JP2009232621A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2009232621A
JP2009232621A JP2008076807A JP2008076807A JP2009232621A JP 2009232621 A JP2009232621 A JP 2009232621A JP 2008076807 A JP2008076807 A JP 2008076807A JP 2008076807 A JP2008076807 A JP 2008076807A JP 2009232621 A JP2009232621 A JP 2009232621A
Authority
JP
Japan
Prior art keywords
semiconductor devices
electrode terminal
igbt
power converter
neutral point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008076807A
Other languages
Japanese (ja)
Inventor
Masahiro Kinoshita
雅博 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2008076807A priority Critical patent/JP2009232621A/en
Publication of JP2009232621A publication Critical patent/JP2009232621A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive power converter which does not require a new semiconductor device, and suppresses a switching surge caused by an internal semiconductor device. <P>SOLUTION: The power converter includes a serial circuit which is composed of first to fourth IGBTs Q1, Q2, Q3, and Q4 sequentially connected in series and is connected between a dc positive terminal P and a dc negative terminal N. According to the power converter, the IGBT Q1 is connected to the dc positive terminal P while the IGBT Q4 is connected to the dc negative terminal N. Smoothing capacitors CP and CN are serially connected between the terminals P and N. Free wheel diodes D1, D2, D3, and D4 are connected in parallel with the IGBTs Q1, Q2, Q3, and Q4, respectively. A point of connection between the smoothing capacitors CP and CN is set as a neutral point C. A diode D5 is connected between the neutral point C and a point of contact between the IGBTs Q1 and Q2 while a diode D6 is connected between the neutral point C and a point of contact between the IGBTs Q3 and Q4. The resistance values of resistances RG2 and RG3 connected respectively to the gate of the IGBT Q2 and that of the IGBT Q3 are determined to be larger than the resistance values of resistances RG1 and RG4 connected respectively to the gate of the IGBT Q1 and that of the IGBT Q4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば中性点クランプ方式の3レベル電力変換器として使用されるものであって、半導体デバイスはIGBT(Insulated Bipolar Transistor)のごとき高速スイッチング素子で構成された電力変換器に関する。   The present invention relates to a power converter that is used, for example, as a neutral-point clamp type three-level power converter, and in which a semiconductor device is composed of a high-speed switching element such as an IGBT (Insulated Bipolar Transistor).

図8は、従来の3レベル電力変換器の一例を示す図である。   FIG. 8 is a diagram illustrating an example of a conventional three-level power converter.

第1〜第4の半導体デバイス例えばIGBTQ1、Q2、Q3、Q4を順次直列に接続した直列回路を、直流正極端子P及び直流負極端子Nとの間に接続するものであって、IGBTQ1、Q2、Q3、Q4のうち第1のIGBTQ1を直流正極端子Pに接続し、第4のIGBTQ4を直流負極端子Nに接続し、直流正極端子P及び直流負極端子Nとの間に第1及び第2の平滑コンデンサCP、CNを直列接続し、各IGBTQ1、Q2、Q3、Q4に並列にフリーホイールダイオードD1、D2、D3、D4を接続し、第1及び第2の平滑コンデンサCP、CNの接続点を中間電位である中性点Cとし、中性点Cと第1及び第2のIGBTQ1、Q2の接続点の間に第1のクランプダイオードD5を接続すると共に、中性点Cと第3及び第4のIGBTQ3、Q4の接続点の間に第2のクランプダイオードD6を接続したものである。   A series circuit in which first to fourth semiconductor devices, for example, IGBTs Q1, Q2, Q3, and Q4 are sequentially connected in series is connected between a DC positive terminal P and a DC negative terminal N, and IGBTQ1, Q2, Of Q3 and Q4, the first IGBT Q1 is connected to the DC positive terminal P, the fourth IGBT Q4 is connected to the DC negative terminal N, and the first and second terminals between the DC positive terminal P and the DC negative terminal N are connected. Smoothing capacitors CP and CN are connected in series, and free wheel diodes D1, D2, D3, and D4 are connected in parallel to the IGBTs Q1, Q2, Q3, and Q4, and the connection points of the first and second smoothing capacitors CP and CN are connected. The neutral point C is an intermediate potential, and the first clamp diode D5 is connected between the neutral point C and the connection point of the first and second IGBTs Q1 and Q2, and the neutral point C and the third and third points are connected. Of between the connection point of IGBT Q3, Q4 which are connected to the second clamping diode D6.

このような構成のものにおいて、次のような問題がある。すなわち、内側(端子P、Nに接続されていないもの)のIGBTQ2、Q3がターンオン、オフした時の内側転流ループは、外側(端子P、Nに接続されているもの)のIGBTQ1,Q4スイッチの転流ループに比較し、通過するデバイス数が多く、配線経路も長いため配線インダクタンスが大きくなる。このため、IGBTQ2、Q3がターンオン、オフする際のスイッチングサージ電圧は、IGBTQ1,Q4のスイッチングサージ電圧よりも高くなるため、3レベル電力変換器の実際の設計に当たっては、IGBTQ2、Q3のサージ電圧の制約が伴うことになる。そこで、各IGBTQ1、Q2、Q3、Q4にスナバ回路を設けることが考えられるが、スナバコンデンサ容量が大きくなり、更にスイッチング周波数を上げるとスナバ回路の損失が増加するため、スイッチング周波数を下げざるを得ず、IGBTの特長を十分に活かすことができない。   Such a configuration has the following problems. That is, the inner commutation loop when the inner IGBTs Q2 and Q3 (not connected to the terminals P and N) are turned on and off is the outer IGBT Q1 and Q4 switch (connected to the terminals P and N). Compared to the commutation loop, the number of devices passing through and the wiring path are long, so that the wiring inductance increases. Therefore, the switching surge voltage when the IGBTs Q2 and Q3 are turned on and off is higher than the switching surge voltage of the IGBTs Q1 and Q4. Therefore, in the actual design of the three-level power converter, the surge voltage of the IGBTs Q2 and Q3 There will be restrictions. Therefore, it is conceivable to provide a snubber circuit for each of the IGBTs Q1, Q2, Q3, and Q4. However, the snubber capacitor capacity increases, and if the switching frequency is further increased, the loss of the snubber circuit increases, so the switching frequency must be lowered. Therefore, the features of the IGBT cannot be fully utilized.

特許文献1、特許文献2には、このような問題点を改善できるようにした発明が記載されている。図9はそれを説明するための図であり、図8のクランプダイオードD5にIGBTQ5を並列に接続し、またクランプダイオードD6にIGBTQ6を逆並列(IGBTQ5とは逆)に接続したものである。このように構成することにより、IGBTQ2、Q3がスイッチする際に、IGBTQ5、Q6をスイッチング制御し、IGBTQ2、Q3のスイッチングサージを抑制することができる。
特開平6−165511(図1) 特開2006−42427(図1,2,3等)
Patent Documents 1 and 2 describe inventions that can improve such problems. FIG. 9 is a diagram for explaining this, in which the IGBT Q5 is connected in parallel to the clamp diode D5 of FIG. 8, and the IGBT Q6 is connected in reverse parallel (opposite to the IGBT Q5) to the clamp diode D6. With this configuration, when the IGBTs Q2 and Q3 are switched, the IGBTs Q5 and Q6 can be switched and the switching surges of the IGBTs Q2 and Q3 can be suppressed.
JP-A-6-165511 (FIG. 1) JP 2006-42427 (FIGS. 1, 2, 3, etc.)

しかしながら、図9の電力変換器では、クランプダイオードD5、D6にIGBTQ5、Q6を接続したクランプスイッチング回路を使用しているため、制御対象が増加し、更にはクランプスイッチとIGBTQ1,Q4とのアーム短絡防止が必要など、回路が複雑化し、装置が大型となり、コストアップするなどの問題があった。   However, since the power converter of FIG. 9 uses a clamp switching circuit in which IGBTs Q5 and Q6 are connected to clamp diodes D5 and D6, the number of objects to be controlled increases, and furthermore, an arm short circuit between the clamp switch and IGBTs Q1 and Q4. There is a problem that the circuit becomes complicated, the device becomes large, and the cost is increased.

本発明はこのような課題を解決するためになされたもので、新たな半導体デバイスを必要とせず、内側の半導体デバイスのスイッチングサージを抑制できる、安価な電力変換器を提供することを目的とする。   The present invention has been made to solve such problems, and an object thereof is to provide an inexpensive power converter that does not require a new semiconductor device and can suppress a switching surge of an inner semiconductor device. .

本発明は、前記目的を達成するため、請求項1に対応する発明は、第1〜第4の半導体デバイスを順次直列に接続した直列回路を、直流正極端子及び直流負極端子との間に接続するものであって、前記半導体デバイスのうち前記第1の半導体デバイスを前記直流正極端子に接続し、前記第4の半導体デバイスを前記直流負極端子に接続し、前記各半導体デバイスに並列にフリーホイールダイオードを接続し、前記直流正極端子及び直流負極端子との間に第1及び第2の平滑コンデンサを直列接続し、前記第1及び第2の平滑コンデンサの接続点を中性点とし、前記中性点と前記第1及び第2の半導体デバイスの接続点の間に第1のクランプダイオードを接続すると共に、前記中性点と前記第3及び第4の半導体デバイスの接続点の間に第2のクランプダイオードを接続した電力変換器において、前記第2及び第3の半導体デバイスのスイッチング速度を、前記第1及び第4の半導体デバイスのスイッチング速度より遅く構成したことを特徴とする電力変換器である。   In order to achieve the above-mentioned object, the invention corresponding to claim 1 is that a series circuit in which first to fourth semiconductor devices are connected in series is connected between a DC positive terminal and a DC negative terminal. The first semiconductor device of the semiconductor devices is connected to the DC positive terminal, the fourth semiconductor device is connected to the DC negative terminal, and a free wheel is connected in parallel to the semiconductor devices. A diode is connected, first and second smoothing capacitors are connected in series between the DC positive terminal and the DC negative terminal, a connection point of the first and second smoothing capacitors is a neutral point, and the neutral A first clamp diode is connected between a connection point between the neutral point and the first and second semiconductor devices, and a second point is connected between the neutral point and the connection point between the third and fourth semiconductor devices. of In the power converter to which the lamp diode is connected, the switching speed of the second and third semiconductor devices is configured to be slower than the switching speed of the first and fourth semiconductor devices. .

本発明は、前記目的を達成するため、請求項2に対応する発明は、第1〜第4の半導体デバイスを順次直列に接続した直列回路を、直流正極端子及び直流負極端子との間に接続するものであって、前記半導体デバイスのうち前記第1の半導体デバイスを前記直流正極端子に接続し、前記第4の半導体デバイスを前記直流負極端子に接続し、前記各半導体デバイスに並列にフリーホイールダイオードを接続し、直流正極端子及び直流負極端子との間に第1及び第2の平滑コンデンサを直列接続し、前記第1及び第2の平滑コンデンサの接続点を中間電位である中性点とし、前記中性点と前記第1及び第2の半導体デバイスの接続点の間に第1のクランプダイオードを接続すると共に、前記中性点と前記第3及び第4の半導体デバイスの接続点の間に第2のクランプダイオードを接続した電力変換器において、前記第2及び第3の半導体デバイスのゲートに各々接続する抵抗の値を、前記第1及び第4の半導体デバイスのゲートに各々接続する抵抗の値に比べて大きく構成したことを特徴とする電力変換器である。   In order to achieve the above object, the present invention corresponding to claim 2 is configured such that a series circuit in which first to fourth semiconductor devices are sequentially connected in series is connected between a DC positive terminal and a DC negative terminal. The first semiconductor device of the semiconductor devices is connected to the DC positive terminal, the fourth semiconductor device is connected to the DC negative terminal, and a free wheel is connected in parallel to the semiconductor devices. A diode is connected, a first and second smoothing capacitor are connected in series between a DC positive terminal and a DC negative terminal, and the connection point of the first and second smoothing capacitors is a neutral point that is an intermediate potential. , Connecting a first clamp diode between the neutral point and the connection point of the first and second semiconductor devices, and connecting the neutral point and the connection point of the third and fourth semiconductor devices. In the power converter to which the second clamp diode is connected, the resistance value connected to the gate of each of the second and third semiconductor devices is changed to the resistance value connected to the gate of each of the first and fourth semiconductor devices. The power converter is characterized in that it is configured larger than the value of.

本発明は、前記目的を達成するため、請求項3に対応する発明は、第1〜第4の半導体デバイスを順次直列に接続した直列回路を、直流正極端子及び直流負極端子との間に接続するものであって、前記半導体デバイスのうち前記第1の半導体デバイスを前記直流正極端子に接続し、前記第4の半導体デバイスを前記直流負極端子に接続し、前記各半導体デバイスに並列にフリーホイールダイオードを接続し、直流正極端子及び直流負極端子との間に第1及び第2の平滑コンデンサを直列接続し、前記第1及び第2の平滑コンデンサの接続点を中間電位である中性点とし、前記中性点と前記第1及び第2の半導体デバイスの接続点の間に第1のクランプダイオードを接続すると共に、前記中性点と前記第3及び第4の半導体デバイスの接続点の間に第2のクランプダイオードを接続した電力変換器において、前記第2及び第3の半導体デバイスのゲート−エミッタ間にそれぞれコデンサを接続したことを特徴とする電力変換器である。   In order to achieve the above object, the invention corresponding to claim 3 is the invention in which a series circuit in which the first to fourth semiconductor devices are connected in series is connected between the DC positive terminal and the DC negative terminal. The first semiconductor device of the semiconductor devices is connected to the DC positive terminal, the fourth semiconductor device is connected to the DC negative terminal, and a free wheel is connected in parallel to the semiconductor devices. A diode is connected, a first and second smoothing capacitor are connected in series between a DC positive terminal and a DC negative terminal, and the connection point of the first and second smoothing capacitors is a neutral point that is an intermediate potential. , Connecting a first clamp diode between the neutral point and the connection point of the first and second semiconductor devices, and connecting the neutral point and the connection point of the third and fourth semiconductor devices. The In 2 of the power converter connected clamping diodes, the second and third semiconductor devices of the gate to - a power converter, characterized in that each emitter is connected to Kodensa.

本発明は、前記目的を達成するため、請求項4に対応する発明は、第1〜第4の半導体デバイスを順次直列に接続した直列回路を、直流正極端子及び直流負極端子との間に接続するものであって、前記半導体デバイスのうち前記第1の半導体デバイスを前記直流正極端子に接続し、前記第4の半導体デバイスを前記直流負極端子に接続し、前記各半導体デバイスに並列にフリーホイールダイオードを接続し、直流正極端子及び直流負極端子との間に第1及び第2の平滑コンデンサを直列接続し、前記第1及び第2の平滑コンデンサの接続点を中間電位である中性点とし、前記中性点と前記第1及び第2の半導体デバイスの接続点の間に第1のクランプダイオードを接続すると共に、前記中性点と前記第3及び第4の半導体デバイスの接続点の間に第2のクランプダイオードを接続した電力変換器において、前記第2及び第3の半導体デバイスのスイッチング特性を、前記第1及び第4の半導体デバイスのスイッチング特性よりも低速にしたことを特徴とする電力変換器である。   In order to achieve the above object, the invention corresponding to claim 4 is a series circuit in which first to fourth semiconductor devices are sequentially connected in series between a DC positive terminal and a DC negative terminal. The first semiconductor device of the semiconductor devices is connected to the DC positive terminal, the fourth semiconductor device is connected to the DC negative terminal, and a free wheel is connected in parallel to the semiconductor devices. A diode is connected, a first and second smoothing capacitor are connected in series between a DC positive terminal and a DC negative terminal, and the connection point of the first and second smoothing capacitors is a neutral point that is an intermediate potential. , Connecting a first clamp diode between the neutral point and the connection point of the first and second semiconductor devices, and connecting the neutral point and the connection point of the third and fourth semiconductor devices. In the power converter to which the second clamp diode is connected, the switching characteristics of the second and third semiconductor devices are made slower than the switching characteristics of the first and fourth semiconductor devices. It is a power converter.

本発明によれば、新たなIGBTを必要とせず、内側の半導体デバイスのスイッチングサージを抑制できる、安価な電力変換器を提供することができる。   According to the present invention, it is possible to provide an inexpensive power converter that does not require a new IGBT and can suppress a switching surge of an inner semiconductor device.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の第1の実施形態を説明するための概略構成図であり、本発明の実施形態の前提は、次の通りである。すなわち、第1〜第4の半導体デバイス例えばIGBTQ1、Q2、Q3、Q4を順次直列に接続した直列回路を、直流正極端子P及び直流負極端子Nとの間に接続するものであって、IGBTQ1、Q2、Q3、Q4のうち第1のIGBTQ1を直流正極端子Pに接続し、第4のIGBTQ4を直流負極端子Nに接続し、直流正極端子P及び直流負極端子Nとの間に第1及び第2の平滑コンデンサCP、CNを直列接続し、各IGBTQ1、Q2、Q3、Q4に並列にフリーホイールダイオードD1、D2、D3、D4を接続し、第1及び第2の平滑コンデンサCP、CNの接続点を中間電位である中性点Cとし、中性点Cと第1及び第2のIGBTQ1、Q2の接続点の間に第1のクランプダイオードD5を接続すると共に、中性点Cと第3及び第4のIGBTQ3、Q4の接続点の間に第2のクランプダイオードD6を接続したものである。第1の実施形態は、以上のような前提において、第2及び第3のIGBTQ2、Q3のスイッチング速度を、IGBTQ1、Q4のスイッチング速度より遅く構成したものである。   FIG. 1 is a schematic configuration diagram for explaining a first embodiment of the present invention. The premise of the embodiment of the present invention is as follows. That is, a series circuit in which first to fourth semiconductor devices such as IGBTs Q1, Q2, Q3, and Q4 are sequentially connected in series is connected between a DC positive terminal P and a DC negative terminal N, and IGBTQ1, Among the Q2, Q3, and Q4, the first IGBT Q1 is connected to the DC positive terminal P, the fourth IGBT Q4 is connected to the DC negative terminal N, and the first and first DC terminals are connected between the DC positive terminal P and the DC negative terminal N. Two smoothing capacitors CP and CN are connected in series, and free wheel diodes D1, D2, D3, and D4 are connected in parallel to the IGBTs Q1, Q2, Q3, and Q4, and the first and second smoothing capacitors CP and CN are connected. The point is a neutral point C that is an intermediate potential, and a first clamp diode D5 is connected between the neutral point C and the connection point of the first and second IGBTs Q1 and Q2, and the neutral point C and Between the third and fourth IGBT Q3, Q4 at the connection point is obtained by connecting the second clamp diode D6. In the first embodiment, the switching speeds of the second and third IGBTs Q2 and Q3 are configured to be slower than the switching speeds of the IGBTs Q1 and Q4 based on the above assumption.

図1では、これを実現するため、IGBTQ2、Q3のゲート、すなわちゲートドライバにGD1、GD2、GD3、GD4に各々接続する抵抗RG2、RG3の値を、IGBTQ1、Q4のゲートに各々接続する抵抗RG1、RG4の値に比べて大きく構成したものである。   In FIG. 1, in order to realize this, the values of the resistors RG2 and RG3 connected to the gates of the IGBTs Q2 and Q3, that is, the gate drivers GD1, GD2, GD3, and GD4, respectively, are connected to the gates of the IGBTs Q1 and Q4, respectively. , And larger than the value of RG4.

このように構成することにより、図9のように新たなIGBTQ5、Q6を必要とせず、内側のIGBTQ2、Q3のスイッチングサージを抑制できる、安価な電力変換器を提供することができる。   With such a configuration, it is possible to provide an inexpensive power converter that does not require new IGBTs Q5 and Q6 as shown in FIG. 9 and can suppress switching surges of the inner IGBTs Q2 and Q3.

図2は3レベル電力変換器に用いられるユニポーラ変調形のPWMを示した図であり、2つの搬送波(三角波)と電圧基準であるPWM電圧指令を比較し、PWM電圧指令が上側の搬送波よりも大きい場合は、IGBTQ1のゲートをオンし、下側の搬送波よりも大きい場合はIGBTQ2ゲートをオンするように動作する。IGBTQ3、Q4は各々IGBTQ1、Q2の逆論理でゲート信号が入力される。次に、IGBTQ2は、正の電圧指令である半サイクル期間は常時オン状態であり、負の電圧指令期間にPWMスイッチングを行う。   FIG. 2 is a diagram showing a unipolar modulation type PWM used in a three-level power converter, comparing two carrier waves (triangular waves) with a PWM voltage command that is a voltage reference, and the PWM voltage command is higher than the upper carrier wave. When it is larger, the gate of the IGBT Q1 is turned on, and when larger than the lower carrier wave, the IGBT Q2 gate is turned on. The gate signals are input to the IGBTs Q3 and Q4 in reverse logic of the IGBTs Q1 and Q2, respectively. Next, the IGBT Q2 is always in an ON state during a half cycle period that is a positive voltage command, and performs PWM switching during a negative voltage command period.

ここで、図2に示すように、IGBTQ2にスイッチング損失が発生するのは、電圧が負の期間で、AC電流が正の期間であるが、IGBTQ2の損失に占めるスイッチング損失の割合は外側スイッチ素子に比較し非常に小さく、力率が1.0であれば、理論的にスイッチング損失は生じない。したがって、スイッチング損失の大きさを決める要素の1つであるスイッチング速度を遅くしても、IGBTQ2、Q3の全損失は僅かしか増えない。   Here, as shown in FIG. 2, the switching loss occurs in the IGBT Q2 in the negative voltage period and the AC current in the positive period, but the ratio of the switching loss to the IGBT Q2 loss is the outer switching element. If the power factor is 1.0, which is very small compared to the above, no switching loss theoretically occurs. Therefore, even if the switching speed, which is one of the factors that determine the magnitude of the switching loss, is reduced, the total losses of the IGBTs Q2 and Q3 are only slightly increased.

以上は、IGBTQ3についても同様である。 The same applies to the IGBT Q3.

このように、IGBTQ2、Q3のスイッチング速度を遅くすることが可能となる。この結果、IGBTQ2、Q3のスイッチ時のスイッチングサージを抑えることが可能となり、また、IGBTQ2、Q3はスイッチング損失が小さいため、全体損失に与える影響は小さく、安価な電力変換器を得ることが可能となる。   In this way, the switching speed of the IGBTs Q2 and Q3 can be reduced. As a result, it becomes possible to suppress the switching surge at the time of switching of the IGBTs Q2 and Q3, and since the switching losses of the IGBTs Q2 and Q3 are small, the influence on the overall loss is small and an inexpensive power converter can be obtained. Become.

ここで、図3〜図5を参照して、図8の問題点を具体的に説明する。IGBTは、GTO(サイリスタ素子)に比較し、スイッチング速度が速いため、スイッチング損失を軽減できる反面、ターンオン、オフ時の電流変化率が高く、回路の配線インダクタンスにより大きなサージ電圧が発生することが広く知られている。特に3レベル電力変換器の場合は、大きく2つの転流ループが存在し、IGBTQ1、Q4に比較し、IGBTQ2、Q3がターンオン、オフしたときのサージ電圧が大きくなることが知られている。   Here, the problem of FIG. 8 will be described in detail with reference to FIGS. IGBTs have a faster switching speed than GTOs (Thyristor elements), so switching losses can be reduced. However, current change rates at turn-on and off are high, and large surge voltages are often generated due to circuit wiring inductance. Are known. In particular, in the case of a three-level power converter, it is known that there are largely two commutation loops, and the surge voltage when the IGBTs Q2 and Q3 are turned on and off is larger than that of the IGBTs Q1 and Q4.

図3は、外側スイッチの転流ループを示した図であり、IGBTQ1、平滑コンデンサCP、クランプダイオードD5を通ってIGBTQ1に戻る経路を外側転流ループ(P)として示している。この外側転流ループ(P)は、IGBTQ1がターンオフし、クランプダイオードD5に転流した時の配線インダクタンスとして作用し、IGBTQ1がターンオンし、D5がターンオフ(リカバリィ)する場合の配線インダクタンスとして作用する。   FIG. 3 is a diagram illustrating a commutation loop of the outer switch, and a path returning to the IGBT Q1 through the IGBT Q1, the smoothing capacitor CP, and the clamp diode D5 is illustrated as an outer commutation loop (P). This outer commutation loop (P) acts as a wiring inductance when the IGBT Q1 is turned off and commutated to the clamp diode D5, and acts as a wiring inductance when the IGBT Q1 is turned on and D5 is turned off (recovery).

同様に、Q5、平滑コンデンサCN、クランプダイオードD6を通ってIGBTQ4に戻る経路を外側転流ループ(N)として図4に示している。この外側転流ループ(N)は、IGBTQ4がターンオフし、クランプダイオードD6に転流した時の配線インダクタンスとして作用し、IGBTQ4がターンオンし、クランプダイオードD6がタ.一ンオフ(リカバリィ)する場合の配線インダクタンスとして作用する。   Similarly, a path returning to the IGBT Q4 through Q5, the smoothing capacitor CN, and the clamp diode D6 is shown as an outer commutation loop (N) in FIG. This outer commutation loop (N) acts as a wiring inductance when the IGBT Q4 is turned off and commutated to the clamp diode D6. The IGBT Q4 is turned on and the clamp diode D6 is turned on. It acts as a wiring inductance when it is turned off (recovery).

次に、図4はIGBTQ2がターンオン、オフした時の内側転流ループ(N)を示した図であり、IGBTQ2、クランプダイオードD5、平滑コンデンサCN、フリーホイールダイオードD4、D3を通って、IGBTQ2に戻る経路であり、IGBTQ2がターンオフしたとき、電流がIGBTQ2からダイオードD4、D3に転流れるときの配線インダクタンスとして作用する。また、Q2がターンオンしたときに、ダイオードD4がターンオフ(リカバリィ)し、電流がダイオードD4、D3から、中性点C、ダイオードD5、IGBTQ2に転流れる際のインダクタンスとして作用する。   Next, FIG. 4 is a diagram showing the inner commutation loop (N) when the IGBT Q2 is turned on and off. The IGBT Q2 passes through the IGBT Q2, the clamp diode D5, the smoothing capacitor CN, and the freewheel diodes D4 and D3 to the IGBT Q2. This is a return path, and when the IGBT Q2 is turned off, it acts as a wiring inductance when current flows from the IGBT Q2 to the diodes D4 and D3. Further, when Q2 is turned on, the diode D4 is turned off (recovery), and acts as an inductance when current flows from the diodes D4 and D3 to the neutral point C, the diode D5, and the IGBT Q2.

同様に、図5は、IGBTQ3がターンオン、オフした時の内側転流ループ(P)を示した図であり、IGBTQ3、クランプダイオードD6、平滑コンデンサCP、フリーホイールダィオードD1,D2を通って、IGBTQ3に戻る経路であり、IGBTQ3がターンオフしたとき、電流がIGBTQ3からダイオードD2、D1に転流れるときの配線インダクタンスとして作用する。また、IGBTQ3がターンオンしたときに、ダイオードD1がターンオフ(リカバリィ)し、電流がダイオードD2、D1から、中性点C、ダイオードD6、IGBTQ3に転流れる際のインダクタンスとして作用する。   Similarly, FIG. 5 is a diagram showing the inner commutation loop (P) when the IGBT Q3 is turned on and off, and passes through the IGBT Q3, the clamp diode D6, the smoothing capacitor CP, and the free wheel diodes D1 and D2. This is a path returning to the IGBT Q3, and when the IGBT Q3 is turned off, it acts as a wiring inductance when current flows from the IGBT Q3 to the diodes D2 and D1. Further, when the IGBT Q3 is turned on, the diode D1 is turned off (recovery), and acts as an inductance when current flows from the diodes D2 and D1 to the neutral point C, the diode D6, and the IGBT Q3.

上述したIGBTQ2、Q3がターンオン、オフした時の内側転流ループは、IGBTQ1、Q4の転流ループに比較し、通過するIGBTの数が多く、配線経路も長いため配線インダクタンスが大きくなる。このため、IGBTQ2、Q3がターンオン、オフする際のスイッチングサージ電圧は、IGBTQ1、Q4のスイッチングサージ電圧よりも高くなるため、電力変換器の実際の設計に当たっては、前述したようにIGBTQ2、Q3のサージ電圧の制約が伴うことになる。例えば、IGBT個別にスナバ回路を設けた場合は、スナバコンデンサ容量が大きくなり、更にスイッチング周波数を上げるとスナバ回路の損失が増加するため、スイッチング周波数を下げざるを得ず、IGBTの特長を十分に活かし切れていなかった。   The inner commutation loop when the above-described IGBTs Q2 and Q3 are turned on and off has a larger number of passing IGBTs and a longer wiring path than the IGBT Q1 and Q4, and the wiring inductance is increased. For this reason, the switching surge voltage when the IGBTs Q2 and Q3 are turned on and off is higher than the switching surge voltage of the IGBTs Q1 and Q4. Therefore, in the actual design of the power converter, the surges of the IGBTs Q2 and Q3 are as described above. There will be voltage constraints. For example, if a snubber circuit is provided for each IGBT, the snubber capacitor capacity will increase, and if the switching frequency is increased further, the loss of the snubber circuit will increase. It was not fully utilized.

図6は、本発明の第2の実施形態を説明するための概略構成図である。図6は、図1で示した回路に対し、IGBTQ2,Q3のゲート−エミッタ間にコンデンサCG2、CG3を追加している。IGBTのゲート−エミッタ間にコンデンサCG2、CG3を追加することで、IGBTのスイッチングがソフトになるため、安価な回路で、内側素子スイッチ時のスイッチングサージを抑えることが可能となる。ここで、ゲート抵抗RG1、RG2、RG3、RG4は同一抵抗値でもよく、第1の実施形態で示したようにIGBTQ2、Q3のゲート抵抗を大きくすることで、更にスイッチングサージを抑えることが可能となる。   FIG. 6 is a schematic configuration diagram for explaining a second embodiment of the present invention. In FIG. 6, capacitors CG2 and CG3 are added between the gates and emitters of the IGBTs Q2 and Q3 in the circuit shown in FIG. By adding capacitors CG2 and CG3 between the gate and emitter of the IGBT, switching of the IGBT becomes soft, so that it is possible to suppress a switching surge at the time of the inner element switch with an inexpensive circuit. Here, the gate resistors RG1, RG2, RG3, and RG4 may have the same resistance value, and the switching surge can be further suppressed by increasing the gate resistances of the IGBTs Q2 and Q3 as shown in the first embodiment. Become.

次に、図7を用いて、本発明の第3の実施形態を説明する。図1に示した実施形態と異なる点は、IGBTQ2、Q3に低速タイプの特性を持ったIGBTを使用した点であり、IGBTの特性によりIGBTQ2、Q3のスイッチ時のスイッチングサージを抑えることが可能となり、新たな回路を追加することなく、安価な電力変換器を提供することが可能となる。   Next, a third embodiment of the present invention will be described with reference to FIG. The difference from the embodiment shown in FIG. 1 is that IGBTs having low speed characteristics are used for the IGBTs Q2 and Q3, and the switching characteristics at the time of switching of the IGBTs Q2 and Q3 can be suppressed by the characteristics of the IGBTs. Therefore, it is possible to provide an inexpensive power converter without adding a new circuit.

なお、前述した第1〜第3の実施形態を任意に組合わせてもよい。   In addition, you may combine the 1st-3rd embodiment mentioned above arbitrarily.

本発明の第1の実施形態を説明するための概略構成図。The schematic block diagram for demonstrating the 1st Embodiment of this invention. ユニポーラ変調PWMの原理図。The principle diagram of unipolar modulation PWM. 図1の作用効果を説明するためのものであって、図8の問題点を説明するための図。FIG. 9 is a diagram for explaining the effects of FIG. 1 and for explaining the problem of FIG. 8. 図1の作用効果を説明するためのものであって、図8の問題点を説明するための図。FIG. 9 is a diagram for explaining the effects of FIG. 1 and for explaining the problem of FIG. 8. 図1の作用効果を説明するためのものであって、図8の問題点を説明するための図。FIG. 9 is a diagram for explaining the effects of FIG. 1 and for explaining the problem of FIG. 8. 本発明の第2の実施形態を説明するための概略構成図。The schematic block diagram for demonstrating the 2nd Embodiment of this invention. 本発明の第3の実施形態を説明するための概略構成図。The schematic block diagram for demonstrating the 3rd Embodiment of this invention. 従来の3レベル電力変換器の問題点を説明するための概略構成図。The schematic block diagram for demonstrating the problem of the conventional 3 level power converter. 特許文献1、2の問題点を説明するための概略構成図。The schematic block diagram for demonstrating the problem of patent documents 1, 2. FIG.

符号の説明Explanation of symbols

P…直流正極端子、 N…直流負極端子、 CP、CN…平滑コンデンサ、 D1、D2、D3、D4…フリーホイールダイオード、 C…中性点、 D5…第1のクランプダイオード、 D6…第2のクランプダイオード、 Q1、Q2、Q3、Q4…IGBT、
GD1、GD2、GD3、GD4…ゲートドライバ、 RG1、RG2、RG3、RG4…抵抗、 CG2、CG3…コンデンサ。
P: DC positive terminal, N: DC negative terminal, CP, CN: smoothing capacitor, D1, D2, D3, D4: freewheel diode, C: neutral point, D5: first clamp diode, D6: second Clamp diode, Q1, Q2, Q3, Q4 ... IGBT,
GD1, GD2, GD3, GD4 ... gate drivers, RG1, RG2, RG3, RG4 ... resistors, CG2, CG3 ... capacitors.

Claims (5)

第1〜第4の半導体デバイスを順次直列に接続した直列回路を、直流正極端子及び直流負極端子との間に接続するものであって、前記半導体デバイスのうち前記第1の半導体デバイスを前記直流正極端子に接続し、前記第4の半導体デバイスを前記直流負極端子に接続し、前記各半導体デバイスに並列にフリーホイールダイオードを接続し、前記直流正極端子及び直流負極端子との間に第1及び第2の平滑コンデンサを直列接続し、前記第1及び第2の平滑コンデンサの接続点を中性点とし、前記中性点と前記第1及び第2の半導体デバイスの接続点の間に第1のクランプダイオードを接続すると共に、前記中性点と前記第3及び第4の半導体デバイスの接続点の間に第2のクランプダイオードを接続した電力変換器において、
前記第2及び第3の半導体デバイスのスイッチング速度を、前記第1及び第4の半導体デバイスのスイッチング速度より遅く構成したことを特徴とする電力変換器。
A series circuit in which first to fourth semiconductor devices are sequentially connected in series is connected between a direct current positive electrode terminal and a direct current negative electrode terminal, and the first semiconductor device of the semiconductor devices is connected to the direct current. Connected to the positive terminal, connected the fourth semiconductor device to the DC negative terminal, connected a free wheel diode in parallel to each semiconductor device, the first and the DC negative terminal between the first and the DC negative terminal A second smoothing capacitor is connected in series, a connection point between the first and second smoothing capacitors is a neutral point, and a first point is formed between the neutral point and the connection point between the first and second semiconductor devices. A power converter in which a second clamp diode is connected between the neutral point and the connection point of the third and fourth semiconductor devices.
The power converter characterized in that the switching speed of the second and third semiconductor devices is slower than the switching speed of the first and fourth semiconductor devices.
第1〜第4の半導体デバイスを順次直列に接続した直列回路を、直流正極端子及び直流負極端子との間に接続するものであって、前記半導体デバイスのうち前記第1の半導体デバイスを前記直流正極端子に接続し、前記第4の半導体デバイスを前記直流負極端子に接続し、前記各半導体デバイスに並列にフリーホイールダイオードを接続し、直流正極端子及び直流負極端子との間に第1及び第2の平滑コンデンサを直列接続し、前記第1及び第2の平滑コンデンサの接続点を中間電位である中性点とし、前記中性点と前記第1及び第2の半導体デバイスの接続点の間に第1のクランプダイオードを接続すると共に、前記中性点と前記第3及び第4の半導体デバイスの接続点の間に第2のクランプダイオードを接続した電力変換器において、
前記第2及び第3の半導体デバイスのゲートに各々接続する抵抗の値を、前記第1及び第4の半導体デバイスのゲートに各々接続する抵抗の値に比べて大きく構成したことを特徴とする電力変換器。
A series circuit in which first to fourth semiconductor devices are sequentially connected in series is connected between a direct current positive electrode terminal and a direct current negative electrode terminal, and the first semiconductor device of the semiconductor devices is connected to the direct current. Connected to the positive electrode terminal, connected the fourth semiconductor device to the DC negative electrode terminal, connected a free wheel diode in parallel to each of the semiconductor devices, the first and the first between the DC positive electrode terminal and the DC negative electrode terminal Two smoothing capacitors are connected in series, and the connection point of the first and second smoothing capacitors is a neutral point that is an intermediate potential, and between the neutral point and the connection point of the first and second semiconductor devices. A power converter in which a first clamp diode is connected to the second clamp diode, and a second clamp diode is connected between the neutral point and the connection point of the third and fourth semiconductor devices.
An electric power characterized in that a value of a resistor connected to each of the gates of the second and third semiconductor devices is set larger than a value of a resistor connected to each of the gates of the first and fourth semiconductor devices. converter.
第1〜第4の半導体デバイスを順次直列に接続した直列回路を、直流正極端子及び直流負極端子との間に接続するものであって、前記半導体デバイスのうち前記第1の半導体デバイスを前記直流正極端子に接続し、前記第4の半導体デバイスを前記直流負極端子に接続し、前記各半導体デバイスに並列にフリーホイールダイオードを接続し、直流正極端子及び直流負極端子との間に第1及び第2の平滑コンデンサを直列接続し、前記第1及び第2の平滑コンデンサの接続点を中間電位である中性点とし、前記中性点と前記第1及び第2の半導体デバイスの接続点の間に第1のクランプダイオードを接続すると共に、前記中性点と前記第3及び第4の半導体デバイスの接続点の間に第2のクランプダイオードを接続した電力変換器において、
前記第2及び第3の半導体デバイスのゲート−エミッタ間にそれぞれコデンサを接続したことを特徴とする電力変換器。
A series circuit in which first to fourth semiconductor devices are sequentially connected in series is connected between a direct current positive electrode terminal and a direct current negative electrode terminal, and the first semiconductor device of the semiconductor devices is connected to the direct current. Connected to the positive electrode terminal, connected the fourth semiconductor device to the DC negative electrode terminal, connected a free wheel diode in parallel to each of the semiconductor devices, the first and the first between the DC positive electrode terminal and the DC negative electrode terminal Two smoothing capacitors are connected in series, and the connection point of the first and second smoothing capacitors is a neutral point that is an intermediate potential, and between the neutral point and the connection point of the first and second semiconductor devices. A power converter in which a first clamp diode is connected to the second clamp diode, and a second clamp diode is connected between the neutral point and the connection point of the third and fourth semiconductor devices.
A power converter, wherein a capacitor is connected between the gate and emitter of each of the second and third semiconductor devices.
第1〜第4の半導体デバイスを順次直列に接続した直列回路を、直流正極端子及び直流負極端子との間に接続するものであって、前記半導体デバイスのうち前記第1の半導体デバイスを前記直流正極端子に接続し、前記第4の半導体デバイスを前記直流負極端子に接続し、前記各半導体デバイスに並列にフリーホイールダイオードを接続し、直流正極端子及び直流負極端子との間に第1及び第2の平滑コンデンサを直列接続し、前記第1及び第2の平滑コンデンサの接続点を中間電位である中性点とし、前記中性点と前記第1及び第2の半導体デバイスの接続点の間に第1のクランプダイオードを接続すると共に、前記中性点と前記第3及び第4の半導体デバイスの接続点の間に第2のクランプダイオードを接続した電力変換器において、
前記第2及び第3の半導体デバイスのスイッチング特性を、前記第1及び第4の半導体デバイスのスイッチング特性よりも低速にしたことを特徴とする電力変換器。
A series circuit in which first to fourth semiconductor devices are sequentially connected in series is connected between a direct current positive electrode terminal and a direct current negative electrode terminal, and the first semiconductor device of the semiconductor devices is connected to the direct current. Connected to the positive electrode terminal, connected the fourth semiconductor device to the DC negative electrode terminal, connected a free wheel diode in parallel to each of the semiconductor devices, the first and the first between the DC positive electrode terminal and the DC negative electrode terminal Two smoothing capacitors are connected in series, and the connection point of the first and second smoothing capacitors is a neutral point that is an intermediate potential, and between the neutral point and the connection point of the first and second semiconductor devices. A power converter in which a first clamp diode is connected to the second clamp diode, and a second clamp diode is connected between the neutral point and the connection point of the third and fourth semiconductor devices.
A power converter characterized in that the switching characteristics of the second and third semiconductor devices are made slower than the switching characteristics of the first and fourth semiconductor devices.
前記半導体デバイスは、IGBT(Insulated Bipolar Transistor)である請求項1乃至請求項4のいずれか1項記載の電力変換器。   The power converter according to any one of claims 1 to 4, wherein the semiconductor device is an IGBT (Insulated Bipolar Transistor).
JP2008076807A 2008-03-24 2008-03-24 Power converter Pending JP2009232621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076807A JP2009232621A (en) 2008-03-24 2008-03-24 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076807A JP2009232621A (en) 2008-03-24 2008-03-24 Power converter

Publications (1)

Publication Number Publication Date
JP2009232621A true JP2009232621A (en) 2009-10-08

Family

ID=41247394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076807A Pending JP2009232621A (en) 2008-03-24 2008-03-24 Power converter

Country Status (1)

Country Link
JP (1) JP2009232621A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904217A (en) * 2012-10-12 2013-01-30 深圳市英威腾电气股份有限公司 Diode-clamped three-level insulated gate bipolar translator (IGBT) drive protection circuit, diode-clamped three-level (IGBT) drive module, and diode-clamped three-level topology device
WO2013023343A1 (en) * 2011-08-12 2013-02-21 Intersil Americas Inc. Clamp circuits for power converters
CN102946205A (en) * 2012-10-29 2013-02-27 华为技术有限公司 Three-level inverter and power supply equipment
WO2013073678A1 (en) * 2011-11-18 2013-05-23 株式会社明電舎 Neutral-point-clamped multilevel power conversion device
CN103138620A (en) * 2013-02-26 2013-06-05 常熟开关制造有限公司(原常熟开关厂) Control method of invertion device
CN103312202A (en) * 2012-03-14 2013-09-18 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 Inverter topology in high frequency application and control method of inverter topology
WO2013161045A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Power module and 3-level power conversion device using same
JP5627700B2 (en) * 2010-10-05 2014-11-19 三菱電機株式会社 Power converter
CN106655853A (en) * 2015-07-22 2017-05-10 艾默生网络能源有限公司 Three-level inverter
CN109374996A (en) * 2018-08-17 2019-02-22 国电南瑞科技股份有限公司 A kind of the dipulse test circuit and method of three level DCDC (PCC) power of striding capacitance
CN109586243A (en) * 2018-11-28 2019-04-05 济宁学院 Three level current-limiting circuit of uninterruptible power supply and its control method
CN114337340A (en) * 2020-09-30 2022-04-12 西安西电高压开关有限责任公司 Three-level converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108474A (en) * 1996-09-27 1998-04-24 Denso Corp Multilevel switching type power converter
JP2005012951A (en) * 2003-06-20 2005-01-13 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108474A (en) * 1996-09-27 1998-04-24 Denso Corp Multilevel switching type power converter
JP2005012951A (en) * 2003-06-20 2005-01-13 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627700B2 (en) * 2010-10-05 2014-11-19 三菱電機株式会社 Power converter
US8966294B2 (en) 2011-08-12 2015-02-24 Intersil Americas LLC Clamp circuits for power converters
WO2013023343A1 (en) * 2011-08-12 2013-02-21 Intersil Americas Inc. Clamp circuits for power converters
US9531296B2 (en) 2011-11-18 2016-12-27 Meidensha Corporation Neutral-point-clamped multilevel power conversion device
WO2013073678A1 (en) * 2011-11-18 2013-05-23 株式会社明電舎 Neutral-point-clamped multilevel power conversion device
CN103312202A (en) * 2012-03-14 2013-09-18 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 Inverter topology in high frequency application and control method of inverter topology
WO2013135181A1 (en) * 2012-03-14 2013-09-19 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 Inverter topology in high-frequency application and control method therefor
US9281760B2 (en) 2012-04-26 2016-03-08 Mitsubishi Electric Corporation Power module and three-level power converter using the same
WO2013161045A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Power module and 3-level power conversion device using same
CN102904217A (en) * 2012-10-12 2013-01-30 深圳市英威腾电气股份有限公司 Diode-clamped three-level insulated gate bipolar translator (IGBT) drive protection circuit, diode-clamped three-level (IGBT) drive module, and diode-clamped three-level topology device
WO2014067271A1 (en) * 2012-10-29 2014-05-08 华为技术有限公司 Three-level inverter and power supply device
CN102946205A (en) * 2012-10-29 2013-02-27 华为技术有限公司 Three-level inverter and power supply equipment
CN103138620A (en) * 2013-02-26 2013-06-05 常熟开关制造有限公司(原常熟开关厂) Control method of invertion device
CN106655853A (en) * 2015-07-22 2017-05-10 艾默生网络能源有限公司 Three-level inverter
CN106655853B (en) * 2015-07-22 2019-02-22 维谛技术有限公司 A kind of three-level inverter
CN109374996A (en) * 2018-08-17 2019-02-22 国电南瑞科技股份有限公司 A kind of the dipulse test circuit and method of three level DCDC (PCC) power of striding capacitance
CN109586243A (en) * 2018-11-28 2019-04-05 济宁学院 Three level current-limiting circuit of uninterruptible power supply and its control method
CN114337340A (en) * 2020-09-30 2022-04-12 西安西电高压开关有限责任公司 Three-level converter

Similar Documents

Publication Publication Date Title
JP2009232621A (en) Power converter
US8848405B2 (en) Highly efficient half-bridge DC-AC converter
JP6617571B2 (en) Semiconductor switching element gate drive circuit
EP2662968B1 (en) Three-level inverter
JPWO2010146637A1 (en) Power converter
CN110022078B (en) Power conversion device
JP6136011B2 (en) Semiconductor device and power conversion device
JP6597917B2 (en) 3-level inverter
JP2018520625A (en) Power converter physical topology
KR20110139148A (en) Power conversion device
JP2011030350A (en) Power conversion device
JP2011254672A (en) Power semiconductor module and power conversion device using the same
JP4847707B2 (en) Power semiconductor device
JPWO2006075388A1 (en) Inverter device
JP2014079086A (en) Circuit for driving voltage-driven semiconductor element
JP5298557B2 (en) Voltage-driven semiconductor device gate drive device
JP5695379B2 (en) Power converter
JP6265271B6 (en) Semiconductor device
JP4946103B2 (en) Power converter
JP4491718B2 (en) 3-level converter
JP6184107B2 (en) Neutral point clamp type power converter
JP2008067476A (en) Gate drive circuit for voltage-driven power semiconductor device
JP2019024289A (en) Driving method of electric power conversion system
US10587181B2 (en) Power semiconductor device with built-in resistor between control electrode and control terminal, and power semiconductor drive system
JP2013158093A (en) Three-level power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106