1における吸光度D2850とし、これら吸光度D698、D2850から吸光度比(D698/D2850)を算出することができる。なお、ATR法赤外分光分析による粒子表面分析は、例えば、Nicolet社から商品名「フーリエ変換赤外分光光度計 MAGMA560」で販売されている測定装置を用いることができる。 The surface of the modified polystyrene resin particles is subjected to particle surface analysis by ATR infrared spectroscopy to obtain an infrared absorption spectrum. The absorbance ratio (D 698 / D 2850 ) is calculated from the infrared absorption spectrum. This procedure was performed on 10 of the modified polystyrene resin particles, and the absorbance D 698 at 698cm -1, in each of the absorbances D 2850 at 2850 cm -1, 8 pieces of absorbance additive excluding the minimum and maximum values calculates an average value, and the absorbance D 698 at 698cm -1, and the absorbance D 2850 at 2850 cm -1, can be calculated from these absorbance D 698, D 2850 absorbance ratio (D 698 / D 2850). In addition, the particle | grain surface analysis by ATR method infrared spectroscopy can use the measuring apparatus marketed with the brand name "Fourier transform infrared spectrophotometer MAGMA560" from Nicolet, for example.

又、改質ポリスチレン系樹脂粒子のゲル分率は、低いと、改質ポリスチレン系樹脂予備発泡粒子を用いて型内発泡成形しても、空隙部を有する発泡成形体を得ることができない一方、高いと、改質ポリスチレン系樹脂予備発泡粒子が硬くなると共に、改質ポリスチレン系樹脂予備発泡粒子を構成している改質ポリスチレン系樹脂の軟化点が高くなり、改質ポリスチレン系樹脂粒子を予備発泡させる際に、所望の嵩密度にまで発泡できず、得られる発泡成形体の軽量性が損なわれてしまうので、15〜50重量%に限定され、20〜40重量%が好ましい。   In addition, if the gel fraction of the modified polystyrene resin particles is low, even if in-mold foam molding is performed using the modified polystyrene resin pre-foamed particles, a foam molded article having voids cannot be obtained. If it is high, the modified polystyrene resin pre-expanded particles become hard and the softening point of the modified polystyrene resin constituting the modified polystyrene resin pre-expanded particles becomes high, and the modified polystyrene resin particles are pre-expanded. When making it, it cannot be foamed to a desired bulk density, and the lightweight property of the resulting foamed molded article is impaired, so it is limited to 15 to 50% by weight, and preferably 20 to 40% by weight.

ここで、改質ポリスチレン系樹脂粒子のゲル分率は下記の要領で測定される。改質ポリスチレン系樹脂粒子の重量W1を測定する。次に、130℃のトルエン100ミリリットル中に改質ポリスチレン系樹脂粒子を24時間に亘って浸漬する。 Here, the gel fraction of the modified polystyrene resin particles is measured as follows. The weight W 1 of the modified polystyrene resin particles is measured. Next, the modified polystyrene resin particles are immersed in 100 ml of toluene at 130 ° C. for 24 hours.

次に、トルエン中の残渣を80メッシュの金網を用いて濾過し、金網上に残った残渣を130℃にて1時間に亘って乾燥させて、金網上に残った残渣の重量W2を測定し、下記式に基づいて改質ポリスチレン系樹脂粒子のゲル分率を算出することができる。
ゲル分率(重量%)=100×W2/W1
Next, the residue in toluene is filtered using an 80-mesh wire mesh, the residue remaining on the wire mesh is dried at 130 ° C. for 1 hour, and the weight W 2 of the residue remaining on the wire mesh is measured. The gel fraction of the modified polystyrene resin particles can be calculated based on the following formula.
Gel fraction (% by weight) = 100 × W 2 / W 1

そして、上記改質ポリスチレン系樹脂粒子には炭化水素系発泡剤が含浸されている。なお、改質ポリスチレン系樹脂粒子に炭化水素系発泡剤を含浸させる要領としては、公知の要領が用いられ、具体的には、オートクレーブ内に、改質ポリスチレン系樹脂粒子、分散剤及び水を供給して撹拌することによって、改質ポリスチレン系樹脂粒子を水中に分散させて分散液を製造し、この分散液中に炭化水素系発泡剤を圧入し、改質ポリスチレン系樹脂粒子中に炭化水素系発泡剤を含浸させる方法が挙げられる。分散剤としては、特に限定されず、例えば、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウムなどの難水溶性無機物や、ドデシルベンゼンスルホン酸ナトリウムのような界面活性剤が挙げられる。炭化水素系発泡剤としては、特に限定されず、例えば、プロパン、ノルマルブタン、イソブタン、ペンタン、イソペンタン、シクロペンタン、ヘキサンなどが挙げられる。   The modified polystyrene resin particles are impregnated with a hydrocarbon foaming agent. In addition, as a procedure for impregnating the modified polystyrene resin particles with the hydrocarbon-based foaming agent, a known procedure is used. Specifically, the modified polystyrene resin particles, the dispersant and water are supplied into the autoclave. Then, the modified polystyrene resin particles are dispersed in water to produce a dispersion, and a hydrocarbon-based foaming agent is injected into the dispersion, and the hydrocarbon-based foam is added to the modified polystyrene resin particles. The method of impregnating a foaming agent is mentioned. The dispersant is not particularly limited, and examples thereof include poorly water-soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate, and magnesium oxide, and surfactants such as sodium dodecylbenzenesulfonate. The hydrocarbon-based blowing agent is not particularly limited, and examples thereof include propane, normal butane, isobutane, pentane, isopentane, cyclopentane, and hexane.

改質ポリスチレン系樹脂粒子に含浸させる炭化水素系発泡剤の量は、少ないと、改質ポリスチレン系樹脂粒子を予備発泡させることができないことがある一方、多いと、炭化水素系発泡剤による可塑化効果によって改質ポリスチレン系樹脂粒子が発泡時に破泡を生じる虞れがあるので、改質ポリスチレン系樹脂粒子100重量部に対して発泡剤が15重量部以上の割合となるように含浸され、5〜30重量部の割合で含浸されることが好ましく、10〜20重量部の割合で含浸されることがより好ましい。   If the amount of the hydrocarbon foaming agent impregnated into the modified polystyrene resin particles is small, the modified polystyrene resin particles may not be pre-foamed. On the other hand, if the amount is large, plasticization by the hydrocarbon foaming agent may be performed. Depending on the effect, the modified polystyrene resin particles may break when foamed, so that the foaming agent is impregnated at a ratio of 15 parts by weight or more with respect to 100 parts by weight of the modified polystyrene resin particles. It is preferably impregnated at a ratio of ˜30 parts by weight, and more preferably impregnated at a ratio of 10 to 20 parts by weight.

そして、本発明の改質ポリスチレン系樹脂予備発泡粒子は、炭化水素系発泡剤を含浸させてなる改質ポリスチレン系樹脂粒子を予備発泡させてなる。なお、改質ポリスチレン系樹脂粒子の予備発泡は、汎用の予備発泡装置を用いて行なわれればよい。   The modified polystyrene resin pre-expanded particles of the present invention are obtained by pre-expanding modified polystyrene resin particles impregnated with a hydrocarbon-based blowing agent. The pre-foaming of the modified polystyrene resin particles may be performed using a general-purpose pre-foaming apparatus.

又、改質ポリスチレン系樹脂予備発泡粒子の嵩密度は、低いと、改質ポリスチレン系樹脂予備発泡粒子の独立気泡率が低下して型内発泡成形時に予備発泡粒子に収縮が生じ、良好な発泡成形体を得ることができない一方、高いと、得られる発泡成形体の軽量性が低下するので、0.012〜0.20g/cm3に限定され、0.017〜0.05g/cm3が好ましい。 In addition, if the bulk density of the modified polystyrene resin pre-expanded particles is low, the closed cell ratio of the modified polystyrene resin pre-expanded particles decreases, and the pre-expanded particles shrink during in-mold foam molding, resulting in good foaming. On the other hand, if the molded body cannot be obtained, if it is high, the lightweight property of the obtained foamed molded body is lowered, so that it is limited to 0.012 to 0.20 g / cm 3 , and 0.017 to 0.05 g / cm 3. preferable.

なお、改質ポリスチレン系樹脂予備発泡粒子の嵩密度は下記の要領で測定されたものをいう。先ず、改質ポリスチレン系樹脂予備発泡粒子を500cm3のメスシリンダー内に500cm3の目盛りまで充填する。なお、メスシリンダーを水平方向から目視し、改質ポリスチレン系樹脂予備発泡粒子が一粒でも500cm3の目盛りに達しているものがあれば、その時点で改質ポリスチレン系樹脂予備発泡粒子のメスシリンダー内への充填を終了する。 In addition, the bulk density of the modified polystyrene resin pre-expanded particles refers to that measured in the following manner. First, it filled to the graduation of 500 cm 3 of modified polystyrene-based resin pre-expanded particles in a graduated cylinder of 500 cm 3. If the graduated cylinder is visually observed from the horizontal direction and any modified polystyrene resin pre-expanded particles have reached the scale of 500 cm 3 , the modified polystyrene resin pre-expanded graduated cylinder at that point End filling in.

次に、メスシリンダー内に充填した改質ポリスチレン系樹脂予備発泡粒子の重量を少数点以下2位の有効数字で秤量し、その重量をW3(g)とする。そして、下記式により改質ポリスチレン系樹脂予備発泡粒子の嵩密度を算出する。
改質ポリスチレン系樹脂予備発泡粒子の嵩密度(g/cm3)=W3/500
Next, the weight of the modified polystyrene resin pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the weight is defined as W 3 (g). Then, the bulk density of the modified polystyrene resin pre-expanded particles is calculated by the following formula.
The bulk density of the modified polystyrene resin pre-expanded particles (g / cm 3) = W 3/500

又、改質ポリスチレン系樹脂予備発泡粒子中における残存発泡剤量は、少ないと、得られる発泡成形体の熱融着性が低下する一方、多いと、改質ポリスチレン系樹脂予備発泡粒子の可塑化が進み、型内発泡成形時に、改質ポリスチレン系樹脂予備発泡粒子の二次発泡が大きくなり過ぎて、空隙部を有する発泡成形体を得ることができないので、改質ポリスチレン系樹脂予備発泡粒子中、0.3〜2.5重量%に限定され、0.5〜1.5重量%が好ましい。   In addition, if the amount of the remaining foaming agent in the modified polystyrene resin pre-expanded particles is small, the heat-fusible property of the resulting foamed molded article is lowered, whereas if it is large, the plasticization of the modified polystyrene resin pre-expanded particles is performed. Since the secondary foaming of the modified polystyrene resin pre-foamed particles becomes too large at the time of in-mold foam molding, a foam molded product having voids cannot be obtained. , 0.3 to 2.5% by weight, preferably 0.5 to 1.5% by weight.

ここで、改質ポリスチレン系樹脂予備発泡粒子中における残存発泡剤の含有量は次の方法で測定することができる。縦5mm×横5mm×深さ35mmの直方体形状の収納部を有する計量升を用いて改質ポリスチレン系樹脂予備発泡粒子を精秤し、この改質ポリスチレン系樹脂予備発泡粒子を島津製作所社製の熱分解炉PYR−1Aの分解炉入り口にセットし、15秒間ほどヘリウムでパージしてサンプルセット時の混入ガスを排出する。密閉後、試料を150℃の炉心に挿入し60秒間加熱してガスを放出させ、この放出ガスを島津製作所社製のガスクロマトグラフGC−14B(検出器:TCD)を用いて定量する。その測定条件は、カラムとしてジーエルサイエンス社製のポラパックQ(80/100)3mmφ×1.5mを用い、カラム温度(100℃)、キャリアーガス(ヘリウム)、キャリアーガス流量(1ミリリットル/分)、注入口温度(120℃)及び検出器温度(120℃)とする。   Here, the content of the remaining foaming agent in the modified polystyrene resin pre-expanded particles can be measured by the following method. The modified polystyrene resin pre-expanded particles are precisely weighed using a measuring basket having a rectangular parallelepiped storage portion of 5 mm in length × 5 mm in width × 35 mm in depth, and these modified polystyrene resin pre-expanded particles are manufactured by Shimadzu Corporation. It is set at the cracking furnace inlet of the pyrolysis furnace PYR-1A, purged with helium for about 15 seconds, and the mixed gas at the time of sample setting is discharged. After sealing, the sample is inserted into a 150 ° C. core and heated for 60 seconds to release gas, and this released gas is quantified using a gas chromatograph GC-14B (detector: TCD) manufactured by Shimadzu Corporation. The measurement conditions were as follows: Polapack Q (80/100) 3 mmφ × 1.5 m manufactured by GL Sciences, Inc., column temperature (100 ° C.), carrier gas (helium), carrier gas flow rate (1 ml / min), The inlet temperature (120 ° C) and the detector temperature (120 ° C) are used.

又、改質ポリスチレン系樹脂予備発泡粒子のL/Dは、小さいと、得られる発泡成形体の空隙率が低下し、発泡成形体の吸音性が低下することがある一方、大きいと、型内発泡成形時に、予備発泡粒子を型内に充填する際に充填性が低下することがあるので、2〜4が好ましい。   Further, when the L / D of the modified polystyrene resin pre-expanded particles is small, the porosity of the obtained foamed molded product may be lowered, and the sound absorption of the foamed molded product may be lowered. Since the filling property may be lowered when the pre-expanded particles are filled in the mold during foam molding, 2 to 4 is preferable.

なお、改質ポリスチレン系樹脂予備発泡粒子のL/Dは下記の要領で測定される。先ず、予備発泡粒子の最大長さL1を測定する。そして、最大長さL1を測定するにあたって特定された予備発泡粒子の表面の二点を結ぶ直線を想定し、この直線に対して直交する方向において、予備発泡粒子の最大長さL2を測定する。下記式に基づいて予備発泡粒子のL/Dを算出することができる。
予備発泡粒子のL/D=L1/L2
In addition, L / D of a modified polystyrene resin pre-expanded particle is measured in the following manner. First, the maximum length L 1 of the pre-expanded particles is measured. Then, assuming a straight line connecting two points on the surface of the pre-expanded particle specified in measuring the maximum length L 1 , the maximum length L 2 of the pre-expanded particle is measured in a direction orthogonal to the straight line. To do. L / D of the pre-expanded particles can be calculated based on the following formula.
The pre-expanded particles L / D = L 1 / L 2

上記改質ポリスチレン系樹脂予備発泡粒子を用いて型内発泡成形することによって吸音性改質ポリスチレン系樹脂発泡成形体を得ることができる。   A sound-absorbing modified polystyrene resin foam molded article can be obtained by in-mold foam molding using the modified polystyrene resin pre-expanded particles.

具体的には、改質ポリスチレン系樹脂予備発泡粒子を成形型内に充填して成形型内に水蒸気などの加熱媒体を供給することによって改質ポリスチレン系樹脂予備発泡粒子を加熱して発泡させ、発泡粒子の発泡圧によって発泡粒子同士を熱融着一体化させて、空隙部を有する吸音性改質ポリスチレン系樹脂発泡成形体を得ることができる。   Specifically, the modified polystyrene resin pre-foamed particles are filled in a mold and a heating medium such as water vapor is supplied into the mold to heat and expand the modified polystyrene resin pre-foamed particles. The foamed particles are thermally fused and integrated with each other by the foaming pressure of the foamed particles to obtain a sound-absorbing modified polystyrene-based resin foam-molded article having voids.

改質ポリスチレン系樹脂予備発泡粒子は、その吸光度比が0.1〜2.5に限定され、予備発泡粒子の表面部におけるポリオレフィン系樹脂とポリスチレン系樹脂との含有比率が最適化されており、型内発泡成形時において予備発泡粒子が収縮することなく充分な発泡圧で熱融着一体化する。   The modified polystyrene resin pre-expanded particles have an absorbance ratio limited to 0.1 to 2.5, and the content ratio of the polyolefin resin and the polystyrene resin in the surface portion of the pre-expanded particles is optimized, At the time of in-mold foam molding, the pre-foamed particles are thermally fused and integrated with a sufficient foaming pressure without shrinking.

しかも、改質ポリスチレン系樹脂予備発泡粒子は、ゲル分率が15〜50重量%で且つ残存発泡剤を予備発泡粒子の全量に対して0.3〜2.5重量%含有しているので、発泡粒子間に適度な空隙部を形成しながら発泡粒子同士が強固に熱融着一体化した吸音性改質ポリスチレン系樹脂発泡成形体を得ることができる。従って、得られる発泡成形体は、優れた吸音性と、曲げ強度などの機械的強度に優れている。   Moreover, the modified polystyrene resin pre-expanded particles have a gel fraction of 15 to 50% by weight and a residual foaming agent of 0.3 to 2.5% by weight based on the total amount of the pre-expanded particles. It is possible to obtain a sound-absorbing modified polystyrene resin foamed molded article in which foamed particles are firmly heat-sealed and integrated while forming appropriate voids between the foamed particles. Therefore, the obtained foamed molded article is excellent in excellent sound absorption and mechanical strength such as bending strength.

更に、型内発泡成形によって得られた発泡成形体を構成している発泡粒子は、その表面にポリオレフィン系樹脂が適度に含有されているので、得られる発泡成形体は、耐薬品性及び耐衝撃性にも優れている。   Furthermore, since the foamed particles constituting the foamed molded product obtained by in-mold foam molding contain a moderate amount of polyolefin resin on the surface, the resulting foamed molded product has chemical resistance and impact resistance. Also excellent in properties.

得られた発泡成形体の密度は、低いと、発泡成形体の機械的強度が低下する虞れがある一方、高いと、発泡成形体の軽量性が低下することがあるので、0.012〜0.20g/cm3が好ましく、0.017〜0.05g/cm3がより好ましい。 If the density of the obtained foamed molded product is low, the mechanical strength of the foamed molded product may be reduced. On the other hand, if the density is high, the lightweight property of the foamed molded product may be reduced. preferably 0.20g / cm 3, 0.017~0.05g / cm 3 is more preferable.

なお、発泡成形体の密度は、JIS K6767:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した。即ち、50cm3 以上(半硬質及び軟質材料の場合は100cm3 以上)の試験片を発泡成形体の元のセル構造を変えない様に切断し、その重量(g)及び体積(cm3)を測定し、次式により算出する。試験片は、成形後72時間以上経過した発泡成形体から切り取り、温度(23℃±2℃)×相対湿度(50%±5%)又は温度(27℃±2℃)×相対湿度(65%±5%)の雰囲気条件に16時間以上放置したものである。
密度(g/cm3)=試験片重量(g)/試験片体積(cm3
The density of the foamed molded product was measured by the method described in JIS K6767: 1999 “Foamed Plastics and Rubber—Measurement of Apparent Density”. That is, a test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) is cut so as not to change the original cell structure of the foamed molded product, and its weight (g) and volume (cm 3 ) are cut. Measure and calculate by the following formula. The test piece was cut out from a foamed molded article that had passed 72 hours or more after molding, and the temperature (23 ° C. ± 2 ° C.) × relative humidity (50% ± 5%) or temperature (27 ° C. ± 2 ° C.) × relative humidity (65%). (± 5%) at room temperature for 16 hours or more.
Density (g / cm 3 ) = Test specimen weight (g) / Test specimen volume (cm 3 )

又、得られた発泡成形体の空隙率は、小さいと、発泡成形体の吸音性が低下することがある一方、大きいと、発泡成形体の曲げ強度などの機械的強度が低下することがあるので、5〜50%が好ましく、10〜20%がより好ましい。   Further, when the porosity of the obtained foamed molded product is small, the sound absorbing property of the foamed molded product may be lowered. On the other hand, when the porosity is large, mechanical strength such as bending strength of the foamed molded product may be lowered. Therefore, 5 to 50% is preferable, and 10 to 20% is more preferable.

なお、発泡成形体の空隙率は、ASTM D2856−87に記載の測定方法に準拠して測定した。具体的には、六面とも成形面などの表皮を有しない切断面で構成された試験片(一辺25mmの立方体)を発泡成形体より5個切出し、ノギスを用いて試験片の見掛け体積W4を測定する。次に、空気比較式比重計を用いて1−1/2−1気圧法により試験片の体積W5を測定し、下記式に基づいて発泡成形体の空隙率を算出することができる。なお、空気比較式比重計は、東京サイエンス社から商品名「1000型」にて市販されているものを使用することができる。
発泡成形体の空隙率(%)=100×(W4−W5)/W4
In addition, the porosity of the foamed molded product was measured according to the measuring method described in ASTM D2856-87. Specifically, five test pieces (cubes each having a side of 25 mm) composed of cut surfaces having no skin such as molding surfaces on all six surfaces were cut out from the foamed molded product, and the apparent volume W 4 of the test pieces was measured using calipers. Measure. Next, the volume W 5 of the test piece is measured by the 1-1 / 2-1 atmospheric pressure method using an air comparison type hydrometer, and the porosity of the foamed molded product can be calculated based on the following formula. In addition, the air comparison type hydrometer can use what is marketed by Tokyo Science company by the brand name "1000 type | mold".
Porosity (%) of foam molded article = 100 × (W 4 −W 5 ) / W 4

そして、得られた発泡成形体の曲げ撓み量は、小さいと、発泡成形体の圧縮強度が低下することがある一方、大きいと、曲げ強度が低下することがあるので、10〜30mmが好ましい。   And when the bending bending amount of the obtained foaming molding is small, the compressive strength of the foaming molding may be lowered, whereas when it is large, the bending strength may be lowered, so 10 to 30 mm is preferable.

なお、発泡成形体の曲げ撓み量は、JIS K9511:1999「発泡プラスチック保温材」に記載の方法に準拠して測定したものである。即ち、発泡成形体から縦75mm×横300mm×高さ15mmの直方体形状の試験片を切り出し、この試験片の曲げ撓み量をテンシロン万能試験機を用いて圧縮速度10mm/分、先端冶具の加圧くさび10R、支持台10R、支点間距離200mmの条件下にて測定する。テンシロン万能試験機としては、オリエンテック社から商品名「UCT―10T」にて市販されているものを用いることができる。   In addition, the bending deflection amount of the foamed molded product is measured in accordance with the method described in JIS K9511: 1999 “Foamed plastic heat insulating material”. That is, a rectangular parallelepiped test piece having a length of 75 mm, a width of 300 mm, and a height of 15 mm was cut out from the foamed molded product, and the bending deflection amount of the test piece was measured at a compression speed of 10 mm / min using a Tensilon universal testing machine, Measurement is performed under the conditions of a wedge 10R, a support 10R, and a distance between supporting points of 200 mm. As a Tensilon universal testing machine, what is marketed under the brand name "UCT-10T" from Orientec can be used.

上述のようにして得られた発泡成形体は、種々の用途に使用できるが、特に、空隙部を有し吸音性に優れていると共に、断熱性、軽量性及び機械的強度にも優れ、自動車内装材のような工業部材や建築資材などに好適に使用することができる。   The foamed molded article obtained as described above can be used for various applications, and in particular, has an air gap and is excellent in sound absorption, as well as heat insulation, light weight and mechanical strength. It can be suitably used for industrial members such as interior materials and building materials.

本発明の改質ポリスチレン系樹脂予備発泡粒子は、上述の如き構成を有しているので、型内発泡成形時において、適度な空隙部を形成しながら、適度な発泡力でもって強固に熱融着一体化し、よって、得られる発泡成形体は、優れた吸音性、曲げ強度及び耐衝撃性などの機械的強度、及び、耐薬品性を有している。   Since the modified polystyrene resin pre-expanded particles of the present invention have the above-described configuration, they are strongly heat-fused with an appropriate foaming force while forming an appropriate gap during in-mold foam molding. The foamed molded product thus obtained has excellent sound absorption, mechanical strength such as bending strength and impact resistance, and chemical resistance.

そして、改質ポリスチレン系樹脂予備発泡粒子において、L/Dが2〜4である場合には、この改質ポリスチレン系樹脂予備発泡粒子を用いて得られる発泡成形体は、適度な空隙率を有しながら発泡粒子同士が強固に熱融着一体化しており、優れた吸音性及び機械的強度を有している。   When the L / D is 2 to 4 in the modified polystyrene resin pre-expanded particles, the foamed molded product obtained using the modified polystyrene resin pre-expanded particles has an appropriate porosity. However, the foamed particles are strongly heat-bonded and integrated with each other, and have excellent sound absorption and mechanical strength.

(実施例1)
高密度ポリエチレン(東ソー社製、製造方法は下記に記載した。)100重量部を押出機に供給し溶融混練して直径0.6mmのストランド状に押出し、このストランドを2.3mm毎に切断して円柱状の高密度ポリエチレン粒子を得た。
Example 1
100 parts by weight of high-density polyethylene (manufactured by Tosoh Corporation, manufacturing method described below) is supplied to an extruder, melt-kneaded, extruded into a 0.6 mm diameter strand, and this strand is cut every 2.3 mm. As a result, cylindrical high-density polyethylene particles were obtained.

高密度ポリエチレン粒子の平均重量は0.6mgであった。なお、高密度ポリエチレン粒子の平均重量は、100個の高密度ポリエチレン粒子を任意に抽出し、これら高密度ポリエチレン粒子の重量の相加平均値である。   The average weight of the high density polyethylene particles was 0.6 mg. Note that the average weight of the high-density polyethylene particles is an arithmetic average value of the weights of 100 high-density polyethylene particles arbitrarily extracted.

次に、攪拌機付の5リットルのオートクレーブに、ピロリン酸マグネシウム120g、ドデシルベンゼンスルホン酸ナトリウム3.0g及び純水2.3kgを供給し攪拌して分散液を得た。   Next, 120 g of magnesium pyrophosphate, 3.0 g of sodium dodecylbenzenesulfonate, and 2.3 kg of pure water were supplied to a 5 liter autoclave equipped with a stirrer and stirred to obtain a dispersion.

分散液を30℃に加熱した上で、分散液中に高密度ポリエチレン粒子500gを分散させて10分間保持した後に60℃に加熱して懸濁液を得た。   The dispersion was heated to 30 ° C., 500 g of high-density polyethylene particles were dispersed in the dispersion and held for 10 minutes, and then heated to 60 ° C. to obtain a suspension.

次に、懸濁液の温度を110℃に上げた上で、懸濁液中に、t−ブチルパーオキシイソプロピルモノカルボネートを5.6g溶解させたスチレンモノマー1.20kgを6時間かけて滴下した。滴下後、110℃で1時間30分保持することで、高密度ポリエチレン粒子中にスチレンモノマーを含浸させた。含浸後、懸濁液を140℃に昇温し、この温度で2時間30分に亘って保持して重合させて、改質ポリスチレン系樹脂粒子を得た。高密度ポリエチレン粒子にスチレンモノマーが全量含浸されていた。   Next, after raising the temperature of the suspension to 110 ° C., 1.20 kg of styrene monomer in which 5.6 g of t-butylperoxyisopropyl monocarbonate was dissolved in the suspension was dropped over 6 hours. did. After dropping, the high-density polyethylene particles were impregnated with styrene monomer by holding at 110 ° C. for 1 hour and 30 minutes. After impregnation, the suspension was heated to 140 ° C. and held at this temperature for 2 hours and 30 minutes for polymerization to obtain modified polystyrene resin particles. The high density polyethylene particles were impregnated with the entire amount of styrene monomer.

続いて、懸濁液を常温(約23℃)まで冷却し、オートクレーブから改質ポリスチレン系樹脂粒子を取り出した。改質ポリスチレン系樹脂粒子1.7kgと水2.3リットルとを、別の5リットルの攪拌機付オートクレーブに入れ、更にピロリン酸マグネシウム90g、ドデシルベンゼンスルホン酸ナトリウム1g、架橋剤としてジクミルパーオキサイド15g(高密度ポリエチレン粒子100重量部に対して3.0重量部)をオートクレーブ内に供給した。   Subsequently, the suspension was cooled to room temperature (about 23 ° C.), and the modified polystyrene resin particles were taken out from the autoclave. 1.7 kg of modified polystyrene resin particles and 2.3 liters of water are placed in another 5 liter autoclave with a stirrer, and further 90 g of magnesium pyrophosphate, 1 g of sodium dodecylbenzenesulfonate, and 15 g of dicumyl peroxide as a cross-linking agent. (3.0 parts by weight with respect to 100 parts by weight of the high-density polyethylene particles) was fed into the autoclave.

しかる後、オートクレーブ内を143℃に昇温して2時間30分に亘って攪拌を続けることにより、改質ポリスチレン系樹脂粒子のゲル分率を調整した。   Thereafter, the inside of the autoclave was heated to 143 ° C., and stirring was continued for 2 hours and 30 minutes to adjust the gel fraction of the modified polystyrene resin particles.

続いて、懸濁液を常温(約23℃)まで冷却し、オートクレーブから改質ポリスチレン系樹脂粒子を取り出した。改質ポリスチレン系樹脂粒子1.7kgと水2.3リットルとを、別の5リットルの攪拌機付オートクレーブに入れ、更に、分散剤としてドデシルベンゼンスルホン酸ナトリウム2g、可塑剤としてシクロヘキサン26g、発泡剤としてブタン〔ノルマルブタン/イソブタン(重量比)=70/30〕255g(改質ポリスチレン系樹脂粒子100重量部に対して15重量部)をオートクレーブ内に供給した。   Subsequently, the suspension was cooled to room temperature (about 23 ° C.), and the modified polystyrene resin particles were taken out from the autoclave. 1.7 kg of modified polystyrene resin particles and 2.3 liters of water are placed in another 5 liter autoclave with a stirrer, and further 2 g of sodium dodecylbenzenesulfonate as a dispersant, 26 g of cyclohexane as a plasticizer, and as a foaming agent 255 g of butane [normal butane / isobutane (weight ratio) = 70/30] (15 parts by weight with respect to 100 parts by weight of the modified polystyrene resin particles) was supplied into the autoclave.

しかる後、オートクレーブ内を70℃に昇温して4時間に亘って攪拌を続けることによって、改質ポリスチレン系樹脂粒子にブタンを含浸させて発泡性樹脂粒子を得た。次に、オートクレーブ内を常温まで冷却して、発泡性樹脂粒子をオートクレーブから取り出し、発泡性樹脂粒子を脱水、乾燥させた。   Thereafter, the temperature inside the autoclave was raised to 70 ° C. and stirring was continued for 4 hours, whereby the modified polystyrene resin particles were impregnated with butane to obtain expandable resin particles. Next, the inside of the autoclave was cooled to room temperature, the expandable resin particles were taken out from the autoclave, and the expandable resin particles were dehydrated and dried.

次に、得られた発泡性樹脂粒子を予備発泡装置に供給して予備発泡させて、嵩密度が0.033g/cmの改質ポリスチレン系樹脂予備発泡粒子を得た。得られた予備発泡粒子を60℃にて6日間に亘って放置した。改質ポリスチレン系樹脂予備発泡粒子中の残存ブタン量は、1.2重量%であった。 Next, the obtained expandable resin particles were supplied to a prefoaming device and prefoamed to obtain modified polystyrene resin prefoamed particles having a bulk density of 0.033 g / cm 3 . The obtained pre-expanded particles were left at 60 ° C. for 6 days. The amount of residual butane in the modified polystyrene resin pre-expanded particles was 1.2% by weight.

そして、改質ポリスチレン系樹脂予備発泡粒子を縦400mm×横300mm×高さ30mmの直方体形状の成形金型に充填した。次に、成形金型内に0.12MPaの水蒸気を50秒間に亘って導入して加熱して予備発泡粒子を二次発泡させた後、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することによって、密度0.033g/cmの発泡成形体を得た。得られた発泡成形体の外観及び発泡粒子同士の熱融着は共に良好であった。 Then, the modified polystyrene resin pre-expanded particles were filled in a rectangular parallelepiped molding die having a length of 400 mm, a width of 300 mm, and a height of 30 mm. Next, after introducing 0.12 MPa of water vapor into the molding die for 50 seconds and heating to pre-expand the secondary foamed particles, the maximum surface pressure of the foamed molded product is reduced to 0.01 MPa. To obtain a foamed molded product having a density of 0.033 g / cm 3 . Both the appearance of the obtained foamed molded product and the thermal fusion between the foamed particles were good.

上記で用いた高密度ポリエチレンの製造方法を以下に説明する。なお、以下の製造は、不活性ガス雰囲気下で行い、使用した原料や溶媒は、公知の方法で、予め精製、乾燥、脱酸素したものを用いた。成分a及び成分cは公知の方法により合成したものを使用した。トリイソブチルアルミニウムのヘキサン溶液(0.714M)は、東ソーファインケム社から市販されているものを用いた。   The manufacturing method of the high density polyethylene used above is demonstrated below. In addition, the following manufacture was performed in inert gas atmosphere, and the used raw material and solvent used what was refine | purified previously, dried, and deoxygenated by the well-known method. As component a and component c, those synthesized by a known method were used. As the hexane solution (0.714M) of triisobutylaluminum, one commercially available from Tosoh Finechem Co., Ltd. was used.

[有機化合物で処理された粘土鉱物(成分b)の調整]
水3リットルに、エタノール3リットルと37重量%濃塩酸250リットルとを加えた。得られた溶液に、N,N‐ジメチル‐オクタデシルアミン330g(1.1mol)を添加した後、溶液を60℃に加熱した。この加熱により、上記アミンが塩酸塩化された。得られた溶液にヘクトライトを1kg加えて懸濁液を得た。この懸濁液を60℃で3時間に亘って攪拌した上で上澄み液を除去した後、60℃の水5リットルで変性ヘクトライトを洗浄した。更に、60℃、10−3torr(約0.13Pa)で24時間に亘って変性ヘクトライトを乾燥させた上でジェットミルで粉砕することにより、平均粒径4.5μmの変性ヘクトライト(成分b)を得た。
[Preparation of clay mineral (component b) treated with organic compound]
To 3 liters of water, 3 liters of ethanol and 250 liters of 37 wt% concentrated hydrochloric acid were added. After adding 330 g (1.1 mol) of N, N-dimethyl-octadecylamine to the resulting solution, the solution was heated to 60 ° C. By this heating, the amine was converted into hydrochloric acid. 1 kg of hectorite was added to the resulting solution to obtain a suspension. The suspension was stirred at 60 ° C. for 3 hours, and the supernatant was removed. The denatured hectorite was washed with 5 liters of water at 60 ° C. Further, the modified hectorite (component) having an average particle size of 4.5 μm was obtained by drying the modified hectorite at 60 ° C. and 10 −3 torr (about 0.13 Pa) for 24 hours and then pulverizing with a jet mill. b) was obtained.

[マクロモノマー製造触媒の調整]
ジメチルシランジイルビス(シクロペンタジエニル)ジルコニムジクロリド(成分a)6.97g(20mmol)をヘキサン2.07リットルに懸濁させた。得られた懸濁液に、トリイソブチルアルミニウムのヘキサン溶液(0.714M)2.93リットルを添加することで、成分aとトリイソブチルアルミニウムとの接触生成物を得た。この接触生成物を含む溶液に、上記変性ヘクトライト(成分b)を500g添加した。得られた溶液を60℃で3時間に亘って攪拌した後、静置した上で上澄液を除し、残存物をトリイソブチルアルミニウムのヘプタン溶液(0.03M)で洗浄した。更に、洗浄物に、トリエチルアルミニウムのヘキサン溶液(0.15M)を添加して触媒スラリー(100g/リットル)を得た。
[Adjustment of macromonomer production catalyst]
6.97 g (20 mmol) of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride (component a) was suspended in 2.07 liters of hexane. A contact product of component a and triisobutylaluminum was obtained by adding 2.93 liters of a hexane solution (0.714M) of triisobutylaluminum to the obtained suspension. 500 g of the modified hectorite (component b) was added to the solution containing the contact product. The resulting solution was stirred at 60 ° C. for 3 hours, allowed to stand, the supernatant was removed, and the residue was washed with a triisobutylaluminum heptane solution (0.03M). Further, a hexane solution (0.15 M) of triethylaluminum was added to the washed product to obtain a catalyst slurry (100 g / liter).

[マクロモノマーの製造]
50リットルのオートクレーブに、ヘキサン30リットルと、ブテン−1を290gと、トリイソブチルアルミニウムのヘキサン溶液(0.714mol/リットル)25ミリリットルとを供給した後、オートクレーブ内を75℃に昇温した。このオートクレーブに、上記触媒スラリーを125ミリリットル添加し、水素/エチレン混合ガス(0.65mmol/1mol)をエチレンの分圧が1.2MPaになるまで供給した後、90℃に加熱して重合を開始した。重合中、エチレンの分圧が1.2MPaに保たれるように水素/エチレン混合ガスを連続的に導入した。
[Manufacture of macromonomer]
After supplying 30 liters of hexane, 290 g of butene-1 and 25 milliliters of a hexane solution of triisobutylaluminum (0.714 mol / liter) to a 50 liter autoclave, the temperature inside the autoclave was raised to 75 ° C. 125 ml of the catalyst slurry was added to the autoclave, and a hydrogen / ethylene mixed gas (0.65 mmol / 1 mol) was supplied until the ethylene partial pressure reached 1.2 MPa, followed by heating to 90 ° C. to initiate polymerization. did. During the polymerization, a hydrogen / ethylene mixed gas was continuously introduced so that the partial pressure of ethylene was maintained at 1.2 MPa.

重合開始90分後にオートクレーブ内を50℃まで降温し、オートクレーブ内を0.1MPaまで減圧した後、オートクレーブの内圧が0.6MPaになるまで窒素を圧入した。この操作を5回繰り返すことでマクロモノマーを得た。マクロモノマーは、その数平均分子量Mnが8000、重量平均分子量Mw/数平均分子量Mnが2.1であった。NMRによりマクロモノマーの末端構造を解析したところ、Zは0.70であった。   After 90 minutes from the start of the polymerization, the temperature inside the autoclave was lowered to 50 ° C., the pressure inside the autoclave was reduced to 0.1 MPa, and then nitrogen was injected until the internal pressure of the autoclave reached 0.6 MPa. This operation was repeated 5 times to obtain a macromonomer. The number average molecular weight Mn of the macromonomer was 8000, and the weight average molecular weight Mw / number average molecular weight Mn was 2.1. When the terminal structure of the macromonomer was analyzed by NMR, Z was 0.70.

[ポリオレフィン系樹脂の製造]
上記マクロモノマーを含む50リットルのオートクレーブに、更に、トリイソブチルアルミニウムのヘキサン溶液(0.714mmol/リットル)25ミリリットルを供給した後、オートクレーブ内を85℃に上げた。この温度を保持しながら、30分間攪拌した後、オートクレーブ内に、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−tert−ブチル−9−フルオレニル)ジルコニウムジクロリド(成分c)0.25mmolのトルエン溶液0.5リットルを添加した。添加後、温度を85℃に保持しながら1時間に亘って攪拌した。
[Manufacture of polyolefin resin]
Further, 25 ml of a hexane solution (0.714 mmol / liter) of triisobutylaluminum was supplied to a 50 liter autoclave containing the macromonomer, and then the inside of the autoclave was raised to 85 ° C. After stirring for 30 minutes while maintaining this temperature, diphenylmethylene (1-cyclopentadienyl) (2,7-di-tert-butyl-9-fluorenyl) zirconium dichloride (component c) 0. 0.5 liter of 25 mmol toluene solution was added. After the addition, the mixture was stirred for 1 hour while maintaining the temperature at 85 ° C.

次に、オートクレーブ内にブテン−1を25g添加すると共に、水素/エチレン混合ガス(0.65mmol/1mol)をエチレンの分圧が0.1MPaになるまで導入して重合を開始した。重合中、エチレンの分圧が0.1MPaに保たれるように水素/エチレン混合ガスを連続的に導入した。重合温度は85℃に維持した。重合開始から180分後に、オートクレーブ内を減圧し、内容物を吸引ろ過して取り出し乾燥させて4.2kgの高密度ポリエチレンを得た。   Next, 25 g of butene-1 was added into the autoclave, and a hydrogen / ethylene mixed gas (0.65 mmol / 1 mol) was introduced until the ethylene partial pressure reached 0.1 MPa to initiate polymerization. During the polymerization, a hydrogen / ethylene mixed gas was continuously introduced so that the partial pressure of ethylene was maintained at 0.1 MPa. The polymerization temperature was maintained at 85 ° C. 180 minutes after the start of the polymerization, the inside of the autoclave was decompressed, and the contents were suction filtered and dried to obtain 4.2 kg of high density polyethylene.

得られた高密度ポリエチレンの重量平均分子量Mwは88000であり、重量平均分子量Mw/数平均分子量Mnは5.0であり、全樹脂量に対する新たに生成した樹脂量の割合は、23重量%であった。又、得られた高密度ポリエチレンは、そのメルトフローレイト(MFR)が8.0g/10分、密度が0.944g/cm3、結晶化度が62%、溶融張力が33mN、110−100×logMFRが20mN、収縮因子が0.90g’値であった。 The obtained high-density polyethylene has a weight average molecular weight Mw of 88000, a weight average molecular weight Mw / number average molecular weight Mn of 5.0, and the ratio of the newly generated resin amount to the total resin amount is 23% by weight. there were. The obtained high-density polyethylene has a melt flow rate (MFR) of 8.0 g / 10 min, a density of 0.944 g / cm 3 , a crystallinity of 62%, a melt tension of 33 mN, and 110-100 ×. The log MFR was 20 mN, and the contraction factor was 0.90 g ′.

(実施例2〜5)
改質ポリスチレン系樹脂予備発泡粒子のゲル分率及び残存ブタンガス量が表1に示した値であること以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。
(Examples 2 to 5)
Except that the gel fraction of the modified polystyrene resin pre-expanded particles and the amount of residual butane gas are the values shown in Table 1, in-mold foam molding was performed in the same manner as in Example 1 to obtain a foam molded article. .

又、ゲル分率は、架橋剤であるジクミルパーオキサイドの添加量(高密度ポリエチレン粒子100重量部に対する添加量)で調整し、残存ブタンガス量は、発泡剤であるブタン〔ノルマルブタン/イソブタン(重量比)=70/30〕の添加量(改質ポリスチレン系樹脂粒子100重量部に対する添加量)で調整した。それぞれの添加量を重量部で表1に示した。   The gel fraction is adjusted by the addition amount of dicumyl peroxide as a crosslinking agent (addition amount with respect to 100 parts by weight of the high-density polyethylene particles), and the residual butane gas amount is adjusted by adding butane [normal butane / isobutane ( Weight ratio) = 70/30] (addition amount with respect to 100 parts by weight of the modified polystyrene resin particles). The amount of each added is shown in Table 1 in parts by weight.

(実施例6)
ストランドを1.2mm毎に切断して円柱状の高密度ポリエチレン粒子を作製し、改質ポリスチレン系樹脂予備発泡粒子のL/Dを1に調整したこと以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。
(Example 6)
The strand was cut every 1.2 mm to produce cylindrical high-density polyethylene particles, and the same procedure as in Example 1 was performed except that the L / D of the modified polystyrene resin pre-foamed particles was adjusted to 1. In-mold foam molding was performed to obtain a foam molded article.

(実施例7)
改質ポリスチレン系樹脂粒子を構成している改質ポリスチレン系樹脂中のポリスチレン量が高密度ポリエチレン100重量部に対して150重量部であること以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。
(Example 7)
In-mold foaming in the same manner as in Example 1 except that the amount of polystyrene in the modified polystyrene resin constituting the modified polystyrene resin particles is 150 parts by weight with respect to 100 parts by weight of high-density polyethylene. Molding was performed to obtain a foamed molded body.

(実施例8)
押出機に高密度ポリエチレンを供給する代わりにエチレン−酢酸ビニル共重合体を供給したこと、成形用金型に0.08MPaの水蒸気を50秒間導入して型内発泡成形したこと以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。なお、表1において、改質ポリスチレン系樹脂中における「エチレン−酢酸ビニル共重合体」の量は、便宜上、「高密度ポリエチレン」の欄に記載した。
(Example 8)
Example except that ethylene-vinyl acetate copolymer was supplied instead of supplying high-density polyethylene to the extruder, and 0.08 MPa water vapor was introduced into the molding die for 50 seconds to perform in-mold foam molding. In-mold foam molding was performed in the same manner as 1 to obtain a foam molded body. In Table 1, the amount of “ethylene-vinyl acetate copolymer” in the modified polystyrene resin is shown in the column of “High density polyethylene” for convenience.

(実施例9)
ストランドを2.8mm毎に切断して円柱状の高密度ポリエチレン粒子を作製し、改質ポリスチレン系樹脂予備発泡粒子のL/Dを4に調整したこと以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。
Example 9
The strand was cut every 2.8 mm to produce cylindrical high-density polyethylene particles, and the L / D of the modified polystyrene resin pre-expanded particles was adjusted to 4 in the same manner as in Example 1. In-mold foam molding was performed to obtain a foam molded article.

(比較例1)
改質ポリスチレン系樹脂予備発泡粒子のゲル分率が3.8重量%であること以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。発泡成形体は、その空隙率が低いために吸音性に劣るものであった。
(Comparative Example 1)
In-mold foam molding was performed in the same manner as in Example 1 except that the gel fraction of the modified polystyrene resin pre-expanded particles was 3.8% by weight to obtain a foam molded article. The foamed molded article was inferior in sound absorption due to its low porosity.

(比較例2)
改質ポリスチレン系樹脂予備発泡粒子のゲル分率が55.0重量%であること以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。予備発泡粒子の表面の架橋度が高いために、予備発泡粒子を発泡させて得られる発泡粒子同士の熱融着性が低下し、曲げ撓み量の劣った発泡成形品しか得られなかった。
(Comparative Example 2)
In-mold foam molding was performed in the same manner as in Example 1 except that the gel fraction of the modified polystyrene resin pre-expanded particles was 55.0% by weight to obtain a foam molded article. Since the degree of cross-linking of the surface of the pre-foamed particles is high, the heat-fusability between the foam particles obtained by foaming the pre-foamed particles is lowered, and only a foam-molded product having an inferior bending deflection can be obtained.

(比較例3)
改質ポリスチレン系樹脂予備発泡粒子の残存ブタン量が0.2重量%としたこと以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。予備発泡粒子中の残存ブタン量が低いために、型内発泡成形において予備発泡粒子の二次発泡が殆ど起こらず、予備発泡粒子を発泡させて得られる発泡粒子同士の熱融着性が悪く、曲げ撓み量の劣った発泡成形品しか得られなかった。
(Comparative Example 3)
In-mold foam molding was performed in the same manner as in Example 1 except that the amount of residual butane in the modified polystyrene resin pre-expanded particles was 0.2% by weight to obtain a foam molded article. Since the amount of residual butane in the pre-foamed particles is low, secondary foaming of the pre-foamed particles hardly occurs in the in-mold foam molding, and the heat-fusibility between the foamed particles obtained by foaming the pre-foamed particles is poor, Only foam-molded products with inferior bending deflection were obtained.

(比較例4)
改質ポリスチレン系樹脂予備発泡粒子の残存ブタン量が3.0重量%としたこと以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。予備発泡粒子中の残存ブタン量が高いために、予備発泡粒子の発泡が必要以上に生じてしまい、空隙率の低い発泡成形体しか得られず、得られた発泡成形体は吸音性に劣るものであった。
(Comparative Example 4)
In-mold foam molding was performed in the same manner as in Example 1 except that the amount of residual butane in the modified polystyrene resin pre-expanded particles was 3.0% by weight to obtain a foam molded article. Since the amount of residual butane in the pre-foamed particles is high, foaming of the pre-foamed particles occurs more than necessary, and only a foam molded product with a low porosity can be obtained, and the obtained foam molded product has poor sound absorption Met.

(比較例5)
改質ポリスチレン系樹脂粒子を構成している改質ポリスチレン系樹脂中のポリスチレン量が高密度ポリエチレン100重量部に対して50重量部であること以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得ようとしたが、予備発泡粒子が発泡せず、発泡成形体を得ることができなかった。
(Comparative Example 5)
In-mold foaming in the same manner as in Example 1 except that the amount of polystyrene in the modified polystyrene resin constituting the modified polystyrene resin particles is 50 parts by weight with respect to 100 parts by weight of high-density polyethylene. An attempt was made to obtain a foam molded article by molding, but the pre-foamed particles did not foam, and a foam molded article could not be obtained.

(比較例6)
改質ポリスチレン系樹脂粒子を構成している改質ポリスチレン系樹脂中のポリスチレン量が高密度ポリエチレン100重量部に対して650重量部であること以外は、実施例1と同様の要領で型内発泡成形を行って発泡成型体を得た。予備発泡粒子を構成している改質ポリスチレン系樹脂中のポリスチレン量が高いために、予備発泡粒子の発泡が必要以上に生じてしまい、空隙率の低い発泡成形体しか得られず、得られた発泡成形体は吸音性に劣るものであった。
(Comparative Example 6)
In-mold foaming in the same manner as in Example 1, except that the amount of polystyrene in the modified polystyrene resin constituting the modified polystyrene resin particles is 650 parts by weight with respect to 100 parts by weight of high-density polyethylene. Molding was performed to obtain a foamed molded body. Since the amount of polystyrene in the modified polystyrene resin constituting the pre-expanded particles is high, the expansion of the pre-expanded particles occurs more than necessary, and only a foamed molded article having a low porosity can be obtained. The foamed molded product was inferior in sound absorption.

得られた改質ポリスチレン系樹脂粒子の吸光度比(D698/D2850)及びゲル分率、並びに、改質ポリスチレン系樹脂予備発泡粒子の残存ブタン量及び嵩密度を測定し、その結果を表1に示した。更に、得られた発泡成形体の密度、曲げ撓み量、空隙率及び吸音率を測定し、その結果を表1に示した。 The absorbance ratio (D 698 / D 2850 ) and gel fraction of the resulting modified polystyrene resin particles and the residual butane amount and bulk density of the modified polystyrene resin pre-expanded particles were measured, and the results are shown in Table 1. It was shown to. Furthermore, the density, bending deflection amount, porosity and sound absorption coefficient of the obtained foamed molded article were measured, and the results are shown in Table 1.

(吸音率)
発泡成形体の吸音率をJIS A1405:1998「音響−インピーダンス管による吸音率及びインピーダンスの測定−定在波比法」に記載の方法に準拠して測定した。具体的には、電子測器社製の垂直入射吸音率測定器TYPE10041(フプローブチューブマイクロホン)を用いて0〜6kHzの吸音率を測定した。表1に1kHzでの吸音率の値を示した。なお、試料は30mm厚とし、試料ホルダーの背面板に密着させて測定した。
(Sound absorption rate)
The sound absorption coefficient of the foamed molded article was measured in accordance with the method described in JIS A1405: 1998 “Acoustics—Measurement of sound absorption coefficient and impedance by impedance tube—standing wave ratio method”. Specifically, the sound absorption coefficient of 0 to 6 kHz was measured using a vertical incident sound absorption coefficient measuring device TYPE10041 (Frobe Probe Microphone) manufactured by Electronic Instruments. Table 1 shows the value of the sound absorption coefficient at 1 kHz. The sample was 30 mm thick, and was measured by being in close contact with the back plate of the sample holder.

Figure 2009203417
Figure 2009203417

Claims (3)

ポリオレフィン系樹脂粒子にスチレン系単量体を含浸、重合させて得られ且つポリオレフィン系樹脂100重量部に対してポリスチレン系樹脂100〜500重量部を含有する改質ポリスチレン系樹脂を含有し、ATR法赤外分光分析により測定された粒子表面の赤外線吸収スペクトルから得られる698cm-1における吸光度D698と2850cm-1における吸光度D2850との比(D698/D2850)が0.1〜2.5であると共に、ゲル分率が15〜50重量%である改質ポリスチレン系樹脂粒子に炭化水素系発泡剤を含浸させた上で予備発泡させてなり、残存発泡剤を0.3〜2.5重量%含有し且つ嵩密度が0.012〜0.20g/cm3であることを特徴とする改質ポリスチレン系樹脂予備発泡粒子。 A modified polystyrene resin obtained by impregnating and polymerizing polyolefin resin particles with a styrene monomer and containing 100 to 500 parts by weight of a polystyrene resin with respect to 100 parts by weight of the polyolefin resin. The ratio (D 698 / D 2850 ) of absorbance D 698 at 698 cm −1 and absorbance D 2850 at 2850 cm −1 obtained from the infrared absorption spectrum of the particle surface measured by infrared spectroscopy is 0.1 to 2.5. In addition, the modified polystyrene resin particles having a gel fraction of 15 to 50% by weight are impregnated with a hydrocarbon foaming agent and pre-foamed, and the remaining foaming agent is 0.3 to 2.5. Modified polystyrene-based resin pre-expanded particles having a weight percentage and a bulk density of 0.012 to 0.20 g / cm 3 . L/Dが2〜4であることを特徴とする改質ポリスチレン系樹脂予備発泡粒子。 Modified polystyrene resin pre-expanded particles, wherein L / D is 2-4. 請求項1又は請求項2に記載の改質ポリスチレン系樹脂予備発泡粒子を成形型内に充填して発泡成形してなり、密度が0.012〜0.20g/cm3、空隙率が5〜50%及び曲げ撓み量が10〜30mmであることを特徴とする吸音性改質ポリスチレン系樹脂発泡成形体。 The modified polystyrene resin pre-expanded particles according to claim 1 or 2 are filled in a mold and subjected to foam molding, and the density is 0.012 to 0.20 g / cm 3 and the porosity is 5 to 5. A sound-absorbing modified polystyrene-based resin foam-molded article having 50% and a bending deflection of 10 to 30 mm.
JP2008049512A 2008-02-29 2008-02-29 Modified polystyrene resin pre-expanded particles and sound-absorbing modified polystyrene resin foam molding. Expired - Fee Related JP5032366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049512A JP5032366B2 (en) 2008-02-29 2008-02-29 Modified polystyrene resin pre-expanded particles and sound-absorbing modified polystyrene resin foam molding.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049512A JP5032366B2 (en) 2008-02-29 2008-02-29 Modified polystyrene resin pre-expanded particles and sound-absorbing modified polystyrene resin foam molding.

Publications (2)

Publication Number Publication Date
JP2009203417A true JP2009203417A (en) 2009-09-10
JP5032366B2 JP5032366B2 (en) 2012-09-26

Family

ID=41145997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049512A Expired - Fee Related JP5032366B2 (en) 2008-02-29 2008-02-29 Modified polystyrene resin pre-expanded particles and sound-absorbing modified polystyrene resin foam molding.

Country Status (1)

Country Link
JP (1) JP5032366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081490A1 (en) * 2010-12-15 2012-06-21 株式会社ジェイエスピー Process for producing molded body of expanded polyolefin resin particles, and molded body of expanded polyolefin resin particles
JP2013006966A (en) * 2011-06-24 2013-01-10 Sekisui Plastics Co Ltd Composite resin particle, foamable composite resin particle, pre-foamed particle, and foamed molded product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088456A (en) * 2004-09-22 2006-04-06 Sekisui Plastics Co Ltd Foamed molded product having voids
JP2008260928A (en) * 2007-03-20 2008-10-30 Kaneka Corp Method for producing styrene modified polyethylene based resin pre-expansion particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088456A (en) * 2004-09-22 2006-04-06 Sekisui Plastics Co Ltd Foamed molded product having voids
JP2008260928A (en) * 2007-03-20 2008-10-30 Kaneka Corp Method for producing styrene modified polyethylene based resin pre-expansion particle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081490A1 (en) * 2010-12-15 2012-06-21 株式会社ジェイエスピー Process for producing molded body of expanded polyolefin resin particles, and molded body of expanded polyolefin resin particles
JP2012126816A (en) * 2010-12-15 2012-07-05 Jsp Corp Method for producing molded body of expanded polyolefin resin particle, and molded body of expanded polyolefin resin particle
CN103249537A (en) * 2010-12-15 2013-08-14 株式会社Jsp Process for producing molded body of expanded polyolefin resin particles, and molded body of expanded polyolefin resin particles
US20130266792A1 (en) * 2010-12-15 2013-10-10 Jsp Corporation Process for producing molded article of expanded polylolefin-based resin beads, and molded article of expanded polylolefin -based resin beads
US9079360B2 (en) 2010-12-15 2015-07-14 Jsp Corporation Process for producing molded article of expanded polyolefin-based resin beads, and molded article of expanded polyolefin-based resin beads
CN103249537B (en) * 2010-12-15 2016-01-20 株式会社Jsp The manufacture method of the products formed of expanded polyolefin system resin beads and the products formed of expanded polyolefin system resin beads
JP2013006966A (en) * 2011-06-24 2013-01-10 Sekisui Plastics Co Ltd Composite resin particle, foamable composite resin particle, pre-foamed particle, and foamed molded product

Also Published As

Publication number Publication date
JP5032366B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP2008075076A (en) Styrene-modified polypropylenic resin particle and its foamable resin particle, their production method, pre-foamed particle and foam-molded article
JP4732822B2 (en) Black styrene-modified polyethylene resin particles and expandable resin particles thereof, methods for producing them, pre-expanded particles, and expanded molded article
WO2004085528A1 (en) Expandable resin beads of styrene-modified, straight -chain, and low-density polyethylene, process for production thereof, pre-expanded beads, and foams
JP2011074152A (en) Prefoamed particle and process for producing the same
JP4837407B2 (en) Expandable polystyrene resin particles, polystyrene resin foam particles, polystyrene resin foam moldings, polystyrene resin foam slices, and methods for producing the same
JP3732418B2 (en) Expandable styrene resin particles
JP2007270116A (en) Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding
JP2011073196A (en) Laminate and method of manufacturing the same
JP5837450B2 (en) Expandable modified resin particles, pre-expanded particles and foamed molded article
JP5689011B2 (en) Resin particle, method for producing the same, expandable resin particle, expanded particle
JP2015189911A (en) Linear low density polyethylene resin particle, compound resin particle, foam particle, and foam molded body
JP5032366B2 (en) Modified polystyrene resin pre-expanded particles and sound-absorbing modified polystyrene resin foam molding.
JP2008274133A (en) Expandable resin particles and method for producing the same
JP6441948B2 (en) Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
JP5722564B2 (en) Automotive exterior materials
JP5731428B2 (en) Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles
JP5208818B2 (en) SOUND ABSORBING MODIFIED POLYSTYRENE RESIN FOAM MOLDED BODY AND PROCESS FOR PRODUCING THE SAME
JPWO2014157538A1 (en) Composite resin foam molding
JPS6259642A (en) Pre-expanded particle of modified polyethylene resin and production thereof
JP5860220B2 (en) RESIN PARTICLE, PROCESS FOR PRODUCING THE SAME, FOAMABLE RESIN PARTICLE, FOAMED PARTICLE, AND FOAM MOLDED BODY
JP5732358B2 (en) Polystyrene-based resin particles, expandable resin particles, expanded particles, expanded molded articles, and methods for producing them
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP2019183121A (en) Composite resin particle, foamable particle, foam particle, foam molded body, and buffer material
JP5151020B2 (en) Thermoplastic resin in-mold foam molding
JP2018141087A (en) Method for producing foamed particle and method for producing foam molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Ref document number: 5032366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees