JP2009236770A - Workpiece strength measuring method and measuring device therefor - Google Patents
Workpiece strength measuring method and measuring device therefor Download PDFInfo
- Publication number
- JP2009236770A JP2009236770A JP2008084767A JP2008084767A JP2009236770A JP 2009236770 A JP2009236770 A JP 2009236770A JP 2008084767 A JP2008084767 A JP 2008084767A JP 2008084767 A JP2008084767 A JP 2008084767A JP 2009236770 A JP2009236770 A JP 2009236770A
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- strength
- gear
- measuring
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
本発明は、表面処理されたワークの強度を測定するワーク強度測定技術に関する。 The present invention relates to a workpiece strength measurement technique for measuring the strength of a surface-treated workpiece.
表面処理されたワークの強度は、破壊検査法と非破壊検査法とのいずれかの測定法で測定される。
非破壊検査法による強度測定技術は多数提案されている(例えば、特許文献1参照。)。
Many strength measurement techniques using nondestructive inspection methods have been proposed (see, for example, Patent Document 1).
特許文献1の請求項1に「平滑な面部における表面炭素濃度が0.6質量%以上となるように真空浸炭されている歯車であって、前記面部の有効硬化層深さをD(mm)としたとき、前記真空浸炭に先立ち、歯元近傍に位置する応力集中部を含む表面に、D±0.25(mm)の面取り加工が施されていることを特徴とする歯車。」の記載があり、歯車に真空浸炭を施すことが開示されている。
上述したように、歯車は重要な機械要素であるため、抜き取り検査や全数検査で強度の測定を行う必要があり、この測定に渦電流を利用した非破壊検査法が実用化されている(例えば、特許文献2参照。)。
特許文献2を次図に基づいて説明する。
図11は従来の技術の基本原理を説明する図であり、(a)に示すように、円柱ワーク101に励磁コイル102と検出コイル103を巻回する。そして、励磁コイル102に交流電源104から交流電圧(励磁電圧)を印加する。すると、円柱ワーク101の表層に渦電流が発生する。この渦電流により検出コイル103に交流電流が発生する。この発生した交流電流の電圧(検出電圧)を測定装置105で測定する。励磁電圧と検出電圧との相関を(c)で説明する。
Patent document 2 is demonstrated based on the following figure.
FIG. 11 is a diagram for explaining the basic principle of the prior art. As shown in FIG. 11A, an
(c)は横軸が時間軸で縦軸が電圧であるグラフであり、正弦波V1が励磁電圧曲線であるときに、検出電圧は正弦波V2で表される。正弦波V1と正弦波V2の位相差をΦと定義する。
(b)で、cosΦで表されるX値は浸炭深さと良好な相関関係があり、sinΦで表されるY値は表面硬さに良好な相関関係がある。
(C) is a graph in which the horizontal axis is the time axis and the vertical axis is the voltage. When the sine wave V1 is an excitation voltage curve, the detected voltage is represented by the sine wave V2. The phase difference between the sine wave V1 and the sine wave V2 is defined as Φ.
In (b), the X value represented by cosΦ has a good correlation with the carburization depth, and the Y value represented by sinΦ has a good correlation with the surface hardness.
浸炭深さや表面硬さが変化すると、Φの大きさやV2の高さが変化する。そこで、cosΦやsinΦを計測で求めることにより、そのときの浸炭深さや表面硬さを特定することができる。非破壊検査であるため、歯車の強度測定に好適である。 As the carburization depth and surface hardness change, the size of Φ and the height of V2 change. Therefore, by determining cosΦ and sinΦ by measurement, the carburization depth and surface hardness at that time can be specified. Since this is a non-destructive inspection, it is suitable for measuring the strength of gears.
ところで、特許文献2の請求項2に「・・・検出用コイル及び励磁用コイルを検出コイル体として一体に構成し、この検出コイル体を軸状測定対象の軸方向に移動させつつ移動先の各位置でその検出コイル体の検出用コイルから得られる検出信号の・・・」の記載があり、検出コイル体としての測定機構を移動させることが開示されている。 By the way, in claim 2 of Patent Document 2, “... The detection coil and the excitation coil are integrally formed as a detection coil body, and the detection coil body is moved in the axial direction of the axial measurement target. There is a description of the detection signal obtained from the detection coil of the detection coil body at each position, and it is disclosed that the measurement mechanism as the detection coil body is moved.
歯車等の量産品を全数測定する場合、測定機構を多数回反復移動させる必要がある。
しかし、測定機構は検出コイル等の精密部品からなり、移動による振動等を繰り返し与えることで測定機構が故障し、寿命も短くなる。
そこで、測定機構の故障率を低減することが求められる。さらに毎測定ごとに精密に測定する必要がある。
When measuring all the mass-produced products such as gears, it is necessary to repeatedly move the measuring mechanism many times.
However, the measurement mechanism is made up of precision parts such as a detection coil, and the measurement mechanism breaks down and its life is shortened by repeatedly applying vibration and the like due to movement.
Therefore, it is required to reduce the failure rate of the measurement mechanism. Furthermore, it is necessary to measure precisely every measurement.
本発明は、表面処理されたワークの強度を測定する測定機構の故障率を低減し、寿命を長くすることができ、さらに毎測定ごとに精密に測定する技術を提供することを課題とする。 An object of the present invention is to provide a technique capable of reducing the failure rate of a measuring mechanism that measures the strength of a surface-treated workpiece, extending the life, and measuring accurately every measurement.
請求項1に係る発明は、表面処理が施されているワークの強度を測定機構で測定するワーク強度測定法において、前記測定機構を固定し、この測定機構に対してワークを進退させることを特徴とする。
The invention according to
請求項2に係る発明では、ワークは、歯車であることを特徴とする。 The invention according to claim 2 is characterized in that the workpiece is a gear.
請求項3に係る発明では、測定機構で、歯車の歯底を測定することを特徴とする。
The invention according to
請求項4に係る発明では、表面処理は、真空浸炭処理であることを特徴とする。
The invention according to
請求項5に係る発明では、表面処理が施されているワークの強度を測定するワーク強度測定装置において、このワーク強度測定装置は、基台と、この基台に固定されワークの強度を測定する測定機構と、前記基台に測定機構に向ってスライド自在に設けられワークを載せるスライダと、このスライダを進退させるスライド機構とを備えていることを特徴とする。
In the invention which concerns on
請求項6に係る発明では、ワークは、歯車であることを特徴とする。 The invention according to claim 6 is characterized in that the workpiece is a gear.
請求項1に係る発明は、測定機構を固定し、この測定機構に対してワークを進退させる。測定機構が固定されて振動しないので、測定機構の故障率を低減できる。 According to the first aspect of the present invention, the measurement mechanism is fixed, and the workpiece is advanced and retracted relative to the measurement mechanism. Since the measurement mechanism is fixed and does not vibrate, the failure rate of the measurement mechanism can be reduced.
請求項2に係る発明では、ワークは、歯車である。歯車の強度測定は難しいと言われているが、本発明によれば歯車を非破壊検査で強度測定することができる。 In the invention which concerns on Claim 2, a workpiece | work is a gearwheel. Although it is said that it is difficult to measure the strength of a gear, according to the present invention, the strength of a gear can be measured by nondestructive inspection.
請求項3に係る発明は、測定機構で、歯車の歯底を測定する。歯底の強度測定は難しいと言われているが、本発明によれば歯底を非破壊検査で強度測定することができる。 According to a third aspect of the invention, the tooth bottom of the gear is measured by the measurement mechanism. Although it is said that it is difficult to measure the strength of the root, according to the present invention, it is possible to measure the strength of the root by nondestructive inspection.
請求項4に係る発明では、表面処理は、真空浸炭処理である。真空浸炭処理は、ガス浸炭処理に比較してばらつきが発生しやすいと言われている。本発明によれば、真空浸炭処理によるワークの強度を的確に測定することができる。
In the invention which concerns on
請求項5に係る発明では、このワーク強度測定装置は、基台に固定されワークの強度を測定する測定機構と、基台に測定機構に向ってスライド自在に設けられワークを載せるスライダと、このスライダを進退させるスライド機構とを備えている。測定機構が固定されて振動しないので、測定機構の故障率を低減できる。
In the invention according to
請求項6に係る発明では、ワークは、歯車である。歯車の強度測定は難しいと言われているが、本発明によれば歯車を非破壊検査で強度測定することができる。 In the invention which concerns on Claim 6, a workpiece | work is a gearwheel. Although it is said that it is difficult to measure the strength of a gear, according to the present invention, the strength of a gear can be measured by nondestructive inspection.
本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明のワーク強度測定法に適したワーク強度測定装置の原理図であり、ワーク強度測定装置10は、基台11と、この基台11の上面中央に設けられ図左右に延びているレール12と、このレール12に左右移動自在に載せられているスライダ13と、このスライダ13に軸受14を介して縦向きに且つ回転自在に支持され表面処理が施されているワーク(以下、歯車と記す。)15を支える歯車支軸16と、スライダ13に内蔵され歯車支軸16を一定ピッチで回転させるインデックスモータ17と、基台11に載置されスライダ13をレール12に沿って往復移動させるシリンダユニット18と、このシリンダユニット18及びインデックスモータ17を制御する制御部19と、この制御部19及びシリンダユニット18で構成されスライダ13を進退させるスライド機構20と、基台11の一端(図左側)から上へ延ばされているブラケット21と、このブラケット21の上部にボルト22、22で取り付けられているコ字状の鉄芯23と、この鉄芯23に支持され歯車15に向かって延びている検出コイル支持体24と、鉄芯23の先端から歯車15に向かって延びている鋼球25、25と、鉄芯23の先端に巻かれた励磁コイル26、26と、これらの励磁コイル26、26に交流電圧を印加する交流電源27と、検出コイル支持体24の先端に設けられている検出コイル28と、鉄芯23、検出コイル支持体24、鋼球25、25、励磁コイル26、26、交流電源27及び検出コイル28で構成され歯車の強度(浸炭深さ)を測定する測定機構29と、検出コイル28から検出情報を取得して浸炭深さに換算する浸炭深さ換算装置30と、得られた浸炭深さを合格基準深さと比較して合否を判定する合否判定部31と、得られた合否判定に基づいて、合格、不合格を表示する合否表示部32と、からなる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a principle diagram of a workpiece strength measuring apparatus suitable for the workpiece strength measuring method of the present invention. A workpiece
なお、ワークに施す表面処理は、真空浸炭処理に限定されず、ガス浸炭、液体浸炭及び固体浸炭等の浸炭処理、又は、高周波焼入れ、火炎焼入れ、電解焼入れ、プラズマ表面焼入れ、電子ビーム焼入れ及びレーザー焼入れ等の焼入れ、又は、N2ベース雰囲気熱処理及び真空熱処理等の熱処理雰囲気を利用する表面処理、又は、ガス窒化法、塩浴窒化法、ガス軟窒化法及びイオン窒化法等の窒化、又は、硫化処理、溶融塩浸硫法及びガス浸硫窒化法等の浸硫処理、又は、金属浸透法、又は、ほう化処理、又は、イオン注入法、又は、蒸着処理法、又は、被覆処理法等、金属部材を表面強化する処理であれば種類は問わない。 The surface treatment applied to the workpiece is not limited to vacuum carburizing treatment, but carburizing treatment such as gas carburizing, liquid carburizing and solid carburizing, or induction hardening, flame hardening, electrolytic hardening, plasma surface hardening, electron beam hardening and laser. Quenching such as quenching, surface treatment using heat treatment atmosphere such as N 2 base atmosphere heat treatment and vacuum heat treatment, or nitriding such as gas nitriding method, salt bath nitriding method, gas soft nitriding method and ion nitriding method, or Sulfurizing treatment, such as sulfurization treatment, molten salt sulfiding method and gas nitrosulphurizing method, or metal infiltration method, boride treatment, ion implantation method, vapor deposition treatment method, coating treatment method, etc. There is no limitation on the type as long as it is a treatment for reinforcing the surface of the metal member.
測定機構29はブラケット21を介して基台11に固定されており、振動しない。歯車15はスライダ13を介して測定機構29に向って進退され、測定が行われる。
The
図2は図1の要部拡大図であり、検出コイル支持体24は鉄芯23に、水平方向にスライド可能にビス33で固定されている。また、鋼球25は円錐部34及び円柱部35を介して鉄芯23に固定されている。
FIG. 2 is an enlarged view of the main part of FIG. 1, and the
図3は図2の3線断面図であり、検出コイル28は、絶縁性に富む三角形断面のナイロンなどの樹脂体36を介して検出コイル支持体24に支持されている。樹脂体36が三角形断面であるため、検出コイル28を歯車15の歯底37に接近させることができる。加えて、歯底37を測定できる。
FIG. 3 is a cross-sectional view taken along the
図4は図2の4線断面図であり、鋼球25の球径は、隣合う歯先38と歯先38との間を通過するが、歯底37に到達する前に歯部39、39の面に接触する外径に設定されている。すなわち、接触点41、41に接触しているため、鋼球25の図左右方向及び上下方向の位置が規定される。併せて、鋼球25の中心は歯底37の中心に合致する。
この結果、歯底37からの検出コイル28の距離や励磁コイル26、26(図2)の距離を一定化することができる。この結果、測定の信頼性を高めることができる。
4 is a cross-sectional view taken along the
As a result, the distance of the
ところで、図1で説明した浸炭深さ換算装置30には、測定で得られたX電圧を浸炭深さに換算する換算表を記憶させる必要がある。そこで、図1のワーク強度測定装置10を用いて、周波数を1kHzに設定し、真空浸炭済みの歯車の「X電圧」を測定した。この測定は非破壊検査に相当する。
次に、この歯車を切断し、切断面を磨いてから、「硬さ」を測定し、「浸炭深さ」を定めることにした。この測定は破壊検査に相当する。
By the way, it is necessary to memorize | store the conversion table which converts the X voltage obtained by the measurement into the carburization depth in the carburization
Next, after cutting this gear and polishing the cut surface, the "hardness" was measured and the "carburization depth" was determined. This measurement corresponds to destructive inspection.
図5は測定で得られた硬さを表したグラフである。
先ず、ワーク強度測定装置10を用いて、周波数を1kHzに設定し、真空浸炭済みの歯車の「X電圧」を測定したところ、X電圧は−67mVであった。次に、切断し、切断面を磨き、この切断面を測定対象として、表面から0.1mm毎に、1.0mmまで、マイクロビッカース硬さ計で、ビッカース硬さ(Hv)を測った。
FIG. 5 is a graph showing the hardness obtained by the measurement.
First, the work
図5は測定で得られた硬さを表したグラフであり、(a)は、横軸が表面からの深さで、縦軸がビッカース硬さであるグラフに、生のデータをプロットしたものである。 FIG. 5 is a graph showing the hardness obtained by the measurement. (A) is a graph in which raw data is plotted on a graph in which the horizontal axis is the depth from the surface and the vertical axis is the Vickers hardness. It is.
ところで、この種の歯車では、「表面から○○mmの深さで、ロックウエルCスケール硬さが50以上であること」と言った要求仕様が出されることが多い。ロックウエルCスケール硬さ50は、換算表によれば、ビッカース硬さ(Hv)513に相当する。
そこで、(a)にプロットした複数の点を滑らかな曲線で繋ぐ。
By the way, in this type of gear, a required specification such as “the depth of ◯ mm from the surface and the Rockwell C scale hardness is 50 or more” is often issued. The Rockwell C scale hardness 50 corresponds to Vickers hardness (Hv) 513 according to the conversion table.
Therefore, a plurality of points plotted in (a) are connected by a smooth curve.
結果、(b)示すグラフが得られる。そこで、縦軸の513から横線を引き、曲線に交わったところから、縦線を降ろし、この縦線が横軸と交わったところの距離を読む。表面からの距離は0.64mmであった。 As a result, the graph shown in (b) is obtained. Therefore, a horizontal line is drawn from 513 on the vertical axis, the vertical line is dropped from where it intersects the curve, and the distance at which this vertical line intersects the horizontal axis is read. The distance from the surface was 0.64 mm.
図6はX電圧と浸炭深さの相関図であり、横軸が浸炭深さ(表面からの距離に相当。)で、縦軸がX電圧であるグラフに、1個のデータ(0.64mm、−67mV)を●でプロットした。
浸炭条件を変えて得られたサンプルを21個作製し、これらのサンプルについても図5(a)、(b)での手順を踏んで、浸炭深さとX電圧を定めた。21個のサンプルについては○で、グラフにプロットした。
FIG. 6 is a correlation diagram between the X voltage and the carburization depth. In the graph in which the horizontal axis represents the carburization depth (corresponding to the distance from the surface) and the vertical axis represents the X voltage, one piece of data (0.64 mm) is shown. , −67 mV) is plotted with ●.
Twenty-one samples obtained by changing the carburizing conditions were prepared, and the carburizing depth and the X voltage were determined for these samples by following the procedures in FIGS. 5 (a) and 5 (b). Twenty-one samples were circled and plotted on a graph.
1個の●と21個の○は右下りの直線に沿って分散している。縦軸のX電圧が測定で得られれば、この相関図により、得られたX電圧に対応する浸炭深さを求めることができる。
また、詳細な計算法は省略するが、この分散における相関係数(r2)は0.92であった。
One ● and 21 ○ are distributed along a straight line going down to the right. If the X voltage on the vertical axis is obtained by measurement, the carburization depth corresponding to the obtained X voltage can be obtained from this correlation diagram.
Although the detailed calculation method is omitted, the correlation coefficient (r 2 ) in this dispersion was 0.92.
以上の説明から明らかなように、本発明は次の点にも特徴がある。すなわち、図5(a)、(b)で説明したように、得られた硬さと深さは、測定で得られた硬さを、歯車の表面から中心に向かってプロットした点を結んでなる曲線から得る。点を結んで曲線を得るようにしたので、測定点の数を少なく設定することができ、測定時間が短縮でき、測定コストの低減を図ることができる。 As is clear from the above description, the present invention is also characterized by the following points. That is, as described in FIGS. 5A and 5B, the hardness and depth obtained are obtained by connecting the points obtained by plotting the hardness obtained by measurement from the surface of the gear toward the center. Get from the curve. Since the curve is obtained by connecting the points, the number of measurement points can be set small, the measurement time can be shortened, and the measurement cost can be reduced.
又、図5で求めた硬さという定量的データに基づいて、浸炭深さが決められる。すなわち、図5で説明したように、破壊検査による硬さデータと、非破壊検査によるX電圧との突き合わせが行われる。この後は、非破壊検査によりX電圧を求め、図6に基づいて、浸炭深さに換算する。非破壊検査であるにも拘わらず、破壊検査での裏付けがなされているので、非破壊検査で求めた浸炭深さの信頼性が飛躍的に高まる。 Further, the carburization depth is determined based on the quantitative data of hardness obtained in FIG. That is, as described with reference to FIG. 5, the hardness data by the destructive inspection and the X voltage by the nondestructive inspection are matched. Thereafter, the X voltage is obtained by nondestructive inspection, and converted to the carburization depth based on FIG. Despite the non-destructive inspection, since it is supported by the destructive inspection, the reliability of the carburization depth obtained by the non-destructive inspection is dramatically increased.
次に、好適な周波数を特定することを目的に、700Hzから4kHzまで周波数を変えて、各周波数当たり22個のサンプルを準備し、図6と同様の相関図を作成し、相関係数を求めた。その結果を次図に示す。
図7は周波数と相関係数の関係を示すグラフであり、1kHzが最大で、2kHz以上では相関係数が小さくなった。一方、700〜1kHzでは、変化は小さい。
真空浸炭された歯車の歯底の浸炭深さを調べるには、周波数は700〜1kHzの範囲に設定することが望ましいことが分かった。
Next, for the purpose of specifying a suitable frequency, the frequency is changed from 700 Hz to 4 kHz, 22 samples are prepared for each frequency, a correlation diagram similar to FIG. 6 is created, and a correlation coefficient is obtained. It was. The result is shown in the following figure.
FIG. 7 is a graph showing the relationship between the frequency and the correlation coefficient. The maximum is 1 kHz, and the correlation coefficient is small above 2 kHz. On the other hand, at 700-1 kHz, the change is small.
In order to examine the carburizing depth of the tooth bottom of the vacuum carburized gear, it has been found that the frequency is desirably set in the range of 700 to 1 kHz.
以上の構成からなるワーク強度測定装置10の作用を次に説明する。
図8はワーク強度測定装置の作用説明図であり、(a)に示すように、静止状態にある検出コイル28へ、歯車15を矢印(1)のように前進させる。(b)に示すように、検出コイル28に任意の歯底37を臨ませ、歯底37の浸炭深さを検出し、この浸炭深さの合否を判定させる。終わったら、矢印(2)のように歯車15を後退させる。
Next, the operation of the workpiece
FIG. 8 is an explanatory diagram of the operation of the workpiece strength measuring device. As shown in FIG. 8A, the
次に、(c)に示すように、歯車15を1ピッチ(歯一枚分)だけ回す(矢印(3))。すると(d)に示すように、隣の歯底37が検査コイル28に臨む。以降、(a)に戻って作業を継続する。この継続する作業をフローで再度説明する。
Next, as shown in (c), the
図9は本発明のワーク強度測定法に好適な作業フロー図であり、ステップ番号(以下STと略記する。)01で、合格基準深さ範囲Dsを定める。例えば、合格基準深さ範囲Dsは0.5mm〜0.8mmとする。この0.5mm〜0.8mmを図1の合否判定部31へインプットする。
ST02で、測定対象とする歯車の歯数Nを、図1の制御部19へインプットする。測定回数を監視するために、先ず、回数nを1とする(ST03)。
FIG. 9 is a work flow chart suitable for the work strength measurement method of the present invention, and the acceptance reference depth range Ds is defined by a step number (hereinafter abbreviated as ST) 01. For example, the acceptance standard depth range Ds is 0.5 mm to 0.8 mm. This 0.5 mm to 0.8 mm is input to the pass /
In ST02, the number N of gear teeth to be measured is input to the
図8(a)の要領で、歯車を前進させる(ST04)。図8(b)の要領で、歯底のX電圧を測定させる(ST05)。図1の浸炭深さ換算装置30により、X電圧を浸炭深さDaに換算させる(ST06)。図1の合否判定部31により、測定で得られた浸炭深さDaが合格基準深さ範囲Dsの範囲に入っているか否かを調べる(ST07)。YESであれば、「合格」の表示をする(ST08)。次に、図8(b)に矢印(2)で示すように歯車を後退させる(ST09)。
The gear is moved forward in the manner of FIG. 8A (ST04). In the manner shown in FIG. 8B, the X voltage of the tooth bottom is measured (ST05). The X voltage is converted into the carburization depth Da by the carburization
ここで、測定回数を調べる(ST10)。初回はnは1である。例えば歯車の歯数Nが40であれば、n<Nであるから、NOを進み、nに1を加える(ST11)。そして、図8(c)の要領で、歯車を歯1個分だけ回転させる(ST12)。そして、ST04から再度、歯底の浸炭深さを測定する。 Here, the number of measurements is examined (ST10). N is 1 for the first time. For example, if the number of gear teeth N is 40, since n <N, NO is advanced and 1 is added to n (ST11). Then, as shown in FIG. 8C, the gear is rotated by one tooth (ST12). Then, the carburization depth of the tooth bottom is measured again from ST04.
ST07で、浸炭深さDaが合格基準深さ範囲Ds内でなければ、NOを進み、不合格表示を行う(ST13)。不合格の場合は、この歯車に対する測定をこの時点で終了させることができる。 If the carburizing depth Da is not within the acceptance standard depth range Ds in ST07, NO is advanced and a failure display is performed (ST13). If it fails, the measurement for this gear can be terminated at this point.
ST10で、測定回数nが歯数Nに到達すれば、歯底の全数を検査したことになるので、測定終了の表示を行い、測定を終了する(ST14)。 If the number of measurements n reaches the number of teeth N in ST10, the total number of tooth bottoms has been inspected, so that measurement completion is displayed and the measurement is terminated (ST14).
図10はワーク強度測定装置の作用の比較説明図であり、(a)に示す比較例は、固定された歯車111に対して測定機構112を矢印(4)のように進退させる。測定機構112は検出コイル113等の精密部品を含むため、反復移動による振動等で測定機構が故障し易く、寿命が短くなる。
(b)に示す実施例は、固定された測定機構29に対して歯車15を矢印(5)のようにスライド機構20で進退させる。測定機構29の移動による振動がないため、安定した状態を保ち、故障率を低減できる。また、歯車15は、支持された状態で移動しても何ら影響を受けない。この結果、毎測定ごとに精密に測定することができる。
FIG. 10 is a comparative explanatory view of the operation of the workpiece strength measuring device. In the comparative example shown in FIG. 10A, the
In the embodiment shown in (b), the
尚、ワークは、歯車に限定されず、軸、エンジンのピストン等、一般の機械部材であって、表面処理が可能な鋼で構成されているものであれば、種類は問わない。 The workpiece is not limited to a gear, and any type may be used as long as it is a general mechanical member such as a shaft, an engine piston, etc., and is made of steel that can be surface-treated.
本発明は、表面処理されたワークの強度を測定する技術に好適である。 The present invention is suitable for a technique for measuring the strength of a surface-treated workpiece.
10…ワーク強度測定装置、11…基台、13…スライダ、15…ワーク(歯車)、20…スライド機構、29…測定機構、30…浸炭深さ換算装置、31…合否判定部、37…歯底、Ds…合格基準深さ、Da…測定で得られた浸炭深さ。
DESCRIPTION OF
Claims (6)
前記測定機構を固定し、この測定機構に対してワークを進退させることを特徴とするワーク強度測定法。 In the workpiece strength measurement method that measures the strength of the workpiece that has been surface-treated with a measurement mechanism,
A workpiece strength measuring method, wherein the measuring mechanism is fixed and the workpiece is advanced and retracted relative to the measuring mechanism.
このワーク強度測定装置は、基台と、この基台に固定され前記ワークの強度を測定する測定機構と、前記基台に前記測定機構に向ってスライド自在に設けられ前記ワークを載せるスライダと、このスライダを進退させるスライド機構とを備えていることを特徴とするワーク強度測定装置。 In a workpiece strength measuring device that measures the strength of a workpiece that has been surface-treated,
The work strength measuring device includes a base, a measurement mechanism that is fixed to the base and measures the strength of the work, a slider that is slidably provided on the base toward the measurement mechanism, and places the work on the base. A work strength measuring device comprising a slide mechanism for moving the slider back and forth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008084767A JP2009236770A (en) | 2008-03-27 | 2008-03-27 | Workpiece strength measuring method and measuring device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008084767A JP2009236770A (en) | 2008-03-27 | 2008-03-27 | Workpiece strength measuring method and measuring device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009236770A true JP2009236770A (en) | 2009-10-15 |
Family
ID=41250899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008084767A Pending JP2009236770A (en) | 2008-03-27 | 2008-03-27 | Workpiece strength measuring method and measuring device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009236770A (en) |
-
2008
- 2008-03-27 JP JP2008084767A patent/JP2009236770A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7982459B2 (en) | Hydraulic cylinder rod position sensing method | |
RU2608868C2 (en) | Method of pipe scanning intended for processing at laser cutting machine, using sensor for measuring radiation reflected or emitted by pipe | |
JP5149562B2 (en) | Nondestructive measuring method and nondestructive measuring device | |
WO2009119529A1 (en) | Nondestructive testing system for steel workpiece | |
EP1995583B1 (en) | Material piece scooping device | |
JP4334413B2 (en) | Small material testing apparatus and material testing method | |
EP1782039B1 (en) | Hardness tester with indenter of hard metal or compound and oscillating crown for testing at high load and method of comparative assessment of the hardness/depth profile | |
JP6091275B2 (en) | Method and apparatus for measuring the thickness of a metal tube during bending | |
JP2009236767A (en) | Gear strength evaluation device and gear strength evaluation method | |
JP2009236770A (en) | Workpiece strength measuring method and measuring device therefor | |
JP2009236762A (en) | Eddy current magnetic field change detection device and gear strength evaluation method | |
JP2009236755A (en) | Sensor and measuring device | |
JP2009236753A (en) | Gear strength evaluation method | |
JP2007298292A (en) | Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method | |
JP2007331140A (en) | Repairing method of mold containing magnetic body | |
WO2009119868A1 (en) | Method and apparatus for measuring surface-hardened layer depth of workpiece | |
JP4991613B2 (en) | Steel workpiece inspection equipment | |
JP3628596B2 (en) | Method and apparatus for measuring coating thickness of coated steel strand | |
JP2009236766A (en) | Gear strength evaluation method and evaluating device therefor | |
WO2010001228A1 (en) | Hydraulic cylinder rod position sensing method | |
JP4612701B2 (en) | Nondestructive inspection apparatus and nondestructive inspection method | |
JP2009236772A (en) | Gear strength inspection device | |
JPH0658750A (en) | Measuring machine for pipe wall thickness and outer diameter | |
Liu et al. | Effect of microstructure and residual stress on the magnetic Barkhausen noise signal | |
JPH03108657A (en) | Apparatus for detecting heterogeneous layer in metal |