JP2009229603A - ポジ型レジスト材料およびレジストパターン形成方法 - Google Patents

ポジ型レジスト材料およびレジストパターン形成方法 Download PDF

Info

Publication number
JP2009229603A
JP2009229603A JP2008072502A JP2008072502A JP2009229603A JP 2009229603 A JP2009229603 A JP 2009229603A JP 2008072502 A JP2008072502 A JP 2008072502A JP 2008072502 A JP2008072502 A JP 2008072502A JP 2009229603 A JP2009229603 A JP 2009229603A
Authority
JP
Japan
Prior art keywords
group
atom
compound
substituent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008072502A
Other languages
English (en)
Other versions
JP5162292B2 (ja
Inventor
Makiko Irie
真樹子 入江
Yoshiyuki Utsumi
義之 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2008072502A priority Critical patent/JP5162292B2/ja
Publication of JP2009229603A publication Critical patent/JP2009229603A/ja
Application granted granted Critical
Publication of JP5162292B2 publication Critical patent/JP5162292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

【課題】基材成分として低分子材料を用いた新規なポジ型レジスト材料、および該ポジ型レジスト材料を用いたレジストパターン形成方法を提供する。
【解決手段】下記一般式(b1)[式中、Xは置換基を有していてもよい炭素数3〜30の炭化水素基であり、Qは酸素原子を含む2価の連結基であり、Yは置換基を有していてもよい炭素数1〜4のアルキレン基または置換基を有していてもよい炭素数1〜4のフッ素化アルキレン基であり、Aは酸解離性溶解抑制基を有する有機カチオンである。]で表される化合物(B1)からなる基材成分(B)を主成分として含有することを特徴とするポジ型レジスト材料。
[化1]
Figure 2009229603

【選択図】なし

Description

本発明は、ポジ型レジスト材料、および該ポジ型レジスト材料を用いたレジストパターン形成方法に関する。
近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速にパターンの微細化が進んでいる。
微細化の手法としては、一般に、露光光源の短波長化が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーや、ArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、これらエキシマレーザーより短波長のFエキシマレーザー、電子線、EUV(極紫外線)やX線などについても検討が行われている。
露光光源の短波長化に伴い、レジスト材料には、露光光源に対する感度、微細な寸法のパターンを再現できる解像性等のリソグラフィー特性の向上が求められる。このような要求を満たすレジスト材料として、膜形成能を有する基材成分と、露光により酸を発生する酸発生剤成分とを含有し、露光によりアルカリ現像液に対する溶解性が変化する化学増幅型レジストが知られている。化学増幅型レジストには、露光によりアルカリ現像液に対する溶解性が低下するネガ型と、露光によりアルカリ現像液に対する溶解性が増大するポジ型とがある。
従来、化学増幅型レジストの基材成分としてはポリマーが用いられており、たとえばポジ型の場合、主に、酸解離性溶解抑制基を有し、酸(酸発生剤から発生した酸)の作用によりアルカリ現像液に対する溶解性が増大する樹脂が用いられている。
しかし、基材成分としてポリマーを用いた従来のレジスト材料は、レジストパターンを形成した際に、該レジストパターンの上面や側壁の表面に荒れ(ラフネス)が生じる問題がある。たとえばレジストパターン側壁表面のラフネス、すなわちラインエッジラフネス(LER)は、ホールパターンにおけるホール周囲の歪みや、ラインアンドスペースパターンにおけるライン幅のばらつき等の原因となるため、微細な半導体素子の形成等に悪影響を与えるおそれがある。
かかる問題は、パターン寸法が小さいほど重大となってくる。そのため、例えば電子線やEUVによるリソグラフィーでは、数10nmの微細なパターン形成を目標としていることから、現状のパターンラフネスを越える極低ラフネスが求められる。
しかし、一般的に基材成分として用いられているポリマーは、分子サイズ(一分子当たりの平均自乗半径)が数nm前後と大きい。パターン形成の現像工程において、現像液に対するレジストの溶解挙動は通常、基材成分1分子単位で行われるため、基材成分としてポリマーを使う限り、さらなるラフネスの低減は極めて困難である。
このような問題に対し、極低ラフネスを目指した材料として、基材成分として低分子材料を用いるレジストが提案されている。たとえば非特許文献1,2には、水酸基、カルボキシ基等のアルカリ可溶性基を有し、その一部または全部が酸解離性溶解抑制基で保護された低分子材料が提案されている。
T.Hirayama,D.Shiono,H.Hada and J.Onodera:J.Photopolym.Sci.Technol.17(2004)、p435 Jim−Baek Kim,Hyo−Jin Yun,Young−Gil Kwon:Chemistry Letters(2002)、p1064〜1065
上記のような低分子材料は、低分子量であるが故に分子サイズが小さく、ラフネスを低減できると予想される。
しかし、現在、基材成分として低分子材料を用いたレジスト材料として、実際に使用できるレベルでレジストパターンを形成できるものはあまり知られていない。
本発明は、上記事情に鑑みてなされたものであって、基材成分として低分子材料を用いた新規なポジ型レジスト材料、および該ポジ型レジスト材料を用いたレジストパターン形成方法を提供することを目的とする。
上記の目的を達成するために、本発明は以下の構成を採用した。
すなわち、本発明の第一の態様は、下記一般式(b1)で表される化合物(B1)からなる基材成分(B)を主成分として含有することを特徴とするポジ型レジスト材料である。
Figure 2009229603
[式中、Xは置換基を有していてもよい炭素数3〜30の炭化水素基であり、Qは酸素原子を含む2価の連結基であり、Yは置換基を有していてもよい炭素数1〜4のアルキレン基または置換基を有していてもよい炭素数1〜4のフッ素化アルキレン基であり、Aは酸解離性溶解抑制基を有する有機カチオンである。]
本発明の第二の態様は、支持体上に、前記第一の態様のポジ型レジスト材料を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法である。
本明細書および特許請求の範囲において、「アルキル基」は、特に断りがない限り、直鎖、分岐鎖および環状の1価の飽和炭化水素基を包含するものとする。「低級アルキル基」は、炭素原子数1〜5のアルキル基である。
「アルキレン基」は、特に断りがない限り、直鎖、分岐鎖および環状の2価の飽和炭化水素基を包含するものとする。
「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。「脂肪族環式基」は、芳香族性を持たない単環式基または多環式基であることを示す。
「露光」は放射線の照射全般を含む概念とする。
本発明によれば、基材成分として低分子材料を用いた新規なポジ型レジスト材料、および該ポジ型レジスト材料を用いたレジストパターン形成方法を提供できる。
≪ポジ型レジスト材料≫
本発明のポジ型レジスト材料は、前記一般式(b1)で表される化合物(B1)からなる基材成分(B)(以下、(B)成分ということがある。)を主成分として含有する。
ここで、「基材成分」とは、膜形成能を有する有機化合物を意味する。
本発明において、(B)成分は、基材成分として機能すると共に、露光により酸を発生する酸発生剤としても機能し、露光(放射線が照射)されると、酸(X−Q−Y−SO )を発生する。そして、Aにおける酸解離性溶解抑制基は、この酸の作用により解離する酸解離性を有し、かつその解離前は(B)成分のアルカリ現像液に対する溶解性を抑制し、該(B)成分をアルカリ現像液に対して難溶とするアルカリ溶解抑制性を有する基である。
つまり、(B)成分は、露光により酸を発生するとともに、該酸の作用により、当該(B)成分の酸解離性溶解抑制基が解離し、アルカリ現像液に対する溶解性が増大する性質を有する。そのため、(B)成分を含有するポジ型レジスト材料を用いてレジスト膜を形成し、該レジスト膜に対して選択的露光を行うと、(B)成分から酸が発生して当該(B)成分の酸解離性溶解抑制基が解離し、該レジスト膜の露光部のアルカリ現像液に対する溶解性が増大する。そのため、該レジスト膜をアルカリ現像すると、露光部のレジスト膜が除去され、レジストパターンが形成される。
また、本発明において(B)成分は低分子量の非重合体である。分子量の範囲は100以上2000以下、好ましくは300以上1500以下、より好ましくは400〜1300以下である。
式(b1)中、Aは酸解離性溶解抑制基を有する有機カチオンである。
該酸解離性溶解抑制基は、上述したように、露光により当該(B)成分から発生する酸(X−Q−Y−SO )の作用により解離する酸解離性を有し、かつその解離前は(B)成分のアルカリ現像液に対する溶解性を抑制し、該(B)成分をアルカリ現像液に対して難溶とするアルカリ溶解抑制性を有する基である。
酸解離性溶解抑制基としては、特に制限はなく、従来、KrFやArF用の化学増幅型レジスト組成物の基材成分として用いられるヒドロキシスチレン系樹脂、(メタ)アクリレート系樹脂等において提案されているもののなかから適宜選択して用いることができる。一般的には、カルボキシ基と環状または鎖状の第3級アルキルエステルを形成する基;アルコキシアルキル基等のアセタール型酸解離性溶解抑制基などが広く知られている。
ここで、「第3級アルキルエステル」とは、カルボキシ基の水素原子が、鎖状または環状のアルキル基で置換されることによりエステルを形成しており、そのカルボニルオキシ基(−C(O)−O−)の末端の酸素原子に、前記鎖状または環状のアルキル基の第3級炭素原子が結合している構造を示す。この第3級アルキルエステルにおいては、酸が作用すると、酸素原子と第3級炭素原子との間で結合が切断される。
なお、前記鎖状または環状のアルキル基は置換基を有していてもよい。
以下、カルボキシ基と第3級アルキルエステルを構成することにより、酸解離性となっている基を、便宜上、「第3級アルキルエステル型酸解離性溶解抑制基」という。
第3級アルキルエステル型酸解離性溶解抑制基としては、脂肪族分岐鎖状酸解離性溶解抑制基、脂肪族環式基を含有する酸解離性溶解抑制基が挙げられる。
「脂肪族分岐鎖状」とは、芳香族性を持たない分岐鎖状の構造を有することを示す。
「脂肪族分岐鎖状酸解離性溶解抑制基」の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、該炭化水素基は、飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。
脂肪族分岐鎖状酸解離性溶解抑制基としては、たとえば、−C(R71)(R72)(R73)で表される基が挙げられる。式中、R71〜R73は、それぞれ独立に、炭素数1〜5の直鎖状のアルキル基である。−C(R71)(R72)(R73)で表される基は、炭素数が4〜8であることが好ましく、具体的にはtert−ブチル基、tert−ペンチル基、tert−ヘプチル基等が挙げられる。
「脂肪族環式基」は、芳香族性を持たない単環式基または多環式基であることを示す。
脂肪族環式基は、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)等が挙げられる。
脂肪族環式基の、置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。
脂肪族環式基は、多環式基であることが好ましい。
脂肪族環式基としては、例えば、低級アルキル基、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。より具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、ジシクロデカン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
脂肪族環式基を含有する酸解離性溶解抑制基としては、たとえば、(i)1価の脂肪族環式基の環骨格上に第3級炭素原子を有する基;(ii)1価の脂肪族環式基と、これに結合する第3級炭素原子を有する分岐鎖状アルキレンとを有する基等が挙げられる。
(i)1価の脂肪族環式基の環骨格上に第3級炭素原子を有する基の具体例としては、たとえば、下記一般式(1−1)〜(1−9)で表される基等が挙げられる。
(ii)脂肪族環式基と、これに結合する第3級炭素原子を有する分岐鎖状アルキレンとを有する基の具体例としては、たとえば、下記一般式(2−1)〜(2−6)で表される基等が挙げられる。
Figure 2009229603
[式中、R14は低級アルキル基であり、gは0〜8の整数である。]
Figure 2009229603
[式中、R15およびR16は、それぞれ独立にアルキル基である。]
14〜R16のアルキル基としては、低級アルキル基が好ましく、直鎖状または分岐鎖状のアルキル基が好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。これらの中でも、メチル基、エチル基またはn−ブチル基が好ましく、メチル基またはエチル基がより好ましい。
gは0〜3の整数が好ましく、1〜3の整数がより好ましく、1または2がさらに好ましい。
「アセタール型酸解離性溶解抑制基」は、一般的に、カルボキシ基、水酸基等のアルカリ可溶性基末端の水素原子と置換して酸素原子と結合している。そして、露光により酸が発生すると、この酸が作用して、アセタール型酸解離性溶解抑制基と、当該アセタール型酸解離性溶解抑制基が結合した酸素原子との間で結合が切断される。
アセタール型酸解離性溶解抑制基としては、たとえば、下記一般式(p1)で表される基が挙げられる。
Figure 2009229603
[式中、R’,R’はそれぞれ独立して水素原子または低級アルキル基を表し、nは0〜3の整数を表し、Yは直鎖状、分岐状または環状のアルキル基であって、その構造中にヘテロ原子を含んでもよい。]
上記式中、nは、0〜2の整数であることが好ましく、0または1がより好ましく、0が最も好ましい。
’,R’の低級アルキル基としては、上記Rの低級アルキル基と同様のものが挙げられ、メチル基またはエチル基が好ましく、メチル基が最も好ましい。
本発明においては、R’,R’のうち少なくとも1つが水素原子であることが好ましい。すなわち、酸解離性溶解抑制基(p1)が、下記一般式(p1−1)で表される基であることが好ましい。
Figure 2009229603
[式中、R’、n、Yは上記と同様である。]
Yのアルキル基は、その構造中にヘテロ原子を含んでもよい。すなわち、Rとしてのアルキル基は、水素原子の一部または全部がヘテロ原子を含む基(ヘテロ原子そのものの場合も含む)で置換されていてもよく、該アルキル基の炭素原子の一部がヘテロ原子で置換されていてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、フッ素原子等が挙げられる。
ヘテロ原子を含む基としては、ヘテロ原子自体であってもよく、また、ヘテロ原子と炭素原子および/または水素原子とからなる基、たとえばアルコキシ基等であってもよい。
水素原子の一部または全部がヘテロ原子を含む基で置換されたアルキル基の例としては、たとえば、水素原子の一部または全部がフッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、同一の炭素原子に結合した2つの水素原子が1つの酸素原子で置換された基(すなわちカルボニル基(C=O)を有する基)、同一の炭素原子に結合した2つの水素原子が1つの硫黄原子で置換された基(すなわちチオカルボニル基(C=S)を有する基)等が挙げられる。
アルキル基の炭素原子の一部がヘテロ原子を含む基で置換されている基としては、たとえば、炭素原子が窒素原子で置換されている例(たとえば、その構造中に−CH−を含む分岐状または環状のアルキル基において該−CH−が−NH−で置換された基)や、炭素原子が酸素原子で置換されている例(たとえば、その構造中に−CH−を含む分岐状または環状のアルキル基において該−CH−が−O−で置換された基)等が挙げられる。
Yとしての直鎖状のアルキル基は、炭素数が1〜5であることが好ましく、具体的にはメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基が挙げられ、メチル基又はエチル基であることが好ましい。
Yとしての分岐状のアルキル基は、炭素数が4〜10であることが好ましく、4〜8であることがより好ましい。具体的には、イソブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基等が挙げられ、tert−ブチル基であることが好ましい。
Yとしての環状のアルキル基は、炭素数が3〜20であることが好ましく、4〜14であることがより好ましく、5〜12であることが最も好ましい。
該環状のアルキル基における基本環(置換基を除いた基本の環)の構造は、単環でも多環でもよく、特に、本発明の効果に優れることから、多環であることが好ましい。また、基本環は、炭素および水素から構成された炭化水素環であってもよく、炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された複素環であってもよい。本発明においては、特に、基本環が炭化水素環であることが好ましい。炭化水素環の具体例としては、たとえば、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンが挙げられる。これらのなかでも、アダマンタン、ノルボルナン、トリシクロデカン、テトラシクロドデカンが好ましく、特にアダマンタンが好ましい。
これらの基本環は、その環上に置換基を有していてもよいし、有していなくてもよい。置換基としては、低級アルキル基、フッ素原子、フッ素化低級アルキル基、酸素原子(=O)等が挙げられる。該低級アルキル基としては、メチル基、エチル基等の炭素数1〜5の直鎖状または分岐状のアルキル基が挙げられる。基本環が置換基を有する場合、置換基の数は、1〜3が好ましく、1がより好ましい。
ここで、「置換基を有する」とは、基本環を構成する炭素原子に結合した水素原子が置換基で置換されていることを意味する。
Yの環状のアルキル基としては、これらの基本環から1つの水素原子を除いた基が挙げられる。
また、アセタール型酸解離性溶解抑制基としては、下記一般式(p2)で示される基も挙げられる。
Figure 2009229603
[式中、R17、R18はそれぞれ独立して直鎖状もしくは分岐鎖状のアルキル基または水素原子であり、R19は直鎖状、分岐鎖状または環状のアルキル基である。または、R17およびR19がそれぞれ独立に直鎖状または分岐鎖状のアルキレン基であって、R17の末端とR19の末端とが結合して環を形成していてもよい。]
17、R18において、アルキル基の炭素数は好ましくは1〜15であり、直鎖状、分岐鎖状のいずれでもよく、エチル基、メチル基が好ましく、メチル基が最も好ましい。特にR17、R18の一方が水素原子で、他方がメチル基であることが好ましい。
19のアルキル基としては、前記Yのアルキル基と同様のものが挙げられる。
また、上記式においては、R17及びR19がそれぞれ独立に直鎖状または分岐鎖状のアルキレン基(好ましくは炭素数1〜5のアルキレン基)であってR19の末端とR17の末端とが結合していてもよい。
この場合、R17とR19と、R19が結合した酸素原子と、該酸素原子およびR17が結合した炭素原子とにより環式基が形成されている。該環式基としては、4〜7員環が好ましく、4〜6員環がより好ましい。該環式基の具体例としては、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
アセタール型酸解離性溶解抑制基の具体例としては、たとえば、下記式(3−1)〜(3−12)で表される基等が挙げられる。
Figure 2009229603
[式中、R13は水素原子またはメチル基であり、gは前記と同じである。]
としては、上述したような酸解離性溶解抑制基を有するものであれば特に限定されず、たとえば従来化学増幅型レジスト用の酸発生剤として提案されているオニウム塩系酸発生剤のカチオン部に酸解離性溶解抑制基含有基が導入されたものが挙げられる。該カチオン部としては、スルホニウムイオンまたはヨードニウムイオンが好ましく、特にスルホニウムイオンが好ましい。
ここで、酸解離性溶解抑制基含有基とは、その構造中に酸解離性溶解抑制基を含む基であり、酸解離性溶解抑制基そのものであってもよく、酸解離性溶解抑制基と、酸で解離しない基または原子(酸解離性溶解抑制基が解離した後も当該化合物に結合したままの基または原子)とから構成される基であってもよい。
解離性溶解抑制基と、酸解離性溶解抑制基以外の基または原子とからなる基としては、たとえば、−O−R54−C(=O)−O−R55[式中、R54は単結合または直鎖状もしくは分岐鎖状のアルキレン基であり、R55は酸解離性溶解抑制基である。]、−O−R56[式中、R56は酸解離性溶解抑制基である。]等が挙げられる。
54における直鎖状、分岐鎖状のアルキレン基としては、炭素数が1〜5であることが好ましく、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、1,1−ジメチルエチレン基などが挙げられる。
55における酸解離性溶解抑制基としては前記と同様のものが挙げられ、なかでも、第3級アルキルエステル型酸解離性溶解抑制基であることが好ましく、上述した(i)1価の脂肪族環式基の環骨格上に第3級炭素原子を有する基がより好ましく、中でも、一般式(1−1)または(1−2)で表される基が好ましい。
56における酸解離性溶解抑制基としては前記と同様のものが挙げられ、なかでも、アセタール型酸解離性溶解抑制基が好ましい。
の好ましい具体例としては、下記一般式(I−1)または(I−2)で表されるカチオン部が挙げられ、特に式(I−1)で表されるカチオン部が好ましい。
Figure 2009229603
[式中、R”〜R”は、それぞれ独立に、置換基を有していてもよいアリール基、または置換基を有していてもよいアルキル基であり、R”〜R”のうち少なくとも1つは置換基として酸解離性溶解抑制基含有基を有し、R”〜R”のうち少なくとも1つは前記アリール基であり、R”〜R”のうちの2つが相互に結合して式中のイオウ原子と共に環を形成していてもよい。R”〜R”は、それぞれ独立に、置換基を有していてもよいアリール基、または置換基を有していてもよいアルキル基であり、R”〜R”のうち少なくとも1つは置換基として酸解離性溶解抑制基含有基を有し、R”〜R”のうち少なくとも1つは前記アリール基である。]
式(I−1)中、R”〜R”はそれぞれ独立にアリール基またはアルキル基を表す。R”〜R”のうち、いずれか2つが相互に結合して式中のイオウ原子と共に環を形成してもよい。
また、R”〜R”のうち、少なくとも1つはアリール基を表す。R”〜R”のうち、2以上がアリール基であることが好ましく、R〜Rのすべてがアリール基であることが最も好ましい。
”〜R”のアリール基としては、特に制限はなく、例えば、炭素数6〜20の無置換のアリール基、該無置換のアリール基の水素原子の一部または全部が置換基で置換された置換アリール基、−(R’)−C(=O)−R’が挙げられる。R’は炭素数1〜5のアルキレン基である。R’はアリール基であり、該アリール基としては、R”〜R”のアリール基と同様のものが挙げられる。
無置換のアリール基としては、安価に合成可能なことから、炭素数6〜10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。
置換アリール基における置換基としては、酸解離性溶解抑制基含有基、アルキル基、アルコキシ基、ハロゲン原子、水酸基等が挙げられる。
置換アリール基における酸解離性溶解抑制基含有基としては、下記一般式(I’−1)で表される基が好ましい。
Figure 2009229603
[式中、R40”は下記一般式(I’−1−1)または(I’−1−2)で表される基である。]
Figure 2009229603
[式中、R50は単結合、または直鎖状もしくは分岐鎖状のアルキレン基であり、R51は酸解離性溶解抑制基である。R57、R58はそれぞれ独立して直鎖状もしくは分岐鎖状のアルキル基または水素原子であり、R59は直鎖状、分岐鎖状または環状のアルキル基である。または、R57およびR59がそれぞれ独立に直鎖状または分岐鎖状のアルキレン基であって、R57の末端とR59の末端とが結合して環を形成していてもよい。]
式(I’−1−1)中、R50における直鎖状、分岐鎖状のアルキレン基は、炭素数が1〜5であることが好ましく、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、1,1−ジメチルエチレン基などが挙げられる。
51における酸解離性溶解抑制基としては、前記と同様のものが挙げられる。これらの中でも、第3級アルキルエステル型酸解離性基が好ましく、上述した(i)1価の脂肪族環式基の環骨格上に第3級炭素原子を有する基がより好ましく、一般式(1−1)または(1−2)で表される基がさらに好ましく、一般式(1−1)で表される基が特に好ましい。
式(I’−1−2)中、R57、R58、R59は、それぞれ、前記式(p2)におけるR17、R18、R19と同様である。
置換アリール基におけるアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが最も好ましい。
置換アリール基におけるアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基であることが最も好ましい。
置換アリール基におけるハロゲン原子としては、フッ素原子が好ましい。
”〜R”のアリール基としては、それぞれ、置換基を有していてもよいフェニル基または置換基を有していてもよいナフチル基であることが好ましい。
”〜R”のアルキル基としては、特に制限はなく、例えば炭素数1〜10の直鎖状、分岐鎖状または環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1〜5であることが好ましい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
”〜R”のうち、いずれか2つが相互に結合して式中のイオウ原子と共に環を形成する場合、イオウ原子を含めて3〜10員環を形成していることが好ましく、5〜7員環を形成していることが特に好ましい。
”〜R”のうち、いずれか2つが相互に結合して式中のイオウ原子と共に環を形成する場合、残りの1つは、アリール基であることが好ましい。前記アリール基は、前記R”〜R”のアリール基と同様のものが挙げられる。
”〜R”のうち、少なくとも1つは置換基として酸解離性溶解抑制基含有基を有する。本発明においては、R”〜R”のうち、少なくとも1つが置換基として酸解離性溶解抑制基含有基を有する置換アリール基であることが好ましい。該酸解離性溶解抑制基含有基を有する置換アリール基中の酸解離性溶解抑制基含有基の数は、1または2であることが好ましく、1が最も好ましい。
また、式(I−1)で表されるカチオン部が有する酸解離性溶解抑制基含有基の数は、1〜3つが好ましく、1または2つがより好ましく、1つがさらに好ましい。
置換基として酸解離性溶解抑制基含有基を1つ有する場合、該酸解離性溶解抑制基含有基が結合しているのはアリール基であることが好ましい。すなわち、R”〜R”のうちの1つが置換基として酸解離性溶解抑制基含有基を有する置換アリール基であることがより好ましい。また、置換基として酸解離性溶解抑制基含有基を2つあるいは3つ有する場合は、R”〜R”のいずれか2つあるいは全てが、それぞれ1つずつ酸解離性溶解抑制基含有基を有していることが好ましい。また、置換基として酸解離性溶解抑制基含有基を2つあるいは3つ有する場合、R”〜R”のすべてが置換基として酸解離性溶解抑制基含有基を有する置換アリール基であることが好ましい。
式(I−2)中、R”〜R”のアリール基としては、R”〜R”のアリール基と同様のものが挙げられる。
”〜R”のアルキル基としては、R”〜R”のアルキル基と同様のものが挙げられる。
”〜R”のうち、少なくとも1つは、置換基を有していてもよいアリール基を表す。R”〜R”のすべてが、置換基を有していてもよいアリール基であることが好ましい。
置換基を有していてもよいアリール基でとしては、置換基を有していてもよいフェニル基が最も好ましい。
”〜R”のうち、少なくとも1つは置換基として酸解離性溶解抑制基含有基を有する。本発明においては、R”〜R”のうち、少なくとも1つが置換基として酸解離性溶解抑制基含有基を有する置換アリール基であることが好ましい。該酸解離性溶解抑制基含有基を有する置換アリール基中の酸解離性溶解抑制基含有基の数は、1または2であることが好ましく、1が最も好ましい。該酸解離性溶解抑制基含有基を有する置換アリール基中の酸解離性溶解抑制基含有基の数は、1または2であることが好ましく、1が最も好ましい。
また、式(I−2)で表されるカチオン部が有する酸解離性溶解抑制基含有基の数は、1または2つが好ましく、1つがより好ましい。
置換基として酸解離性溶解抑制基含有基を1つ有する場合、該酸解離性溶解抑制基含有基が結合しているのはアリール基であることが好ましい。すなわち、R”〜R”のうちの1つが置換基として酸解離性溶解抑制基含有基を有する置換アリール基であることがより好ましい。
置換基として酸解離性溶解抑制基含有基を2つ有する場合は、R”〜R” が、それぞれ1つずつ酸解離性溶解抑制基含有基を有していることが好ましい。また、置換基として酸解離性溶解抑制基含有基を2つ有する場合、R”〜R”の両方が置換基として酸解離性溶解抑制基含有基を有する置換アリール基であることが好ましい。
また、好ましいカチオン部として、下記一般式(I−3)または(I−4)で表されるカチオン部が挙げられる。
Figure 2009229603
[式中、R41’は酸解離性溶解抑制基含有基であり、R42’〜R44’はそれぞれ独立に酸解離性溶解抑制基含有基、アルキル基、アセチル基、アルコキシ基、カルボキシ基、水酸基またはヒドロキシアルキル基であり、n41は1〜3の整数であり、n42〜n44はそれぞれ独立に0〜3の整数であり、n41+n42は5以下である。R45’は酸解離性溶解抑制基含有基であり、R46’〜R48’はそれぞれ独立に酸解離性溶解抑制基含有基、アルキル基、アセチル基、アルコキシ基、カルボキシ基、水酸基またはヒドロキシアルキル基であり、n45は1〜3の整数であり、n46〜n47はそれぞれ独立に0〜3の整数であり、n48は0〜2の整数であり、n45+n46は5以下である。]
式中、R41’〜 R48’の酸解離性溶解抑制基含有基としては、前記R”〜R”において、置換アリール基における酸解離性溶解抑制基含有基として挙げたものと同様のものが挙げられる。
42’〜R44’、R46’〜R48’のアルキル基は、炭素数1〜5のアルキル基が好ましく、なかでも直鎖または分岐鎖状のアルキル基がより好ましく、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、又はtert−ブチル基であることが特に好ましい。
42’〜R44’、R46’〜R48’のアルコキシ基は、炭素数1〜5のアルコキシ基が好ましく、なかでも直鎖または分岐鎖状のアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。
42’〜R44’、R46’〜R48’のヒドロキシアルキル基は、上記アルキル基中の一個又は複数個の水素原子がヒドロキシ基に置換した基が好ましく、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。
41は1または2が好ましく、1が最も好ましい。
42は、0〜3の整数であり、好ましくは0〜2である。
43は、好ましくは0又は1であり、より好ましくは0である。
44は、好ましくは0又は1であり、より好ましくは0である。
45は1または2が好ましく、1が最も好ましい。
46は、0〜3の整数であり、好ましくは0〜2である。
47は、好ましくは0又は1であり、より好ましくは0である。
48は、好ましくは0又は1であり、より好ましくは1である。
としては、前記一般式(I−1)または(I−3)で表されるカチオン部が好ましく、中でも、下記一般式(I−1−1)〜(I−1−3)、または(I−3−1)〜(I−3−3)で表されるカチオン部等が好ましく、特に、(I−1−1)〜(I−1−3)が好ましい。
Figure 2009229603
[式中、Z’はそれぞれ独立に第3級アルキルエステル型酸解離性溶解抑制基であり、Z”はそれぞれ独立にアルキル基であり、R、Rはそれぞれ独立に低級アルキル基であり、n、nはそれぞれ独立に0〜2の整数である。]
Z’としては、前記で挙げた第3級アルキルエステル型酸解離性溶解抑制基と同様のものが挙げられる。該第3級アルキルエステル型酸解離性溶解抑制基としては、脂肪族環式基を含有する酸解離性溶解抑制基が好ましく、環状のアルキル基の環骨格上に第3級炭素原子を有する基がより好ましい。特に、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基等の2−アルキル−2−アダマンチル基が好ましい。
Z”としては、前記一般式(I’−1−2)において、R59のアルキル基として挙げたものと同様のものが挙げられ、特に、環状のアルキル基が好ましい。
、Rは、それぞれ独立に、炭素数1〜5のアルキル基が好ましく、メチル基が最も好ましい。
またはnが2である場合、2つのRまたはRは、それぞれ同じであってもよく、異なっていてもよい。
またはRの結合位置は、特に限定されないが、たとえばnまたはnが1である場合は、フェニル基の2位が好ましい。また、nまたはnが2である場合は、3位および5位が好ましい。
式(b1)中、Qは酸素原子を含む2価の連結基である。Qは、酸素原子以外の原子を含有してもよく、酸素原子以外の原子としては、たとえば炭素原子、水素原子、酸素原子、硫黄原子、窒素原子等が挙げられる。
酸素原子を含む2価の連結基としては、たとえば、酸素原子(エーテル結合;−O−)、エステル結合(−C(=O)−O−)、アミド結合(−C(=O)−NH−)、カルボニル基(−C(=O)−)、カーボネート結合(−O−C(=O)−O−)等の非炭化水素系の酸素原子含有連結基;該非炭化水素系の酸素原子含有連結基とアルキレン基との組み合わせ等が挙げられる。
該組み合わせとしては、たとえば、−R91−O−、−R92−O−C(=O)−、−C(=O)−O−R93−O−C(=O)−(式中、R91〜R93はそれぞれ独立にアルキレン基である。)等が挙げられる。
91〜R93におけるアルキレン基としては、直鎖状または分岐鎖状のアルキレン基が好ましく、該アルキレン基の炭素数は、1〜12が好ましく、1〜5がより好ましく、1〜3が特に好ましい。
該アルキレン基として、具体的には、たとえばメチレン基[−CH−];−CH(CH)−、−CH(CHCH)−、−C(CH−、−C(CH)(CHCH)−、−C(CH)(CHCHCH)−、−C(CHCH−等のアルキルメチレン基;エチレン基[−CHCH−];−CH(CH)CH−、−CH(CH)CH(CH)−、−C(CHCH−、−CH(CHCH)CH−、−CH(CHCH)CH−等のアルキルエチレン基;トリメチレン基(n−プロピレン基)[−CHCHCH−];−CH(CH)CHCH−、−CHCH(CH)CH−等のアルキルトリメチレン基;テトラメチレン基[−CHCHCHCH−];−CH(CH)CHCHCH−、−CHCH(CH)CHCH−等のアルキルテトラメチレン基;ペンタメチレン基[−CHCHCHCHCH−]等が挙げられる。
としては、エステル結合またはエーテル結合を含む2価の連結基が好ましく、なかでも、−R91−O−、−R92−O−C(=O)−または−C(=O)−O−R93−O−C(=O)−が好ましい。
式(b1)中、Yのアルキレン基としては、前記Qで挙げたアルキレン基のうち炭素数1〜4のものと同様のものが挙げられる。
フッ素化アルキレン基としては、該アルキレン基の水素原子の一部または全部がフッ素原子で置換された基が挙げられる。
として、具体的には、−CF−、−CFCF−、−CFCFCF−、−CF(CF)CF−、−CF(CFCF)−、−C(CF−、−CFCFCFCF−、−CF(CF)CFCF−、−CFCF(CF)CF−、−CF(CF)CF(CF)−、−C(CFCF−、−CF(CFCF)CF−、−CF(CFCFCF)−、−C(CF)(CFCF)−;−CHF−、−CHCF−、−CHCHCF−、−CHCFCF−、−CH(CF)CH−、−CH(CFCF)−、−C(CH)(CF)−、−CHCHCHCF−、−CHCHCFCF−、−CH(CF)CHCH−、−CHCH(CF)CH−、−CH(CF)CH(CF)−、−C(CFCH−;−CH−、−CHCH−、−CHCHCH−、−CH(CH)CH−、−CH(CHCH)−、−C(CH−、−CHCHCHCH−、−CH(CH)CHCH−、−CHCH(CH)CH−、−CH(CH)CH(CH)−、−C(CHCH−、−CH(CHCH)CH−、−CH(CHCHCH)−、−C(CH)(CHCH)−等が挙げられる。
としては、フッ素化アルキレン基が好ましく、特に、隣接する硫黄原子に結合する炭素原子がフッ素化されているフッ素化アルキレン基が好ましい。このようなフッ素化アルキレン基としては、−CF−、−CFCF−、−CFCFCF−、−CF(CF)CF−、−CFCFCFCF−、−CF(CF)CFCF−、−CFCF(CF)CF−、−CF(CF)CF(CF)−、−C(CFCF−、−CF(CFCF)CF−;−CHCF−、−CHCHCF−、−CHCFCF−;−CHCHCHCF−、−CHCHCFCF−、−CHCFCFCF−等を挙げることができる。
これらの中でも、−CF−、−CFCF−、−CFCFCF−、又はCHCFCF−が好ましく、−CF−、−CFCF−又は−CFCFCF−がより好ましく、−CF−が特に好ましい。
前記アルキレン基またはフッ素化アルキレン基は、置換基を有していてもよい。アルキレン基またはフッ素化アルキレン基が「置換基を有する」とは、当該アルキレン基またはフッ素化アルキレン基における水素原子またはフッ素原子の一部または全部が、水素原子およびフッ素原子以外の原子または基で置換されていることを意味する。
アルキレン基またはフッ素化アルキレン基が有していてもよい置換基としては、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、水酸基等が挙げられる。
式(b1)中、Xの炭化水素基は、芳香族炭化水素基であってもよく、脂肪族炭化水素基であってもよい。
芳香族炭化水素基は、芳香環を有する炭化水素基である。該芳香族炭化水素基の炭素数は3〜30であることが好ましく、5〜30であることがより好ましく、5〜20がさらに好ましく、6〜15が特に好ましく、6〜12が最も好ましい。ただし、該炭素数には、置換基における炭素数を含まないものとする。
芳香族炭化水素基として、具体的には、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントリル(anthryl)基、フェナントリル基等の、芳香族炭化水素環から水素原子を1つ除いたアリール基、ベンジル基、フェネチル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基等のアリールアルキル基等が挙げられる。前記アリールアルキル基中のアルキル鎖の炭素数は、1〜4であることが好ましく、1〜2であることがより好ましく、1であることが特に好ましい。
該芳香族炭化水素基は、置換基を有していてもよい。たとえば当該芳香族炭化水素基が有する芳香環を構成する炭素原子の一部がヘテロ原子で置換されていてもよく、当該芳香族炭化水素基が有する芳香環に結合した水素原子が置換基で置換されていてもよい。
前者の例としては、前記アリール基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換されたヘテロアリール基、前記アリールアルキル基中の芳香族炭化水素環を構成する炭素原子の一部が前記ヘテロ原子で置換されたヘテロアリールアルキル基等が挙げられる。
後者の例における芳香族炭化水素基の置換基としては、たとえば、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、酸素原子(=O)等が挙げられる。
前記芳香族炭化水素基の置換基としてのアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが最も好ましい。
前記芳香族炭化水素基の置換基としてのアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記芳香族炭化水素基の置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
前記芳香族炭化水素基の置換基としてのハロゲン化アルキル基としては、前記アルキル基の水素原子の一部または全部が前記ハロゲン原子で置換された基が挙げられる。
Xにおける脂肪族炭化水素基は、飽和脂肪族炭化水素基であってもよく、不飽和脂肪族炭化水素基であってもよい。また、脂肪族炭化水素基は、直鎖状、分岐鎖状、環状のいずれであってもよい。
Xにおいて、脂肪族炭化水素基は、当該脂肪族炭化水素基を構成する炭素原子の一部がヘテロ原子を含む置換基で置換されていてもよく、当該脂肪族炭化水素基を構成する水素原子の一部または全部がヘテロ原子を含む置換基で置換されていてもよい。
Xにおける「ヘテロ原子」としては、炭素原子および水素原子以外の原子であれば特に限定されず、たとえばハロゲン原子、酸素原子、硫黄原子、窒素原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子、臭素原子等が挙げられる。
ヘテロ原子を含む置換基は、前記ヘテロ原子のみからなるものであってもよく、前記ヘテロ原子以外の基または原子を含む基であってもよい。
炭素原子の一部を置換する置換基として、具体的には、たとえば−O−、−C(=O)−O−、−C(=O)−、−O−C(=O)−O−、−C(=O)−NH−、−NH−(Hがアルキル基、アシル基等の置換基で置換されていてもよい)、−S−、−S(=O)−、−S(=O)−O−等が挙げられる。脂肪族炭化水素基が環状である場合、これらの置換基を環構造中に含んでいてもよい。
水素原子の一部または全部を置換する置換基として、具体的には、たとえばアルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、酸素原子(=O)、シアノ基等が挙げられる。
前記アルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
前記ハロゲン化アルキル基としては、炭素数1〜5のアルキル基、たとえばメチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基等のアルキル基の水素原子の一部または全部が前記ハロゲン原子で置換された基が挙げられる。
脂肪族炭化水素基としては、直鎖状もしくは分岐鎖状の飽和炭化水素基、直鎖状もしくは分岐鎖状の1価の不飽和炭化水素基、または環状の脂肪族炭化水素基(脂肪族環式基)が好ましい。
直鎖状の飽和炭化水素基(アルキル基)としては、炭素数が1〜20であることが好ましく、1〜15であることがより好ましく、1〜10が最も好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デカニル基、ウンデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、イソヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基等が挙げられる。
分岐鎖状の飽和炭化水素基(アルキル基)としては、炭素数が3〜20であることが好ましく、3〜15であることがより好ましく、3〜10が最も好ましい。具体的には、例えば、1−メチルエチル基、1−メチルプロピル基、2−メチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1−エチルブチル基、2−エチルブチル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基などが挙げられる。
不飽和炭化水素基としては、炭素数が2〜10であることが好ましく、2〜5が好ましく、2〜4が好ましく、3が特に好ましい。直鎖状の1価の不飽和炭化水素基としては、例えば、ビニル基、プロペニル基(アリル基)、ブチニル基などが挙げられる。分岐鎖状の1価の不飽和炭化水素基としては、例えば、1−メチルプロペニル基、2−メチルプロペニル基などが挙げられる。
不飽和炭化水素基としては、上記の中でも、特にプロペニル基が好ましい。
脂肪族環式基としては、単環式基であってもよく、多環式基であってもよい。その炭素数は3〜30であることが好ましく、5〜30であることがより好ましく、5〜20がさらに好ましく、6〜15が特に好ましく、6〜12が最も好ましい。
具体的には、たとえば、モノシクロアルカンから1個以上の水素原子を除いた基;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。より具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから1個以上の水素原子を除いた基;アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
脂肪族環式基が、その環構造中にヘテロ原子を含む置換基を含まない場合は、脂肪族環式基としては、多環式基が好ましく、ポリシクロアルカンから1個以上の水素原子を除いた基が好ましく、アダマンタンから1個以上の水素原子を除いた基が最も好ましい。
脂肪族環式基が、その環構造中にヘテロ原子を含む置換基を含むものである場合、該ヘテロ原子を含む置換基としては、−O−、−C(=O)−O−、−S−、−S(=O)−、−S(=O)−O−が好ましい。かかる脂肪族環式基の具体例としては、たとえば下記式(L1)〜(L5)、(S1)〜(S4)等が挙げられる。
Figure 2009229603
[式中、Q”は炭素数1〜5のアルキレン基、−O−、−S−、−O−R94−または−S−R95−であり、R94およびR95はそれぞれ独立に炭素数1〜5のアルキレン基であり、mは0または1の整数である。]
式中、Q”、R94およびR95におけるアルキレン基としては、それぞれ、前記R91〜R93におけるアルキレン基と同様のものが挙げられる。
これらの脂肪族環式基は、その環構造を構成する炭素原子に結合した水素原子の一部が置換基で置換されていてもよい。該置換基としては、たとえばアルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、酸素原子(=O)等が挙げられる。
前記アルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが特に好ましい。
前記アルコキシ基、ハロゲン原子はそれぞれ前記水素原子の一部または全部を置換する置換基として挙げたものと同様のものが挙げられる。
本発明において、Xは、置換基を有していてもよい環式基であることが好ましい。該環式基は、置換基を有していてもよい芳香族炭化水素基であってもよく、置換基を有していてもよい脂肪族環式基であってもよく、置換基を有していてもよい脂肪族環式基であることが好ましい。
前記芳香族炭化水素基としては、置換基を有していてもよいナフチル基、または置換基を有していてもよいフェニル基が好ましい。
置換基を有していてもよい脂肪族環式基としては、置換基を有していてもよい多環式の脂肪族環式基が好ましい。該多環式の脂肪族環式基としては、前記ポリシクロアルカンから1個以上の水素原子を除いた基、前記(L2)〜(L5)、(S3)〜(S4)等が好ましい。
本発明において、(B1)成分としては、下記一般式(b1−1)又は下記一般式(b1−2)で表される化合物が好ましい。
Figure 2009229603
[式(b1−1)中、X、YおよびAはそれぞれ前記と同じであり、Qは単結合またはアルキレン基であり、m0は0または1である。]
式(b1−1)中、Xとしては、置換基を有していてもよい脂肪族環式基、または置換基を有していてもよい芳香族炭化水素基が好ましい。中でも、その環構造中にヘテロ原子を含む置換基を含む脂肪族環式基が好ましい。
のアルキレン基としては、上記Qで挙げたアルキレン基と同様のものが挙げられる。
としては、単結合またはメチレン基が特に好ましい。中でも、Xが置換基を有していてもよい脂肪族環式基である場合は、Qが単結合であることが好ましく、Xが芳香族炭化水素基である場合は、Qがメチレン基であることが好ましい。
m0は0であってもよく、1であってもよい。Xが置換基を有していてもよい脂肪族環式基である場合は、m0が1であることが好ましく、Xが芳香族炭化水素基である場合は、m0が0であることが好ましい。
Figure 2009229603
[式(b1−2)中、YおよびAはそれぞれ前記と同じであり、Rは置換基(ただし、窒素原子は除く。)を有していてもよい脂肪族基であり;Rはアルキレン基である。]
式中、Rは、置換基(ただし、窒素原子は除く。)を有していてもよい脂肪族基であり、具体的には、前記式(b1−1)中のXについての説明における、置換基を有していてもよい脂肪族環式基と同様のもの(ただし、窒素原子または窒素原子を含む置換基を有する脂肪族環式基を除く。)が挙げられる。
は、前記式(b1−1)におけるQについての説明におけるアルキレン基と同様のものが挙げられる。
(B1)成分としては、特に、下記一般式(b1−1−1)〜(b1−1−5)で表される化合物、下記一般式(b1−2−1)〜(b1−2−2)で表される化合物が好ましい。
Figure 2009229603
[式中、Q”、Aはそれぞれ前記と同じであり、pは1〜3の整数であり、m1〜m5はそれぞれ独立に0または1であり、v1〜v5はそれぞれ独立に0〜3の整数であり、w1〜w5はそれぞれ独立に0〜3の整数であり、Rは置換基である。]
pは、1または2が好ましい。
の置換基としては、前記Xにおいて、脂肪族炭化水素基が有していてもよい置換基、芳香族炭化水素基が有していてもよい置換基として挙げたものと同様のものが挙げられる。
に付された符号(w1〜w5)が2以上の整数である場合、当該化合物中の複数のRはそれぞれ同じであってもよく、異なっていてもよい。
としては、前記一般式(I−1)または(I−3)で表されるカチオン部が好ましく、前記一般式(I−1)で表されるカチオン部が最も好ましい。
Figure 2009229603
[式中、A、pはそれぞれ前記と同じであり、q1およびq2はそれぞれ独立して1〜12の整数であり、r1は0〜3の整数であり、gは1〜20の整数であり、R’は置換基である。]
q1およびq2は、それぞれ独立して1〜5であることが好ましく、1〜3であることが更に好ましい。
r1は0〜2の整数であることが好ましく、0または1であることがさらに好ましい。
gは1〜15であることが好ましく、1〜10であることがさらに好ましい。
’の置換基としては、前記Rと同様のものが挙げられる。
’に付された符号(r1)が2以上の整数である場合、当該化合物中の複数のR’はそれぞれ同じであってもよく、異なっていてもよい。
(B1)成分は、従来公知の方法により製造できる。たとえば、前記一般式(b1−1)で表される化合物、および前記一般式(b1−2)で表される化合物は、それぞれ以下のようにして製造できる。
[前記一般式(b1−1)で表される化合物の製造方法]
前記一般式(b1−1)で表される化合物は、下記一般式(b0−1)で表される化合物(b0−1)と、下記一般式(b0−2)で表される化合物(b0−2)とを反応させることにより製造できる。
Figure 2009229603
式(b0−1)および(b0−2)中、X、Q、m0、Y、Aは、それぞれ前記式(b1−1)中のX、Q、m0、Y、Aと同じである。
は、アルカリ金属イオンである。該アルカリ金属イオンとしては、ナトリウムイオン、リチウムイオン、カリウムイオン等が挙げられ、ナトリウムイオンまたはリチウムイオンが好ましい。
は、非求核性イオンである。
該非求核性イオンとしては、たとえば臭素イオン、塩素イオン等のハロゲンイオン、化合物(b0−1)よりも酸性度が低い酸になり得るイオン、BF 、AsF 、SbF 、PF またはClO 等が挙げられる。
における化合物(b0−1)よりも酸性度が低い酸になりうるイオンとしては、p−トルエンスルホン酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等のスルホン酸イオンが挙げられる。
化合物(b0−1)、化合物(b0−2)としては、市販のものを用いてもよく、公知の手法により合成してもよい。
化合物(b0−1)の製造方法は特に限定されないが、たとえば、下記一般式(b0−1−11)で表される化合物を、テトラヒドロフラン、水等の溶媒中、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物の水溶液中で反応させて下記一般式(b0−1−12)で表される化合物とした後、該化合物を、ベンゼン、ジクロロエタン等の有機溶剤中にて、酸性触媒の存在下にて、下記一般式(b0−1−13)で表されるアルコールと脱水縮合させることにより、前記一般式(b0−1)におけるm0が1である化合物(下記一般式(b0−1−1)で表される化合物)が得られる。
Figure 2009229603
[式中、R21は炭素数1〜5のアルキル基であり、X、Q、Y、Mはそれぞれ式(b0−1)中のX、Q、Y、Mと同じである。]
また、たとえば、フッ素銀と、下記一般式(b0−1−01)で表される化合物と、下記一般式(b0−1−02)で表される化合物とを、無水ジグリム等の有機溶剤中にて反応させることにより、下記一般式(b0−1−03)で表される化合物を得、該化合物を、テトラヒドロフラン、アセトン、メチルエチルケトン等の有機溶剤中、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物と反応させることにより、前記一般式(b0−1)におけるm0が0である化合物(下記一般式(b0−1−0)で表される化合物)が得られる。
式(b0−1−02)中のXのハロゲン原子としては、臭素原子または塩素原子が好ましい。
Figure 2009229603
[式中、X、Q、Y、Mはそれぞれ式(b0−1)中のX、Q、Y、Mと同じであり、Xはハロゲン原子である。]
化合物(b0−2)は、たとえば、従来化学増幅型レジスト用の酸発生剤として提案されているオニウム塩系酸発生剤のカチオン部を有するオニウム塩に酸解離性溶解抑制基含有基を導入することにより製造できる。
酸解離性溶解抑制基含有基を導入する方法としては、特に限定されず、公知の方法を利用できる。たとえば、前記オニウム塩として、カチオン部に水酸基、カルボキシ基等の親水基を有するものを用意し、該親水基の水素原子を酸解離性溶解抑制基含有基で置換する方法が挙げられる。
前記化合物(b0−1)と化合物(b0−2)とは、たとえば、これらの化合物を、水、ジクロロメタン、アセトニトリル、メタノール、クロロホルム、塩化メチレン等の溶媒に溶解し、撹拌する等により反応させることができる。
反応温度は、0℃〜150℃程度が好ましく、0℃〜100℃程度がより好ましい。反応時間は、化合物(b0−1)および化合物(b0−2)の反応性や反応温度等によっても異なるが、通常、0.5〜10時間が好ましく、1〜5時間がより好ましい。
上記反応における化合物(b0−2)の使用量は、通常、化合物(b0−1)1モルに対して、0.5〜2モル程度が好ましい。
反応終了後、反応液中の化合物(b1−1)を単離、精製してもよい。単離、精製には、従来公知の方法が利用でき、たとえば濃縮、溶媒抽出、蒸留、結晶化、再結晶、クロマトグラフィー等をいずれか単独で、または2種以上を組み合わせて用いることができる。
得られた化合物(b1−1)の構造は、H−核磁気共鳴(NMR)スペクトル法、13C−NMRスペクトル法、19F−NMRスペクトル法、赤外線吸収(IR)スペクトル法、質量分析(MS)法、元素分析法、X線結晶回折法等の一般的な有機分析法により確認できる。
[前記一般式(b1−2)で表される化合物の製造方法]
前記一般式(b1−2)で表される化合物は、下記一般式(b0−01)で表される化合物(b0−01)と、下記一般式(b0−02)で表される化合物(b0−02)とを反応させることにより製造できる。
式中、Z’の非求核性イオンとしては、たとえば臭素イオン、塩素イオン等のハロゲンイオン、化合物(b0−01)よりも酸性度が低い酸になり得るイオン、BF 、AsF 、SbF 、PF またはClO 等が挙げられる。
Z’における化合物(b0−01)よりも酸性度が低い酸になりうるイオンとしては、p−トルエンスルホン酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等のスルホン酸イオンが挙げられる。
Figure 2009229603
[式中、R、R、Y、M、Aは、それぞれ前記と同じであり、Z’は非求核性イオンである。]
化合物(b0−01)は、たとえば、下記一般式(1−3)で表される化合物(1−3)と、下記一般式(2−1)で表される化合物(2−1)とを反応させることにより合成できる。
Figure 2009229603
[式中、R、R、Y、Mはそれぞれ前記と同じであり、X22はハロゲン原子である。]
22のハロゲン原子としては、臭素原子、塩素原子、ヨウ素原子、フッ素原子等が挙げられ、反応性に優れることから、臭素原子または塩素原子が好ましく、塩素原子が特に好ましい。
化合物(1−3)、(2−1)はそれぞれ市販のものを用いてもよく、合成してもよい。
化合物(1−3)の好ましい合成方法として、下記一般式(1−1)で表される化合物(1−1)と、下記一般式(1−2)で表される化合物(1−2)とを反応させて化合物(1−3)を得る工程を有する方法が挙げられる。
Figure 2009229603
[式中、R、Y、Mはそれぞれ前記と同じであり、Rは、置換基として芳香族基を有していてもよい脂肪族基である。]
前記式(1−1)中、Rは、置換基として芳香族基を有していてもよい脂肪族基である。
該脂肪族基は、飽和脂肪族基であってもよく、不飽和脂肪族基であってもよい。また、脂肪族基は、直鎖状、分岐鎖状、環状のいずれであってもよく、それらの組み合わせであってもよい。
脂肪族基は、炭素原子および水素原子のみからなる脂肪族炭化水素基であってもよく、該脂肪族炭化水素基を構成する炭素原子の一部がヘテロ原子を含む置換基で置換された基であってもよく、当該脂肪族炭化水素基を構成する水素原子の一部または全部がヘテロ原子を含む置換基で置換された基であってもよい。
前記ヘテロ原子としては、炭素原子および水素原子以外の原子であれば特に限定されず、たとえばハロゲン原子、酸素原子、硫黄原子、窒素原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子、臭素原子等が挙げられる。
ヘテロ原子を含む置換基は、ヘテロ原子のみからなるものであってもよく、ヘテロ原子以外の基または原子を含む基であってもよい。
炭素原子の一部を置換する置換基として、具体的には、たとえば−O−、−C(=O)−O−、−C(=O)−、−O−C(=O)−O−、−C(=O)−NH−、−NH−(Hがアルキル基、アシル基等の置換基で置換されていてもよい)、−S−、−S(=O)−、−S(=O)−O−等が挙げられる。脂肪族基が環式基を含む場合、これらの置換基を当該環式基の環構造中に含んでいてもよい。
水素原子の一部または全部を置換する置換基として、具体的には、たとえばアルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、酸素原子(=O)、−COOR96、−OC(=O)R97、シアノ基等が挙げられる。
前記アルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
前記ハロゲン化アルキル基としては、炭素数1〜5のアルキル基、たとえばメチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基等のアルキル基の水素原子の一部または全部が前記ハロゲン原子で置換された基が挙げられる。
96およびR97はそれぞれ独立に水素原子または炭素数1〜15の直鎖状、分岐鎖状もしくは環状のアルキル基である。
96およびR97におけるアルキル基が直鎖状または分岐鎖状の場合、その炭素数は1〜10であることが好ましく、1〜5であることがより好ましく、1または2がさらに好ましい。具体的には、後述する直鎖状または分岐鎖状の1価の飽和炭化水素基と同様のものが挙げられる。
96およびR97におけるアルキル基が環状である場合、該環は単環であってもよく、多環であってもよい。その炭素数は3〜15であることが好ましく、4〜12であることがより好ましく、5〜10がさらに好ましい。具体的には、後述する環状の1価の飽和炭化水素基と同様のものが挙げられる。
脂肪族炭化水素基としては、炭素数1〜30の直鎖状もしくは分岐鎖状の飽和炭化水素基、炭素数2〜10の直鎖状もしくは分岐鎖状の1価の不飽和炭化水素基、または炭素数3〜30の環状の脂肪族炭化水素基(脂肪族環式基)が好ましい。
直鎖状の飽和炭化水素基としては、炭素数が1〜20であることが好ましく、1〜15であることがより好ましく、1〜10がさらに最も好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デカニル基、ウンデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、イソヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基等が挙げられる。
分岐鎖状の飽和炭化水素基としては、炭素数が3〜20であることが好ましく、3〜15であることがより好ましく、3〜10がさらに最も好ましい。具体的には、例えば、1−メチルエチル基、1−メチルプロピル基、2−メチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1−エチルブチル基、2−エチルブチル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基などが挙げられる。
不飽和炭化水素基としては、炭素数2〜5が好ましく、2〜4が好ましく、3が特に好ましい。直鎖状の1価の不飽和炭化水素基としては、例えば、ビニル基、プロペニル基(アリル基)、ブチニル基などが挙げられる。分岐鎖状の1価の不飽和炭化水素基としては、例えば、1−メチルプロペニル基、2−メチルプロペニル基などが挙げられる。
不飽和炭化水素基としては、上記の中でも、特にプロペニル基が好ましい。
脂肪族環式基としては、単環式基であってもよく、多環式基であってもよい。その炭素数は3〜30であることが好ましく、5〜30であることがより好ましく、5〜20がさらに好ましく、6〜15が特に好ましく、6〜12が最も好ましい。具体的には、たとえば、モノシクロアルカンから1個以上の水素原子を除いた基;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。より具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから1個以上の水素原子を除いた基;アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
前記式(1−1)中のRにおいて、前記脂肪族基は、置換基として芳香族基を有していてもよい。
芳香族基としては、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントリル(anthryl)基、フェナントリル基等の、芳香族炭化水素の環から水素原子を1つ除いたアリール基;これらのアリール基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換されたヘテロアリール基等が挙げられる。
これらの芳香族基は、炭素数1〜10のアルキル基、ハロゲン化アルキル基、アルコキシ基、水酸基、ハロゲン原子等の置換基を有していても良い。該置換基におけるアルキル基またはハロゲン化アルキル基は、炭素数が1〜8であることが好ましく、炭素数が1〜4であることがさらに好ましい。また、該ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。該ハロゲン原子は、フッ素原子、塩素原子、ヨウ素原子、臭素原子などが挙げられ、フッ素原子であることが好ましい。
なお、化合物(1−1)におけるRが芳香族基であると、つまりRに隣接する酸素原子が、脂肪族基を介さずに直接芳香環に結合していると、化合物(1−1)と化合物(1−2)との反応は進行せず、化合物(1−3)は得られない。
化合物(1−1)、(1−2)は、それぞれ市販のものを用いてもよく、公知の手法を利用して合成してもよい。
たとえば化合物(1−2)は、下記一般式(0−1)で表される化合物(0−1)をアルカリの存在下で加熱し、中和することにより下記一般式(0−2)で表される化合物(0−2)を得る工程(以下、塩形成工程という。)と、
前記化合物(0−2)を、化合物(1−2)よりも酸強度の高い酸の存在下で加熱することにより化合物(1−2)を得る工程(以下、カルボン酸化工程という。)と、を含む方法が挙げられる。
Figure 2009229603
[式中、R01はアルキル基であり、Y、Mは前記と同じである。]
01のアルキル基としては、直鎖状または分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。
これらの中でも炭素数1〜4のアルキル基が好ましく、メチル基が最も好ましい。
化合物(0−1)としては市販のものを使用できる。
塩形成工程は、たとえば、化合物(0−1)を溶媒に溶解し、該溶液にアルカリを添加し、加熱することにより実施できる。
溶媒としては、化合物(0−1)を溶解するものであればよく、たとえば水、テトラヒドロフラン等が挙げられる。
アルカリとしては、式(0−2)中のMに対応するアルカリが用いられ、該アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物が挙げられる。
アルカリの使用量は、化合物(0−1)1モルに対し、1〜5モルが好ましく、2〜4モルがより好ましい。
加熱温度は、20〜120℃程度が好ましく、50〜100℃程度がより好ましい。加熱時間は、加熱温度等によっても異なるが、通常、0.5〜12時間が好ましく、1〜5時間がより好ましい。
前記加熱後の中和は、前記加熱後の反応液に塩酸、硫酸、p−トルエンスルホン酸等の酸を添加することにより実施できる。
このとき、中和は、酸添加後の反応液のpH(25℃)が6〜8となるように実施することが好ましい。また、中和時の反応液の温度は、20〜30℃であることが好ましく、23〜27℃であることがより好ましい。
反応終了後、反応液中の化合物(0−2)を単離、精製してもよい。単離、精製には、従来公知の方法が利用でき、たとえば濃縮、溶媒抽出、蒸留、結晶化、再結晶、クロマトグラフィー等をいずれか単独で、または2種以上を組み合わせて用いることができる。
カルボン酸化工程では、前記塩形成工程で得た化合物(0−2)を、化合物(1−2)よりも酸強度の高い酸の存在下で加熱することにより該化合物(1−2)を得る。
「化合物(1−2)よりも酸強度の高い酸(以下、単に強酸ということがある。)」とは、化合物(1−2)における−COOHよりも、pKa(25℃)の値が小さい酸を意味する。かかる強酸を用いることにより、化合物(0−2)中の−COOが−COOHとなり、化合物(1−2)が得られる。
強酸としては、公知の酸のなかから、前記化合物(1−2)における−COOHのpKaよりもpKaが小さい酸を適宜選択して用いればよい。化合物(1−2)における−COOHのpKaは、公知の滴定法により求めることができる。
強酸として、具体的には、アリールスルホン酸、アルキルスルホン酸等のスルホン酸、硫酸、塩酸等が挙げられる。アリールスルホン酸としては、たとえばp−トルエンスルホン酸が挙げられる。アルキルスルホン酸としては、たとえばメタンスルホン酸やトリフルオロメタンスルホン酸等が挙げられる。強酸としては、有機溶剤への溶解性や精製のし易さから、特にp−トルエンスルホン酸が好ましい。
カルボン酸化工程は、たとえば化合物(0−2)を溶媒に溶解し、酸を添加して加熱することにより実施できる。
溶媒としては、化合物(0−2)を溶解するものであればよく、たとえばアセトニトリル、メチルエチルケトン等が挙げられる。
強酸の使用量は、化合物(0−2)1モルに対し、0.5〜3モルが好ましく、1〜2モルがより好ましい。
加熱温度は、20〜150℃程度が好ましく、50〜120℃程度がより好ましい。加熱時間は、加熱温度等によっても異なるが、通常、0.5〜12時間が好ましく、1〜5時間がより好ましい。
反応終了後、反応液中の化合物(1−2)を単離、精製してもよい。単離、精製には、従来公知の方法が利用でき、たとえば濃縮、溶媒抽出、蒸留、結晶化、再結晶、クロマトグラフィー等をいずれか単独で、または2種以上を組み合わせて用いることができる。
化合物(1−3)と化合物(2−1)とを反応させる方法としては、特に限定されないが、たとえば、反応溶媒中で、化合物(1−3)および化合物(2−1)を接触させる方法が挙げられる。該方法は、たとえば、塩基の存在下、化合物(1−3)が反応溶媒に溶解した溶液に、化合物(2−1)を添加することにより実施できる。
反応溶媒としては、原料である化合物(1−3)および化合物(2−1)を溶解できるものであればよく、具体的には、テトラヒドロフラン(THF)、アセトン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルホキシド(DMSO)、アセトニトリル等が挙げられる。
塩基としては、たとえばトリエチルアミン、4−ジメチルアミノピリジン(DMAP)、ピリジン等の有機塩基;水素化ナトリウム、KCO、CsCO等の無機塩基等が挙げられる。
化合物(2−1)の添加量は、化合物(1−3)に対し、およそ1〜3当量が好ましく、1〜2当量がより好ましい。
反応温度は、−20〜40℃が好ましく、0〜30℃がより好ましい。反応時間は、化合物(1−3)および化合物(2−1)の反応性や反応温度等によっても異なるが、通常、1〜120時間が好ましく、1〜48時間がより好ましい。
化合物(b0−01)と、化合物(b0−02)との反応は、従来公知の塩置換方法と同様にして実施できる。たとえば、化合物(b0−01)と、化合物(b0−02)とを、水、ジクロロメタン、アセトニトリル、メタノール、クロロホルム等の溶媒に溶解し、撹拌する等により反応させることができる。
反応温度は、0℃〜150℃程度が好ましく、0℃〜100℃程度がより好ましい。反応時間は、化合物(b0−01)および化合物(b0−02)の反応性や反応温度等によっても異なるが、通常、0.5〜10時間が好ましく、1〜5時間がより好ましい。
反応終了後、反応液中の化合物(b1−2)を単離、精製してもよい。単離、精製には、従来公知の方法が利用でき、たとえば濃縮、溶媒抽出、蒸留、結晶化、再結晶、クロマトグラフィー等をいずれか単独で、または2種以上を組み合わせて用いることができる。
得られた化合物(b1−2)の構造は、H−核磁気共鳴(NMR)スペクトル法、13C−NMRスペクトル法、19F−NMRスペクトル法、赤外線吸収(IR)スペクトル法、質量分析(MS)法、元素分析法、X線結晶回折法等の一般的な有機分析法により確認できる。
上記(B)成分は、単独で、スピンコート法によりアモルファス(非晶質)な膜を形成しうる化合物である。ここで、アモルファスな膜とは、結晶化しない光学的に透明な膜を意味する。スピンコート法は、一般的に用いられている薄膜形成手法の1つである。
当該化合物がスピンコート法によりアモルファスな膜を形成しうる材料であるかどうかは、8インチシリコンウェーハ上にスピンコート法により形成した塗膜が全面透明であるか否かにより判別できる。より具体的には、例えば以下のようにして判別できる。まず、当該化合物に、一般的にレジスト溶剤に用いられている溶剤を用いて、例えば乳酸エチル/プロピレングリコールモノメチルエーテルアセテート=40/60(質量比)の混合溶剤(以下、EMと略記する)を、濃度が14質量%となるよう溶解し、超音波洗浄器を用いて超音波処理(溶解処理)を施して溶解させ、該溶液を、ウェーハ上に1500rpmにてスピンコートし、任意に乾燥ベーク(PAB,Post Applied Bake)を110℃、90秒の条件で施し、この状態で、目視にて、透明かどうかによりアモルファスな膜が形成されているかどうかを確認する。なお、透明でない曇った膜はアモルファスな膜ではない。
本発明においては、(B)成分を用い、上記のようにして形成されたアモルファスな膜の安定性が良好であり、例えば上記PAB後、室温環境下で2週間(あるいはそれ以上)放置した後でも、アモルファスな状態が維持されている。
本発明のポジ型レジスト材料において、(B)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明のポジ型レジスト材料は、(B)成分を主成分として含有する。該「主成分として含有する」とは、当該ポジ型レジスト材料が、基本的に、当該(B)成分から構成されることを意味する。
本発明のポジ型レジス材料における(B)成分の配合量は、当該ポジ型レジスト組成物の全固形分(後述する有機溶剤を除く全成分の合計)に対し、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%であることがさらに好ましい。該割合が80質量%以上であると、形成されるレジストパターンのLER、感度等が向上する。
該配合量の上限は特に限定されず、100質量%であってもよい。すなわち、本発明のポジ型レジスト材料は、(B)成分および有機溶剤のみからなるものであってもよい。
本発明のポジ型レジスト材料は、(B)成分以外の成分として後述の任意成分を含んでもよいが、(B)成分および有機溶剤のみからなる場合が最も好ましい。
<有機溶剤>
本発明のポジ型レジスト材料は、(B)成分を有機溶剤(以下、(S)成分ということがある)に溶解させて製造することができる。
(S)成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。
例えば、γ−ブチロラクトン等のラクトン類;
アセトン、メチルエチルケトン、シクロヘキサノン、メチル−n−ペンチルケトン、メチルイソペンチルケトン、2−ヘプタノンなどのケトン類;
エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどの多価アルコール類;
エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、またはジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類または前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体[これらの中では、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)が好ましい];
ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類;
アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤などを挙げることができる。
これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、ELが好ましい。
また、PGMEAと極性溶剤とを混合した混合溶媒も好ましい。その配合比(質量比)は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよいが、好ましくは1:9〜9:1、より好ましくは2:8〜8:2の範囲内とすることが好ましい。
より具体的には、極性溶剤としてELを配合する場合は、PGMEA:ELの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2である。また、極性溶剤としてPGMEを配合する場合は、PGMEA:PGMEの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2、さらに好ましくは3:7〜7:3である。
また、(S)成分として、その他には、PGMEA及びELの中から選ばれる少なくとも1種とγ−ブチロラクトンとの混合溶剤も好ましい。この場合、混合割合としては、前者と後者の質量比が好ましくは70:30〜95:5とされる。
(S)成分の使用量は特に限定しないが、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度が1〜20質量%、好ましくは2〜15質量%の範囲内となる様に用いられる。
<任意成分>
本発明のポジ型レジス材料は、さらに、任意成分として、本発明の効果を損なわない範囲で、上記(B)成分以外の他の成分を含有しても良い。
本発明のポジ型レジス材料に配合できる任意成分としては、たとえば、含窒素有機化合物(D)(以下、(D)成分という。)が挙げられる。(D)成分を配合することにより、レジストパターン形状、引き置き経時安定性などが向上する。
この(D)成分は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良く、なかでも脂肪族アミン、特に第2級脂肪族アミンや第3級脂肪族アミンが好ましい。ここで、脂肪族アミンとは、1つ以上の脂肪族基を有するアミンであり、該脂肪族基は炭素数が1〜20であることが好ましい。
脂肪族アミンとしては、たとえば、アンモニアNHの水素原子の少なくとも1つを、炭素数20以下のアルキル基またはヒドロキシアルキル基で置換したアミン(アルキルアミンまたはアルキルアルコールアミン)又は環式アミンが挙げられる。
アルキルアミンおよびアルキルアルコールアミンの具体例としては、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ−n−プロピルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ヘキシルアミン、トリ−n−ペンチルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デカニルアミン、トリ−n−ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ−n−オクタノールアミン、トリ−n−オクタノールアミン、ステアリルジエタノールアミン、ラウリルジエタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、炭素数5〜10のトリアルキルアミンや、アルキルアルコールアミンが好ましく、トリ−n−ペンチルアミン、ジエタノールアミン、ステアリルジエタノールアミンが特に好ましい。
環式アミンとしては、たとえば、ヘテロ原子として窒素原子を含む複素環化合物が挙げられる。該複素環化合物としては、単環式のもの(脂肪族単環式アミン)であっても多環式のもの(脂肪族多環式アミン)であってもよい。
脂肪族単環式アミンとして、具体的には、ピペリジン、ピペラジン等が挙げられる。
脂肪族多環式アミンとしては、炭素数が6〜10のものが好ましく、具体的には、1,5−ジアザビシクロ[4.3.0]−5−ノネン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、ヘキサメチレンテトラミン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
芳香族アミンとしては、アニリン、ピリジン、4−ジメチルアミノピリジン、ピロール、インドール、ピラゾール、イミダゾールまたはこれらの誘導体、ジフェニルアミン、トリフェニルアミン、トリベンジルアミンなどが挙げられる。
その他の脂肪族アミンとしては、トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチルアミン等が挙げられる。
これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(D)成分の配合量は、(B)成分100質量部に対して、0.01〜5.0質量部の範囲内が好ましい。
本発明のポジ型レジスト材料には、感度劣化の防止や、レジストパターン形状、引き置き経時安定性等の向上の目的で、任意の成分として、有機カルボン酸、ならびにリンのオキソ酸およびその誘導体からなる群から選択される少なくとも1種の化合物(E)(以下、(E)成分という。)を含有させることができる。
有機カルボン酸としては、例えば、酢酸、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。
リンのオキソ酸およびその誘導体としては、リン酸、ホスホン酸、ホスフィン酸等が挙げられ、これらの中でも特にホスホン酸が好ましい。
リンのオキソ酸の誘導体としては、たとえば、上記オキソ酸の水素原子を炭化水素基で置換したエステル等が挙げられ、前記炭化水素基としては、炭素数1〜5のアルキル基、炭素数6〜15のアリール基等が挙げられる。
リン酸の誘導体としては、リン酸ジ−n−ブチルエステル、リン酸ジフェニルエステル等のリン酸エステルなどが挙げられる。
ホスホン酸の誘導体としては、ホスホン酸ジメチルエステル、ホスホン酸−ジ−n−ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸エステルなどが挙げられる。
ホスフィン酸の誘導体としては、フェニルホスフィン酸等のホスフィン酸エステルなどが挙げられる。
(E)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
(E)成分の配合量は、(B)成分100質量部に対して、0.01〜5.0質量部の範囲内が好ましい。
本発明のポジ型レジスト材料には、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料などを適宜、添加含有させることができる。
また、本発明のポジ型レジスト材料には、本発明の効果を損なわない範囲で(B)成分以外の従来公知の酸発生剤を含有させることもできる。
上記本発明のポジ型レジスト材料は従来知られていない新規なものであり、該ポジ型レジスト材料によれば、基材成分としてポリマーを用いる場合と同等レベルの良好な表面状態のレジスト膜を形成できる。また、該レジスト膜に、良好なコントラストでレジストパターンを形成できる。該レジストパターン形成にはアルカリ現像処理やリンス処理を適用できるため、溶剤現像等の特殊プロセスを用いなくてよい。また、該レジストパターンは、ラフネスの低減された良好なものである。
上記効果が得られる理由としては、定かではないが、本発明のポジ型レジスト材料の基材成分が、酸発生剤としての機能も有する低分子量の非重合体である化合物(B1)であるため、基材成分として高分子量の重合体(樹脂)を用い、また酸解離性溶解抑制基を有する基材成分と、該酸解離性溶解抑制基を解離させる酸を露光により発生する酸発生剤の2成分を必須としている従来のレジストに比べて、小さな分子サイズ、低分子量、単分散性で分子量やアルカリ溶解性の分散が小さいこと、酸の発生部位と酸解離性溶解抑制基とが同じ分子内の近傍に存在するため、発生した酸が効率よく酸解離性溶解抑制基の解離に利用されること等が考えられる。また化合物(B1)が水に対し一定以上の溶解抑止効果を有するため、アルカリ現像処理やリンス処理を行うことができる。
≪レジストパターン形成方法≫
本発明のレジストパターン形成方法は、支持体上に、前記本発明のポジ型レジスト材料を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含む。
本発明のレジストパターン形成方法は、例えば以下の様にして行うことができる。
すなわち、まず、支持体上に、上記レジスト材料をスピンナーなどで塗布し、任意に80〜150℃程度の温度条件で40〜120秒間、好ましくは60〜90秒間のプレベーク(ポストアプライベーク(PAB))を施してレジスト膜を形成する。形成されたレジスト膜を、例えばArF露光装置、電子線描画装置、EUV露光装置等の露光装置を用いて、マスクパターンを介した露光、またはマスクパターンを介さない電子線の直接照射による描画等により選択的に露光した後、80〜150℃程度の温度条件で40〜120秒間、好ましくは60〜90秒間のPEB(露光後加熱)を施す。続いて、アルカリ現像液、例えば0.1〜10質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いてアルカリ現像処理した後、好ましくは純水を用いて水リンス処理を行い、乾燥を行う。また、場合によっては、上記現像処理後にベーク処理(ポストベーク)を行ってもよい。このようにして、マスクパターンに忠実なレジストパターンを得ることができる。
支持体としては、特に限定されず、従来公知のものを用いることができ、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等を例示することができる。より具体的には、シリコンウェーハ、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば銅、アルミニウム、ニッケル、金等が使用可能である。
また、支持体としては、上述のような基板上に、無機系および/または有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。
露光に用いる波長は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、Fエキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、EB(電子線)、X線、軟X線等の放射線を用いて行うことができる。前記ポジ型レジスト組成物は、KrFエキシマレーザー、ArFエキシマレーザー、EBまたはEUVに対して有効であり、中でも、EBまたはEUVに対して有効である。
レジスト膜の露光は、空気や窒素等の不活性ガス中で行う通常の露光(ドライ露光)であってもよく、液浸露光であってもよい。
本発明のレジストパターン形成方法における各工程は、本発明のポジ型レジスト材料を用いる以外は周知の手法を用いて行うことができる。
以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は以下に示す実施例に何ら限定されるものではない。
[合成例1]
以下の手順で、下記式(b−11)で表される化合物(b−11)を合成した。
Figure 2009229603
5.0gの2−ナフチルメチルオキシテトラフルオロエタンスルホニルフルオライド(1)に16.7mlのテトラヒドロフランを添加し、氷浴中でその溶液に0.98gの水酸化リチウムを13.6mlの純水に溶かした水溶液を滴下した。その後、氷浴中で攪拌した。−SOFによる−217.6ppmでの19F−NMRの吸収がなくなったことにより、全てのフッ化スルホニル基がスルホン酸リチウムに転化したことが確認された。その後、反応溶液を濃縮、乾燥することによって白色の粘性固体を得た。得られた粗生成物を14.2mlのアセトンに溶解させ、副生成物であるLiFを除去するために濾過し、濾液を濃縮することによって5.50gの前駆体化合物(2)を得た。
Figure 2009229603
別途、20℃以下で制御したメタンスルホン酸(60.75g)に酸化リン(8.53g)と2,5−ジメチルフェノール(8.81g)とジフェニルスルホキシド(12.2g)を少量ずつ添加した。温度を15〜20℃で制御しながら30分熟成した後、40℃まで昇温し2時間熟成した。その後、15℃以下に冷却した純水(109.35g)に反応液を滴下した。滴下終了後、ジクロロメタン(54.68g)を加え、攪拌後、ジクロロメタン層を回収した。別容器に20〜25℃のヘキサン(386.86g)を仕込み、ジクロロメタン層を滴下した。滴下終了後、20〜25℃で30min熟成した後、ろ過することによって目的の化合物(前駆体化合物(3))17.14gを得た(収率70.9%)。
前駆体化合物(3)について、H−NMRによる分析を行った。その結果を以下に示す。
H−NMR(DMSO−d6、600MHz):δ(ppm)=7.61−7.72(m,10H,phenyl),7.14(s,2H,Hc),3.12(s,3H,Hb),2.22(s,6H,Ha)
上記の結果から、前駆体化合物(3)が下記に示す構造を有することが確認できた。
Figure 2009229603
次に、4gの前駆体化合物(3)をジクロロメタン(79.8g)に溶解させた。溶解確認後、炭酸カリウム(6.87g)を添加し、ブロモ酢酸2−メチル−2−アダマンタン(3.42g)を添加した。還流下、24時間反応後、ろ過、水洗浄を行い、ヘキサンで晶析した。得られた粉体を減圧乾燥することによって目的の化合物(前駆体化合物(4))3.98g(収率66%)を得た。
前駆体化合物(4)について、H−NMRによる分析を行った。その結果を以下に示す。
H−NMR(CDCl、400MHz):δ(ppm)=7.83−7.86(m,4H,Phenyl),7.69−7.78(m,6H,Phenyl),7.51(s,2H,Hd),4.46(s,2H,Hc),2.39(s,6H,Ha),2.33(s,2H,Adamantan),2.17(s,2H,Adamantan),1.71−1.98(m,11H,Adamantan),1.68(s,3H,Hb),1.57−1.61(m,2H,Adamantan)。
上記の結果から、前駆体化合物(4)が下記に示す構造を有することが確認できた。
Figure 2009229603
次に、前記前駆体化合物(4)(2.00g)を水(10.00g)とジクロロメタン(10.00)の混合溶液に溶解させた。その後、前記前駆体化合物(2)(1.25g)を少量ずつ添加し、25℃で1時間攪拌した。反応終了後、ジクロロメタン溶液を水洗いした後、濃縮乾固した。得られた粉体をヘキサンで分散洗浄した後、減圧乾燥することによって目的の化合物(b−11)2.35g(収率84.2%)を得た。
化合物(b−11)について、NMRによる分析を行った。その結果を以下に示す。
H−NMR(CDCl、400MHz):δ(ppm)=7.84(s,1H,Hf),7.71−7.77(m,3H,Phenyl+Naphthyl),7.57−7.67(m,10H,Phenyl+Naphthyl),7.39−7.51(m,3H,Phenyl+Naphthyl),7.36(s,2H,Hd),5.19(s,2H,Hc),4.38(s,2H,Hb),2.32(s,6H,Ha),1.69−1.97(m,11H,Adamantan),1.66(s,3H,He),1.55−1.58(d,3H,Adamantan)。
19F−NMR(CDCl、400MHz):δ(ppm)=−76.87,−109.14。
上記の結果から、化合物(b−11)が下記に示す構造を有することが確認できた。
Figure 2009229603
[比較合成例1]
<化合物(B’)−2の合成>
下記式(B’)−2で表される化合物(B’)−2を以下の手順で合成した。
Figure 2009229603
前記前駆体化合物(4)25.5gを、200gの純水に溶解させ、そこへジクロロメタン(127.4g)およびノナフルオロ−n−ブタンスルホン酸カリウム(16.0g)を添加し、室温にて14時間撹拌した。その後、ジクロロメタン層を分液した後、希塩酸洗、アンモニア洗、水洗を行い、ジクロロメタン層を濃縮および乾固することによって、白色固体として目的物(32.9g)を得た。
得られた化合物について、H−NMR、19F−NMRによる分析を行った。
H−NMR(DMSO−d6、400MHz):δ(ppm)=7.75−7.86(m,10H,ArH),7.61(s,2H,ArH),4.62(s,2H,CH),2.31(s,6H,CH),1.49−1.97(m,17H,Adamantane)。
19F−NMR(DMSO−d6、376MHz):δ(ppm)=−77.8,−112.2,−118.7,−123.0。
上記の結果から、化合物が上記構造(B’)−2を有することが確認できた。
[比較合成例2]
<化合物(B’)−3の合成>
下記式(B’)−3で表される化合物(B’)−3を以下の手順で合成した。
Figure 2009229603
前記前駆体化合物(4)8.93gを、70.4gの純水に溶解させ、そこへジクロロメタン(44.7g)およびトリフルオロメタンスルホン酸カリウム(3.12g)を添加し、室温にて14時間撹拌した。その後、ジクロロメタン層を分液した後、希塩酸洗、アンモニア洗、水洗を行い、ジクロロメタン層を濃縮および乾固することによって、白色固体として目的物(8.70g)を得た。
得られた化合物について、H−NMR、19F−NMRによる分析を行った。
H−NMR(DMSO−d6、400MHz):δ(ppm)=7.74−7.86(m,10H,ArH),7.60(s,2H,ArH),4.62(s,2H,CH),2.31(s,6H,CH),1.49−1.97(m,17H,Adamantane)。
19F−NMR(DMSO−d6、376MHz):δ(ppm)=−75.2。
上記の結果から、化合物が上記構造(B’)−3を有することが確認できた。
[実施例1、比較例1〜3]
下記表1に示す各成分を混合、溶解してポジ型レジスト組成物を調製した。
Figure 2009229603
表1の[ ]内に示す数値は配合量(質量部)である。また、表1中の略号は下記のものを示す。
(B)−1: 前記化合物(b−11)。
(B’)−1:(4−メチルフェニル)ジフェニルスルホニウムノナフルオロ−n−ブタンスルホネート。
(B’)−2:前記化合物(B’)−2。
(B’)−3:前記化合物(B’)−3。
(D)−1:トリ−n−オクチルアミン。
(S)−1:PGMEA。
得られたポジ型レジスト組成物を用いて以下の評価を行った。
<膜の表面状態>
各ポジ型レジスト組成物を、ヘキサメチルジシラザン(HMDS)処理(90℃、36秒間)を施した8インチシリコン基板上にスピンナーを用いて均一に塗布し、110℃にて60秒間ベーク処理(PAB)を行って膜厚115nmのレジスト膜を成膜した。
形成されたレジスト膜の表面(1μm×1μm)を、AFM(Atomic Force Microscope;Digital Instruments Co.NanoScopeIV)で数値化し、表面荒れを示す尺度であるRMS(自乗平均面粗さ)を求めた。その結果を表2に示す。
表2に示すように、実施例1のRMSは0.170nmであり、一般的な樹脂を基材成分として含有するレジスト組成物を用いて形成されるレジスト膜のRMSと同等レベルであった。
<コントラスト>
前記<膜の表面状態>の評価と同様にして膜厚60nmのレジスト膜を成膜した。
該レジスト膜に対し、電子線描画機HL−800D(Hitachi社製)を用い、加速電圧70kVにて大面積描画(1μm×1μm)を行い、110℃にて60秒間のベーク処理(PEB)を行った。
このレジスト膜をテトラメチルアンモニウムヒドロキシド(TMAH)の2.38質量%水溶液(23℃)に60秒間浸漬させ、その際の溶解速度(膜減り量/浸漬時間)の最小値(Rmin、単位:nm/秒)を求めた。結果は下記表2に示す。
表2の結果より、比較例1〜3は、現像した瞬間にレジスト膜が溶解してしまいコントラストが確認できなかったのに対し、実施例1のレジスト組成物は、Rminは0.16(nm/秒)と、一定のアルカリ溶解抑止効果を有していた。また、該レジスト膜の溶解速度の最大値Rmax(未露光部の溶解速度に該当)は、(現像後1〜2秒で露光部が溶解したことから)数十(nm/秒)と推測され、コントラストを有していることが確認できた。
Figure 2009229603
<パターン形成>
前記<膜の表面状態>の評価と同様にして膜厚60nmのレジスト膜を成膜した。
該レジスト膜に対し、電子線描画機HL−800D(VSB)(Hitachi社製)を用い、加速電圧70kVにてラインアンドスペース(L/S)パターンの描画(露光)を行い、90℃にて60秒間のベーク処理(PEB)を行い、テトラメチルアンモニウムヒドロキシド(TMAH)の2.38質量%水溶液(23℃)を用いて60秒間の現像を行った後、純水にて30秒間リンスし、振り切り乾燥を行った。
乾燥後、基板表面を光学顕微鏡にて観察したところ、実施例1のポジ型レジスト組成物についてはL/S像が確認できた。また、このとき、ライン幅50μmのL/Sパターンが1:1に形成される露光量Eop(μC/cm)を「感度」として求めたところ、該感度は10μC/cmであった。
一方、比較例1〜3のポジ型レジスト組成物については、現像した瞬間にレジスト膜が完全に溶解してしまった。

Claims (4)

  1. 下記一般式(b1)で表される化合物(B1)からなる基材成分(B)を主成分として含有することを特徴とするポジ型レジスト材料。
    Figure 2009229603
    [式中、Xは置換基を有していてもよい炭素数3〜30の炭化水素基であり、Qは酸素原子を含む2価の連結基であり、Yは置換基を有していてもよい炭素数1〜4のアルキレン基または置換基を有していてもよい炭素数1〜4のフッ素化アルキレン基であり、Aは酸解離性溶解抑制基を有する有機カチオンである。]
  2. 前記一般式(b1)中のAが、下記一般式(I−1)で表される請求項1に記載のポジ型レジスト材料。
    Figure 2009229603
    [式中、R”〜R”は、それぞれ独立に、置換基を有していてもよいアリール基、または置換基を有していてもよいアルキル基であり、R”〜R”のうち少なくとも1つは置換基として酸解離性溶解抑制基含有基を有し、R”〜R”のうち少なくとも1つは前記アリール基であり、R”〜R”のうちの2つが相互に結合して式中のイオウ原子と共に環を形成していてもよい。]
  3. 含窒素有機化合物(D)を含有する請求項1または2に記載のポジ型レジスト材料。
  4. 支持体上に、請求項1〜3のいずれか一項に記載のポジ型レジスト材料を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法。
JP2008072502A 2008-03-19 2008-03-19 ポジ型レジスト材料およびレジストパターン形成方法 Active JP5162292B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072502A JP5162292B2 (ja) 2008-03-19 2008-03-19 ポジ型レジスト材料およびレジストパターン形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072502A JP5162292B2 (ja) 2008-03-19 2008-03-19 ポジ型レジスト材料およびレジストパターン形成方法

Publications (2)

Publication Number Publication Date
JP2009229603A true JP2009229603A (ja) 2009-10-08
JP5162292B2 JP5162292B2 (ja) 2013-03-13

Family

ID=41245108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072502A Active JP5162292B2 (ja) 2008-03-19 2008-03-19 ポジ型レジスト材料およびレジストパターン形成方法

Country Status (1)

Country Link
JP (1) JP5162292B2 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652753B2 (en) 2011-07-19 2014-02-18 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8652754B2 (en) 2011-07-19 2014-02-18 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8663899B2 (en) 2011-07-19 2014-03-04 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8663900B2 (en) 2011-07-19 2014-03-04 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8685618B2 (en) 2011-07-19 2014-04-01 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8685619B2 (en) 2011-07-19 2014-04-01 Sumitomo Chemcial Company, Limited Resist composition and method for producing resist pattern
US8709699B2 (en) 2011-07-19 2014-04-29 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8728707B2 (en) 2011-07-19 2014-05-20 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8735047B2 (en) 2011-07-19 2014-05-27 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8741543B2 (en) 2011-07-19 2014-06-03 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8778594B2 (en) 2011-07-19 2014-07-15 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8835095B2 (en) 2011-02-25 2014-09-16 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8921029B2 (en) 2011-07-19 2014-12-30 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8940473B2 (en) 2011-02-25 2015-01-27 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9052591B2 (en) 2011-07-19 2015-06-09 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9063414B2 (en) 2010-07-28 2015-06-23 Sumitomo Chemical Company, Limited Photoresist composition
US9128373B2 (en) 2011-04-07 2015-09-08 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9176378B2 (en) 2011-04-07 2015-11-03 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9176379B2 (en) 2011-04-07 2015-11-03 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9260407B2 (en) 2010-11-15 2016-02-16 Sumitomo Chemical Company, Limited Salt and photoresist composition comprising the same
US9429841B2 (en) 2011-07-19 2016-08-30 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9791776B2 (en) 2011-04-07 2017-10-17 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189501A (ja) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd ポジ型レジスト組成物及びそれを用いたパターン形成方法
JP2007145797A (ja) * 2005-04-06 2007-06-14 Shin Etsu Chem Co Ltd 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
JP2007145803A (ja) * 2005-10-31 2007-06-14 Shin Etsu Chem Co Ltd 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
JP2008007410A (ja) * 2006-06-27 2008-01-17 Shin Etsu Chem Co Ltd 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
WO2008029673A1 (fr) * 2006-09-08 2008-03-13 Jsr Corporation Composition sensible au rayonnement et procédé de fabrication d'un composé de faible masse moléculaire destiné à être utilisé dans ladite composition
JP2009242789A (ja) * 2008-03-14 2009-10-22 Shin Etsu Chem Co Ltd スルホニウム塩の繰り返し単位を含有する高分子化合物、レジスト材料及びパターン形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189501A (ja) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd ポジ型レジスト組成物及びそれを用いたパターン形成方法
JP2007145797A (ja) * 2005-04-06 2007-06-14 Shin Etsu Chem Co Ltd 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
JP2007145803A (ja) * 2005-10-31 2007-06-14 Shin Etsu Chem Co Ltd 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
JP2008007410A (ja) * 2006-06-27 2008-01-17 Shin Etsu Chem Co Ltd 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
WO2008029673A1 (fr) * 2006-09-08 2008-03-13 Jsr Corporation Composition sensible au rayonnement et procédé de fabrication d'un composé de faible masse moléculaire destiné à être utilisé dans ladite composition
JP2009242789A (ja) * 2008-03-14 2009-10-22 Shin Etsu Chem Co Ltd スルホニウム塩の繰り返し単位を含有する高分子化合物、レジスト材料及びパターン形成方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063414B2 (en) 2010-07-28 2015-06-23 Sumitomo Chemical Company, Limited Photoresist composition
US9260407B2 (en) 2010-11-15 2016-02-16 Sumitomo Chemical Company, Limited Salt and photoresist composition comprising the same
US8835095B2 (en) 2011-02-25 2014-09-16 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8940473B2 (en) 2011-02-25 2015-01-27 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9791776B2 (en) 2011-04-07 2017-10-17 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9176379B2 (en) 2011-04-07 2015-11-03 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9176378B2 (en) 2011-04-07 2015-11-03 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9128373B2 (en) 2011-04-07 2015-09-08 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8685619B2 (en) 2011-07-19 2014-04-01 Sumitomo Chemcial Company, Limited Resist composition and method for producing resist pattern
US8709699B2 (en) 2011-07-19 2014-04-29 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8778594B2 (en) 2011-07-19 2014-07-15 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8735047B2 (en) 2011-07-19 2014-05-27 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8921029B2 (en) 2011-07-19 2014-12-30 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8728707B2 (en) 2011-07-19 2014-05-20 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9052591B2 (en) 2011-07-19 2015-06-09 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8741543B2 (en) 2011-07-19 2014-06-03 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8652753B2 (en) 2011-07-19 2014-02-18 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8685618B2 (en) 2011-07-19 2014-04-01 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8663900B2 (en) 2011-07-19 2014-03-04 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8663899B2 (en) 2011-07-19 2014-03-04 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US9429841B2 (en) 2011-07-19 2016-08-30 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
US8652754B2 (en) 2011-07-19 2014-02-18 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern

Also Published As

Publication number Publication date
JP5162292B2 (ja) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5162292B2 (ja) ポジ型レジスト材料およびレジストパターン形成方法
JP5049935B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP5460074B2 (ja) レジスト組成物およびレジストパターン形成方法
JP5337576B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP5732306B2 (ja) 化合物、高分子化合物、酸発生剤、レジスト組成物、レジストパターン形成方法
TWI403846B (zh) 正型光阻組成物,光阻圖型之形成方法及高分子化合物
JP5564402B2 (ja) レジスト組成物、レジストパターン形成方法、新規な化合物、酸発生剤
JP5767845B2 (ja) レジスト組成物、レジストパターン形成方法、高分子化合物
JP5758197B2 (ja) レジスト組成物、レジストパターン形成方法、新規な化合物、酸発生剤
JP2012220572A (ja) ネガ型現像用レジスト組成物、及びレジストパターン形成方法
JP5802385B2 (ja) レジスト組成物、レジストパターン形成方法
KR20120007972A (ko) 레지스트 조성물, 레지스트 패턴 형성 방법, 신규 화합물 및 산발생제
JP5469845B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP5358112B2 (ja) レジスト組成物およびレジストパターン形成方法
TWI537682B (zh) 正型光阻組成物、光阻圖型之形成方法
JP5597677B2 (ja) 化合物、高分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法
JP5703172B2 (ja) ポジ型レジスト組成物、レジストパターン形成方法
JP5520515B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP5690653B2 (ja) レジスト組成物、レジストパターン形成方法、新規な化合物、酸発生剤
JP5297671B2 (ja) レジスト組成物およびレジストパターン形成方法
JP4866783B2 (ja) レジスト組成物およびレジストパターン形成方法
JP2009084241A (ja) 化合物の製造方法
JP5758232B2 (ja) レジスト組成物、レジストパターン形成方法
JP2014012681A (ja) 化合物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5162292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3