JP4991613B2 - Steel workpiece inspection equipment - Google Patents

Steel workpiece inspection equipment Download PDF

Info

Publication number
JP4991613B2
JP4991613B2 JP2008084622A JP2008084622A JP4991613B2 JP 4991613 B2 JP4991613 B2 JP 4991613B2 JP 2008084622 A JP2008084622 A JP 2008084622A JP 2008084622 A JP2008084622 A JP 2008084622A JP 4991613 B2 JP4991613 B2 JP 4991613B2
Authority
JP
Japan
Prior art keywords
steel workpiece
gear
detection coil
steel
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008084622A
Other languages
Japanese (ja)
Other versions
JP2009236758A (en
Inventor
雄三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008084622A priority Critical patent/JP4991613B2/en
Priority to US12/934,459 priority patent/US8704512B2/en
Priority to PCT/JP2009/055721 priority patent/WO2009119529A1/en
Priority to CN2009801089857A priority patent/CN101971016B/en
Publication of JP2009236758A publication Critical patent/JP2009236758A/en
Application granted granted Critical
Publication of JP4991613B2 publication Critical patent/JP4991613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、鋼製ワークに渦電流を発生させ、この渦電流で発生する磁界の変化を測定する鋼製ワークの検査装置に関する。   The present invention relates to a steel workpiece inspection apparatus for generating an eddy current in a steel workpiece and measuring a change in a magnetic field generated by the eddy current.

歯車等の鋼製ワークを製造した際に、これらの鋼製ワークが所定の強度を有するか否かを検査する。このような最終製品について行う検査は、鋼製ワークを破壊せずに行う非破壊検査法を用いることが望ましい。   When steel workpieces such as gears are manufactured, it is inspected whether these steel workpieces have a predetermined strength. It is desirable to use a non-destructive inspection method for inspecting such a final product without destroying the steel workpiece.

非破壊検査法として鋼製ワークに渦電流を発生させ、この渦電流で発生する磁界の変化を測定する検査装置が提案されている(例えば、特許文献1参照。)。
特開2004−108873公報(図2)
As a non-destructive inspection method, an inspection apparatus has been proposed in which an eddy current is generated in a steel workpiece and a change in a magnetic field generated by the eddy current is measured (see, for example, Patent Document 1).
JP 2004-108873 A (FIG. 2)

特許文献1を次図に基づいて説明する。
図12は従来の技術の基本原理を説明する図であり、円柱ワーク101に励磁コイル102と検出コイル103を巻回する。そして、励磁コイル102に交流電源104から交流電圧(励磁電圧)を印加する。すると、円柱ワーク101の表層に渦電流が発生する。この渦電流により検出コイル103に交流電流が発生する。この発生した交流電流の電圧(検出電圧)を測定装置105で測定する。
Patent document 1 is demonstrated based on the following figure.
FIG. 12 is a diagram for explaining the basic principle of the prior art, in which an excitation coil 102 and a detection coil 103 are wound around a cylindrical workpiece 101. Then, an AC voltage (excitation voltage) is applied to the excitation coil 102 from the AC power source 104. Then, an eddy current is generated on the surface layer of the cylindrical workpiece 101. This eddy current generates an alternating current in the detection coil 103. The voltage (detection voltage) of the generated alternating current is measured by the measuring device 105.

この測定によれば、検出コイル103に発生した交流電流の電圧を測定すれば円柱ワーク101の強度を測定することができ、迅速にワークの強度を測定することができる。   According to this measurement, if the voltage of the alternating current generated in the detection coil 103 is measured, the strength of the cylindrical workpiece 101 can be measured, and the strength of the workpiece can be measured quickly.

ところで、このような測定を手動で行った場合に次図で説明するような問題が生じる。   By the way, when such a measurement is performed manually, the problem described in the next figure arises.

図13は従来の技術の問題を説明する図であり、歯車107の左側の歯先108L(Lは左側を表す添え字)から励磁及び検出コイル102、103までの距離をL1とし、歯車107の右側の歯先108R(Rは右側を表す添え字)から励磁及び検出コイル102、103までの距離をL2とし、歯車107の強度の測定を手動で行った場合に、L1とL2が同じ距離にならないことがある。L1とL2の距離が異なると、測定の結果に誤差が生じ得る。   FIG. 13 is a diagram for explaining a problem in the prior art. The distance from the tooth tip 108L on the left side of the gear 107 (L is a subscript indicating the left side) to the excitation and detection coils 102 and 103 is L1, and the gear 107 When the distance from the right tooth tip 108R (R is a suffix indicating the right side) to the excitation and detection coils 102 and 103 is L2, and the strength of the gear 107 is manually measured, L1 and L2 are the same distance. It may not be. If the distance between L1 and L2 is different, an error may occur in the measurement result.

加えて、歯車107を傾けた場合には更に誤差が生じ得るものと考えられる。
そこで、本発明者らは、歯車107の傾きにより生じる誤差について実験を行った。同じ歯車107を用いて励磁及び検出コイル102、103に臨ませる角度(挿入角度)を変えながら、そのときの検出コイル103から検出される電圧を測定した。
In addition, it is considered that further errors can occur when the gear 107 is tilted.
Therefore, the inventors conducted an experiment on an error caused by the inclination of the gear 107. The voltage detected from the detection coil 103 at that time was measured while changing the angle (insertion angle) facing the excitation and detection coils 102 and 103 using the same gear 107.

図14は歯車の挿入角度と電圧測定値の関係を示すグラフを説明する図であり、横軸に歯車の挿入角度を示し、縦軸には電圧測定値を示す。
電圧測定値が最高であったP1では、電圧は1600mVであり、電圧測定値が最低であったP2では、電圧は400mVであった。歯車の挿入角度を変えることにより電圧測定値の差が最大で4倍になることが分かった。
FIG. 14 is a graph for explaining the relationship between the insertion angle of the gear and the voltage measurement value. The horizontal axis indicates the gear insertion angle, and the vertical axis indicates the voltage measurement value.
In P1 where the voltage measurement value was the highest, the voltage was 1600 mV, and in P2 where the voltage measurement value was the lowest, the voltage was 400 mV. It was found that by changing the insertion angle of the gear, the difference in the voltage measurement value was up to 4 times.

電圧測定値が異なると、同じワークでも異なる測定結果が出ることとなる。
手動で測定した場合であっても測定結果に誤差のでない、即ち、信頼性の高い鋼製ワークの検査装置の提供が望まれる。
Different voltage measurements result in different measurement results for the same workpiece.
It is desired to provide a steel workpiece inspection apparatus that has no error in measurement results even when measured manually, that is, has high reliability.

本発明は、信頼性の高い鋼製ワークの検査装置を提供することを課題とする。   This invention makes it a subject to provide the inspection apparatus of the steel workpiece | work with high reliability.

請求項1に係る発明は、鉄芯で支持され鋼製ワークの近傍に置かれて前記鋼製ワークに渦電流を発生させる励磁コイルと、前記鉄芯で支持され鋼製ワークの近傍に置かれて前記渦電流で発生する磁界の変化を測定する検出コイルとからなる鋼製ワークの検査装置において、
この検査装置は、前記鉄芯から延ばされ先端が前記鋼製ワークに接触して、この鋼製ワークから前記検出コイルまでの距離を一定にする当て部材を備えている検査装置であり、
前記鋼製ワークは、真空浸炭処理された歯車であり、
前記当て部材は、ワークに接触させる球体と、この球体を前記鉄芯に接続する支持部とからなると共に、前記歯車の歯幅方向に少なくとも2個設けられ、
前記鉄芯の先端には、雌ねじ状に構成された複数の雌ねじ穴が設けられ、
前記支持部の先端には、雄ねじ状に構成された雄ねじ部が設けられ、
前記複数の雌ねじ穴のうち、任意の雌ねじ穴に、前記雄ねじ部が螺合されていることを特徴とする。
The invention according to claim 1 is an excitation coil that is supported by an iron core and is placed in the vicinity of the steel workpiece and generates eddy current in the steel workpiece, and is placed in the vicinity of the steel workpiece that is supported by the iron core. In a steel workpiece inspection device comprising a detection coil for measuring a change in magnetic field generated by the eddy current,
This inspection device is an inspection device that includes a contact member that extends from the iron core and has a tip that contacts the steel workpiece and makes the distance from the steel workpiece to the detection coil constant .
The steel workpiece is a gear that has been vacuum carburized,
The abutting member includes a sphere to be brought into contact with the workpiece, and a support portion that connects the sphere to the iron core, and is provided in at least two in the tooth width direction of the gear,
At the tip of the iron core, a plurality of female screw holes configured in a female screw shape are provided,
At the tip of the support portion, a male screw portion configured in a male screw shape is provided,
The male screw portion is screwed into any female screw hole among the plurality of female screw holes .

請求項2に係る発明は、前記検出コイルの形状は、円柱状であると共に、前記検出コイルの軸線が前記歯車の歯底に沿って配置されていることを特徴とする。 The invention according to claim 2 is characterized in that the shape of the detection coil is a columnar shape, and the axis of the detection coil is disposed along the tooth bottom of the gear .

請求項3に係る発明は、検出コイルから検出情報を取得して浸炭深さに換算する浸炭深さ換算装置と、得られた浸炭深さを合格基準深さと比較して合否を判定する合否判定部と、得られた合否判定に基づいて、合格、不合格を表示する合否表示部とを備えていることを特徴とする。 The invention which concerns on Claim 3 acquires the detection information from a detection coil, converts the carburizing depth into a carburized depth conversion device, and compares the obtained carburized depth with an acceptable reference depth to determine pass / fail. And a pass / fail display unit that displays pass / fail based on the obtained pass / fail judgment .

請求項4に係る発明は、前記鋼製ワークを支持するワーク支軸と、このワーク支軸を一定ピッチで回転させるインデックスモータと、前記鋼製ワークを前記検出コイルに向かって移動させるシリンダユニットと、これらのインデックスモータ及びシリンダユニットを制御する制御部とが備えられていることを特徴とする。 The invention according to claim 4 is a work support shaft for supporting the steel work, an index motor for rotating the work support at a constant pitch, and a cylinder unit for moving the steel work toward the detection coil. The index motor and the control unit for controlling the cylinder unit are provided .

請求項1に係る発明では、鋼製ワークから検出コイルまでの距離を一定にする当て部材を備えている。当て部材が鋼製ワークに接触することにより、鋼製ワークから検出コイルまでの距離を一定にすることができる。距離が一定になることにより測定結果に誤差が出ない。即ち信頼性の高い鋼製ワークの検査装置ということができる。   In the invention which concerns on Claim 1, the contact member which makes the distance from steel workpieces to a detection coil constant is provided. When the contact member contacts the steel workpiece, the distance from the steel workpiece to the detection coil can be made constant. There is no error in the measurement results because the distance is constant. That is, it can be said to be a highly reliable steel workpiece inspection device.

加えて、請求項に係る発明では、当て部材は、ワークに接触させる球体と、この球体を鉄芯に接続する支持部とからなる。球体と支持部により当て部材は構成される。少ない部品数により当て部材を製造することができ有益である。 In addition, in the invention according to claim 1 , the contact member includes a sphere that is brought into contact with the workpiece and a support portion that connects the sphere to the iron core. The contact member is constituted by the sphere and the support portion. It is advantageous that the contact member can be manufactured with a small number of parts.

さらに、請求項に係る発明では、鋼製ワークは歯車である。歯車の隣り合う歯面と歯面との間に当て部材を接触させることができる。歯面と歯面との間に当て部材を接触させることにより、1の当て部材で2点に接触させることができる。2点に接触させることにより、更に歯車から検出コイルまでの距離を安定させることができる。 Further, in the invention according to claim 1 , the steel workpiece is a gear. The contact member can be brought into contact between adjacent tooth surfaces of the gear. By making a contact member contact between a tooth surface and a tooth surface, it can be made to contact 2 points | pieces with one contact member. By contacting the two points, the distance from the gear to the detection coil can be further stabilized.

加えて、請求項に係る発明では、歯車は真空浸炭処理されている。真空浸炭処理された歯車の浸炭深さは、歯底の部分が最も薄くなる。浸炭深さが最も薄い歯底について測定すれば、その歯車が所定の強度を有するか否かを知ることができる。即ち、歯底のみ検査を行えばよく測定時間の短縮化を図ることができる。 In addition, in the invention according to claim 1 , the gear is subjected to vacuum carburization. The carburized depth of the vacuum carburized gear is the thinnest at the root portion. If the tooth bottom with the smallest carburization depth is measured, it can be determined whether or not the gear has a predetermined strength. That is, only the tooth bottom needs to be inspected, and the measurement time can be shortened.

さらに、請求項に係る発明では、当て部材は、歯車の歯幅方向に少なくとも2個設けられている。2個以上の当て部材を歯車に接触させることにより、更に歯車から検出コイルまでの距離を安定させることができる。検査装置の信頼性がより増す。 Furthermore, in the invention according to claim 1 , at least two contact members are provided in the tooth width direction of the gear. By bringing two or more contact members into contact with the gear, the distance from the gear to the detection coil can be further stabilized. The reliability of the inspection device is further increased.

加えて、請求項に係る発明では、当て部材は、鉄芯に、歯車の歯幅方向に移動可能に設けられている。当て部材を歯車の歯幅方向に移動させることができる。歯車の大きさに合わせて当て部材を移動させることができる。1の検査装置で様々な歯車の測定を行うことができ有益である。 In addition, in the invention according to claim 1 , the contact member is provided on the iron core so as to be movable in the tooth width direction of the gear. The abutting member can be moved in the tooth width direction of the gear. The abutting member can be moved according to the size of the gear. It is beneficial to measure various gears with one inspection device.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明の鋼製ワークの検査装置を用いるのに適した歯底浸炭深さ計測装置の原理図であり、歯底浸炭深さ計測装置10は、基台11と、この基台11の上面中央に設けられ図左右に延びているレール12と、このレール12に左右移動自在に載せられているスライダ13と、このスライダ13に軸受14を介して縦向きに且つ回転自在に支持され歯車等の鋼製ワーク15を支えるワーク支軸16と、スライダ13に内蔵されワーク支軸16を一定ピッチで回転させるインデックスモータ17と、基台11に載置されスライダ13をレール12に沿って往復移動させるシリンダユニット18と、このシリンダユニット18及びインデックスモータ17を制御する制御部19と、基台11の一端(図左側)から上へ延ばされているブラケット21と、このブラケット21の上部にボルト22、22で取り付けられているコ字状の鉄芯23と、この鉄芯23に支持され鋼製ワーク15に向かって延びている検出コイル支持体24と、鉄芯23の先端から鋼製ワーク15に向かって配置される支持部25、25及び鋼球等の球体26、26からなる当て部材28、28(詳細は後述)と、鉄芯23の先端に巻かれた励磁コイル29、29と、これらの励磁コイル29、29に交流電圧を印加する交流電源31と、検出コイル支持体24の先端に設けられた樹脂体32に埋設された検出コイル33と、この検出コイル33から検出情報を取得して浸炭深さに換算する浸炭深さ換算装置35と、得られた浸炭深さを合格基準深さと比較して合否を判定する合否判定部36と、得られた合否判定に基づいて、合格、不合格を表示する合否表示部37と、からなる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a principle diagram of a bottom carburization depth measuring device suitable for using the steel workpiece inspection device of the present invention. A bottom carburizing depth measuring device 10 includes a base 11 and the base 11. The rail 12 is provided at the center of the upper surface of the rail 12 and extends left and right in the figure, the slider 13 mounted on the rail 12 so as to be movable left and right, and supported by the slider 13 vertically and rotatably via a bearing 14. A work support shaft 16 that supports a steel work 15 such as a gear, an index motor 17 that is built in the slider 13 and rotates the work support shaft 16 at a constant pitch, and is placed on the base 11 along the rail 12. A cylinder unit 18 that reciprocates, a control unit 19 that controls the cylinder unit 18 and the index motor 17, and a bracket that extends upward from one end (left side in the figure) of the base 11. 21, a U-shaped iron core 23 attached to the upper portion of the bracket 21 with bolts 22, 22, and a detection coil support 24 supported by the iron core 23 and extending toward the steel workpiece 15. , Support members 25 and 25 arranged from the tip of the iron core 23 toward the steel workpiece 15, and contact members 28 and 28 composed of spheres 26 and 26 such as steel balls (details will be described later), and the tip of the iron core 23 Excitation coils 29, 29 wound around the coil, an AC power supply 31 for applying an AC voltage to the excitation coils 29, 29, and a detection coil 33 embedded in a resin body 32 provided at the tip of the detection coil support 24. And a carburization depth conversion device 35 that acquires detection information from the detection coil 33 and converts it to carburization depth, and a pass / fail determination unit 36 that compares the obtained carburization depth with an acceptable reference depth and determines pass / fail. , Go / No Go Based on the constant, pass, and acceptance display unit 37 for displaying the failure consists.

ここで鋼製ワークの検査装置40は、樹脂体32と、検出コイル33と、励磁コイル29、29と、交流電源31と、当て部材28、28と、浸炭深さ換算装置35とから構成される。   Here, the steel workpiece inspection device 40 includes a resin body 32, a detection coil 33, excitation coils 29 and 29, an AC power supply 31, contact members 28 and 28, and a carburization depth conversion device 35. The

図2は鋼製ワークの検査装置の正面図であり、検出コイル支持体24は鉄芯23に、水平方向にスライド可能にビス41で固定されている。また、支持部25は円錐部42及び基部43から構成される。
当て部材28を移動可能に設ける場合には、スパナ等を用いて容易に当て部材28を取り外すことができるよう基部43を六角形に構成することが望ましい。
FIG. 2 is a front view of a steel workpiece inspection apparatus. The detection coil support 24 is fixed to the iron core 23 with screws 41 so as to be slidable in the horizontal direction. The support portion 25 includes a conical portion 42 and a base portion 43.
When the abutting member 28 is movably provided, it is desirable that the base 43 is formed in a hexagonal shape so that the abutting member 28 can be easily removed using a spanner or the like.

図3は図2の3線断面図であり、検出コイル33は、絶縁性に富む三角形断面のナイロンなどの樹脂体32を介して検出コイル支持体24に支持されている。樹脂体32が三角形断面であるため、鋼製ワーク15に歯車を用いた場合には検出コイル33をの歯底44に接近させることができる。   FIG. 3 is a cross-sectional view taken along the line 3 in FIG. 2, and the detection coil 33 is supported by the detection coil support 24 via a resin body 32 such as nylon having a triangular cross section that is rich in insulation. Since the resin body 32 has a triangular cross section, the detection coil 33 can be brought close to the tooth bottom 44 when a gear is used for the steel workpiece 15.

また、鋼製ワーク15に真空浸炭処理のなされた歯車を用いた場合、歯車の浸炭深さは、歯底44の部分が最も薄くなる。浸炭深さの最も薄い歯底について測定すれば、その歯車が所定の強度を有するかを知ることができる。即ち、歯底のみ検査を行えばよく測定時間の短縮化を図ることができる。   In addition, when a gear that has been subjected to vacuum carburization treatment is used for the steel workpiece 15, the gear carburization depth is the thinnest at the root portion 44. If the bottom of the carburized depth is measured, it can be known whether the gear has a predetermined strength. That is, only the tooth bottom needs to be inspected, and the measurement time can be shortened.

図4は図2の4線断面図であり、球体26の球径は、隣合う歯先48と歯先48との間を通過するが、歯底44に到達する前に歯面49、49の面に接触する外径に設定されている。すなわち、接触点51、51に接触しているため、球体26の図左右方向及び上下方向の位置が規定される。併せて、球体26の中心は歯底44の中心に合致する。   FIG. 4 is a cross-sectional view taken along the line 4 in FIG. 2. The spherical diameter of the sphere 26 passes between the adjacent tooth tips 48 and the tooth tips 48, but before reaching the tooth bottom 44, The outer diameter is set in contact with the surface. That is, since the contact points 51 and 51 are in contact with each other, the positions of the sphere 26 in the horizontal direction and the vertical direction in the figure are defined. At the same time, the center of the sphere 26 coincides with the center of the tooth bottom 44.

この結果、歯底44からの検出コイル33(図3)の距離や励磁コイル29、29(図2)の距離を一定化することができる。距離が一定になることにより測定結果に誤差が出ない。即ち信頼性の高い鋼製ワークの検査装置ということができる。   As a result, the distance of the detection coil 33 (FIG. 3) from the tooth bottom 44 and the distance of the excitation coils 29 and 29 (FIG. 2) can be made constant. There is no error in the measurement results because the distance is constant. That is, it can be said to be a highly reliable steel workpiece inspection device.

更に、鋼製ワーク15に歯車を用いた場合、歯車の隣り合う歯面49と歯面49との間に当て部材28を接触させることができる。歯面49と歯面49との間に当て部材28を接触させることにより、1の当て部材で2点に接触させることができる。2点に接触させることにより、更に歯車から検出コイルまでの距離を安定させることができる。   Furthermore, when a gear is used for the steel workpiece 15, the contact member 28 can be brought into contact between the tooth surfaces 49 adjacent to each other of the gear. By contacting the contact member 28 between the tooth surface 49 and the tooth surface 49, it is possible to make contact with two points with one contact member. By contacting the two points, the distance from the gear to the detection coil can be further stabilized.

図5は図2の5部拡大断面図であり、(a)に示されるように、当て部材28の基部43は六角形に構成され、先端に雄ねじ状に構成された雄ねじ部46が配置される。雄ねじ部46は鉄芯23の先端に設けられた雌ねじ穴47に螺合される。   FIG. 5 is an enlarged cross-sectional view of part 5 of FIG. 2, and as shown in FIG. The The male screw portion 46 is screwed into a female screw hole 47 provided at the tip of the iron core 23.

当て部材28は、鋼製ワーク15に接触させる球体26と、この球体26を鉄芯23に接続する支持部25とからなる。球体26と支持部25により当て部材28は構成される。少ない部品数により当て部材28を製造することができ有益である。   The abutting member 28 includes a sphere 26 that is brought into contact with the steel workpiece 15 and a support portion 25 that connects the sphere 26 to the iron core 23. The contact member 28 is configured by the sphere 26 and the support portion 25. It is advantageous that the abutting member 28 can be manufactured with a small number of parts.

(b)は(a)のb−b線断面図であり、鉄芯23の先端には例えば3つの雌ねじ穴47が設けられている。測定されるワークの大きさに合わせて、これらの雌ねじ穴47のうちから1の雌ねじ穴47を選択し、当て部材28(図4)を螺合させることができる。   (B) is a sectional view taken along the line bb of (a), and, for example, three female screw holes 47 are provided at the tip of the iron core 23. One female screw hole 47 is selected from these female screw holes 47 according to the size of the workpiece to be measured, and the abutting member 28 (FIG. 4) can be screwed together.

ところで、図1で説明した浸炭深さ換算装置35には、測定で得られたX電圧を浸炭深さに換算する換算表を記憶させる必要がある。そこで、図1の歯底浸炭深さ計測装置10を用いて、周波数を1kHzに設定し、真空浸炭済みの歯車の「X電圧」を測定した。この測定は非破壊検査に相当する。   By the way, it is necessary to memorize | store the conversion table which converts X voltage obtained by the measurement into the carburizing depth in the carburizing depth conversion apparatus 35 demonstrated in FIG. Therefore, using the root carburization depth measuring device 10 of FIG. 1, the frequency was set to 1 kHz, and the “X voltage” of the vacuum carburized gear was measured. This measurement corresponds to a nondestructive inspection.

次に、この歯車を切断し、切断面を磨いてから「浸炭深さ」を測定した。この測定は破壊検査に相当する。   Next, this gear was cut and the cut surface was polished, and then the “carburizing depth” was measured. This measurement corresponds to destructive inspection.

図6は測定で得られた硬さを表したグラフである。
先ず、歯底浸炭深さ計測装置10を用いて、周波数を1kHzに設定し、真空浸炭済みの歯車の「X電圧」を測定したところ、X電圧は−67mVであった。次に、切断し、切断面を磨き、この切断面を測定対象として、表面から0.1mm毎に、1.0mmまで、マイクロビッカース硬さ計で、ビッカース硬さ(Hv)を測った。
FIG. 6 is a graph showing the hardness obtained by the measurement.
First, when the frequency was set to 1 kHz using the tooth bottom carburizing depth measuring device 10 and the “X voltage” of the gear that had been vacuum carburized was measured, the X voltage was −67 mV. Next, it cut | disconnected, polished the cut surface, and set this cut surface as a measuring object, the Vickers hardness (Hv) was measured with the micro Vickers hardness meter to 1.0 mm every 0.1 mm from the surface.

図6は測定で得られた硬さを表したグラフであり、(a)は、横軸が表面からの深さで、縦軸がビッカース硬さであるグラフに、生のデータをプロットしたものである。   FIG. 6 is a graph showing the hardness obtained by the measurement, and (a) is a graph in which raw data is plotted on a graph in which the horizontal axis is the depth from the surface and the vertical axis is the Vickers hardness. It is.

ところで、この種の歯車では、「表面から○○mmの深さで、ロックウエルCスケール硬さが50以上であること」と言った要求仕様が出されることが多い。ロックウエルCスケール硬さ50は、換算表によれば、ビッカース硬さ(Hv)513に相当する。
そこで、(a)にプロットした複数の点を滑らかな曲線で繋ぐ。
By the way, in this type of gear, a required specification such as “the depth of ◯ mm from the surface and the Rockwell C scale hardness is 50 or more” is often issued. The Rockwell C scale hardness 50 corresponds to Vickers hardness (Hv) 513 according to the conversion table.
Therefore, a plurality of points plotted in (a) are connected by a smooth curve.

結果、(b)示すグラフが得られる。そこで、縦軸の513から横線を引き、曲線に交わったところから、縦線を降ろし、この縦線が横軸と交わったところの距離を読む。表面からの距離は0.64mmであった。   As a result, the graph shown in (b) is obtained. Therefore, a horizontal line is drawn from 513 on the vertical axis, the vertical line is dropped from where it intersects the curve, and the distance at which this vertical line intersects the horizontal axis is read. The distance from the surface was 0.64 mm.

図7はX電圧と浸炭深さの相関図であり、横軸が浸炭深さ(表面からの距離に相当。)で、縦軸がX電圧であるグラフに、1個のデータ(0.64mm、−67mV)を●でプロットした。
浸炭条件を変えて得られたサンプルを21個作製し、これらのサンプルについても図6(a)、(b)での手順を踏んで、浸炭深さとX電圧を定めた。21個のサンプルについては○で、グラフにプロットした。
FIG. 7 is a correlation diagram between the X voltage and the carburization depth. In the graph in which the horizontal axis represents the carburization depth (corresponding to the distance from the surface) and the vertical axis represents the X voltage, one piece of data (0.64 mm) is shown. , −67 mV) is plotted with ●.
Twenty-one samples obtained by changing the carburizing conditions were prepared, and the carburizing depth and the X voltage were determined for these samples by following the procedures in FIGS. 6 (a) and 6 (b). Twenty-one samples were circled and plotted on a graph.

1個の●と21個の○は右下りの直線に沿って分散している。縦軸のX電圧が測定で得られれば、この相関図により、得られたX電圧に対応する浸炭深さを求めることができる。
また、詳細な計算法は省略するが、この分散における相関係数(r)は0.92であった。
One ● and 21 ○ are distributed along a straight line going down to the right. If the X voltage on the vertical axis is obtained by measurement, the carburization depth corresponding to the obtained X voltage can be obtained from this correlation diagram.
Although the detailed calculation method is omitted, the correlation coefficient (r 2 ) in this dispersion was 0.92.

以上の説明から明らかなように、本発明は次の点にも特徴がある。すなわち、図6(a)、(b)で説明したように、得られた硬さと深さは、測定で得られた硬さを、歯車の表面から中心に向かってプロットした点を結んでなる曲線から得る。点を結んで曲線を得るようにしたので、測定点の数を少なく設定することができ、測定時間が短縮でき、測定コストの低減を図ることができる。   As is clear from the above description, the present invention is also characterized by the following points. That is, as described in FIGS. 6A and 6B, the hardness and depth obtained are obtained by connecting the points obtained by plotting the hardness obtained by measurement from the surface of the gear toward the center. Get from the curve. Since the curve is obtained by connecting the points, the number of measurement points can be set small, the measurement time can be shortened, and the measurement cost can be reduced.

又、図6で求めた硬さという定量的データに基づいて、浸炭深さが決められる。すなわち、図6で説明したように、破壊検査による硬さデータと、非破壊検査によるX電圧との突き合わせが行われる。この後は、非破壊検査によりX電圧を求め、図7に基づいて、浸炭深さに換算する。非破壊検査であるにも拘わらず、破壊検査での裏付けがなされているので、非破壊検査で求めた浸炭深さの信頼性が飛躍的に高まる。   Further, the carburization depth is determined based on quantitative data of hardness obtained in FIG. That is, as described with reference to FIG. 6, the hardness data by the destructive inspection and the X voltage by the nondestructive inspection are matched. Thereafter, the X voltage is obtained by nondestructive inspection, and converted to the carburization depth based on FIG. Despite the non-destructive inspection, since it is supported by the destructive inspection, the reliability of the carburization depth obtained by the non-destructive inspection is dramatically increased.

次に、好適な周波数を特定することを目的に、700Hzから4kHzまで周波数を変えて、各周波数当たり22個のサンプルを準備し、図7と同様の相関図を作成し、相関係数を求めた。その結果を次図に示す。
図8は周波数と相関係数の関係を示すグラフであり、1kHzが最大で、2kHz以上では相関係数が小さくなった。一方、700〜1kHzでは、変化は小さい。
真空浸炭された歯車の歯底の浸炭深さを調べるには、周波数は700〜1kHzの範囲に設定することが望ましいことが分かった。
Next, for the purpose of specifying a suitable frequency, the frequency is changed from 700 Hz to 4 kHz, 22 samples are prepared for each frequency, a correlation diagram similar to FIG. 7 is created, and a correlation coefficient is obtained. It was. The result is shown in the following figure.
FIG. 8 is a graph showing the relationship between the frequency and the correlation coefficient. The maximum is 1 kHz, and the correlation coefficient is small above 2 kHz. On the other hand, at 700-1 kHz, the change is small.
In order to examine the carburizing depth of the tooth bottom of the vacuum carburized gear, it has been found that the frequency is desirably set in the range of 700 to 1 kHz.

以上の構成からなる鋼製ワークの検査装置の作用を鋼製ワークに歯車を用いた場合を例に次に説明する。
図9は本発明に係る当て部材の作用説明図であり、(a)に示すように当て部材28は、歯車53の両端に接触するように配置されている。測定の対象となる歯車53の大きさが変わる場合には、当て部材28を回して雌ねじ穴47から当て部材28を外す。
Next, the operation of the steel workpiece inspection apparatus having the above-described configuration will be described by taking a case where a gear is used for the steel workpiece as an example.
FIG. 9 is a diagram for explaining the operation of the contact member according to the present invention. As shown in FIG. 9A, the contact member 28 is disposed so as to contact both ends of the gear 53. When the size of the gear 53 to be measured changes, the contact member 28 is turned to remove the contact member 28 from the female screw hole 47.

次に(b)に示すように、異なる大きさの歯車54の大きさに合わせ、歯車54の両端に当て部材28が配置されるよう雌ねじ穴47を選択し、選択された雌ねじ穴47に当て部材28を螺合させる。   Next, as shown in (b), the female screw hole 47 is selected so that the contact member 28 is arranged at both ends of the gear 54 according to the size of the gear 54 having a different size, and the female screw hole 47 is applied to the selected female screw hole 47. The member 28 is screwed.

当て部材28を歯車54の歯幅方向に移動させることができる。歯車54の大きさに合わせて当て部材28を移動させることができる。1の検査装置で様々な歯車の測定を行うことができ有益である。   The abutting member 28 can be moved in the tooth width direction of the gear 54. The abutting member 28 can be moved in accordance with the size of the gear 54. It is beneficial to measure various gears with one inspection device.

加えて、当て部材28を歯車54の歯幅方向に2個設けた場合、2個の当て部材28、28を歯車54に接触させることにより、更に歯車54から検出コイル33までの距離を安定させることができる。検査装置の信頼性がより増す。   In addition, when two contact members 28 are provided in the tooth width direction of the gear 54, the distance from the gear 54 to the detection coil 33 is further stabilized by bringing the two contact members 28, 28 into contact with the gear 54. be able to. The reliability of the inspection device is further increased.

当て部材28の位置が決まったら、歯車54の強度を測定する。歯車の強度の測定法については次図で説明する。   When the position of the contact member 28 is determined, the strength of the gear 54 is measured. The method for measuring the strength of the gear will be described in the next figure.

図10は本発明に係る鋼製ワークの検査装置の作用説明図であり、(a)に示すように、静止状態にある検出コイル33へ、歯車54を矢印(1)のように前進させる。(b)に示すように、検出コイル33に任意の歯底44を臨ませ、歯底44の浸炭深さを検出し、この浸炭深さの合否を判定させる。終わったら、矢印(2)のように歯車54を後退させる。   FIG. 10 is a diagram for explaining the operation of the steel workpiece inspection apparatus according to the present invention. As shown in FIG. 10 (a), the gear 54 is advanced to the stationary detection coil 33 as shown by the arrow (1). As shown in (b), an arbitrary tooth bottom 44 is caused to face the detection coil 33, the carburization depth of the tooth bottom 44 is detected, and whether the carburization depth is acceptable or not is determined. When finished, the gear 54 is moved backward as indicated by the arrow (2).

次に、(c)に示すように、歯車54を1ピッチ(歯一枚分)だけ回す(矢印(3))。すると(d)に示すように、隣の歯底44が検出コイル33に臨む。以降、(a)に戻って作業を継続する。この継続する作業をフローで再度説明する。   Next, as shown in (c), the gear 54 is rotated by one pitch (one tooth) (arrow (3)). Then, as shown in (d), the adjacent tooth bottom 44 faces the detection coil 33. Thereafter, the process returns to (a) and continues. This continuing operation will be described again in the flow.

図11は本発明の鋼製ワークの検査装置を用いた好適な作業フロー図であり、ステップ番号(以下STと略記する。)01で、合格基準深さDsを定める。例えば、合格基準深さDsが0.5mmとする。この0.5mmを図1の合否判定部36へインプットする。   FIG. 11 is a preferred work flow diagram using the steel workpiece inspection apparatus of the present invention, and the acceptance reference depth Ds is determined by a step number (hereinafter abbreviated as ST) 01. For example, the acceptance reference depth Ds is 0.5 mm. This 0.5 mm is input to the pass / fail judgment unit 36 in FIG.

ST02で、測定対象とする歯車の歯数Nを、図1の制御部19へインプットする。測定回数を監視するために、先ず、回数nを1とする(ST03)。次に図9の要領で当て部材28の位置決めを行う(ST04)。   In ST02, the number N of gear teeth to be measured is input to the control unit 19 in FIG. In order to monitor the number of measurements, first, the number n is set to 1 (ST03). Next, the abutting member 28 is positioned as shown in FIG. 9 (ST04).

当て部材28の位置が決まったら、図10(a)の要領で、歯車を前進させる(ST05)。図10(b)の要領で、歯底のX電圧を測定させる(ST06)。図1の浸炭深さ換算装置35により、X電圧を浸炭深さDaに換算させる(ST07)。図1の合否判定部36により、測定で得られた浸炭深さDaが合格基準深さDsより大きいか否かを調べる(ST08)。YESであれば、「合格」の表示をする(ST09)。次に、図8(b)に矢印(2)で示すように歯車を後退させる(ST10)。   When the position of the abutting member 28 is determined, the gear is advanced in the manner of FIG. 10A (ST05). In the manner shown in FIG. 10B, the X voltage of the tooth bottom is measured (ST06). The X voltage is converted into the carburization depth Da by the carburization depth conversion device 35 in FIG. 1 (ST07). The pass / fail judgment unit 36 in FIG. 1 checks whether or not the carburized depth Da obtained by the measurement is larger than the acceptance reference depth Ds (ST08). If YES, “pass” is displayed (ST09). Next, the gear is moved backward as indicated by an arrow (2) in FIG. 8B (ST10).

ここで、測定回数を調べる(ST11)。初回はnは1である。例えば歯車の歯数Nが40であれば、n<Nであるから、NOを進み、nに1を加える(ST12)。そして、図10(c)の要領で、歯車を歯1個分だけ回転させる(ST13)。そして、ST05から再度、歯底の浸炭深さを測定する。   Here, the number of measurements is examined (ST11). N is 1 for the first time. For example, if the number N of gear teeth is 40, since n <N, NO is advanced and 1 is added to n (ST12). Then, as shown in FIG. 10C, the gear is rotated by one tooth (ST13). Then, the carburization depth of the tooth bottom is measured again from ST05.

ST08で、浸炭深さDaが合格基準深さDsより下回っていれば、NOを進み、不合格表示を行う(ST14)。不合格の場合は、この歯車に対する測定をこの時点で終了させることができる。   If the carburization depth Da is lower than the acceptance standard depth Ds in ST08, NO is advanced and a failure display is performed (ST14). If it fails, the measurement for this gear can be terminated at this point.

ST11で、測定回数nが歯数Nに到達すれば、歯底の全数を検査したことになるので、測定終了の表示を行い、測定を終了する(ST15)。   If the number of measurements n reaches the number of teeth N in ST11, the total number of tooth bottoms has been inspected, so that measurement completion is displayed and the measurement is terminated (ST15).

尚、本発明の鋼製ワークの検査装置は、図1に示した歯底浸炭深さ計測装置10以外の装置やツールで浸炭深さを測ることは差し支えない。要は、歯底の浸炭深さが非破壊的に計測することができるものであれば、計測装置の形態、種類は問わない。   The steel workpiece inspection apparatus of the present invention may measure the carburization depth with an apparatus or tool other than the root carburization depth measurement apparatus 10 shown in FIG. In short, as long as the carburization depth of the tooth base can be measured nondestructively, the form and type of the measuring device are not limited.

本発明は、真空浸炭処理された歯車の浸炭深さを計測する技術に好適である。   The present invention is suitable for a technique for measuring the carburization depth of a gear that has been vacuum carburized.

本発明の鋼製ワークの検査装置を用いるのに適した歯底浸炭深さ計測装置の原理図である。It is a principle figure of the bottom carburization depth measuring device suitable for using the inspection device of the steel work of the present invention. 鋼製ワークの検査装置の正面図である。It is a front view of the inspection apparatus of steel workpieces. 図2の3線断面図である。FIG. 3 is a cross-sectional view taken along a line 3 in FIG. 2. 図2の4線断面図である。FIG. 3 is a cross-sectional view taken along line 4 of FIG. 2. 図2の5部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of part 5 of FIG. 2. 測定で得られた硬さを表したグラフである。It is a graph showing the hardness obtained by measurement. X電圧と浸炭深さの相関図である。It is a correlation diagram of X voltage and carburizing depth. 周波数と相関係数の関係を示すグラフである。It is a graph which shows the relationship between a frequency and a correlation coefficient. 本発明に係る当て部材の作用説明図である。It is action | operation explanatory drawing of the contact member which concerns on this invention. 本発明に係る鋼製ワークの検査装置の作用説明図である。It is operation | movement explanatory drawing of the inspection apparatus of the steel workpiece which concerns on this invention. 本発明の鋼製ワークの検査装置を用いた好適な作業フロー図である。It is a suitable work flowchart using the inspection apparatus of the steel workpiece of this invention. 従来の技術の基本原理を説明する図である。It is a figure explaining the basic principle of the prior art. 従来の技術の問題を説明する図である。It is a figure explaining the problem of the prior art. 歯車の挿入角度と電圧測定値の関係を示すグラフを説明する図である。It is a figure explaining the graph which shows the relationship between the insertion angle of a gearwheel, and a voltage measurement value.

符号の説明Explanation of symbols

10…歯底浸炭深さ計測装置、15…鋼製ワーク、16…ワーク支軸、17…インデックスモータ、18…シリンダユニット、19…制御部、23…鉄芯、25…支持部、26…球体、28…当て部材、29…励磁コイル、33…検出コイル、35…浸炭深さ換算装置、36…合否判定部、37…合否表示部、40…鋼製ワークの検査装置、46…雄ねじ部、47…雌ねじ穴、53、54…歯車。 DESCRIPTION OF SYMBOLS 10 ... Dental carburization depth measuring apparatus, 15 ... Steel workpiece, 16 ... Work spindle, 17 ... Index motor, 18 ... Cylinder unit, 19 ... Control part, 23 ... Iron core, 25 ... Support part, 26 ... Sphere 28 ... Abutting member, 29 ... Excitation coil, 33 ... Detection coil, 35 ... Carburization depth converting device, 36 ... Pass / fail judgment unit, 37 ... Pass / fail display unit, 40 ... Steel workpiece inspection device, 46 ... Male screw portion, 47 ... Female screw hole, 53, 54 ... Gear.

Claims (4)

鉄芯で支持され鋼製ワークの近傍に置かれて前記鋼製ワークに渦電流を発生させる励磁コイルと、前記鉄芯で支持され鋼製ワークの近傍に置かれて前記渦電流で発生する磁界の変化を測定する検出コイルとからなる鋼製ワークの検査装置において、
この検査装置は、前記鉄芯から延ばされ先端が前記鋼製ワークに接触して、この鋼製ワークから前記検出コイルまでの距離を一定にする当て部材を備えている検査装置であり、
前記鋼製ワークは、真空浸炭処理された歯車であり、
前記当て部材は、ワークに接触させる球体と、この球体を前記鉄芯に接続する支持部とからなると共に、前記歯車の歯幅方向に少なくとも2個設けられ、
前記鉄芯の先端には、雌ねじ状に構成された複数の雌ねじ穴が設けられ、
前記支持部の先端には、雄ねじ状に構成された雄ねじ部が設けられ、
前記複数の雌ねじ穴のうち、任意の雌ねじ穴に、前記雄ねじ部が螺合されていることを特徴とする鋼製ワークの検査装置。
An exciting coil that is supported by an iron core and is placed in the vicinity of the steel workpiece and generates an eddy current in the steel workpiece; and a magnetic field that is supported by the iron core and is placed in the vicinity of the steel workpiece and generated by the eddy current. In a steel workpiece inspection device comprising a detection coil for measuring changes in
This inspection device is an inspection device that includes a contact member that extends from the iron core and has a tip that contacts the steel workpiece and makes the distance from the steel workpiece to the detection coil constant .
The steel workpiece is a gear that has been vacuum carburized,
The abutting member includes a sphere to be brought into contact with the workpiece, and a support portion that connects the sphere to the iron core, and is provided in at least two in the tooth width direction of the gear,
At the tip of the iron core, a plurality of female screw holes configured in a female screw shape are provided,
At the tip of the support portion, a male screw portion configured in a male screw shape is provided,
An inspection apparatus for a steel workpiece , wherein the male screw portion is screwed into an arbitrary female screw hole among the plurality of female screw holes .
前記検出コイルの形状は、円柱状であると共に、前記検出コイルの軸線が前記歯車の歯底に沿って配置されていることを特徴とする請求項1記載の鋼製ワークの検査装置。 2. The steel workpiece inspection apparatus according to claim 1 , wherein the shape of the detection coil is a cylindrical shape, and an axis of the detection coil is disposed along a tooth bottom of the gear . 検出コイルから検出情報を取得して浸炭深さに換算する浸炭深さ換算装置と、得られた浸炭深さを合格基準深さと比較して合否を判定する合否判定部と、得られた合否判定に基づいて、合格、不合格を表示する合否表示部とを備えていることを特徴とする請求項1又は請求項2記載の鋼製ワークの検査装置。 Carburization depth conversion device that acquires detection information from the detection coil and converts it to carburization depth, a pass / fail determination unit that determines the pass / fail by comparing the obtained carburization depth with an acceptable reference depth, and the obtained pass / fail determination The steel workpiece inspection device according to claim 1, further comprising: a pass / fail display unit that displays pass / fail based on the above. 前記鋼製ワークを支持するワーク支軸と、このワーク支軸を一定ピッチで回転させるインデックスモータと、前記鋼製ワークを前記検出コイルに向かって移動させるシリンダユニットと、これらのインデックスモータ及びシリンダユニットを制御する制御部とが備えられていることを特徴とする請求項3記載の鋼製ワークの検査装置。 Work support shaft for supporting the steel work, an index motor for rotating the work support at a constant pitch, a cylinder unit for moving the steel work toward the detection coil, and these index motor and cylinder unit The steel workpiece inspection apparatus according to claim 3, further comprising a control unit that controls the workpiece.
JP2008084622A 2008-03-27 2008-03-27 Steel workpiece inspection equipment Expired - Fee Related JP4991613B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008084622A JP4991613B2 (en) 2008-03-27 2008-03-27 Steel workpiece inspection equipment
US12/934,459 US8704512B2 (en) 2008-03-27 2009-03-17 Nondestructive testing system for steel workpiece
PCT/JP2009/055721 WO2009119529A1 (en) 2008-03-27 2009-03-17 Nondestructive testing system for steel workpiece
CN2009801089857A CN101971016B (en) 2008-03-27 2009-03-17 Nondestructive testing system for steel workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084622A JP4991613B2 (en) 2008-03-27 2008-03-27 Steel workpiece inspection equipment

Publications (2)

Publication Number Publication Date
JP2009236758A JP2009236758A (en) 2009-10-15
JP4991613B2 true JP4991613B2 (en) 2012-08-01

Family

ID=41250887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084622A Expired - Fee Related JP4991613B2 (en) 2008-03-27 2008-03-27 Steel workpiece inspection equipment

Country Status (1)

Country Link
JP (1) JP4991613B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS428093Y1 (en) * 1964-07-04 1967-04-25
JPS5146998A (en) * 1974-10-21 1976-04-22 Nippon Steel Corp ONRAINKETSUSHORYUDOSOKUTEIHOHO
US4634976A (en) * 1983-05-05 1987-01-06 American Stress Technologies, Inc. Barkhausen noise method for stress and defect detecting in hard steel
JPS62200262A (en) * 1986-02-28 1987-09-03 Nisshin Steel Co Ltd Cold rolling of metastable austenite based stainless steel and martensite value detector used therein
JPH01212352A (en) * 1988-02-19 1989-08-25 Kawasaki Steel Corp Method and apparatus for electromagnetic flaw detection
JP2004108873A (en) * 2002-09-17 2004-04-08 Toyota Motor Corp Non-destructive measuring method for quenched surface hardness/depth and its device
JP2007231305A (en) * 2006-02-27 2007-09-13 Daido Steel Co Ltd Carburized component and carburized gear

Also Published As

Publication number Publication date
JP2009236758A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5851613B2 (en) Portable digital display hardness tester
US8704512B2 (en) Nondestructive testing system for steel workpiece
CN106990007B (en) Method and device for testing relation between residual stress of material and surface hardness
JP4803323B2 (en) Wire rope pitch measuring method, wire rope pitch measuring device, and wire rope manufacturing method
US8490505B2 (en) Robot mechanism for nondestructive aging evaluation of cable
JP5149562B2 (en) Nondestructive measuring method and nondestructive measuring device
KR100799334B1 (en) Crack detection apparatus in press fit railway axle
JP2006153546A (en) Contact type steel pipe dimension-measuring device
CN102081024B (en) Compression displacement test unit
KR200470510Y1 (en) Shaft tester
KR100965226B1 (en) Evaluating method of the residual stress determining method using the continuous indentation method
JP2009236767A (en) Gear strength evaluation device and gear strength evaluation method
JP4991613B2 (en) Steel workpiece inspection equipment
US20030088991A1 (en) Single-side measuring devices and methods
JP2009236762A (en) Eddy current magnetic field change detection device and gear strength evaluation method
JP5225705B2 (en) Fatigue testing machine and fatigue strength evaluation method
JP2009236755A (en) Sensor and measuring device
JP2009236772A (en) Gear strength inspection device
JPWO2018088273A1 (en) CTOD specimen manufacturing method and plastic strain adjustment jig
JP2009236753A (en) Gear strength evaluation method
JP5470122B2 (en) Gear surface measuring device
JP5465564B2 (en) Internal gear surface measurement device
JP2009236766A (en) Gear strength evaluation method and evaluating device therefor
JP2003262514A (en) Management system for round steel product
CN101469974B (en) Metal pipe detection apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4991613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees