JP2009231213A - 導電体およびその製造方法 - Google Patents

導電体およびその製造方法 Download PDF

Info

Publication number
JP2009231213A
JP2009231213A JP2008078042A JP2008078042A JP2009231213A JP 2009231213 A JP2009231213 A JP 2009231213A JP 2008078042 A JP2008078042 A JP 2008078042A JP 2008078042 A JP2008078042 A JP 2008078042A JP 2009231213 A JP2009231213 A JP 2009231213A
Authority
JP
Japan
Prior art keywords
layer
substrate
temperature
dopant
precursor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008078042A
Other languages
English (en)
Other versions
JP5173512B2 (ja
Inventor
Shoichiro Nakao
祥一郎 中尾
Naotomi Yamada
直臣 山田
Taro Hitosugi
太郎 一杉
Tetsuya Hasegawa
哲也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008078042A priority Critical patent/JP5173512B2/ja
Application filed by Asahi Glass Co Ltd, Kanagawa Academy of Science and Technology filed Critical Asahi Glass Co Ltd
Priority to PCT/JP2009/054160 priority patent/WO2009119273A1/ja
Priority to KR1020107019957A priority patent/KR20110000627A/ko
Priority to CN2009801106829A priority patent/CN101978431B/zh
Priority to EP09725312.4A priority patent/EP2270819B1/en
Priority to TW098109347A priority patent/TWI442417B/zh
Publication of JP2009231213A publication Critical patent/JP2009231213A/ja
Priority to US12/887,553 priority patent/US20110011632A1/en
Application granted granted Critical
Publication of JP5173512B2 publication Critical patent/JP5173512B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】導電性が良好であるとともに、耐熱性に優れた導電体およびその製造方法を提供する。
【解決手段】基板10上に、Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなる層(Z)が2層以上設けられており、該2層以上のうち少なくとも1層は、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が0.01〜4原子%である第2層(Z2)12であり、該第2層(Z2)12と基板10との間に、該第2層(Z2)よりも、前記チタンとドーパントの原子数合計に対するドーパントの原子数の割合が多い第1層(Z1)11が設けられていることを特徴とする導電体。
【選択図】図1

Description

本発明は導電体および導電体の製造方法に関する。
近年、液晶表示パネルの大型化および小型携帯化へのニーズが高くなっている。これを実現するためには、表示素子の低消費電力化が必要となり、可視光線透過率が高く、かつ抵抗値が低い透明電極の適用が不可欠になる。
特に、最近開発されつつある有機エレクトロルミネッセンス素子は、自発光タイプであり、小型携帯端末への適用においては有効であるが、電流駆動で消費電力が大きいという問題点がある。また、現在、市場に広まりつつあるプラズマディスプレイパネル(PDP)、および次世代のディスプレイとして開発されつつあるフィールドエミッションディスプレイ(FED)は、高消費電力な構造であるという問題点がある。これらの点から、透明導電性薄膜の低抵抗化への期待は大きい。
透明導電性薄膜の代表例は、スズをドープした酸化インジウムからなるインジウム・ティン・オキサイド膜(以下、ITO膜という)である。ITO膜は透明性に優れ、高い導電性を有するものの、Inの地殻含有率が50ppbと少なく、資源の枯渇とともに原料のコストが上昇してしまうという欠点がある。
近年、透明導電体の材料として、耐薬品性および耐久性を兼ね備えた二酸化チタン(TiO)が注目されている(例えば下記非特許文献1)。
下記特許文献1には、基板上に、アナターゼ型結晶構造を有するM:TiO(MはNb、Taなど)からなる金属酸化物層を成膜して透明導電体を得る方法が提案されている。ここでは、エピタキシャル成長により成膜した、アナターゼ型結晶構造を有するM:TiOの単結晶薄膜(固溶体)が、透明性を維持しつつ電気伝導度を著しく向上させることが示されている。
下記特許文献2には、透明基体上に、水素を含有する透明高屈折率薄膜層と、金属薄膜層とが交互に積層された積層体を形成して透明導電性薄膜積層体を得る方法が提案されている。透明高屈折率薄膜層は、例えば酸化チタンからなる。
いずれの文献にも金属酸化物層を形成した後にアニールすることについては記載されていない。
応用物理 第73巻第5号(2004)587項〜592項 国際公開第2006/016608号パンフレット 特開2004−95240号公報
特許文献1に記載されているアナターゼ型結晶構造を有するM:TiOの単結晶薄膜は、製造が難しく、生産性が良くないため、実現性が低い。
特許文献2における透明屈折率薄膜層は、成膜時に水素を含有させるため、透明性が不充分となりやすい。
このように、電気的抵抗が小さく、かつ透明性に優れた導電体を実現することは容易ではなかった。
また導電体の用途によっては、大気中で300℃以上に加熱されても導電性が劣化しない程度の優れた耐熱性が要求される。
本発明は前記事情に鑑みてなされたもので、導電性および透明性が良好であるとともに、耐熱性に優れた導電体およびその製造方法を提供することを目的とする。
本発明者等は、前記課題を解決すべく、Nb等のドーパントが添加された酸化チタンからなる層を形成した後、還元雰囲気下でアニールすることにより透明導電膜を形成する方法を開発し、既に特許出願している(特願2007−59077等)。
そして、この方法で得られる導電膜の耐熱性について鋭意研究を重ねた結果、後述の実施例に示されるように、導電膜中のドーパント濃度が特定の範囲にあるときに耐熱性が顕著に向上する特性があることを知見した。またかかる特性に基づいて、アニール工程を大気中で行って透明導電膜を形成できる方法を見出し、本発明を完成させるに至った。
すなわち本発明の導電体は、基板上に、Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなる層(Z)が2層以上設けられており、該2層以上のうち少なくとも1層は、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が0.01〜4原子%である第2層(Z2)であり、該第2層(Z2)と基板との間に、該第2層(Z2)よりも、前記チタンとドーパントの原子数合計に対するドーパントの原子数の割合が多い第1層(Z1)が設けられていることを特徴とする。
前記第1層(Z1)における、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が2〜7原子%であることが好ましい。
前記第2層(Z2)の厚さが3nm以上であることが好ましい。
前記基板がガラスからなることが好ましい。
本発明の導電体の製造方法は、Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなり、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が0.01〜4原子%である前駆体層を、基板上に形成する前駆体層形成工程と、前記前駆体層を、大気中にて、該前駆体層の結晶化温度以上、導電性劣化温度未満の温度範囲で熱処理する大気アニール工程とを備えることを特徴とする。
また本発明は、Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなる前駆体層の2層以上を基板上に形成する前駆体層形成工程と、該前駆体層を大気中で熱処理する大気アニール工程とを備え、該2層以上のうち少なくとも1層は、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が0.01〜4原子%である第2前駆体層であり、該第2前駆体層と基板との間に、該第2前駆体層よりも、前記チタンとドーパントの原子数合計に対するドーパントの原子数の割合が多い第1前駆体層が存在しており、前記大気アニール工程における熱処理温度が、前記基板上に設けられた前駆体層の各結晶化温度のうち最も高い温度以上、かつ前記第2前駆体層の導電性劣化温度未満であることを特徴とする導電体の製造方法を提供する。
該2層以上のうち少なくとも1層は、単層アニール試験を行ったときに、多結晶を含みかつ該多結晶がルチル型結晶を含まない層となることが好ましい。
前記前駆体層の形成を、パルスレーザ堆積法またはスパッタリング法で行うことが好ましい。
前記基板がガラスからなることが好ましい。
本発明によれば、導電性および透明性が良好であるとともに、耐熱性に優れた導電体が得られる。
また本発明によれば、導電性および透明性が良好であるとともに、耐熱性に優れた導電体を、アニール工程を大気中で行う方法で製造することができる。
以下、本発明の実施の形態について詳細に説明する。
図1は本発明の導電体の第1の実施形態を示す断面図である。本実施形態の導電体は、基板10上に、ドーパントが添加された酸化チタンからなる第1層(Z1)11が設けられ、その上にドーパントが添加された酸化チタンからなる第2層(Z2)12が設けられている。
本実施形態において、第1層11は主に導電性を担う層であり、以下メイン層という。第2層12は耐熱性を有する層であり、該第2層を以下保護層という。
図2は本発明の導電体の第2の実施形態を示す断面図である。本実施形態の導電体が上記第1の実施形態と異なる点は、メイン層11に該当する部分が、基板10上に設けられたシード層11aとその上に設けられた中間層11bとからなっている点である。保護層12は中間層11b上に設けられている。中間層11bは本発明における第1層(Z1)に該当する。
[基板]
基板10の材質は特に限定されない。例えば単結晶材料、多結晶材料、またはアモルファス材料でもよく、これらの結晶状態が混在する材料でもよい。
基板10は透明であることが好ましい。本明細書において「透明」とは、波長が400〜700nmである可視領域の光に対する透過率が50%以上であることをいう。
基材10の具体例としては、チタン酸ストロンチウム(SrTiO)の単結晶または多結晶からなる基板;ペロブスカイト型結晶構造またはそれと類似構造を有する岩塩型結晶からなる単結晶基板または多結晶基板;窒化ガリウムの単結晶または多結晶からなる基板;ウルツ鉱型結晶構造またはそれと類似構造を有する閃亜鉛鉱型結晶の窒化物あるいは酸化物の単結晶基板または多結晶基板;水晶基板;ノンアルカリガラス(例えば旭硝子社製、製品名:AN100)、ソーダライムガラス(ソーダ石灰ガラス)等のガラス材料からなるガラス基板;ポリイミド、ポリエチレンテレフタラート、ポリエチレンナフタレート、トリアセチルアセトナート、ポリエーテルスルフォン、ポリカーボネート、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリメタクリレート等のプラスチック材料からなるプラスチック基板;表面に熱酸化膜が形成されたシリコン基板(熱酸化Si基板)等の半導体基板等が挙げられる。基板10は、本発明の効果を損なわない範囲でドーパント、不純物などが含まれていてもよい。
基板10としてSrTiOの単結晶基板を用いる場合は、基板表面が(100)面となるように仕上げられた基板が好ましい。
特に、透明で表面が平滑なものが得られやすく、安価であり、さらに実用上要求される各種耐久性を備えるという点からガラス基板が好ましい。
基板10の形状は特に限定されない。例えば板状であってもよく、プラスチックフィルム等のフィルム状であってもよい。
基板10の厚さは特に限定されない。基板10の透明性が要求される場合には1mm以下が好ましい。板状の基板10において機械的強度が求められ、透過率を多少犠牲にしてもよい場合であれば、1mmより厚くてもよい。基板10の厚さは、例えば0.2〜1mmが好ましい。
基板10は、必要に応じて研磨したものを用いることができる。SrTiO基板等の結晶性を有する基板は、研磨して用いることが好ましい。例えば研磨材としてダイヤモンドスラリーを使用して機械研磨する。該機械研磨では、使用するダイヤモンドスラリーの粒径を徐々に微細化してゆき、最後に粒径約0.5μmのダイヤモンドスラリーで鏡面研磨することが好ましい。その後、更にコロイダルシリカを用いて研磨することにより、表面粗さの二乗平均粗さ(rms)が10Å(1nm)以下となるまで平坦化させてもよい。
基板10を予め前処理して用いてもよい。該前処理は例えば以下の手順で行うことができる。まずアセトン、エタノール等により洗浄する。次に、高純度塩酸(例えば、ELグレード、濃度36質量%、関東化学社製)中に2分間浸す。次に、純水中に移して塩酸等をすすぐ。次に、新たな純水中に移し、ここで超音波洗浄を5分間行う。次に、純水中から取り出し、窒素ガスを表面に吹き付けて水分を表面から除去する。これらの処理は、例えば室温で行う。これらの処理により、基板表面から酸化物、有機物等が除去されると考えられる。上記では塩酸を例に挙げたが、これに代えて王水、フッ酸等の酸を使用してもよい。また、酸による処理は室温下で行ってもよいし、加熱した酸を使用してもよい。
[ドーパント]
メイン層11、保護層12、シード層11a、中間層11bはいずれも、Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなる。
本発明における酸化チタンはTiOのTiサイトが金属原子M(ドーパント)で置換されたものであり、本明細書では「M:TiO」と表すことがある。なお本明細書における「酸化チタン」および「TiO」には、特に断りのない限り、「TiO2−δ」(δは酸素欠損量。)も含まれるものとする。
メイン層11、保護層12、シード層11a、中間層11bにおいて、ドーパントの金属原子(M)、酸素原子(O)、およびチタン原子(Ti)以外の不純物の含有量は0.1原子%以下であることが好ましい。
特に、ドーパントとしてNb、Ta、Mo、As、Sb、又はW用いると、透明度を維持しつつ電気伝導度の向上が期待できる。また、ドーパントとしてCr、Ni、Tc、Re、P又はBiを用いると、磁気光学効果や強磁性も期待できる。
上記に挙げたドーパントのうちで、Nb、Ta、Mo、As、Sb又はWを用いることが好ましく、特にNbおよび/又はTaを用いることが、導電性を良好とする点で好ましい。
第1の実施形態において、メイン層11に添加されるドーパントと、保護層12に添加されるドーパントとは、同じであってもよく、異なっていてもよい。
第2の実施形態において、シード層11aに添加されるドーパントと、中間層11bに添加されるドーパントと、保護層12に添加されるドーパントは、同じであってもよく、異なっていてもよい。
[メイン層]
メイン層11におけるドーパント含有量は、膜中のチタン原子(Ti)とドーパントの金属原子(M)との合計量を100原子%とすると(以下、同様。)、2原子%以上かつ7原子%以下が好ましい。2原子%以上であると高透明性と低抵抗が同時に得られやすい。7原子%より多いと透明性および導電性が劣るおそれがある。より好ましい範囲は3〜6原子%である。
メイン層11の膜厚T1は特に限定されず、用途等に応じて、所望の厚さに設定できる。例えば20〜1000nmが好ましく、100〜200nmがより好ましい。
[シード層・中間層]
シード層11aと中間層11bにおけるドーパント含有量の好ましい範囲はメイン層と同様である。シード層11aと中間層11bとのドーパント含有量は同じであってもよく、異なっていてもよい。
シード層11aの膜厚T1aは、5nm以上、50nm以下が好ましく、10nm以上、40nm以下がより好ましい。該膜厚が上記範囲であれば、電気的抵抗が小さく、かつ透明性に優れた導電体が得られやすい。
中間層11bの膜厚T1bは特に限定されず、用途等に応じて、所望の厚さに設定できる。例えばシード層11aと中間層11bの膜厚の合計(T1a+T1b)が20〜1000nmとなることが好ましく、100〜200nmがより好ましい。
[保護層]
保護層12におけるドーパントの含有量は、0.01原子%以上かつ4原子%以下である。0.01原子%以上であると保護層12において導電性が得られる。4原子%以下であると良好な耐熱性が得られる。より好ましい範囲は0.01〜3原子%であり、0.5〜1.5原子%がさらに好ましい。
保護層12の膜厚T2は3nm以上が好ましい。3nm以上であると良好な耐熱性が得られる。より好ましくは10nm以上である。上限は特に限定されないが、厚すぎると透明性が低下し、製造に要する時間が長くなる。好ましくは100nm以下であり、70nm以下がより好ましい。
保護層12と基板10との間には、保護層12よりもドーパント含有量が多い層が存在する。特に導電性を主に担う層のドーパント量は、保護層12のドーパント含有量より多いことが好ましい。本実施形態におけるメイン層11および中間層11bは、ドーパント含有量が保護層12よりも多いことが好ましい。
スパッタ法およびパルスレーザ堆積(Pulsed Laser Deposition:PLD)法のいずれにおいても、膜中におけるドーパント組成は、成膜時に使用するターゲットにおけるドーパント組成とほぼ同等となる。
したがって、膜中のドーパント含有量は、成膜時に使用するターゲットにおけるドーパント含有量によって制御できる。
<第1の製造方法>
本発明の導電体は本発明の導電体の製造方法(第1の製造方法)を用いて好適に製造することができる。
第1の実施形態の導電体を製造するには、まず基板10上に、メイン層11の前駆体層(第1前駆体層)を形成し、その上に保護層12の前駆体層(第2前駆体層)を形成する(前駆体層形成工程)。次いで、これらの前駆体層を大気中にて熱処理する(大気アニール工程)。
第2の実施形態の導電体を製造するには、まず基板10上に、シード層11aの前駆体層を形成し、その上に中間層11bの前駆体層(第1前駆体層)を形成し、その上に保護層12の前駆体層(第2前駆体層)を形成する(前駆体層形成工程)。そして、これらの前駆体層を大気中にて熱処理する(大気アニール工程)。
[前駆体層]
前駆体層におけるドーパントの含有量はアニール後も維持される。したがって、前駆体層におけるドーパントの含有量は、アニール後に得ようとする層のドーパント含有量と同じに設定する。
前駆体層の性状は、アニール後の結晶状態に影響を与える。したがって、アニール後に所望の結晶状態が得られるように、前駆体層の性状を設定する。
大気アニール工程では、前駆体層の結晶化温度以上に加熱されるため、前駆体層の結晶状態がアモルファスであるとアニールにより多結晶化される。低抵抗を達成するために、アニール後の多結晶層を構成する結晶がアナターゼ型であることが好ましく、ルチル型結晶を含まないことが好ましい。アニール後の結晶状態は、アニール前のアモルファス層(前駆体層)における酸素含有量によって制御できる。
前駆体層に多結晶が存在する場合、該多結晶を構成する結晶がアナターゼ型であると、アニール後の多結晶はアナターゼ型となる。前駆体層において多結晶にルチル型が含まれていると、アニール後の多結晶はルチル型を含む。
前駆体層における結晶状態は、XRDプロファイルによって確認できる。すなわちX線回折(XRD)装置によりXRDプロファイルを測定し、アナターゼ型多結晶に特徴的に観察される(101)および(004)のピーク、ならびにルチル型多結晶に特徴的に観察される(110)のピークの有無を観察する。いずれのピークも観察されない場合はアモルファス層であると判定し、いずれかのピークが有れば多結晶を含む層であると判定する。また、(110)ピークが有れば該多結晶はルチルを含むと判定し、(110)ピークが無ければ該多結晶はルチルを含まないと判定する。
[メイン層の前駆体層]
メイン層11の前駆体層は、アニール後に透明導電膜となればよい。メイン層11の電気抵抗を低くするうえで、該前駆体層はアモルファス層、または多結晶を含みかつ該多結晶がルチル型結晶を含まない層であることが好ましい。後述する条件(Y1)および/または(Y2)を満たすことがより好ましい。
[保護層の前駆体層]
保護層12の前駆体層は、アニール後に透明導電膜となればよい。該前駆体層はアモルファス層、または多結晶を含みかつ該多結晶がルチル型結晶を含まない層であることが好ましい。より低抵抗を達成するうえでアモルファス層であることが好ましい。保護層12の電気抵抗が低くなるように、前駆体層中の酸素含有量を制御することが好ましい。
[シード層・中間層の前駆体層]
シード層11aの前駆体層は、下記(X1)、(X2)の少なくとも一方の条件を満たすように形成する。両方を同時に満たしてもよい。
(X1)下記の方法により単層アニール試験を行ったときに、多結晶を含みかつ該多結晶がルチルを含まない層となる。
(X2)波長800nmにおける吸収係数が0cm−1より大きく、2×10cm−1未満となる。
中間層11bの前駆体層はアモルファス層であればよいが、さらに下記(Y1)、(Y2)の少なくとも一方の条件を満たすことが、低抵抗の導電体を得るうえで好ましい。両方を同時に満たしてもよい。
(Y1)下記の方法により単層アニール試験を行ったときに、多結晶を含みかつ該多結晶がルチルを含む層となる。
(Y2)波長800nmにおける吸収係数が2×10cm−1以上、5×10cm−1未満となる。
[単層アニール試験]
シード層11aまたは中間層11bの前駆体層に対する単層アニール試験は、ノンアルカリガラス基板上に厚さ100nmで形成されたサンプル膜を用いて、以下の手順で行われる。
まず、ノンアルカリガラス(硝子社製、製品名:AN100)からなる基板の表面上に、実際の工程において基板上にシード層11aまたは中間層11bの前駆体層を形成する時と、同じ組成のターゲットおよび同じ成膜条件を用いてサンプル膜を形成する。ただしサンプル膜の膜厚は、実際の前駆体層の膜厚にかかわらず100nmとする。
次いで該サンプル膜に対して単層アニール試験を行う。すなわちアニール雰囲気を一旦10−1Paの真空にした後、水素(H)を導入してH100%の雰囲気とする。このときの雰囲気圧力は1.013×10Pa(1気圧)とする。続いて、該H雰囲気中で、基板の裏面に加熱体を接触させ、基板温度が5分間で室温(約25℃)から500℃に達するように加熱する。そして500℃で1時間保持した後、室温まで放冷する。
こうして単層アニール試験を行った後のサンプル膜について、X線回折(XRD)装置によりXRDプロファイルを測定し、上述の前駆体層おける結晶状態の判定方法と同様にして判定する。
[吸収係数]
本発明における「波長800nmにおける吸収係数」の値は、以下の方法で求められる値である。
まず、波長800nmにおける透過率と反射率を測定する。該透過率の測定値がT(%)、反射率の測定値がR(%)、膜厚がd(nm)であるとき、光学吸収度αは、以下の数式(1)によって算出される。
α=〔ln{(100−R)/T}〕/d×10 …(1)
上記(X1)の条件に関しては、単層アニール試験における加熱温度が500℃であるため、アニール前のサンプル膜がアモルファスであっても、アニール後のサンプル膜は多結晶を含む。前駆体層の成膜条件を、膜中の酸素含有量が少なくなるような条件とすると、単層アニール試験後の膜にルチル型結晶が含まれやすくなる傾向がある。
なお、アニール前の膜が多結晶を含んでおり、該多結晶がルチル型結晶を含まない場合は、アニール後のサンプル膜における多結晶にはルチル型結晶は含まれない。
上記(X2)の条件に関しては、成膜条件を、膜中の酸素含有量が少なくなるような条件とすると、波長800nmにおける吸収係数が大きくなる傾向がある。
前駆体層が、上記(X2)の条件を満たすように成膜されたアモルファス層である場合、該アモルファス層が結晶化温度以上に加熱されたときにアナターゼ型結晶が生成され易く、ルチル型結晶は生成され難い。
中間層11bの条件(Y1)、(Y2)に関しては、中間層11bの前駆体層の成膜条件を、アモルファス膜が得られ、かつ膜中の酸素含有量が多くなるなるような条件とすることにより、上記(Y1)および/または(Y2)を満たすアモルファス層からなる前駆体層が得られる。
中間層11bの前駆体は、上記(Y1)の条件を満たすように形成されるため、単層でアニールした場合にはルチル型結晶を含む多結晶となるにもかかわらず、シード層11a上に中間層11bを積層した状態でアニールすると、ルチル型結晶の生成が大幅に抑えられる。特にアニール時に基板10側から加熱するとルチル型結晶を含まない多結晶となる。これは驚くべき現象である。
そしてシード層11aと中間層11bからなる導電層は、メイン層11のみからなる導電層に比べて、ルチル型結晶を含まない多結晶という点では同じであるにもかかわらず、比抵抗が小さくなり、キャリア濃度およびホール移動度が顕著に向上する。
各前駆体層は公知の成膜方法を適宜用いて形成することができる。具体的には、パルスレーザ堆積(PLD)法、スパッタ法等の物理気相蒸着(PVD)法;MOCVD法等の化学気相蒸着(CVD)法;ゾルゲル法、化学溶液法等の溶液からの合成プロセスによる成膜法が挙げられる。
特にPLD法は良好な膜状態が得られ易い点で好ましく、スパッタ法は、基板の結晶性にかかわらず成膜しやすい点で好ましい。
[スパッタ法]
スパッタ法は、酸化性スパッタガスを含む雰囲気ガス中で、反応性スパッタ法により前駆体層を形成するのが好ましい。スパッタ装置は公知のものを適宜使用できる。例えば反応性DCマグネトロンスパッタ装置を使用できる。
具体的には、まずスパッタ装置の真空チャンバ内に、ターゲットおよび基板10をセットし、真空チャンバ内をポンプで排気して真空状態とした後、スパッタガスを導入して所定のスパッタ圧力に調整する。
続いて、スパッタ圧力を維持しつつ、ターゲット裏面の磁石により所定強度の磁場を発生させるとともに、ターゲットに所定の電圧を印加して、基板上に前駆体層を成膜する。
成膜時のスパッタ圧力は、例えば0.1〜5.0Pa程度が好ましく、0.3〜3.0Pa程度がより好ましい。
(ターゲット)
スパッタ法による成膜で使用するターゲットは、金属ターゲットでもよく、金属酸化物ターゲットでもよく、両者を併用してもよい。金属ターゲットとしては、例えば所定量のドーパントを含むチタン合金等が用いられる。金属酸化物ターゲットとしては、例えば所定量のドーパントを含むTiO焼結体等が用いられる。例えばNb:TiO焼結体は、所望の原子比となるように秤量されたTiOとNbの各粉末を混合し、該混合した粉末を加熱成形することにより作製できる。1種のターゲットに複数種類のドーパントが含まれていてもよい。
ターゲットにおけるドーパントの含有率は、該ターゲットを用いて成膜される膜におけるドーパントの含有率とほぼ同等となる。したがって、得ようとする前駆体層におけるドーパント含有量に応じて、ターゲットのドーパント含有量を設定することが好ましい。
金属酸化物ターゲットの組成において、Tiの原子数に対するOの原子数の比(O/Ti比)が0.5〜2.0の範囲であることが好ましい。すなわち、M:TiO2―δ:0≦δ≦1.5であることが好ましい。この範囲よりもO/Ti比が少ないと膜が着色しやすく、透明性と導電性を両立することが困難になる。この範囲よりもO/Ti比が多い酸化物は製造が難しい。該O/Ti比が1.0〜2.0の範囲であると膜の透明性と導電性が両立しやすい。さらに該O/Ti比が1.5〜2.0の範囲であるとより透明性が高い膜が得られる。
金属酸化物ターゲットの結晶構造は、ルチル型、アナターゼ型、ブルッカイト型、マグネリ相のいずれでもよく、これらの混合物でもよい。
(スパッタガス)
スパッタガスとしては、少なくとも酸化性スパッタガスが用いられ、好ましくは酸化性スパッタガスと不活性ガスの混合ガスが用いられる。
不活性ガスとしては、Ar、He、Ne、Kr、Xeから選ばれる1種または2種以上を使用できる。酸化性スパッタガスとしては、O、O、HO、COから選ばれる1種または2種以上を使用できる。安全性と成膜装置の保守の点からは酸化性スパッタガスとしてOを用いることが好ましい。
成膜時の雰囲気ガス中における酸化性スパッタガスの濃度は、真空チャンバに導入されるスパッタガスの合計の流量に対する酸化性スパッタガスの流量の割合(以下、酸化性スパッタガス流量比ということもある。)によって調整できる。例えばスパッタガスとして酸化性スパッタガスと不活性ガスの混合ガスを用いる場合、前記スパッタガスの合計の流量は、酸化性スパッタガスの流量と不活性ガスの流量の合計である。
(基板温度:シード層)
シード層11aの前駆体層は、アモルファス層、または多結晶を含みかつ該多結晶がルチル型結晶を含まない層となるように形成される。そのためには、該前駆体層を成膜する際の基板温度は600℃以下が好ましい。600℃を超えるとルチル型結晶が生成されやすくなる。該成膜時の基板温度の下限値は、成膜可能な温度であればよく特に限定されない。例えば77K(約−196℃)以上である。
より低抵抗を達成するうえでは、シード層11aの前駆体層がアモルファス層であることが好ましく、そのためには成膜時の基板温度が室温以下であることが好ましい。本明細書において、成膜時の基板温度における「室温」とは、基板を非加熱で成膜する際に基板温度がとり得る温度範囲であり、スパッタ法では25〜80℃程度である。したがって、シード層11aの前駆体層をアモルファス状とするには、基板を非加熱とした状態で成膜を行うことが好ましい。さらには成膜時の基板温度を例えば25〜50℃程度に保つことがより好ましく、必要に応じて冷却することが好ましい。
またシード層11aの前駆体層が多結晶を含む層である場合は、ポストアニール後に該多結晶がルチル型を含んでいなければよい。したがって、例えば室温以下の基板温度でアモルファス層を形成し、該アモルファス層を、ルチル型結晶が生成しないように結晶化温度以上でアニール(以下、中間アニールという。)した、多結晶を含む層もシード層11aの前駆体層として用いることができる。
(基板温度:中間層)
中間層11bの前駆体層はアモルファス層となるように形成される。そのためには、該前駆体層を成膜する際の基板温度は室温以下が好ましい。すなわち、中間層11bの前駆体層は、基板を非加熱とした状態で成膜することが好ましい。さらには成膜時の基板温度を例えば25〜50℃程度に保つことがより好ましく、必要に応じて冷却することが好ましい。該成膜時の基板温度の下限値は、成膜可能な温度であればよく特に限定されない。例えば77K(約−196℃)以上である。
(基板温度:メイン層・保護層)
メイン層11および保護層12の前駆体層は、アモルファス層、または多結晶を含みかつ該多結晶がルチル型結晶を含まない層となるように形成される。シード層11aの前駆体層を成膜する際の基板温度と、好ましい態様も含めて同様である。
膜中の酸素含有量は成膜時の製造条件によって制御できる。例えばスパッタ法の場合は、(A)成膜時の雰囲気ガス中における酸化性スパッタガスの濃度を制御する方法、および(B)成膜時に使用するターゲットにおける酸素原子の含有量を制御する方法がある。該(A)の方法と(B)の方法を組み合わせてもよい。
(A)酸化性スパッタガス流量比
前駆体層を成膜する際の雰囲気ガス中における酸化性スパッタガスの濃度は、具体的には、成膜時の酸化性スパッタガス流量比によって制御できる。ターゲットにおける酸素原子の含有量が一定である場合、該酸化性スパッタガス流量比が少なくなるほど、膜中の酸素含有量は少なくなる。
(ターゲットが金属酸化物である場合)
シード層11aの前駆体層を成膜する際、例えばターゲットが金属酸化物(M:TiO2―δ1:0≦δ1≦1.5)からなる場合は、用いるスパッタガスは、不活性ガスに対してわずかでも酸化性ガスが添加されていればよい。酸化性スパッタガス流量比は0.1体積%以上が好ましく、0.25体積%以上がより好ましい。該酸化性スパッタガス流量比の上限は100体積%である。
中間層11bの前駆体層を成膜する際の酸化性スパッタガス流量比は、0.1体積%未満が好ましく、0.05体積%以下がより好ましい。0(ゼロ)体積%すなわちスパッタガスとして不活性ガスに対して酸化性スパッタガスを含有させなくてもよい。また酸化性スパッタガスに加えて、さらに水素(H)ガスを含有させてもよい。この場合のスパッタガスの全流量100体積部に対する水素ガスの流量比は0.01体積部以上50体積部以下が好ましい。該水素ガスの流量比が上記範囲より少ないと水素ガスの添加効果が不充分であり、上記範囲より多いと過剰な還元によって金属チタンが生成する可能性がある。
メイン層11の前駆体層を成膜する際の酸化性スパッタガス流量比は、好ましい態様も含めて中間層11bと同様である。
保護層12の前駆体層を成膜する際のスパッタガスは、低抵抗を達成するうえで、好ましい態様も含めて中間層11bと同様である。
各層を成膜するときのスパッタガスの組成およびガス流量比は、上記範囲からターゲットの性状等を勘案して最適な条件を選んで決められる。
(ターゲットが金属である場合)
シード層11aの前駆体層を成膜する際の酸化性スパッタガス流量比は、7.5体積%以上が好ましく、10体積%以上がより好ましい。100体積%でもよい。
中間層11bの前駆体層を成膜する際の酸化性スパッタガス流量比は、3体積%以上、7.5体積%以下の範囲が好ましく、5体積%以上、7体積%以下がより好ましい。該酸化性スパッタガス流量比が上記範囲より少ないと、酸化不足が原因で、金属チタンが生成する可能性がある。
中間層11bの前駆体層を形成する際の雰囲気ガス中における酸化性スパッタガスの濃度は、シード層11aの前駆体層を形成する際の雰囲気ガス中における酸化性スパッタガスの濃度よりも低いことが、透明性が高く導電性が高い層が形成できる点で好ましい。さらに、この場合、おのおのの酸化性ガスの種類は同じであることが好ましい。
メイン層11の前駆体層を成膜する際の酸化性スパッタガス流量比は、好ましい態様も含めて中間層と同様である。
保護層12の前駆体層を成膜する際の酸化性スパッタガス流量比は、低抵抗を達成するうえで、5体積%以上が好ましく、7.5体積%以上がより好ましい。該酸化性スパッタガス流量比の上限は100体積%である。
各層を成膜するときのスパッタガスの組成およびガス流量比は、上記範囲からターゲットの性状等を勘案して最適な条件を選んで決められる。
(B)ターゲットにおける酸素原子含有量
またスパッタ法において、膜中の酸素含有量を制御する方法として(B)成膜時に使用するターゲットにおける酸素原子の含有量を制御する方法を用いることができる。
ターゲットにおける酸素原子の含有量は、例えば図3に示すように、金属ターゲット21と金属酸化物ターゲット22を同時に用いて成膜することにより、金属酸化物ターゲットのみを用いて成膜する場合よりも、成膜に使用するターゲットにおける酸素原子の含有量を少なくすることができる。
具体的には、予め真空チャンバ内に、金属ターゲット21と金属酸化物ターゲット22の両方を、基板10と対向する側にセットしておく。そして、金属ターゲット21および/または金属酸化物ターゲット22に電圧を印加し、基板10を回転させつつ該基板10上に成膜を行う。金属ターゲット21および金属酸化物ターゲット22におけるドーパント含有量は同じであることが好ましい。
この方法において、雰囲気ガス中における酸化性スパッタガスの濃度が一定であり、金属ターゲット21と金属酸化物ターゲット22の大きさが同じである場合、「金属ターゲットへの投入電力/金属酸化物ターゲットへの投入電力」の割合が大きくなるほど、膜中の酸素含有量は少なくなる。
中間層11bの前駆体層を形成する際に使用するターゲットにおける酸素原子の含有量は、シード層11aの前駆体層を形成する際に使用するターゲットにおける酸素原子の含有量よりも低いことが、透明性が高く導電性が高い層が形成できる点で好ましい。さらに、この場合、おのおののターゲットにおけるドーパント含有量は同じであることが好ましい。
例えば、金属酸化物(M:TiO2―δ2:0≦δ2≦1.5)からなる金属酸化物ターゲット22と、MとTiの合金からなる金属ターゲット21を用い、シード層11aの前駆体層を成膜する際、および中間層11bの前駆体層を成膜する際の酸化性スパッタガス流量比を0.1体積%以上の範囲内で一定とする場合、シード層11aの前駆体層を成膜する際は、図3(a)に示すように、金属酸化物ターゲット22にのみ電圧を印加し、金属ターゲット21への印加電圧はゼロとすることが好ましい。
続いて、中間層11bの前駆体層を成膜する際は、図3(b)に示すように、金属ターゲット21と金属酸化物ターゲット22の両方に電圧を印加する。例えば金属酸化物ターゲットの放電方式がRF放電であり、金属ターゲットの放電方式がDC放電であり、ターゲットの面積が同じである場合、上記(1)および/または(2)の条件を満たすうえで、金属酸化物ターゲットへの投入電力(単位:W)を100%とするときの金属ターゲットへの投入電力(単位:W)の割合は5〜40%が好ましい。
[PLD法]
各前駆体層はPLD法で形成してもよい。
PLD法では、例えば、適切な減圧状態を維持できるチャンバ内に、基板とターゲットとを対向して配置し、チャンバ内に酸素ガスを注入するとともに、該チャンバ内における酸素分圧を所定の値に保持し、基板温度を所定の温度に設定して、基板およびターゲットを回転駆動させつつ、パルスレーザ光をターゲットに断続的に照射して、ターゲット表面の温度を急激に上昇させ、アブレーションプラズマを発生させる。このアブレーションプラズマ中に含まれるTi原子、O原子、およびM(ドーパント)原子は、チャンバ中の酸素ガスとの衝突反応等を繰り返しながら状態を徐々に変化させて基板へ移動し、基板へ到達したTi原子、M原子、O原子を含む粒子は、そのまま基板の表面に拡散し、薄膜化される。こうして基板上に膜が形成される。
上記パルスレーザ光として、例えばパルス周波数が1〜10Hzであり、レーザフルエンス(レーザパワー)が1〜2J/cm2であり、波長が248nmであるKrFエキシマレーザが用いられる。
チャンバの排気側の圧力は常に10−3Torr(1.33×10−1Pa)以下に保たれることが好ましい。
ターゲットは、例えば金属酸化物ターゲットが用いられる。金属酸化物ターゲットについてはスパッタ法と同様である。ターゲットにおけるドーパントの含有率は、該ターゲットを用いて成膜される膜におけるドーパントの含有率とほぼ同等となる。
[基板温度]
各前駆体層の成膜時の基板温度はスパッタ法と同様である。
なお、PLD法において、基板を非加熱で成膜する際に基板温度がとり得る温度範囲、すなわち成膜時の基板温度における「室温」の範囲は、25〜100℃程度である。
PLD法で前駆体層を形成する場合の、上記(X1)、(X2)、(Y1)および(Y2)の各条件については、スパッタ法と同様である。単層アニール試験も成膜法が異なる他は同様である。
[(C)酸素分圧]
PLD法の場合、膜中の酸素含有量を制御する方法としては(C)成膜時の酸素分圧を制御する方法が好ましい。
ターゲットにおける酸素原子の含有量が一定である場合、成膜時の酸素分圧が低くなるほど、膜中の酸素含有量は少なくなる。
例えばターゲットが金属酸化物(M:TiO2―δ3:0≦δ3≦1.5)からなる場合、シード層11aの前駆体層を成膜する際の酸素分圧は、5×10−1Pa以上が好ましく、1×10Pa以上がより好ましい。また生産性の点で該酸素分圧の上限は1×10Pa以下が好ましい。
一方、中間層11bの前駆体層を成膜する際の酸素分圧は、5×10−1Pa未満が好ましく、3×10−1Pa以下がより好ましい。また透明性を確保する点で該酸素分圧の下限は1×10−8Pa以上が好ましい。
メイン層11の前駆体層を成膜する際の酸素分圧は、好ましい態様も含めてシード層と同様である。
保護層12の前駆体層を成膜する際の酸素分圧は、低抵抗を達成するうえで、10−3Pa以上が好ましく、10−2Pa以上がより好ましい。
[大気アニール工程]
本発明におけるアニールとは、加熱により所定の温度(アニール温度)まで上昇させた後、温度を下げる操作をいう。本実施形態のように基板10上に前駆体層が2層以上形成されている場合は、アニール温度として基板温度を適用することができる。
大気アニール工程における熱処理温度は、基板10上に設けられた複数の前駆体層の各結晶化温度のうち最も高い温度以上、かつ保護層12の前駆体層(第2前駆体層)の導電性劣化温度未満とされる。
[結晶化温度の定義]
本発明における前駆体層の結晶化温度は、以下の方法で得られる値である。
すなわち、基板上に前駆体層を単層で形成し、基板温度が室温から600℃になるまで200分かけて真空中で加熱昇温した後、1時間保持し、その後直ちに200分かけて室温まで冷却したときの、基板温度と比抵抗との関係を調べる。その結果より、加熱途中に比抵抗の値が最も大きく低下する温度T’(℃)を求め、該T’よりも30℃だけ低い温度(T’−30)を結晶化温度Tcr(℃)と定義する。加熱途中に比抵抗の値が大きく低下する温度は、比抵抗の一次微分値と基板温度との関係から求める。
ここで、本発明における結晶化温度は、加熱により非晶質が多結晶に変化する過程において、完全な多結晶体となる温度ではなく、多結晶と非晶質が混在していても低抵抗が得られる温度を意味している。したがって、加熱途中に比抵抗の値が最も大きく低下する温度T’よりも30℃低い値を結晶化温度Tcrとする。
[導電性劣化温度の定義]
本発明における保護層12の前駆体層の導電性劣化温度は、以下の方法で得られる値である。
すなわち、基板上に保護層12の前駆体層を単層で形成し、1気圧の水素雰囲気中で、室温から600℃まで6分かけて加熱した後、1時間600℃で保持したのち直ちに30分かけて室温まで冷却する条件でアニールを行って多結晶化したものをサンプル膜とする。
こうして得られたサンプル膜について、大気中にて室温から600℃まで200分かけて加熱した後、直ちに放冷する方法で加熱試験を行ったときの、基板温度と比抵抗との関係を調べる。加熱途中に比抵抗の値が最も大きく上昇する温度、すなわち一次微分のグラフが折れ曲がる(傾きが最も大きく変化する)点の温度を導電性劣化温度Td(℃)と定義する。
ここで本発明における前駆体層の導電性劣化温度は、前駆体層をアニールして多結晶化したサンプル膜の導電性劣化温度である。したがって、該導電性劣化温度は、実質的にはアニール後の保護層12の導電性劣化温度である。
大気アニール温度は、このようにして求められる最も高い結晶化温度以上であって、保護層12の前駆体層の導電性劣化温度未満の範囲内とされる。例えば300〜400℃程度が好ましい。
所定のアニール温度に保持する時間(アニール時間)は特に制限されず、アニール後に所望の特性が得られるように適宜設定できる。アニール温度が低いとアニール時間が長く必要になる傾向がある。アニール時間は、アニール温度以外の条件にもよるが。例えば1〜120分の範囲内が好ましく、1〜60分が好ましい。
大気アニール工程においては、いずれの前駆体層も、自身の結晶化温度よりも高い温度で加熱されるため、多結晶化されて導電層となる。
また最外層として保護層12の前駆体層を設け、該保護層12の前駆体層の導電性劣化温度よりも低い温度で加熱するため、大気中でアニールしても保護層12の導電性は劣化しない。保護層12はドーパント濃度が特定の低い範囲にあるため、加熱時に膜中に酸素原子が取り込まれ難く、このことが保護層12の高耐熱性に寄与していると考えられる。
そして、かかる保護層12の前駆体層が最外層に設けられているため、保護層12と基板10との間に存在するメイン層11、またはシード層11aおよび中間層11bの前駆体層は、大気中でアニールが行われるにもかかわらず、酸素との接触がない状態で加熱される。したがって、たとえ大気アニール温度が、これらの層自身の大気中における導電性劣化温度より高くても、これらの層に酸素が取り込まれ難く、導電性の劣化が防止される。すなわち耐熱性が向上する。
本発明の製造方法によれば、最外層をなす前駆体層として保護層12の前駆体層を設けることにより、大気アニールにより導電体を形成することが可能となる。大気アニールは、還元雰囲気下でのアニールに比べて、設備および所要時間の点で有利である。
また、得られる導電体は透明性も良好であり、保護層12の導電性劣化温度未満であれば大気中で加熱されても導電性が損なわれないため、耐熱性が良好な透明導電膜として用いることができる。
<第2の製造方法>
第1の製造方法と同様にして、各前駆体層を形成した後、大気アニール工程に変えて、還元雰囲気下で加熱してアニール(還元アニール工程)する方法でも、本発明の導電体を製造できる。
本発明における還元雰囲気とは、アニール雰囲気中における酸化性ガスの分圧が0.2×10Pa以下であることをいう。該酸化性ガスとは、アニール工程において前駆体層に酸素を与え得る気体を意味し、具体例としてはO、O、NO、NO、HO等が挙げられる。雰囲気中に酸化性ガスが2種以上含まれる場合は、それらの分圧の合計が上記の範囲内であればよい。還元雰囲気中における酸化性ガスの分圧は、1×10Pa以下が好ましく、10Pa以下がより好ましい。1×10−8Pa程度が最も好ましい。酸化性ガスの分圧の値が小さいほど、より低抵抗の導電体を得ることができる。 また、より低抵抗化するうえで、還元雰囲気中にHおよび/またはCOを存在させることが好ましく、プラズマ状態のHを存在させることがより好ましい。したがって、アニール雰囲気を一旦真空状態にした後、水素(H)を導入してアニールを行うことが好ましい。
または、アニールを行う還元雰囲気を真空状態とすることも好ましい。
本明細書おいて、真空状態の雰囲気圧力は10〜10−8Paの範囲であり、10〜10−8Paの範囲が好ましく、10−2〜10−8Paの範囲がより好ましい。
還元アニールにおける熱処理温度は、基板10上に設けられた複数の前駆体層の各結晶化温度のうち最も高い温度以上とされる点では第1の製造方法と同じである。
一方、還元アニールは大気アニールよりも、膜中に酸素が取り込まれ難い状態で熱処理が行われるため、加熱温度が高くても導電性の劣化が生じ難い。すなわち導電性劣化温度が高く、したがって大気アニールよりも還元アニールの方がアニール温度の上限が高い。
還元アニールにおけるアニール温度の上限は、アニール工程においてアナターゼ型の結晶構造がこわれる温度であり、例えば900℃以下が好ましい。基板10の耐熱性、エネルギー削減、昇温時間の短縮等の点からは、アニール温度は低い方が望ましい。還元アニールにおけるアニール温度のより好ましい範囲は200〜650℃であり、300〜600℃がさらに好ましい。
所定のアニール温度に保持する時間(アニール時間)は特に制限されず、アニール後に所望の特性が得られるように適宜設定できる。アニール温度が低いとアニール時間が長くなる傾向がある。アニール時間は、アニール温度以外の条件にもよるが。例えば1〜120分の範囲内が好ましく、1〜60分が好ましい。
<本発明の製造方法>
本発明の製造方法は、図4に示すように、基板10上に直接、高耐熱性を有する導電層32を形成するのにも好適である。
すなわち、Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなり、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が0.01〜4原子%である前駆体層を、基板10上に形成し(前駆体層形成工程)、該前駆体層を、大気中にて、該前駆体層の結晶化温度以上、導電性劣化温度未満の温度範囲で熱処理(大気アニール工程)することにより、基板10上に導電層32が設けられた導電体が得られる。
基板10は、上記導電体の第1の実施形態と同様である。ドーパントの好ましい種類も上記導電体の第1の実施形態と同様である。
導電層32におけるドーパントの含有量は、0.01原子%以上かつ4原子%以下である。0.01原子%以上であると導電性が得られ、4原子%以下であると良好な耐熱性が得られる。より好ましい範囲は0.2〜4原子%であり、0.5〜3原子%がさらに好ましい。
導電層32の膜厚T32は3nm以上が好ましい。3nmより薄いと耐熱性が維持される時間が短くなる。好ましくは10nm以上である。上限は特に限定されないが、厚すぎると透明性が低下し、製造に要する時間が長くなる。好ましくは100nm以下であり、30nm以下がより好ましい。
具体的には、まず基板10上に導電層32の前駆体層を形成する。前駆体層はアモルファス層とする。前駆体層は導電体の第1の実施形態と同様に、公知の成膜方法を適宜用いて形成することができる。
特にPLD法は良好な膜状態が得られ易い点で好ましく、スパッタ法は、基板の結晶性にかかわらず成膜しやすい点で好ましい。
PLD法で導電層32の前駆体層を成膜する場合、ターゲットは上記第1の製造方法と同様である。前駆体層はアモルファス層であるため、基板温度は室温以下であることが好ましい。成膜時の酸素分圧は、低抵抗を達成するうえで、10−3Pa以上が好ましく、10−2Pa以上がより好ましい。
その他は、上記第1の製造方法における、保護層12の前駆体層の成膜と同様に行うことができる。
スパッタ法で導電層32の前駆体層を成膜する場合、ターゲットは上記第1の製造方法と同様である。基板温度は室温以下であることが好ましい。スパッタ圧力は0.1〜10Pa程度が好ましい。
不活性ガスは第1の製造方法と同様である。スパッタリングガスにおけるO/(不活性ガス+O)の割合(体積基準)は0〜1体積%程度が好ましい。
その他は、上記第1の製造方法における、保護層12の前駆体層の成膜と同様に行うことができる。
こうして形成した前駆体層に対して大気アニールを行う。アニール温度は、前駆体層の結晶化温度以上、導電性劣化温度未満の温度範囲とされる。
その他は第1の製造方法における大気アニール工程と同様に行うことができる。
このようにして基板10上に、高耐熱性を有する導電層32が設けられた導電体が得られる。該導電体は透明性も良好であり、導電性劣化温度が高くて耐熱性が良好な透明導電膜として用いることができる。
<用途>
本発明の導電体は適用範囲が広く、例えば、フラットパネルディスプレイ、太陽電池、タッチパネルなどの透明電極に好適である。
以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
[例1:結晶化温度の測定]
PLD装置を用い、下記の条件で基板上にアモルファス層(前駆体層)を形成した。
・基板:ノンアルカリガラス(旭硝子社製、製品名:AN100)からなる厚さ0.5mmのガラス基板
・成膜法:PLD法
・成膜時の酸素分圧:1.33×10−1Pa(1×10−3Torr)
・ターゲット:TiO焼結体
・基板温度:室温(基板の加熱なし)
得られたアモルファス層の厚さは130nm、Nb含有量は0原子%である。このアモルファス層を真空中で、室温から600℃まで200分かけて加熱した後、1時間保持し、その後200分かけて室温まで冷却したときの、基板温度と比抵抗との関係を調べた。その結果を図5に示す。
図5において、縦軸は比抵抗ρ(単位:Ωcm)、横軸は基板温度T(単位:℃)を示す。
図6は、図5の縦軸で示す比抵抗ρの一次微分(dρ/dT)の絶対値と基板温度Tとの関係を示したものである。
図5において、加熱途中に比抵抗の値が最も大きく低下する温度、すなわち図6において一次微分値のピークPが得られる温度をT’(℃)とするとき、T’−30(℃)が結晶化温度Tcr(℃)である。
[例2:結晶化温度とドーパント量との関係]
上記例1におけるアモルファス層の製造条件のうち、ターゲット組成を変化させた他は同様にして、Nb含有量が0〜15原子%のアモルファス層を成膜し、同様にして結晶化温度Tcrを測定した。ターゲットは、Nb:TiO2−δ(Nb/(Ti+Nb)=0,1,3,4,6,10,15原子%)からなるTiO焼結体を用いた。
Nb含有量(原子%)と結晶化温度Tcr(℃)との関係を図7に実線で示す。
[例3:導電性劣化温度の測定およびドーパント量との関係]
上記例1におけるアモルファス層の製造条件のうち、ターゲット組成を変化させた他は同様にして、Nb含有量が0〜15原子%のアモルファス層を成膜した。ターゲットは、Nb:TiO2−δ(Nb/(Ti+Nb)=0,1,3,4,6,10,15原子%)からなるTiO焼結体を用いた。
次いで、1気圧の水素雰囲気中にて、室温から600℃まで6分かけて加熱した後、1時間保持し、その後15分かけて室温まで冷却する条件でアニールを行ったものをサンプル膜とした。
こうして得られたサンプル膜を、大気中にて室温から600℃まで200分かけて加熱した後、1時間保持し、その後放冷する方法で加熱試験を行った。このときの基板温度と比抵抗との関係を調べた。その結果を図8に示す。
図8において、縦軸は比抵抗ρ(単位:Ωcm)、横軸は基板温度T(単位:℃)を示す。
図9は、図8の縦軸で示す昇温時の比抵抗ρの、一次微分(dρ/dT)と、基板温度Tとの関係を示したものである。
図8において、加熱途中に比抵抗の値が最も大きく上昇する温度(図中矢印で示す。)、すなわち図9において一次微分のグラフが折れ曲がる(傾きが最も大きく変化する)点の温度が導電性劣化温度Td(℃)である。
Nb含有量(原子%)と導電性劣化温度Td(℃)との関係を図7に破線で示す。
図8において、加熱試験開始時のサンプル膜の比抵抗は、Nb含有量0%のものを除いていずれも低く、アニールされたことにより多結晶化して低抵抗化されたことがわかる。Nb含有量0%のサンプル膜は多結晶化されたものの、Nbを含有していないため比抵抗が充分に低くならなかったと考えられる。
そして図8の結果より、アニールによって低抵抗化されたサンプル膜が、さらに大気中で加熱されると300〜400℃付近で比抵抗が急激に上昇し、導電性が劣化することがわかる。そして図7に示されるように、該導電性が劣化する温度(導電性劣化温度Td)はNb含有量に依存する。
図7において、Nb含有量が0.01〜4原子%の範囲では、結晶化温度Tcrよりも導電性劣化温度Tdの方が充分に高い。したがって、例えばNb含有量が1原子%のアモルファス層を大気中で加熱するとき、基板温度が結晶化温度Tcrである290℃以上になると多結晶化して低抵抗化される。そして基板温度が導電性劣化温度Tdである400℃に達すると導電性が劣化して比抵抗が急激に上昇する。したがって、Nb含有量が1原子%のアモルファス層を、大気中で基板温度が290℃以上、400℃未満となる範囲で加熱すると、低抵抗の多結晶膜が得られることがわかる。
[例4:導電性劣化温度とドーパント量との関係]
例3において、アモルファス層を成膜する際の酸素分圧を1.33×10−2Pa(1×10−4Torr)に変更した他は同様にしてサンプル膜を形成し、該サンプル膜について加熱試験を行ったときの基板温度と比抵抗との関係を調べた。その結果を図10に示す。なお、ターゲット組成はNb:TiO2−δ(Nb/(Ti+Nb)=0,3,6,10,15,20原子%)。
図10と図8は、導電性劣化温度については同様の傾向を示しており、アモルファス層の成膜時の酸素分圧は、導電性劣化温度にほとんど影響しないことがわかる。
[例5:成膜時の酸素分圧の影響]
図11は、例3と例4(図8と図10)における加熱試験開始時のサンプル膜、すなわちアニールによって低抵抗化された膜の比抵抗を縦軸にとり、Nb含有量を横軸にとったものである。実線はアモルファス層の成膜時の酸素分圧が1.33×10−1Pa(1×10−3Torr)、破線は1.33×10−2Pa(1×10−4Torr)の場合を示す。この図の結果より、アモルファス層の成膜時の酸素分圧はアニール後の膜の比抵抗に影響し、Nb含有量が10原子%未満の範囲では、1×10−3Torrの方がより低い比抵抗が得られることがわかる。
また、特にNb含有量4原子%のアモルファス層(前駆体層)を形成する場合に、酸素分圧を1×10−3Torrとすると、より低い比抵抗が得られ、比抵抗4×10−4Ωcm程度を達成できることがわかる。
[例6:光吸収特性]
図12は、例3(図8)における加熱試験開始時のサンプル膜、すなわちアニールによって低抵抗化された膜について光吸収特性を測定した結果を示したものである。図12において、横軸は波長(nm)、縦軸は吸収率(%)を示す。
この図の結果より、Nb含有量が低い方が光の吸収率が低く、透明性が高いことがわかる。
図11および図12より、Nb含有量が0.01〜4原子%の範囲のアモルファス層を、アニールによって低抵抗化すると、比抵抗が低く、透明性にも優れた透明導電膜が得られることがわかる。また図7の破線が示すように、Nb含有量がこの範囲であると、大気中で加熱されたときの導電性劣化温度Tdが高く、基板温度が該導電性劣化温度Td(例えば330〜400℃)に達しなければ膜の導電性は劣化しない。すなわちNb含有量が0.01〜4原子%の範囲のアモルファス層をアニールして得られる透明導電膜は、大気中で良好な耐熱性を示すことがわかる。
[実施例1]
図1に示す構成の導電体を製造した。
例3と同様にして、基板上に、メイン層11の前駆体層としてNb含有量が4原子%のアモルファス層(厚さ:100nmを成膜し、続いてターゲットを変えて、その上に保護層12の前駆体層としてNb含有量が1原子%のアモルファス層(厚さ:30nm)を成膜した。成膜時の酸素分圧はいずれも1.33×10−1Pa(1×10−3Torr)とした。
こうして得られた積層体を真空中にて、室温から600℃まで6分かけて加熱した後、1時間保持し、その後15分かけて室温まで冷却する条件でアニールを行ってサンプル膜(積層体)を得た。
得られたサンプル膜(積層体)について、例3と同様にして大気中で加熱試験したときの基板温度と比抵抗との関係を調べた。その結果を図13に実線で示す。この図中に、図8におけるNb含有量4原子%および1原子%の結果を破線で示す。
Nb含有量4原子%の単層からなるサンプル膜に比べて、本例のサンプル膜(積層体)は、導電性劣化温度Tdが高く、Nb含有量が1原子%の層を最外層として積層したことにより、耐熱性が向上したことがわかる。
図14は、本例のサンプル膜(積層体)について光吸収特性を測定した結果を示したものである。図12に示した、Nb含有量4原子%の結果と比べても、光の吸収率において遜色はなく、Nb含有量が1原子%の層を積層したことによって透明性が損なわれないことがわかる。
[実施例2]
図2に示す構成の導電体を製造した。
例3と同様にして基板上に、シード層11aの前駆体層として、Nb含有量が1原子%のアモルファス層(厚さ:25nm)を成膜し、続いてターゲットを変えて、その上に中間層11bの前駆体層としてNb含有量が4原子%のアモルファス層(厚さ:120nm)を成膜し、さらにターゲットを変えて、その上に保護層12の前駆体層としてNb含有量が1原子%のアモルファス層(厚さ:25nm)を成膜した。成膜時の酸素分圧はシード層:2.66×10−1Pa(2×10−3Torr)、中間層:1.33×10−2Pa(1×10−4Torr)、保護層:1.33×10−1Pa(1×10−3Torr)とした。
こうして得られた積層体を大気中にて、室温から350℃まで3分かけて加熱し、350℃に60分間保持した後、15分かけて室温まで冷却する条件で大気中アニールを行ってサンプル膜(積層体)を得た。
図15はアニール工程中における基板温度とサンプル膜の比抵抗の関係を示したものである。アニール後に比抵抗=8.51×10−4Ωcm、シート抵抗Rs=48Ω/□、キャリア濃度=7.04×1020cm−3、μ=10.4cm/Vsの導電膜が得られた。
図7の結果に示されるように、Nb含有量が4原子%のアモルファス層は350℃で大気アニールされると導電性が劣化する。これに対して、本例の積層体では、Nb含有量が4原子%のアモルファス層の上に、Nb含有量が1原子%のアモルファス層を積層した状態で大気アニールしたため、350℃で加熱されても導電性は劣化せず、低抵抗の導電膜が得られた。
[実施例3]
本例は、前駆体層をスパッタリング法で製造した例である。
以下のスパッタリング法の例において、基板温度の「室温」とは、25℃以上80℃以下の範囲である。実際の実験では、基板を加熱しない条件でスパッタリング法による成膜を行い、その際の基板温度は70℃以上80℃以下の範囲であったことが確認できている。
反応性DCマグネトロンスパッタリング装置を用い、下記の成膜条件で基板上にアモルファス層を形成した。基板としては厚さ1mmのノンアルカリガラス(旭硝子社製、製品名:AN100)を使用した。
すなわち、反応性DCマグネトロンスパッタリング装置の真空槽内に、ターゲットとして、Ti−Nb合金をセットするとともに、基板をセットした。
ターゲットと基板との距離(T/S)は70mmとした。次いで、真空槽をポンプで5×10−4Pa以下まで排気した後、ArガスとOガスとをO/(Ar+O)の割合が7.5体積%となるように真空系内に導入し、真空槽内の圧力が1.0Paとなるように調整した。
そして、マグネトロン磁場強度1000Gの状態で、Ti−Nb合金ターゲットに150Wで電圧を印加し、基板上にNbがドープされた酸化チタン膜(前駆体層)を形成した。基板の加熱は行わず、基板温度は室温とした。得られたアモルファス層(前駆体層)の膜厚は150nmであった。
ターゲット組成を変化させることにより、Nb含有量が0〜15原子%のアモルファス層を成膜し、例2と同様にして結晶化温度Tcrとドーパント量との関係を測定したところ、図7とほぼ同等の結果が得られた。
これとは別に、例3と同様にしてNb含有量(原子%)と導電性劣化温度Td(℃)との関係を測定したところ、図7とほぼ同等の結果が得られた。
図4に示す構成の導電体を形成した。
すなわち、上記のスパッタリング条件において、ターゲットとして、Nbを0.01〜4原子%含有するTi−Nb合金を用い、膜厚を150nmとした他は同様にしてアモルファス層(前駆体層)を形成した後、大気中でアニールして透明導電膜を形成した。アニール温度は350℃とした。室温から基板温度がアニール温度に達するまで3分間かかった。所定のアニール温度で1時間保持した後、室温まで放冷した。得られた透明導電膜の膜厚は150nm、比抵抗は1.1×10−3Ωcmであった。
[実施例4]
図2に示す構成の導電体をスパッタ法で形成する。
(成膜条件1)
反応性DCマグネトロンスパッタ装置を用い、基板上にNbが添加された酸化チタン膜を形成する。基板としては厚さ1mmのノンアルカリガラス(旭硝子社製、製品名:AN100)を使用する。スパッタガスとしてArガスとOガスの混合ガスを用いる。
すなわち、反応性DCマグネトロンスパッタ装置の真空槽内に、金属酸化物ターゲットとして、Nbを1原子%含有する酸化チタン焼結体をセットするとともに、基板をセットする。
次いで、真空槽をポンプで5×10−4Pa以下まで排気した後、ArガスとOガスとをO/(Ar+O)で表されるO流量比(酸化性スパッタガス流量比)が1.0体積%となるように真空系内に導入し、真空槽内の圧力(スパッタ圧力)が1.0Paとなるように調整する。
そして、ターゲットに所定の磁場を印加した状態で、金属酸化物ターゲットに150Wの電力を印加し、基板上にNbがドープされた酸化チタン膜を形成する。基板の加熱は行わず、基板温度は室温とする。膜厚は100nmとする。
次いで、単層アニール試験を行って、基板上に導電層が形成されたサンプルを得る。得られる導電層のNb含有量は1原子%となる。
アニール前はアモルファス状態であることをXRDプロファイルにより確認する。
アニール後の導電層について、X線回折を行うと、アナターゼ型結晶に見られる(101)ピークおよび(004)ピークが観察され、ルチル型結晶に見られる(110)ピークは認められない。
したがって、アニール前はアモルファス層であり、単層アニール試験後に、多結晶を含みかつ該多結晶がルチル型結晶を含まない層となっていることが認められる。すなわち上記条件(X1)を満たす。
(成膜条件2)
上記成膜条件1において、O流量比(酸化性スパッタガス流量比)を0体積%に変更し、金属酸化物ターゲットを、Nbを4原子%含有する酸化チタン焼結体に変更するほかは同様にして、基板上にNbがドープされた酸化チタン膜を形成する。
次いで、単層アニール試験を行って、基板上に導電層が形成されたサンプルを得る。得られる導電層のNb含有量は4原子%となる。
アニール前はアモルファス状態であることをXRDプロファイルにより確認する。
アニール後の導電層について、X線回折を行うと、(101)および(004)ピークは無く、(110)ピークが観察される。
したがって、アニール前はアモルファス層であり、単層アニール試験後に、多結晶を含みかつ該多結晶がルチル型結晶を含む層となっていることが認められる。すなわち上記条件(Y1)を満たす。
上記成膜条件1において、膜厚を30nmに変更したほかは同様にして、基板上にシード層の前駆体層を形成する。
次いでその上に、上記成膜条件2において、膜厚を120nmに変更したほかは同様にして、中間層の前駆体層を形成する。
次いでその上に、成膜条件1において、膜厚を30nmに変更したほかは同様にして、基板上に保護層の前駆体層を形成する。
こうして得られる積層物を、大気中でアニールして導電体を得る。アニール温度は、図7のグラフに基づいて各前駆体層の結晶化温度Tcrおよび導電性劣化温度Tdを予測し、325℃に設定する。室温から基板温度がアニール温度に達するまで3分間かかる。所定のアニール温度で1時間保持した後、室温まで放冷する。得られる透明導電膜の膜厚は180nm、比抵抗は9.5x10−4Ωcmである。
本発明に係る導電体の例を示す断面図である。 本発明に係る導電体の例を示す断面図である。 スパッタ法により前駆体積層物を形成する例を説明する図である。 本発明に係る導電体の例を示す断面図である。 アモルファス層を結晶化させるときの基板温度と比抵抗との関係を示すグラフである。 図5における比抵抗ρの一次微分(dρ/dT)の絶対値と基板温度Tとの関係を示すグラフである。 Nb含有量と、結晶化温度Tcrおよび導電性劣化温度Tdとの関係を示すグラフである。 多結晶化した導電膜を大気中で加熱したときの基板温度と比抵抗との関係を示すグラフである。 図8における比抵抗ρの一次微分(dρ/dT)と基板温度Tとの関係を示すグラフである。 アニール後の膜を大気中で加熱したときの基板温度と比抵抗との関係を示すグラフである。 アニール後の膜の比抵抗と、該膜中のNb含有量との関係を示すグラフである。 アニール後の膜の光吸収特性を示すグラフである。 保護層を設けた場合および保護層を設けない場合について、アニール後の膜を大気中で加熱したときの基板温度と比抵抗との関係を示すグラフである 保護層を設けてアニールした膜の光吸収特性を示すグラフである。 保護層を設けてアニールしたときの、アニール工程中における基板温度とサンプル膜の比抵抗の関係を示すグラフである。
符号の説明
10 基板
11 メイン層(第1層)
11a シード層
11b 中間層
12 保護層(第2層)
32 導電層

Claims (9)

  1. 基板上に、Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなる層(Z)が2層以上設けられており、
    該2層以上のうち少なくとも1層は、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が0.01〜4原子%である第2層(Z2)であり、
    該第2層(Z2)と基板との間に、該第2層(Z2)よりも、前記チタンとドーパントの原子数合計に対するドーパントの原子数の割合が多い第1層(Z1)が設けられていることを特徴とする導電体。
  2. 前記第1層(Z1)における、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が2〜7原子%である、請求項1記載の導電体。
  3. 前記第2層(Z2)の厚さが3nm以上である、請求項1または2記載の導電体。
  4. 前記基板がガラスからなる、請求項1〜3のいずれか一項に記載の導電体。
  5. Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなり、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が0.01〜4原子%である前駆体層を、基板上に形成する前駆体層形成工程と、
    前記前駆体層を、大気中にて、該前駆体層の結晶化温度以上、導電性劣化温度未満の温度範囲で熱処理する大気アニール工程とを備えることを特徴とする導電体の製造方法。
  6. Nb、Ta、Mo、As、Sb、W、N、F、S、Se、Te、Cr、Ni、Tc、Re、P及びBiからなる群から選ばれる1又は2以上のドーパントが添加された酸化チタンからなる前駆体層の2層以上を基板上に形成する前駆体層形成工程と、
    該前駆体層を大気中で熱処理する大気アニール工程とを備え、
    該2層以上のうち少なくとも1層は、チタンとドーパントの原子数合計に対するドーパントの原子数の割合が0.01〜4原子%である第2前駆体層であり、
    該第2前駆体層と基板との間に、該第2前駆体層よりも、前記チタンとドーパントの原子数合計に対するドーパントの原子数の割合が多い第1前駆体層が存在しており、
    前記大気アニール工程における熱処理温度が、前記基板上に設けられた前駆体層の各結晶化温度のうち最も高い温度以上、かつ前記第2前駆体層の導電性劣化温度未満であることを特徴とする導電体の製造方法。
  7. 該2層以上のうち少なくとも1層は、単層アニール試験を行ったときに、多結晶を含みかつ該多結晶がルチル型結晶を含まない層となる、請求項6に記載の導電体の製造方法。
  8. 前記前駆体層の形成を、パルスレーザ堆積法またはスパッタリング法で行う、請求項5〜7のいずれか一項に記載の導電体の製造方法。
  9. 前記基板がガラスからなる、請求項5〜8のいずれか一項に記載の導電体の製造方法。
JP2008078042A 2008-03-25 2008-03-25 導電体およびその製造方法 Expired - Fee Related JP5173512B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008078042A JP5173512B2 (ja) 2008-03-25 2008-03-25 導電体およびその製造方法
KR1020107019957A KR20110000627A (ko) 2008-03-25 2009-03-05 도전체 및 그 제조 방법
CN2009801106829A CN101978431B (zh) 2008-03-25 2009-03-05 导电体及其制造方法
EP09725312.4A EP2270819B1 (en) 2008-03-25 2009-03-05 Conductor and manufacturing method therefor
PCT/JP2009/054160 WO2009119273A1 (ja) 2008-03-25 2009-03-05 導電体およびその製造方法
TW098109347A TWI442417B (zh) 2008-03-25 2009-03-23 Conductive body and manufacturing method thereof
US12/887,553 US20110011632A1 (en) 2008-03-25 2010-09-22 Electric conductor and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078042A JP5173512B2 (ja) 2008-03-25 2008-03-25 導電体およびその製造方法

Publications (2)

Publication Number Publication Date
JP2009231213A true JP2009231213A (ja) 2009-10-08
JP5173512B2 JP5173512B2 (ja) 2013-04-03

Family

ID=41113475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078042A Expired - Fee Related JP5173512B2 (ja) 2008-03-25 2008-03-25 導電体およびその製造方法

Country Status (7)

Country Link
US (1) US20110011632A1 (ja)
EP (1) EP2270819B1 (ja)
JP (1) JP5173512B2 (ja)
KR (1) KR20110000627A (ja)
CN (1) CN101978431B (ja)
TW (1) TWI442417B (ja)
WO (1) WO2009119273A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231972A (ja) * 2009-03-26 2010-10-14 Kanagawa Acad Of Sci & Technol 導電体基板、導電体基板の製造方法、デバイス及び電子機器
JP2011144408A (ja) * 2010-01-13 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> 透明導電膜の形成方法
WO2011108552A1 (ja) 2010-03-02 2011-09-09 住友金属鉱山株式会社 積層体およびその製造方法、並びにそれを用いた機能素子
CN102447022A (zh) * 2010-09-30 2012-05-09 夏普株式会社 化合物半导体发光元件的制造方法
JP2013014832A (ja) * 2011-07-06 2013-01-24 Toyota Central R&D Labs Inc 透明導電膜、導電部材およびその製造方法
JP2016118776A (ja) * 2014-12-22 2016-06-30 住友化学株式会社 プロテクトフィルム付偏光板及びそれを含む積層体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279678A (zh) * 2010-06-12 2011-12-14 宸鸿科技(厦门)有限公司 触控电路图形结构及制造方法、触控面板及触控显示屏
WO2013130808A1 (en) 2012-02-29 2013-09-06 D.E. Shaw Research, Llc Methods for screening voltage gated proteins
CN103515217A (zh) * 2012-06-26 2014-01-15 中芯国际集成电路制造(上海)有限公司 金属硅化物层的形成方法和nmos晶体管的形成方法
DE102012211314A1 (de) * 2012-06-29 2014-02-20 Siemens Aktiengesellschaft Verfahren zum Herstellen eines polykristallinen Keramikfilms
US9040982B2 (en) * 2012-07-18 2015-05-26 Research Foundation Of The City University Of New York Device with light-responsive layers
CN104178727A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 导电薄膜、其制备方法及应用
US10727001B2 (en) 2014-04-16 2020-07-28 Ricoh Company, Ltd. Photoelectric conversion element
CN111974379B (zh) * 2020-08-07 2023-05-30 先导薄膜材料(广东)有限公司 一种As-MnOX复合氧化物及其制备方法
CN112195446B (zh) * 2020-09-11 2022-11-18 先导薄膜材料(广东)有限公司 一种砷掺杂三氧化二锰靶材及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550221A (en) * 1978-10-09 1980-04-11 Tokuda Seisakusho Ltd Forming method for corrosion resistant transparent conductive film
JP2002212463A (ja) * 2001-01-12 2002-07-31 Sustainable Titania Technology Inc チタン酸化物含有導電性被膜形成液、該形成液製造方法及びチタン酸化物含有膜を備える構造体
JP2005011737A (ja) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd 透明導電性基板およびその製造方法ならびに光電変換素子
JP2006152391A (ja) * 2004-11-30 2006-06-15 Bridgestone Corp 金属をドープしたTiO2膜及びその成膜方法
WO2006073189A1 (ja) * 2005-01-08 2006-07-13 Kanagawa Academy Of Science And Technology 機能素子及び酸化物材料形成方法
JP2007329109A (ja) * 2006-06-09 2007-12-20 Nippon Sheet Glass Co Ltd 透明電極基材及びそれを用いた光電変換装置
JP2008084824A (ja) * 2006-03-20 2008-04-10 Kanagawa Acad Of Sci & Technol 導電体の製造方法
WO2009057606A1 (ja) * 2007-10-29 2009-05-07 Sumitomo Chemical Company, Limited 透明導電性基板の製造方法、およびこれに使用する膜形成用前駆体液

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962756B2 (en) * 2001-11-02 2005-11-08 Mitsubishi Gas Chemical Company, Inc. Transparent electrically-conductive film and its use
JP2004095240A (ja) 2002-08-30 2004-03-25 Mitsui Chemicals Inc 透明電極
US7238628B2 (en) * 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
NL1024437C2 (nl) * 2003-10-02 2005-04-05 Tno Coating welke is aangebracht op een substraat, een zonnecel, en werkwijze voor het aanbrengen van de coating op het substraat.
JP5132151B2 (ja) * 2004-08-13 2013-01-30 財団法人神奈川科学技術アカデミー 透明伝導体、透明電極、太陽電池、発光素子及びディスプレイパネル
JP2006286418A (ja) * 2005-03-31 2006-10-19 Tdk Corp 透明導電体
US7645685B2 (en) 2006-03-17 2010-01-12 Tdk Corporation Method for producing a thin IC chip using negative pressure
US20070218646A1 (en) * 2006-03-20 2007-09-20 Asahi Glass Company, Limited Process for producing electric conductor
JP5019200B2 (ja) 2006-09-22 2012-09-05 株式会社東芝 イオン源電極
KR20090120459A (ko) * 2007-03-19 2009-11-24 아사히 가라스 가부시키가이샤 도전체의 제조 방법
KR20100049536A (ko) * 2007-08-29 2010-05-12 아사히 가라스 가부시키가이샤 도전체층의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550221A (en) * 1978-10-09 1980-04-11 Tokuda Seisakusho Ltd Forming method for corrosion resistant transparent conductive film
JP2002212463A (ja) * 2001-01-12 2002-07-31 Sustainable Titania Technology Inc チタン酸化物含有導電性被膜形成液、該形成液製造方法及びチタン酸化物含有膜を備える構造体
JP2005011737A (ja) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd 透明導電性基板およびその製造方法ならびに光電変換素子
JP2006152391A (ja) * 2004-11-30 2006-06-15 Bridgestone Corp 金属をドープしたTiO2膜及びその成膜方法
WO2006073189A1 (ja) * 2005-01-08 2006-07-13 Kanagawa Academy Of Science And Technology 機能素子及び酸化物材料形成方法
JP2008084824A (ja) * 2006-03-20 2008-04-10 Kanagawa Acad Of Sci & Technol 導電体の製造方法
JP2007329109A (ja) * 2006-06-09 2007-12-20 Nippon Sheet Glass Co Ltd 透明電極基材及びそれを用いた光電変換装置
WO2009057606A1 (ja) * 2007-10-29 2009-05-07 Sumitomo Chemical Company, Limited 透明導電性基板の製造方法、およびこれに使用する膜形成用前駆体液

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231972A (ja) * 2009-03-26 2010-10-14 Kanagawa Acad Of Sci & Technol 導電体基板、導電体基板の製造方法、デバイス及び電子機器
JP2011144408A (ja) * 2010-01-13 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> 透明導電膜の形成方法
WO2011108552A1 (ja) 2010-03-02 2011-09-09 住友金属鉱山株式会社 積層体およびその製造方法、並びにそれを用いた機能素子
US9045821B2 (en) 2010-03-02 2015-06-02 Sumitomo Metal Mining Co., Ltd. Laminate, method for producing same, and functional element using same
CN102447022A (zh) * 2010-09-30 2012-05-09 夏普株式会社 化合物半导体发光元件的制造方法
JP2013014832A (ja) * 2011-07-06 2013-01-24 Toyota Central R&D Labs Inc 透明導電膜、導電部材およびその製造方法
JP2016118776A (ja) * 2014-12-22 2016-06-30 住友化学株式会社 プロテクトフィルム付偏光板及びそれを含む積層体

Also Published As

Publication number Publication date
US20110011632A1 (en) 2011-01-20
EP2270819A1 (en) 2011-01-05
EP2270819B1 (en) 2014-01-22
TW201003679A (en) 2010-01-16
JP5173512B2 (ja) 2013-04-03
CN101978431A (zh) 2011-02-16
TWI442417B (zh) 2014-06-21
WO2009119273A1 (ja) 2009-10-01
CN101978431B (zh) 2012-09-26
EP2270819A4 (en) 2011-03-23
KR20110000627A (ko) 2011-01-04

Similar Documents

Publication Publication Date Title
JP5173512B2 (ja) 導電体およびその製造方法
JP5133978B2 (ja) 導電体の製造方法
JP5296691B2 (ja) 導電体層の製造方法
JP2008084824A (ja) 導電体の製造方法
JP5242083B2 (ja) 結晶酸化物半導体、及びそれを用いてなる薄膜トランジスタ
US20070218646A1 (en) Process for producing electric conductor
TWI513834B (zh) 透明導電膜
JP2010050165A (ja) 半導体装置、半導体装置の製造方法、トランジスタ基板、発光装置、および、表示装置
Manavizadeh et al. Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application
Zhu et al. Structural, electrical, and optical properties of F-doped SnO or SnO2 films prepared by RF reactive magnetron sputtering at different substrate temperatures and O2 fluxes
JP5763064B2 (ja) スパッタリングターゲット
JP5518355B2 (ja) 導電体基板、導電体基板の製造方法、デバイス及び電子機器
JP2008050677A (ja) 金属酸化物膜
JP2011060448A (ja) 透明導電体の製造方法、透明導電体、デバイス及び電子機器
JP5864872B2 (ja) 導電体基板、導電体基板の製造方法、デバイス、電子機器及び太陽電池パネル
JP2011060447A (ja) 導電体基板、導電体基板の製造方法、デバイス及び電子機器
KR101924070B1 (ko) 란탄족 물질 도핑 기반의 고 전도성 유연 투명전극 및 이의 제조방법
JP5581416B2 (ja) 結晶酸化物半導体、及びそれを用いてなる薄膜トランジスタ
JP2019021894A (ja) 酸化物半導体薄膜の製造方法
JP2014162968A (ja) 導電体基板の製造方法、導電体基板、発光素子、電子機器、光電変換素子及び太陽電池パネル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees