JP2009233166A - 生体吸収性材料およびそれを用いた生体内留置物 - Google Patents

生体吸収性材料およびそれを用いた生体内留置物 Download PDF

Info

Publication number
JP2009233166A
JP2009233166A JP2008084375A JP2008084375A JP2009233166A JP 2009233166 A JP2009233166 A JP 2009233166A JP 2008084375 A JP2008084375 A JP 2008084375A JP 2008084375 A JP2008084375 A JP 2008084375A JP 2009233166 A JP2009233166 A JP 2009233166A
Authority
JP
Japan
Prior art keywords
acid
bioabsorbable material
component
aliphatic polyester
hydroxyl groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008084375A
Other languages
English (en)
Inventor
Mitsuru Akashi
満 明石
Noriya Matsuzaki
典弥 松崎
Chanteihan
チャンティハン
Yotaro Fujita
陽太郎 藤田
Masato Onishi
誠人 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2008084375A priority Critical patent/JP2009233166A/ja
Publication of JP2009233166A publication Critical patent/JP2009233166A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】柔軟性を有しかつ分解速度を制御することが可能な生体吸収性材料およびそれを用いた生体内留置物を提供する。
【解決手段】1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分との共重合体からなることを特徴とする生体吸収性材料およびそれを用いた生体内留置物。
【選択図】なし

Description

本発明は、生体吸収性材料およびそれを用いた生体内留置物に関するものである。
化学の進歩とともに発展してきたプラスチックは、金属の代替高機能材料としてあらゆる分野で利用され、欠くことのできない材料のひとつとなった。プラスチックは日用品を始め、工業用材料としての確固たる地位を築き、さらに原子力から宇宙・海洋開発に至るまで幅広く用途が拡大している。このようなプラスチックは他の素材に見られない素晴らしい特性と可能性を秘めた材料であり、軽量、成型加工の容易さ、複雑な形状の製品でも少ない工程数でつくることができ、耐食性に優れ、耐薬品性に強いなどの特徴を有している。その反面、金属に比べて耐熱性に乏しいといった問題もあったが、1960年台からそれまでの高分子化学の研究をもとにした耐熱性をもつ新しい高分子化学の研究をもとにした耐熱性をもつ新しい高分子の設計と開発が本格化し、高強度、高弾性率高分子が開発された。こうした高分子材料は、エンジニアリングプラスチックと呼ばれており、一般に、熱変形温度が100℃以上、引張強度が60MPa以上、弾性率が2GPa以上の性能をもつものをいう。
一方、現在、環境破壊・資源枯渇などが深刻な問題となっており、これらの解決法として分解性や非毒性つまり環境適合性プラスチックの開発が要求されている。グリーンポリマー、あるいはグリーンベースドポリマーと呼ばれる植物由来高分子は期待が集まり、特にその代表であるポリ乳酸は研究開発が進んでいるが、強度や耐熱性では十分な性能が得られていない。
1976年にポリエチレンテレフタレート(PET)の耐熱性を向上させるために、P−ヒドロキシ安息香酸(PHB)で改質した液晶性ポリエステルを開発したのが液晶性エンジニアリングプラスチックの最初の報告である。その後、様々な液晶性エンジニアリングプラスチックが活発に開発、製品化されており、例としては液晶ポリアリレートI型やII型などが挙げられる。しかし、昨今の社会問題を解決するエンジニアリングプラスチックは報告されていない。
そこで、明石満らは、液晶性エンジニアリングプラスチックの開発において、反応性植物由来剛直物質として4−ヒドロキシ桂皮酸(4HCA)に着目した。4HCAホモポリマー(ポリ4HCA)に関する過去の研究例はほとんどなく、合成に関するものと粒子化に関するもののみであった。明石らは、天然由来ポリエステルに属するポリ4HCAがネマチック液晶性を示すことを初めて見出した。このホモポリマーは、光反応性、生体適合性を有しており、エンジニアリングプラスチックとして求められる耐熱性を示したが、脆く、溶解性や加工性に乏しいという問題点があった。これは、分子量が低いことと骨格の剛直性が高いことが原因と考えられた。
そこで、ポリ4HCAの骨格に柔軟性を付与する天然物を共重合する方法を考え、4HCA誘導体である3,4−ジヒドロキシ桂皮酸(カフェ酸)(DHCA)に着目した。この共重合体はエステル交換剤である無水酢酸と触媒である酢酸ナトリウムの存在下で200℃、6時間熱の重縮合により得られる。DHCAを導入しても、25℃では固体であったが、加熱によりバンド模様が明確に観察され、流動性も示したことから液晶が確認され、液晶化温度は、DHCA組成の増加に伴い、150℃まで減少し、一方、重量減少温度は300℃を超え、結果として液晶温度領域が広がり、取り扱いやすい試料となった。さらに、強度や弾性率に重要な高分子量の共重合体を合成できた。圧縮試験の結果、強度と弾性率については、共重合体比の組成によって異なるが、DHCA組成50〜100mol%で汎用エンジニアリングプラスチックの代表であるポリカーボネートに匹敵するヤング率と破断強度を示した(非特許文献1)。しかし、この共重合体は、剛直な高分子である反面、硬くて脆く柔軟性に欠ける上に、分解速度が遅いという問題がある。
環境循環型エンジニアリングプラスチック,高分子学会誌「高分子」11月号,明石満
本発明の目的は、柔軟性を有しかつ分解速度を制御することが可能な生体吸収性材料およびそれを用いた生体内留置物を提供することにある。
このような目的は、下記(1)〜(9)の本発明により達成される。
(1)1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分との共重合体からなることを特徴とする生体吸収性材料。
(2)前記1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が、2−ヒドロキシ桂皮酸、3−ヒドロキシ桂皮酸、4−ヒドロキシ桂皮酸、4−ヒドロキシ2−メトキシ桂皮酸、4−ヒドロキシ3−メトキシ桂皮酸のいずれかであることを特徴とする(1)に記載の生体吸収性材料。
(3)前記2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が、3,4−ジヒドロキシ桂皮酸であることを特徴とする(1)ないし(2)に記載の生体吸収性材料。
(4)前記脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分が、乳酸、グリコール酸、ε−カプロラクトンのいずれかからなることを特徴とする(1)〜(3)のいずれかに記載の生体吸収性材料。
(5)前記脂肪族ポリエステル成分が、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペートのいずれかであることを特徴とする(1)〜(3)のいずれかに記載の生体吸収性材料。
(6)前記共重合体が、ブロック共重合体、ランダム共重合体、グラフト共重合体からなる群から選ばれた少なくとも1種あるいはそれらの組み合わせであることを特徴とする(1)〜(5)のいずれかに記載の生体吸収性材料。
(7)前記生体吸収性材料は、さらにHLBが7.0以下である添加剤が含有されていることを特徴とする(1)〜(6)のいずれかに記載の生体吸収性材料。
(8)前記添加剤が、中鎖脂肪酸トリグリセリド、ソルビタン脂肪酸エステル、レシチン、ダイズ油、オリブ油、ゴマ油、トコフェロール、ブチルヒドロキシトルエン、ブチルヒドロキシアニソールからなる群から選ばれた少なくとも1種あるいはそれらの組み合わせであることを特徴とする(7)に記載の生体吸収性材料。
(9)(1)〜(8)のいずれかに記載の生体吸収性材料により形成されたことを特徴とする生体内留置物。
本発明は、1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分との共重合体からなることを特徴とする生体吸収性材料であるため、柔軟性を有しかつ分解速度を制御することが可能であり、ステント等の生体内留置物を形成するのに適している。
以下、本発明の生体吸収性材料およびそれを用いた生体内留置物について詳細に説明する。
本発明の生体吸収性材料は、1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分との共重合体である。したがって、柔軟性を有しかつ分解速度を制御することが可能である。
1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分としては、例えば2−ヒドロキシ桂皮酸、3−ヒドロキシ桂皮酸、4−ヒドロキシ桂皮酸、4−ヒドロキシ2−メトキシ桂皮酸、4−ヒドロキシ3−メトキシ桂皮酸が挙げられ、好ましくは4−ヒドロキシ桂皮酸である。理由は、生体内において安全性が高く、所望の機械的強度が得られるためである。
2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分としては、生体内において安全性が高く、機械的強度をより向上させることができるという理由から、3,4−ジヒドロキシ桂皮酸が好ましい。
脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分としては、生体内において安全性が高く、後述のHLBが7.0以下である添加剤との相溶性に優れているという理由から、例えば乳酸、グリコール酸、ε−カプロラクトンが挙げられる。
また、脂肪族ポリエステル成分としては、生体内において安全性が高く、所望の引張ひずみ(破断時ひずみ)が得られるという理由から、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペートが挙げられる。
共重合体としては、例えばブロック共重合体、ランダム共重合体、グラフト共重合体からなる群から選ばれた少なくとも1種あるいはそれらの組み合わせが挙げられ、好ましくはブロック共重合体である。理由は、高い立体規則性により、所望の機械的強度が得られるためである。
本発明の生体吸収性材料の第1の好ましい形態は、一般式1
Figure 2009233166
(式1中、aが10〜10,000、bが10〜10,000、cが10〜10,000である。)で示されるものである。すなわち、1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が4−ヒドロキシ桂皮酸、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が3,4−ジヒドロキシ桂皮酸(カフェ酸)、脂肪族ポリエステルを構成するモノマー成分がグリコール酸である。
また、本発明の生体吸収性材料の第2の好ましい形態は、一般式2
Figure 2009233166
(式2中、aが10〜10,000、bが10〜10,000、cが10〜10,000である。)で示されるものである。すなわち、1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が4−ヒドロキシ桂皮酸、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が3,4−ジヒドロキシ桂皮酸(カフェ酸)、脂肪族ポリエステルを構成するモノマー成分が乳酸である。
また、本発明の生体吸収性材料の第3の好ましい形態は、一般式3
Figure 2009233166
(式3中、aが10〜10,000、bが10〜10,000、cが10〜10,000である。)で示されるものである。すなわち、1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が4−ヒドロキシ桂皮酸、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が3,4−ジヒドロキシ桂皮酸(カフェ酸)、脂肪族ポリエステルを構成するモノマー成分がε−カプロラクトンである。
また、本発明の生体吸収性材料の第4の好ましい形態は、一般式4
Figure 2009233166
(式4中、aが10〜10,000、bが10〜10,000、cが10〜10,000である。)で示されるものである。すなわち、1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が4−ヒドロキシ桂皮酸、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が3,4−ジヒドロキシ桂皮酸(カフェ酸)、脂肪族ポリエステルがポリブチレンサクシネートである。
本発明の生体吸収性材料は、さらにHLBが7.0以下である添加剤が含有されていることが好ましい。理由は、ヤング率が減少しかつ引張ひずみ(破断時ひずみ)がより向上する(すなわちより柔軟になる)ためである。
添加剤としては、例えば中鎖脂肪酸トリグリセリド、ソルビタン脂肪酸エステル、レシチン、ダイズ油、オリブ油、ゴマ油、トコフェロール、ブチルヒドロキシトルエン、ブチルヒドロキシアニソールからなる群から選ばれた少なくとも1種あるいはそれらの組み合わせが挙げられ、好ましくは中鎖脂肪酸トリグリセリドである。理由は、前記の脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分が乳酸、グリコール酸あるいはε−カプロラクトンである生体吸収性材料との相溶性に優れているためである。
生体吸収性材料と添加剤との組成比(質量比)は、99:1〜50:50が好ましい。
本発明の生体吸収性材料は、用途に応じても異なるが、通常、数平均分子量(Mn)が8,000〜1,000,000であり、分子量分布すなわち数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.01〜5.00であることが好ましい。
また、本発明の生体吸収性材料は、JIS−K7113に基づく引張試験における、破断強度が10〜800MPa、ヤング率が500〜30,000MPa、破断時ひずみが10〜600%であることが好ましい。
また、本発明の生体吸収性材料は、37℃のpH=7.2のリン酸緩衝液に浸漬した際、2週間後における数平均分子量の減少率は1〜30%、4週間後における数平均分子量の減少率は1〜50%であることが好ましい。
本発明の生体吸収性材料の製造方法は、特に限定されないが、例えば触媒である酢酸ナトリウムおよびエステル交換剤である無水酢酸の存在下、1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分とを縮重合する方法が挙げられる。
本発明の生体吸収性材料は、前記の通り柔軟性を有しかつ分解速度を制御することが可能であるため、例えばステント等の生体内留置物を形成するのに適している。
以下、本発明を実施例によりさらに具体的に説明する。
(実施例1)
3,4−ジヒドロキシ桂皮酸(カフェ酸)(DHCA)5.4gと4−ヒドロキシ桂皮酸(4HCA)4.9gとグリコール酸(GA)2.3gと触媒である酢酸ナトリウム0.05gとエステル交換剤である無水酢酸50mLを三口フラスコに入れて10分間窒素バブリングさせ、窒素気流下で200℃のオイルバスに6時間撹拌させ縮重合した。得られた析出物をペンタフルオロフェノールに溶解し、メタノール中で再沈殿させた。吸引ろ過後、室温で二昼夜真空乾燥させ、ポリ(DHCA−4HCA−GA)共重合体を得た。
このポリ(DHCA−4HCA−GA)共重合体に対して20wt%の中鎖脂肪酸トリグリセリドを1wt%の濃度になるようにクロロホルムに溶解させて、厚さ約200μmのキャストフィルムを作製し、JIS−K7113に基づいて引張試験を実施したところ、破断強度が52.1MPa、ヤング率が3,450MPa、破断時ひずみが43.2%であった。
また、このポリ(DHCA−4HCA−GA)共重合体に対して20wt%の中鎖脂肪酸トリグリセリドを1wt%の濃度になるようにクロロホルムに溶解させて、厚さ約200μmのキャストフィルムを作製し、1昼夜室温乾燥後、φ10mmの円形に打ち抜いた。その後、30mLのサンプル瓶にpH=7.2のリン酸緩衝液を20mL加え、37℃で2週間および4週間上記キャストフィルムを浸漬させて加水分解試験を実施した。2週間後の数平均分子量の減少率は12%、4週間後の数平均分子量の減少率は16%であった。
(比較例1)
3,4−ジヒドロキシ桂皮酸(カフェ酸)(DHCA)5.4gと4−ヒドロキシ桂皮酸(4HCA)4.9gと触媒である酢酸ナトリウム0.05gとエステル交換剤である無水酢酸50mLを三口フラスコに入れて10分間窒素バブリングさせ、窒素気流下で200℃のオイルバスに6時間撹拌させ縮重合した。得られた析出物をペンタフルオロフェノールに溶解し、メタノール中で再沈殿させた。吸引ろ過後、室温で二昼夜真空乾燥させ、ポリ(DHCA−4HCA)共重合体を得た。
このポリ(DHCA−4HCA)共重合体に中鎖脂肪酸トリグリセリドを20wt%になるようにクロロホルムに溶解させてキャストフィルムを作製しようとしたが、相溶性が悪くキャストフィルムを作製することができなかった。
また、30mLのサンプル瓶にこのポリ(DHCA−4HCA)共重合体パウダー1gと中鎖脂肪酸トリグリセリド0.2gとpH=7.2のリン酸緩衝液を20mL加え、37℃で2週間および4週間留置して加水分解試験を実施した。2週間後の数平均分子量の減少率は0%、4週間後の数平均分子量の減少率は0%であった。

Claims (9)

  1. 1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分と、脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分との共重合体からなることを特徴とする生体吸収性材料。
  2. 前記1つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が、2−ヒドロキシ桂皮酸、3−ヒドロキシ桂皮酸、4−ヒドロキシ桂皮酸、4−ヒドロキシ2−メトキシ桂皮酸、4−ヒドロキシ3−メトキシ桂皮酸のいずれかであることを特徴とする請求項1に記載の生体吸収性材料。
  3. 前記2つ以上の水酸基とαβ不飽和カルボン酸を有する芳香族化合物成分が、3,4−ジヒドロキシ桂皮酸であることを特徴とする請求項1ないし2に記載の生体吸収性材料。
  4. 前記脂肪族ポリエステル成分あるいは脂肪族ポリエステルを構成するモノマー成分が、乳酸、グリコール酸、ε−カプロラクトンのいずれかからなることを特徴とする請求項1〜3のいずれかに記載の生体吸収性材料。
  5. 前記脂肪族ポリエステル成分が、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペートのいずれかであることを特徴とする請求項1〜3のいずれかに記載の生体吸収性材料。
  6. 前記共重合体が、ブロック共重合体、ランダム共重合体、グラフト共重合体からなる群から選ばれた少なくとも1種あるいはそれらの組み合わせであることを特徴とする請求項1〜5のいずれかに記載の生体吸収性材料。
  7. 前記生体吸収性材料は、さらにHLBが7.0以下である添加剤が含有されていることを特徴とする請求項1〜6のいずれかに記載の生体吸収性材料。
  8. 前記添加剤が、中鎖脂肪酸トリグリセリド、ソルビタン脂肪酸エステル、レシチン、ダイズ油、オリブ油、ゴマ油、トコフェロール、ブチルヒドロキシトルエン、ブチルヒドロキシアニソールからなる群から選ばれた少なくとも1種あるいはそれらの組み合わせであることを特徴とする請求項7に記載の生体吸収性材料。
  9. 請求項1〜8のいずれかに記載の生体吸収性材料により形成されたことを特徴とする生体内留置物。
JP2008084375A 2008-03-27 2008-03-27 生体吸収性材料およびそれを用いた生体内留置物 Pending JP2009233166A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084375A JP2009233166A (ja) 2008-03-27 2008-03-27 生体吸収性材料およびそれを用いた生体内留置物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084375A JP2009233166A (ja) 2008-03-27 2008-03-27 生体吸収性材料およびそれを用いた生体内留置物

Publications (1)

Publication Number Publication Date
JP2009233166A true JP2009233166A (ja) 2009-10-15

Family

ID=41247866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084375A Pending JP2009233166A (ja) 2008-03-27 2008-03-27 生体吸収性材料およびそれを用いた生体内留置物

Country Status (1)

Country Link
JP (1) JP2009233166A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233807A (ja) * 2009-03-31 2010-10-21 Terumo Corp 生体吸収性材料およびそれを用いたステント
JP5467997B2 (ja) * 2008-03-27 2014-04-09 テルモ株式会社 生体吸収性材料およびそれを用いた生体内留置物
JP2018511309A (ja) * 2015-03-12 2018-04-26 タイムプラスト インターナショナル,エルエルシー プラスチックの分解のための組成物
EP4056621A4 (en) * 2019-11-06 2023-12-27 National Institute Of Advanced Industrial Science and Technology NEW POLYESTER DERIVED FROM BIOMASS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467997B2 (ja) * 2008-03-27 2014-04-09 テルモ株式会社 生体吸収性材料およびそれを用いた生体内留置物
JP2010233807A (ja) * 2009-03-31 2010-10-21 Terumo Corp 生体吸収性材料およびそれを用いたステント
JP2018511309A (ja) * 2015-03-12 2018-04-26 タイムプラスト インターナショナル,エルエルシー プラスチックの分解のための組成物
EP4056621A4 (en) * 2019-11-06 2023-12-27 National Institute Of Advanced Industrial Science and Technology NEW POLYESTER DERIVED FROM BIOMASS

Similar Documents

Publication Publication Date Title
Samantaray et al. Poly (glycolic acid)(PGA): A versatile building block expanding high performance and sustainable bioplastic applications
Li et al. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida
CA2419673C (en) Polymeric networks
JP5467997B2 (ja) 生体吸収性材料およびそれを用いた生体内留置物
AU1942999A (en) Polyhydroxyalkanoate compositions having controlled degradation rates
Ding et al. Bio-based poly (butylene furandicarboxylate-co-glycolate) copolyesters: synthesis, properties, and hydrolysis in different aquatic environments for water degradation application
JP2009233166A (ja) 生体吸収性材料およびそれを用いた生体内留置物
Chen et al. Crystal and thermal properties of PLLA/PDLA blends synthesized by direct melt polycondensation
Li et al. Scalable Synthesis of Poly (ester-co-ether) Elastomers via Direct Catalytic Esterification of Terephthalic Acid with Highly Active Zr–Mg Catalyst
TW202104343A (zh) 脂肪族聚酯共聚物
Tu et al. Development of poly (n-alkylene oxalate) s toward a new kind of seawater degradable plastics
Baimark et al. Effect of chain extension on thermal stability behaviors of polylactide bioplastics
JP7116169B2 (ja) 乳酸-グリコール酸共重合体及びその製造方法
JP2009233165A (ja) 生体吸収性材料およびそれを用いた生体内留置物
Tu et al. Incorporation of Large-Scale Prepared Poly (ethylene oxalate) into Biodegradable Poly (butylene adipate-co-terephthalate) Blown Films with Enhanced Mechanical and Barrier Performance
JP2008120887A (ja) 柔軟性生分解性ポリマー
Kum et al. Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of poly (L-lactide) composites
Wang et al. Ductile polylactic acid-based blend derived from bio-based poly (butylene adipate-co-butylene furandicarboxylate)
Park et al. Graft polymerization of p-dioxanone onto polyhydroxyethylaspartamide through ring-opening polymerization using organometallic and enzyme catalysts
JP2006152196A (ja) 生分解性樹脂組成物
Liu et al. Preparation of poly (butylene‐co‐ε‐caprolactone carbonate) and their use as drug carriers for a controlled delivery system
CN1418901A (zh) 含羧基聚乳酸组成物及其制备方法
CN102702488A (zh) 一种聚乳酸的制备方法
Dong et al. High performance and water‐degradable poly (neopentyl terephthalate‐co‐neopentyl succinate) copolymers: Synthesis, properties, and hydrolysis in different aquatic bodies
Dong et al. Hydrolyzable and bio-based polyester/nano-hydroxyapatite nanocomposites: Structure and properties